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uvmcmcfit is Python software designed to allow users to fit parametric models to interferometric data. It is ideally
suited to extract the maximum amount of information from marginally resolved observations with interferometers
like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer
(PdBI).

uvmcmcfit has been thoroughly tested on continuum imaging from ALMA (Bussmann et al., in prep.), SMA (Buss-
mann et al. 2012, 2013), and PdBI (Miettenen et al., in prep.). It has also been tested on spectral line imaging from
PdBI (Oteo et al. in prep.) and SMA (Bradli et al., in prep.).
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CHAPTER 1

Why Use uvmcmcfit?

Here are three reasons why you might be interested in using uvmcmcfit.

1.1 Markov Chain Monte Carlo

uvmcmcfit uses D. Foreman-Mackey’s emcee to do Markov Chain Monte Carlo (MCMC). emcee is an affine-
invariant MCMC ensemble sampler that is efficient at identifying the best-fit model and the uncertainties on the
parameters of the model.

1.2 Interferometry

Interferometers measure visibilities, not images. In many situations (e.g., strong gravitational lensing), it is advanta-
geous to measure the goodness of fit from the visibilities rather than the deconvolved images.

uvmcmcfit includes a pure-Python adaptation of Miriad’s uvmodel task that allows it to generate simulated visi-
bilities given observed visibilities and a model image.

1.3 Gravitational Lensing

Many of the brightest galaxies that have been observed by interferometers are gravitationally lensed by an intervening
galaxy or group of galaxies along the line of sight. Understanding the intrinsic properties of the lensed galaxies
requires a lens model.

uvmcmcfit includes a simple ray-tracing routine that allows it to account for both strongly lensed systems (where
multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed
galaxy is detected).
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CHAPTER 2

Installation

1. Install Python. I recommend the Anaconda python distribution.

2. Install pyyaml (pip install pyyaml)

3. Install emcee (pip install emcee)

4. Install uvmcmcfit

• Download uvmcmcfit from github: https://github.com/sbussmann/uvmcmcfit

• Add the directory containing uvmcmcfit to your PYTHONPATH
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CHAPTER 3

Input Data Format

uvmcmcfit uses visibilities obtained from an interferometer as the primary input data. The format must be either
uvfits (preferred) or CASA ms.

3.1 Which format should I use?

Use the CASA ms format if you are only willing to run uvmcmcfit inside the CASA shell. Note that doing this will
mean you can’t take advantage of the parallel processing features included in uvmcmcfit. For this reason, I suggest
using uvfits as the input file format for the visibilities.

3.2 Do I really need to worry about the weights?!?

The weights in the visibility dataset are a critical component of uvmcmcfit. So yes, you do need to worry about
them. uvmcmcfit uses the weights to determine how much to trust each visibility measurement. In this way, the
relative value of the weights is important (similar to a deconvolution task like clean).

Not only that, but the amplitude of the weights matters as well. Consider two extreme scenarios: one in which the
weights are very very tiny, and one in which they are very very large. In the former scenario, good and models become
indistinguishable because the goodness-of-fit measurement is normalized by the weights, so the difference between
a good model and a bad model becomes very very small. On the other hand, if the weights are too large, then two
models which are both plausible fits might still show a significant difference in the goodness of fit measurement. The
right value for the amplitude of the weights is somewhere in between.

From my personal experience exploring both ALMA and SMA continuum data, scaling the weights based on the
scatter in the actual visibility datasets does a good job of setting the amplitude of the weights.

Note: In future versions of CASA, the plan (as I understand it) is to set both the relative and absolute value of the
weights rigorously. For now, only the relative value of the weights is meaningful, so the following advice might be
useful to you.

A CASA routine exists to re-compute the weights based on the scatter in the visibilities within a spectral window
(spw). This task is called statwt. I found that this routine worked well within CASA, but when I exported the
results to a uvfits file (using exportuvfits), the normalization of the weights was off. So I wrote my own version
of CASA’s statwt: uvutil.statwt(). Using it properly is more convoluted than I would like at the moment,
but it works.

First, you need to export a uvfits file that contains visibility data as function of frequency. Let’s call this file ‘default-
weights_frequency.uvfits’. You then call uvutil.statwt() as in the following example:
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import uvutil
uvutil.statwt('defaultweights_frequency.uvfits', 'statwtweights_frequency.uvfits')

where ‘defaultweights_frequency.uvfits’ is the visibility dataset with the default weights and
‘statwtweights_frequency.uvfits’ is a new file that is created by uvutil.statwt() that has the weights
recomputed according to the scatter in the visibilities within a given spectral window.

Note: You can use the ExcludeChannels option to exclude certain channels from being considered when
computing the scatter in the visibilities (e.g. so that a strong line does not bias the rms measurement too high).
Do this by defining a list that contains pairs of start and end channels. All channels between (and including) the
start and end channels will be excluded when computing the rms scatter in the visibilities. For example, uvu-
til.statwt(‘defaultweights_frequency.uvfits’, ‘statwtweights_frequency.uvfits’, ExcludeChannels=[45,145]) will en-
sure that channels 45 to 145 will not be considered when computing the rms scatter in the visibilities.

Next, import the new uvfits file back into CASA using importuvfits.

Next, average over the channels of interest to create the single-channel visibility dataset of interest. Do this in CASA
using split.

Next export the output from split to a uvfits file using exportuvfits. This is the file that you will use as input
for uvmcmcfit.

8 Chapter 3. Input Data Format



CHAPTER 4

Examples

This section contains three examples in order of increasing complexity to demonstrate usage of uvmcmcfit.

4.1 XMM101: a single, unlensed galaxy

This example shows how to run uvmcmcfit on the simplest of systems: a single galaxy that is unaffected by lensing
of any kind.

4.1.1 Preliminary Setup Procedures

Inputs

1. Establish a directory that contains data for the specific target for which you wish to measure a lens model. This
is the directory from which you will run the software. I call this “uvfit00” for the first run on a given dataset,
“uvfit01” for the second, etc.

2. Inside this directory, you must ensure the following files are present:

• config.yaml: This is the configuration file that describes where the source of interest is located, what type of
model to use for the lens and source, the name of the image of the target from your interferometric data, the
name of the uvfits files containing the interferometric visibilities, and a few important processing options as
well. Syntax is yaml.

• Image of the target from your interferometric data in fits format. This image is used to set the spatial resolution
of the model image (modified by an optional oversampling parameter).

• interferometric visibilities in uvfits format.

Outputs

posteriorpdf.fits: model parameters for every MCMC iteration, in fits format. Use astropy (either the fits or table
module) to inspect the results directly.

4.1.2 Configuring config.yaml

config.yaml contains the instructions needed by uvmcmcfit to initiate the model fitting process.

9
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Required keywords

A few house-keeping parameters:

# Name of the target
ObjectName: XMM101

# Name of the fits image; the pixel scale in this image sets the pixel
# scale in the model image
ImageName: XMM101.concat.statwt.cont.mfs.fits

# Name of the uvfits visibility data; the weights should be scaled such
# that Sum(weights * real) ~ N_vis [see uvutil.statwt()]
UVData: XMM101.concat.statwt.cont.uvfits

# Number of walkers
Nwalkers: 24

Caution: The number of walkers used by emcee must be more than double the number of parameters). In this
case, there are only 6 parameters, so the minimum number of walkers is 12. I selected 24 to be on the safe side.

Now for parameters that describe the geometry of the system. You must define at least one region. The first region
should be named Region0, the second Region1, etc. Pay attention to the indentation; the remaining keywords must
be indented to indicate they are sub-components of Region0. For each region, you must define a RA and Dec center,
an angular radial extent that contains the emission which you are attempting to model, and at least one source.

The first source should be named Source0, the second source should be named Source1, etc. Sources are elliptical
Gaussians. Each source must have the following parameters: the total intrinsic flux density (IntrinsicFlux [mJy]),
the effective radius defined as sqrt(a*b) (EffectiveRadius [arcsec]), the offset in RA and Dec from RACentroid and
DecCentroid (DeltaRA and DeltaDec [arcsec]), the axial ratio (AxialRatio), and the position angle in degrees east of
north (PositionAngle [degrees]).

For each source parameter, you must specify the lower and upper limits as well as how to initialize the walkers for that
parameter. This is done using the following syntax: Limits: [lower limit, lower initialization,
upper initialization, upper limit]. So, for example, in the code snippet below for XMM101,
Source0 is permitted to have a total intrinsic flux density ranging from 1 to 25 mJy, but is initialized with a uniform
probability density distribution between 5 and 10 mJy.

# First region
Region0:

# Right Ascension and Declination center of the model image (degrees)::
RACentroid: 36.449395
DecCentroid: -4.2974618

# Angular radial extent of the model image (arcsec)
RadialExtent: 1.5

# Source0
Source0:

# total intrinsic flux density
IntrinsicFlux:

Limits: [1.0, 5.0, 10.0, 25.0]

# effective radius of elliptical Gaussian [sqrt(a*b)] (arcsec)
EffectiveRadius:

Limits: [0.01, 0.01, 1.2, 1.2]
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# Offset in RA and Dec from RACentroid and DecCentroid (arcseconds)
DeltaRA:

Limits: [-0.4, -0.2, 0.2, 0.4]
DeltaDec:

Limits: [-0.4, -0.2, 0.2, 0.4]

# axial ratio = semi-minor axis / semi-major axis
AxialRatio:

Limits: [0.2, 0.3, 1.0, 1.0]

# position angle (degrees east of north)
PositionAngle:

Limits: [0.0, 0.0, 180.0, 180.0]

Optional keywords

By default, the maximum likelihood estimate is used to measure the goodness of fit. Alternatively, you may use the
chi-squared value as the goodness of fit criterion via:

# Goodness of fit measurement
LogLike: chi2

By default, parallel processing is not used. To use parallel processing on a single machine, set the Nthreads variable
to a number greater than 1. For example,

# Number of threads for multi-processing on a single computer
Nthreads: 2

If you have access to a computer cluster with many compute cores, you can use Message Passing Interface to greatly
speed up the modeling process:

# Use Message Passing Interface
MPI: True
Nthreads: 1

Caution: Nthreads must be equal to 1 if using MPI!

If you want to compare the model results with an image obtained at another wavelength (e.g., an HST image), you
must specify the location of the alternative image as well as the telescope and filter used to obtain the image:

# Alternative image name (used only for comparing with best-fit model)
OpticalImage: XMM101_F110W.fits

# Telescope and filter of alternative image
OpticalTag: HST F110W

4.1.3 Running uvmcmcfit

Assuming uvmcmcfit has been installed correctly (in this example I assume it is located in $uvsrc), usage should be
as simple as navigating to the directory where you have placed the *.fits image, *.uvfits dataset, and config.yaml files.
Then run:

python $uvsrc/uvmcmcfit.py

4.1. XMM101: a single, unlensed galaxy 11
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4.1.4 Inspecting the Model Results for XMM101

It is essential to inspect the results of the model fitting process to ensure the best-fit model and the associated parameter
uncertainties are robust and acceptable. uvmcmcfit provides a suite of visualization routines that will assist you in
this task.

Accessing the Data Directly

The model fit results are stored in a fits table called posteriorpdf.fits. You can inspect the results directly using the
astropy.table module:

# import astropy's table module
import astropy.table as Table

# read the fit results
fitresults = Table.read('posteriorpdf.fits')

# get and print the column header names
keys = fitresults.keys()
print(keys)

# you can plot whatever aspect of fitresults you want from here...

Testing Convergence

The first step in determining whether you have an acceptable model is to plot the convergence profile of the goodness
of fit estimate (by default, the maximum likelihood estimate). You can do this using visualize.convergence()

import visualize
visualize.convergence()

This routine produces convergence.png, a plot of the difference between max(lnprob) and lnprob as a function of
iteration. This turns out to be a convenient way to visualize the convergence, but it does mean that the best-fit model
is shown at the bottom of the plot.

For XMM101, I needed about 50,000 iterations to reach convergence. The worst model fit has max(lnprob) - lnprob ~
2e3. Both values are fairly typical for a single unlensed source like XMM101.
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Plot the Best-fit Model

The second step is to plot the best-fit model and make sure that the model accurately reproduces the data. You can do
this using visualize.bestFit().

Some Preliminaries

Caution: You must run visualize.bestFit() from inside a CASA terminal OR you must install MIRIAD
and add the following line to config.yaml:

UseMiriad: True

Note: To run visualize.bestFit() from inside CASA, follow these steps

1. Install casa-python. This makes it easy to install custom python packages in CASA using pip.

2. Install pyyaml and astropy into your CASA python environment.

• casa-pip install pyyaml

• casa-pip install astropy

4.1. XMM101: a single, unlensed galaxy 13
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3. Inspect $HOME/.casa/init.py and ensure that it contains a link to the directory where pyyaml and astropy
were installed. In my case, the file already had the following:

import site site.addsitedir(“/Users/rbussman/.casa/lib/python2.7/site-packages”)

So, I had to add the following lines:

site.addsitedir(“/Users/rbussman/.casa/lib/python/site-packages”) site.addsitedir(“/Users/rbussman/python/uvmcmcfit”)

This allowed CASA to recognize that pyyaml and uvmcmcfit were installed. You may have placed
uvmcmcfit in a different directory, so modify these instructions accordingly.

Note: To install MIRIAD on Mac, try the MIRIAD MacPorts page

Caution: If you use MIRIAD to make images of the best-fit model, you must create a special cshell script called
image.csh. This file should contain the instructions needed for MIRIAD to invert and deconvolve the simulated
visibilities from the best-fit model.

The Simplest Best-fit Plot

Generating a simple plot of the best-fit model should be straightforward:

import visualize
visualize.bestFit()

If you run this routine in CASA, you will enter an interactive cleaning session.

Note: See this ALMA tutorial for help on interactive cleaning.

After the cleaning session finishes, two plots will be produced like the ones shown below.

Left panel: ALMA 870um imaging of XMM101 (red contours, starting at +/-3-sigma and increasing by factors of
sqrt(2)) overlaid on the best-fit model from uvmcmcfit (grayscale). The half-power shape of the source Source0
in this case, is shown by a magenta ellipse. The shape of the synthesized beam is represented by the hatched black
ellipse.

Right panel: Same as left panel, but showing the residual image after subtracting the best-fit model simulated visibili-
ties from the observed visibilities. White and black contours trace positive and negative contours, respectively.

In this case, the model provides a good fit. There is evidence that the source is elongated in a direction perpendicular
to the semi-major axis of the synthesized beam.

Comparison to Alternative Imaging

You can also compare the best-fit model to an image at an alternative wavelength (e.g., to compare lens properties with
an optical or near-IR image of the lens). Do this by adding the following keyword:

visualize.bestFit(showOptical=True)

You should get the same results as above, but with an additional plot showing the comparison with the alternative
image. Below is an example comparing the ALMA 870um imaging and best-fit model with HST F110W imaging.

14 Chapter 4. Examples
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Additional Options

You can turn off interactive cleaning in CASA:

visualize.bestFit(interactive=False)

visualize.bestFit() produces a large number of intermediate stage files that are automatically deleted as the
last step in the program. These can sometimes be useful for debugging. To stop the program from automatically
deleting all intermediate files, use the following option:

visualize.bestFit(cleanup=False)

Plot Several Acceptable Model Fits

It’s nice to have visual confirmation that the best-fit model gives an acceptable fit to the data. It’s even better to see
that a random draw from the posterior probability density function (PDF) also gives an acceptable fit to the data. This
is easily done using:

import visualize
visualize.goodFits()

By default, visualize.goodFits() produces plots of 12 model fits randomly drawn from the posterior PDF.
You can adjust this with the Nfits keyword argument.

Note: Other than Nfits, visualize.goodFits() takes the same optional keyword arguments as
visualize.bestFit().

Plot the Posterior PDFs

You can examine the posterior probability density functions to get a quantitative look at the results of the model fitting
process using visualize.posteriorPDF():

import visualize
visualize.posteriorPDF()

This will produce a series of histograms showing the posterior probability distribution functions for every parameter
in the model.

This routine also prints the average and 1-sigma rms uncertainty on each parameter of the model. We can see from
the posterior PDF histograms that XMM101 appears to be elongated (axial ratio = 0.52 +/- 0.11) and has a total flux
density at 870um of 8.76 +/- 0.24 mJy. It has an effective radius of 0.085 +/- 0.010 arcsec, which translates to a FWHM
of 0.2 arcsec. At z=2 (the actual redshift of this object is unknown currently, but the Herschel photometry indicates
z~2) this corresponds to a physical size of 1.7 kpc.

4.1. XMM101: a single, unlensed galaxy 15
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You can also see how the posterior PDF of every parameter in the model changes as a function of iteration using
visualize.evolvePDF():

visualize.evolvePDF()

This function essentially produces a posteriorPDF every stepsize iterations. The default is stepsize = 50000.
You can then view the evolution in the PDF using a viewer application like Preview.

Plot the Covariance Matrix

You might wish to examine how the various parameters are correlated with each other. You can do this by plotting the
covariance matrix using visualize.covariance():

import visualize
visualize.covariance()

This should produce a plot which looks similar to the image below. There appears to be a strong correlation between
the axial ratio, size, and total flux density of the source.

4.2 ADFS07: A Single, Strongly Lensed Galaxy

This example shows how to run uvmcmcfit on the simplest strongly lensed system: a single galaxy that is lensed by
a single intervening galaxy along the line of sight.

16 Chapter 4. Examples
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4.2.1 Preliminary Setup Procedures

Inputs

1. Establish a directory that contains data for the specific target for which you wish to measure a lens model. This
is the directory from which you will run the software. I call this “uvfit00” for the first run on a given dataset,
“uvfit01” for the second, etc.

2. Inside this directory, you must ensure the following files are present:

• config.yaml: This is the configuration file that describes where the source of interest is located, what type of
model to use for the lens and source, the name of the image of the target from your interferometric data, the
name of the uvfits files containing the interferometric visibilities, and a few important processing options as
well. Syntax is yaml.

• Image of the target from your interferometric data in fits format. This image is used to set the spatial resolution
of the model image (modified by an optional oversampling parameter).

• interferometric visibilities in uvfits format.

Outputs

posteriorpdf.fits: model parameters for every MCMC iteration, in fits format. Use astropy (either the fits or table
module) to inspect the results directly.

4.2.2 Configuring config.yaml

config.yaml contains the instructions needed by uvmcmcfit to initiate the model fitting process.

Required keywords

A few house-keeping parameters:

# Name of the target
ObjectName: ADFS07

# Name of the fits image; the pixel scale in this image sets the pixel
# scale in the model image
ImageName: ADFS07.X28f.selfcal.statwt.cont.mfs.fits

# Name of the uvfits visibility data; the weights should be scaled such
# that Sum(weights * real) ~ N_vis [see uvutil.statwt()]
UVData: ADFS07.X28f.selfcal.statwt.cont.uvfits

# Number of walkers
Nwalkers: 44

Caution: The number of walkers used by emcee must be more than double the number of parameters). In this
case, there are 11 parameters (5 for the lens, 6 for the source), so the minimum number of walkers is 22. I selected
44 to be on the safe side.

Now for parameters that describe the geometry of the system. You must define at least one region. The first region
should be named Region0, the second Region1, etc. Pay attention to the indentation; the remaining keywords must
be indented to indicate they are sub-components of Region0. For each region, you must define a RA and Dec center,
an angular radial extent that contains the emission which you are attempting to model, and at least one source. You

4.2. ADFS07: A Single, Strongly Lensed Galaxy 17
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have the option to use the Oversample keyword to specify an integer factor by which to increase the resolution of
the model image relative to the data image (i.e., relative to the resolution in the image specified by ImageName).

The first source should be named Source0, the second source should be named Source1, etc. Sources are elliptical
Gaussians. Each source must have the following parameters: the total intrinsic flux density (IntrinsicFlux [mJy]),
the effective radius (EffectiveRadius, defined as sqrt(a*b) [arcsec]), the offset in RA and Dec from RACentroid and
DecCentroid (DeltaRA and DeltaDec [arcsec]), the axial ratio (AxialRatio, defined as b/a), and the position angle in
degrees east of north (PositionAngle [degrees]).

For each source parameter, you must specify the lower and upper limits as well as how to initialize the walkers for that
parameter. This is done using the following syntax: Limits: [lower limit, lower initialization,
upper initialization, upper limit]. So, for example, in the code snippet below for ADFS07,
Source0 is permitted to have a total intrinsic flux density ranging from 0.1 to 30 mJy, but is initialized with a
uniform probability density distribution between 1 and 5 mJy.

You may account for the deflection of light rays caused by the presence of a galaxy or group of galaxies acting as a
gravitational lens by specifying one or more lenses. The first lens should be named Lens0, the second lens should be
named Lens1, etc.

Lenses are assumed to be singular isothermal ellipsoids. They are parameterized by: the Einstein radius (Einstein-
Radius [arcsec]), the offset in RA and Dec from RACentroid and DecCentroid (DeltaRA and DeltaDec [arcsec]), the
axial ratio (AxialRatio), and the position angle in degrees east of north (PositionAngle [degrees]).

Lens parameters are specified in the same way as source parameters: Limits: [lower limit, lower
initialization, upper initialization, upper limit].

Note: It is sometimes desirable to specify the permissible range on a given parameter relative to another parameter of
the model. For example, you might wish to force Source0 to be north of Lens0. You can accomplish this by adding
a line under the Limits specification for DeltaDec for Source0 that says FixedTo: Region0 Lens0
DeltaDec. This makes the program understand that DecSource0 = DecCentroid + DeltaDecLens0 + DeltaDec-
Source0, rather than simply DecSource0 = DecCentroid + DeltaDecSource0. The example below shows how to fix
the RA and Dec of Source0 relative to the RA and Dec of Lens0.

# First region
Region0:

# Right Ascension and Declination center of the model image (degrees)::
RACentroid: 70.4745
DecCentroid: -54.064856

# Angular radial extent of the model image (arcsec)
RadialExtent: 2.2

# [OPTIONAL]
# Integer factor by which to increase resolution of model image
Oversample: 2

# Source0
Source0:

# total intrinsic flux density
IntrinsicFlux:

Limits: [0.1, 1.0, 5.0, 30.0]

# effective radius of elliptical Gaussian [sqrt(a*b)] (arcsec)
EffectiveRadius:

Limits: [0.01, 0.1, 0.4, 1.5]
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# Offset in RA and Dec from RALens0 and DecLens0 (arcseconds)
DeltaRA:

FixedTo: Region0 Lens0 DeltaRA
Limits: [-1.7, -0.3, 0.3, 1.7]

DeltaDec:
FixedTo: Region0 Lens0 DeltaDec
Limits: [-1.7, -0.3, 0.3, 1.7]

# axial ratio = semi-minor axis / semi-major axis
AxialRatio:

Limits: [0.2, 0.3, 1.0, 1.0]

# position angle (degrees east of north)
PositionAngle:

Limits: [0.0, 0.0, 180.0, 180.0]

# Lens0
Lens0:

# Einstein radius
EinsteinRadius:

Limits: [0.6, 1.0, 1.3, 2.0]

# Offset in RA and Dec from RACentroid and DecCentroid (arcseconds)
DeltaRA:

Limits: [-0.8, -0.3, 0.0, 0.4]
DeltaDec:

Limits: [-0.6, -0.3, 0.0, 0.3]

# axial ratio = semi-minor axis / semi-major axis
AxialRatio:

Limits: [0.3, 0.5, 0.9, 1.0]

# position angle (degrees east of north)
PositionAngle:

Limits: [0.0, 0.0, 180.0, 180.0]

Optional keywords

By default, the maximum likelihood estimate is used to measure the goodness of fit. Alternatively, you may use the
chi-squared value as the goodness of fit criterion via:

# Goodness of fit measurement
LogLike: chi2

By default, parallel processing is not used. To use parallel processing on a single machine, set the Nthreads variable
to a number greater than 1. For example,

# Number of threads for multi-processing on a single computer
Nthreads: 2

If you have access to a computer cluster with many compute cores, you can use Message Passing Interface to greatly
speed up the modeling process:

# Use Message Passing Interface
MPI: True
Nthreads: 1

4.2. ADFS07: A Single, Strongly Lensed Galaxy 19
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Caution: Nthreads must be equal to 1 if using MPI!

If you want to compare the model results with an image obtained at another wavelength (e.g., an HST image), you
must specify the location of the alternative image as well as the telescope and filter used to obtain the image:

# Alternative image name (used only for comparing with best-fit model)
OpticalImage: ADFS07_F110W.fits

# Telescope and filter of alternative image
OpticalTag: HST F110W

4.2.3 Running uvmcmcfit

Assuming uvmcmcfit has been installed correctly (in this example I assume it is located in $uvsrc), usage should be
as simple as navigating to the directory where you have placed the *.fits image, *.uvfits dataset, and config.yaml files.
Then run:

python $uvsrc/uvmcmcfit.py

4.2.4 Inspecting the Model Results for ADFS07

It is essential to inspect the results of the model fitting process to ensure the best-fit model and the associated parameter
uncertainties are robust and acceptable. uvmcmcfit provides a suite of visualization routines that will assist you in
this task.

Accessing the Data Directly

The model fit results are stored in a fits table called posteriorpdf.fits. You can inspect the results directly using the
astropy.table module:

# import astropy's table module
import astropy.table as Table

# read the fit results
fitresults = Table.read('posteriorpdf.fits')

# get and print the column header names
keys = fitresults.keys()
print(keys)

# you can plot whatever aspect of fitresults you want from here...

Testing Convergence

The first step in determining whether you have an acceptable model is to plot the convergence profile of the goodness
of fit estimate (by default, the maximum likelihood estimate). You can do this using visualize.convergence()

import visualize
visualize.convergence()
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This routine produces convergence.png, a plot of the difference between max(lnprob) and lnprob as a function of
iteration. This turns out to be a convenient way to visualize the convergence, but it does mean that the best-fit model
is shown at the bottom of the plot.

For ADFS07, I needed about 250,000 iterations to reach convergence. The worst model fit has max(lnprob) - lnprob ~
1e5. Both values are fairly typical for a single strongly lensed source like ADFS07.

Plot the Best-fit Model

The second step is to plot the best-fit model and make sure that the model accurately reproduces the data. You can do
this using visualize.bestFit().

Some Preliminaries

Caution: You must run visualize.bestFit() from inside a CASA terminal OR you must install MIRIAD
and add the following line to config.yaml:

UseMiriad: True

Note: To run visualize.bestFit() from inside CASA, follow these steps

1. Install casa-python. This makes it easy to install custom python packages in CASA using pip.

2. Install pyyaml and astropy into your CASA python environment.

• casa-pip install pyyaml

• casa-pip install astropy
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3. Inspect $HOME/.casa/init.py and ensure that it contains a link to the directory where pyyaml and astropy
were installed. In my case, the file already had the following:

import site site.addsitedir(“/Users/rbussman/.casa/lib/python2.7/site-packages”)

So, I had to add the following lines:

site.addsitedir(“/Users/rbussman/.casa/lib/python/site-packages”) site.addsitedir(“/Users/rbussman/python/uvmcmcfit”)

This allowed CASA to recognize that pyyaml and uvmcmcfit were installed. You may have placed
uvmcmcfit in a different directory, so modify these instructions accordingly.

Note: To install MIRIAD on Mac, try the MIRIAD MacPorts page

Caution: If you use MIRIAD to make images of the best-fit model, you must create a special cshell script called
image.csh. This file should contain the instructions needed for MIRIAD to invert and deconvolve the simulated
visibilities from the best-fit model.

The Simplest Best-fit Plot

Generating a simple plot of the best-fit model should be straightforward:

import visualize
visualize.bestFit()

If you run this routine in CASA, you will enter an interactive cleaning session.

Note: See this ALMA tutorial for help on interactive cleaning.

After the cleaning session finishes, two plots will be produced like the ones shown below.

Left panel: ALMA 870um imaging of ADFS07 (red contours, starting at +/-3-sigma and increasing by factors of
sqrt(2)) overlaid on the best-fit model from uvmcmcfit (grayscale). The half-power shape of the source Source0
in this case, is shown by a magenta ellipse. The shape of the synthesized beam is represented by the hatched black
ellipse.

Right panel: Same as left panel, but showing the residual image after subtracting the best-fit model simulated visibili-
ties from the observed visibilities. White and black contours trace positive and negative contours, respectively.

In this case, the model provides a good fit. There is evidence that the source is elongated in a direction perpendicular
to the semi-major axis of the synthesized beam.

Comparison to Alternative Imaging

You can also compare the best-fit model to an image at an alternative wavelength (e.g., to compare lens properties with
an optical or near-IR image of the lens). Do this by adding the following keyword:

visualize.bestFit(showOptical=True)

You should get the same results as above, but with an additional plot showing the comparison with the alternative
image. Below is an example comparing the ALMA 870um imaging and best-fit model with HST F110W imaging.

Here, the postion of the lens according to the best-fit model is offset from the position of the lens according to the
HST image by ~0.6 arcsec. The astrometry in the HST image is tied to a Gemini-South optical image of this source
to ~0.1 arcsec rms precision. However the Gemini-South image astrometry is tied to 2MASS imaging and therefore
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has an absolute uncertainty of ~0.5 arcsec rms. So this result is a little farther off than we might expect, but it’s not
worth losing sleep over. Data from the VISTA Hemisphere Survey (VHS) will be helpful for this application due to
the deeper imaging and better image quality of the VHS.

Additional Options

You can turn off interactive cleaning in CASA:

visualize.bestFit(interactive=False)

visualize.bestFit() produces a large number of intermediate stage files that are automatically deleted as the
last step in the program. These can sometimes be useful for debugging. To stop the program from automatically
deleting all intermediate files, use the following option:

visualize.bestFit(cleanup=False)

Plot Several Acceptable Model Fits

It’s nice to have visual confirmation that the best-fit model gives an acceptable fit to the data. It’s even better to see
that a random draw from the posterior probability density function (PDF) also gives an acceptable fit to the data. This
is easily done using:

import visualize
visualize.goodFits()

By default, visualize.goodFits() produces plots of 12 model fits randomly drawn from the posterior PDF.
You can adjust this with the Nfits keyword argument.

Note: Other than Nfits, visualize.goodFits() takes the same optional keyword arguments as
visualize.bestFit().

Plot the Posterior PDFs

You can examine the posterior probability density functions to get a quantitative look at the results of the model fitting
process using visualize.posteriorPDF():

import visualize
visualize.posteriorPDF()

This will produce a series of histograms showing the posterior probability distribution functions for every parameter
in the model.
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This routine also prints the average and 1-sigma rms uncertainty on each parameter of the model.

You can also see how the posterior PDF of every parameter in the model changes as a function of iteration using
visualize.evolvePDF():

visualize.evolvePDF()

This function essentially produces a posteriorPDF every stepsize iterations. The default is stepsize = 50000.
You can then view the evolution in the PDF using a viewer application like Preview.

Plot the Covariance Matrix

You might wish to examine how the various parameters are correlated with each other. You can do this by plotting the
covariance matrix using visualize.covariance():

import visualize
visualize.covariance()

This will produce an enormous plot showing correlations between all of the model parameters. The plot is too big to
reproduce here, but you can use Preview to zoom in on any panel of interest. There is evidence that DeltaRA for
Lens0 is highly anti-correlated with DeltaRA for Source0. This is expected since the source position has been
fixed relative to the lens position in this model fit. The same holds true for DeltaDec.

4.3 CDFS_M0: A Complex, Multi-component System

This example shows how to run uvmcmcfit on a complex system: a strongly lensed galaxy, a weakly lensed galaxy,
and a sub-mm bright lens.
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4.3.1 Preliminary Setup Procedures

Inputs

1. Establish a directory that contains data for the specific target for which you wish to measure a lens model. This
is the directory from which you will run the software. I call this “uvfit00” for the first run on a given dataset,
“uvfit01” for the second, etc.

2. Inside this directory, you must ensure the following files are present:

• config.yaml: This is the configuration file that describes where the source of interest is located, what type of
model to use for the lens and source, the name of the image of the target from your interferometric data, the
name of the uvfits files containing the interferometric visibilities, and a few important processing options as
well. Syntax is yaml.

• Image of the target from your interferometric data in fits format. This image is used to set the spatial resolution
of the model image (modified by an optional oversampling parameter).

• interferometric visibilities in uvfits format.

Outputs

posteriorpdf.fits: model parameters for every MCMC iteration, in fits format. Use astropy (either the fits or table
module) to inspect the results directly.

4.3.2 Configuring config.yaml

config.yaml contains the instructions needed by uvmcmcfit to initiate the model fitting process.

Required keywords

A few house-keeping parameters:

# Name of the target
ObjectName: CDFS_M0

# Name of the fits image; the pixel scale in this image sets the pixel
# scale in the model image
ImageName: CDFS_M0.Xabf.selfcal.statwt.cont.mfs.fits

# Name of the uvfits visibility data; the weights should be scaled such
# that Sum(weights * real) ~ N_vis [see uvutil.statwt()]
UVData: CDFS_M0.Xabf.selfcal.statwt.cont.uvfits

# Number of walkers
Nwalkers: 92

Caution: The number of walkers used by emcee must be more than double the number of parameters). In this
case, there are 23 parameters (5 for the lens, 6 for each of three sources), so the minimum number of walkers is 46.
I selected 92 to be on the safe side.

Now for parameters that describe the geometry of the system. You must define at least one region. The first region
should be named Region0, the second Region1, etc. Pay attention to the indentation; the remaining keywords must
be indented to indicate they are sub-components of Region0. For each region, you must define a RA and Dec center,
an angular radial extent that contains the emission which you are attempting to model, and at least one source. You
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have the option to use the Oversample keyword to specify an integer factor by which to increase the resolution of
the model image relative to the data image (i.e., relative to the resolution in the image specified by ImageName).

The first source should be named Source0, the second source should be named Source1, etc. Sources are elliptical
Gaussians. Each source must have the following parameters: the total intrinsic flux density (IntrinsicFlux [mJy]),
the effective radius (EffectiveRadius, defined as sqrt(a*b) [arcsec]), the offset in RA and Dec from RACentroid and
DecCentroid (DeltaRA and DeltaDec [arcsec]), the axial ratio (AxialRatio, defined as b/a), and the position angle in
degrees east of north (PositionAngle [degrees]).

For each source parameter, you must specify the lower and upper limits as well as how to initialize the walkers for that
parameter. This is done using the following syntax: Limits: [lower limit, lower initialization,
upper initialization, upper limit]. So, for example, in the code snippet below for CDFS_M0,
Source0 is permitted to have a total intrinsic flux density ranging from 0.1 to 30 mJy, but is initialized with a
uniform probability density distribution between 1 and 5 mJy.

You may account for the deflection of light rays caused by the presence of a galaxy or group of galaxies acting as a
gravitational lens by specifying one or more lenses. The first lens should be named Lens0, the second lens should be
named Lens1, etc.

Lenses are assumed to be singular isothermal ellipsoids. They are parameterized by: the Einstein radius (Einstein-
Radius [arcsec]), the offset in RA and Dec from RACentroid and DecCentroid (DeltaRA and DeltaDec [arcsec]), the
axial ratio (AxialRatio), and the position angle in degrees east of north (PositionAngle [degrees]).

Lens parameters are specified in the same way as source parameters: Limits: [lower limit, lower
initialization, upper initialization, upper limit].

Note: It is sometimes desirable to specify the permissible range on a given parameter relative to another parameter of
the model. For example, you might wish to force Source0 to be north of Lens0. You can accomplish this by adding
a line under the Limits specification for DeltaDec for Source0 that says FixedTo: Region0 Lens0
DeltaDec. This makes the program understand that DecSource0 = DecCentroid + DeltaDecLens0 + DeltaDec-
Source0, rather than simply DecSource0 = DecCentroid + DeltaDecSource0. The example below shows how to fix
the RA and Dec of Source0 relative to the RA and Dec of Lens0.

Note: In some cases, both the lens itself and the lensed emission is detected by the interferometer. The best way
I have found to deal with this situation is to create two regions with the same position center and angular extent,
Region0 and Region1, corresponding to the lensed and lens emission, respectively. These regions will be modeled
simultaneously, so that there is no need to do a “lens-subtraction” prior to modeling the lensed emission. An example
based on CDFS_M0 follows below.

Note: You can fix a parameter in the model to a given value by specifying both the lower and upper initialization
to have that same value. An example of how to do this is shown for DeltaRA and DeltaDec in Source0 of
Region1.

# First region: contains emission from the lensed galaxies
Region0:

# Right Ascension and Declination center of the model image (degrees)::
RACentroid: 51.966712
DecCentroid: -29.152889

# Angular radial extent of the model image (arcsec)
RadialExtent: 3.0

# [OPTIONAL]
# Integer factor by which to increase resolution of model image
Oversample: 2
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# Source0 -- this source is strongly lensed
Source0:

# total intrinsic flux density
IntrinsicFlux:

Limits: [0.1, 1.0, 2.0, 30.0]

# effective radius of elliptical Gaussian [sqrt(a*b)] (arcsec)
EffectiveRadius:

Limits: [0.01, 0.1, 0.4, 1.5]

# Offset in RA and Dec from RALens0 and DecLens0 (arcseconds)
DeltaRA:

FixedTo: Region0 Lens0 DeltaRA
Limits: [-1.7, -0.4, -0.3, 1.7]

DeltaDec:
FixedTo: Region0 Lens0 DeltaDec
Limits: [-0.7, 0.1, 0.2, 0.7]

# axial ratio = semi-minor axis / semi-major axis
AxialRatio:

Limits: [0.3, 0.3, 1.0, 1.0]

# position angle (degrees east of north)
PositionAngle:

Limits: [0.0, 0.0, 180.0, 180.0]

# Source1 -- this source is weakly lensed
Source1:

# total intrinsic flux density
IntrinsicFlux:

Limits: [0.1, 6.0, 8.0, 30.0]

# effective radius of elliptical Gaussian [sqrt(a*b)] (arcsec)
EffectiveRadius:

Limits: [0.01, 0.1, 0.4, 1.5]

# Offset in RA and Dec from RACentroid and DecCentroid (arcseconds)
DeltaRA:

Limits: [-1.2, -0.5, 0.0, 0.2]
DeltaDec:

Limits: [0.5, 1.2, 1.8, 2.5]

# axial ratio = semi-minor axis / semi-major axis = b/a
AxialRatio:

Limits: [0.3, 0.3, 1.0, 1.0]

# position angle (degrees east of north)
PositionAngle:

Limits: [0.0, 0.0, 180.0, 180.0]

# Lens0
Lens0:

# Einstein radius
EinsteinRadius:

Limits: [0.4, 1.0, 1.5, 2.0]
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# Offset in RA and Dec from RACentroid and DecCentroid (arcseconds)
DeltaRA:

Limits: [0.1, 0.2, 0.25, 0.3]
DeltaDec:

Limits: [-1.9, -1.8, -1.75, -1.7]

# axial ratio = semi-minor axis / semi-major axis
AxialRatio:

Limits: [0.3, 0.7, 0.9, 1.0]

# position angle (degrees east of north)
PositionAngle:

Limits: [0.0, 0.0, 180.0, 180.0]

# Second region: contains emission from the lens
Region1:

# Right Ascension and Declination center of the model image (degrees)::
RACentroid: 51.966712
DecCentroid: -29.152889

# Angular radial extent of the model image (arcsec)
RadialExtent: 3.0

# [OPTIONAL]
# Integer factor by which to increase resolution of model image
Oversample: 2

# Source0 -- this is the lens
Source0:

# total intrinsic flux density
IntrinsicFlux:

Limits: [0.1, 5.0, 6.0, 30.0]

# effective radius of elliptical Gaussian [sqrt(a*b)] (arcsec)
EffectiveRadius:

Limits: [0.01, 0.1, 0.2, 0.5]

# Offset in RA and Dec from RALens0 and DecLens0 (arcseconds)
# I assume the center of the gravitational potential is coincident
# with the emission centroid of the lensing galaxy
DeltaRA:

FixedTo: Region0 Lens0 DeltaRA
Limits: [-1.7, 0.0, 0.0, 1.7]

DeltaDec:
FixedTo: Region0 Lens0 DeltaDec
Limits: [-0.7, 0.0, 0.0, 0.7]

# axial ratio = semi-minor axis / semi-major axis
AxialRatio:

Limits: [0.3, 0.3, 1.0, 1.0]

# position angle (degrees east of north)
PositionAngle:

Limits: [0.0, 0.0, 180.0, 180.0]
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Optional keywords

By default, the maximum likelihood estimate is used to measure the goodness of fit. Alternatively, you may use the
chi-squared value as the goodness of fit criterion via:

# Goodness of fit measurement
LogLike: chi2

By default, parallel processing is not used. To use parallel processing on a single machine, set the Nthreads variable
to a number greater than 1. For example,

# Number of threads for multi-processing on a single computer
Nthreads: 2

If you have access to a computer cluster with many compute cores, you can use Message Passing Interface to greatly
speed up the modeling process:

# Use Message Passing Interface
MPI: True
Nthreads: 1

Caution: Nthreads must be equal to 1 if using MPI!

If you want to compare the model results with an image obtained at another wavelength (e.g., an HST image), you
must specify the location of the alternative image as well as the telescope and filter used to obtain the image:

# Alternative image name (used only for comparing with best-fit model)
OpticalImage: CDFS_M0_Ks.fits

# Telescope and filter of alternative image
OpticalTag: VIDEO Ks

4.3.3 Running uvmcmcfit

Assuming uvmcmcfit has been installed correctly (in this example I assume it is located in $uvsrc), usage should be
as simple as navigating to the directory where you have placed the *.fits image, *.uvfits dataset, and config.yaml files.
Then run:

python $uvsrc/uvmcmcfit.py

4.3.4 Inspecting the Model Results for CDFS_M0

It is essential to inspect the results of the model fitting process to ensure the best-fit model and the associated parameter
uncertainties are robust and acceptable. uvmcmcfit provides a suite of visualization routines that will assist you in
this task.

Accessing the Data Directly

The model fit results are stored in a fits table called posteriorpdf.fits. You can inspect the results directly using the
astropy.table module:

# import astropy's table module
import astropy.table as Table
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# read the fit results
fitresults = Table.read('posteriorpdf.fits')

# get and print the column header names
keys = fitresults.keys()
print(keys)

# you can plot whatever aspect of fitresults you want from here...

Testing Convergence

The first step in determining whether you have an acceptable model is to plot the convergence profile of the goodness
of fit estimate (by default, the maximum likelihood estimate). You can do this using visualize.convergence()

import visualize
visualize.convergence()

This routine produces convergence.png, a plot of the difference between max(lnprob) and lnprob as a function of
iteration. This turns out to be a convenient way to visualize the convergence, but it does mean that the best-fit model
is shown at the bottom of the plot.

For CDFS_M0, I needed about 450,000 iterations to reach convergence. The worst model fit has max(lnprob) - lnprob
~ 2e4. Both values are fairly typical for a complex system like CDFS_M0.
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Plot the Best-fit Model

The second step is to plot the best-fit model and make sure that the model accurately reproduces the data. You can do
this using visualize.bestFit().

Some Preliminaries

Caution: You must run visualize.bestFit() from inside a CASA terminal OR you must install MIRIAD
and add the following line to config.yaml:

UseMiriad: True

Note: To run visualize.bestFit() from inside CASA, follow these steps

1. Install casa-python. This makes it easy to install custom python packages in CASA using pip.

2. Install pyyaml and astropy into your CASA python environment.

• casa-pip install pyyaml

• casa-pip install astropy

3. Inspect $HOME/.casa/init.py and ensure that it contains a link to the directory where pyyaml and astropy
were installed. In my case, the file already had the following:

import site site.addsitedir(“/Users/rbussman/.casa/lib/python2.7/site-packages”)

So, I had to add the following lines:

site.addsitedir(“/Users/rbussman/.casa/lib/python/site-packages”) site.addsitedir(“/Users/rbussman/python/uvmcmcfit”)

This allowed CASA to recognize that pyyaml and uvmcmcfit were installed. You may have placed
uvmcmcfit in a different directory, so modify these instructions accordingly.

Note: To install MIRIAD on Mac, try the MIRIAD MacPorts page

Caution: If you use MIRIAD to make images of the best-fit model, you must create a special cshell script called
image.csh. This file should contain the instructions needed for MIRIAD to invert and deconvolve the simulated
visibilities from the best-fit model.

The Simplest Best-fit Plot

Generating a simple plot of the best-fit model should be straightforward:

import visualize
visualize.bestFit()

If you run this routine in CASA, you will enter an interactive cleaning session.

Note: See this ALMA tutorial for help on interactive cleaning.

After the cleaning session finishes, two plots will be produced like the ones shown below.
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Left panel: ALMA 870um imaging of CDFS_M0 (red contours, starting at +/-3-sigma and increasing by factors of
sqrt(2)) overlaid on the best-fit model from uvmcmcfit (grayscale). The half-power shape of the source Source0
in this case, is shown by a magenta ellipse. The shape of the synthesized beam is represented by the hatched black
ellipse.

Right panel: Same as left panel, but showing the residual image after subtracting the best-fit model simulated visibili-
ties from the observed visibilities. White and black contours trace positive and negative contours, respectively.

Comparison to Alternative Imaging

You can also compare the best-fit model to an image at an alternative wavelength (e.g., to compare lens properties with
an optical or near-IR image of the lens). Do this by adding the following keyword:

visualize.bestFit(showOptical=True)

You should get the same results as above, but with an additional plot showing the comparison with the alternative
image. Below is an example comparing the ALMA 870um imaging and best-fit model with VISTA VIDEO Ks-band
imaging.

Additional Options

You can turn off interactive cleaning in CASA:

visualize.bestFit(interactive=False)

visualize.bestFit() produces a large number of intermediate stage files that are automatically deleted as the
last step in the program. These can sometimes be useful for debugging. To stop the program from automatically
deleting all intermediate files, use the following option:

visualize.bestFit(cleanup=False)

Plot Several Acceptable Model Fits

It’s nice to have visual confirmation that the best-fit model gives an acceptable fit to the data. It’s even better to see
that a random draw from the posterior probability density function (PDF) also gives an acceptable fit to the data. This
is easily done using:

import visualize
visualize.goodFits()

By default, visualize.goodFits() produces plots of 12 model fits randomly drawn from the posterior PDF.
You can adjust this with the Nfits keyword argument.

Note: Other than Nfits, visualize.goodFits() takes the same optional keyword arguments as
visualize.bestFit().

Plot the Posterior PDFs

You can examine the posterior probability density functions to get a quantitative look at the results of the model fitting
process using visualize.posteriorPDF():

import visualize
visualize.posteriorPDF()
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This will produce a series of histograms showing the posterior probability distribution functions for every parameter
in the model.

This routine also prints the average and 1-sigma rms uncertainty on each parameter of the model.

You can also see how the posterior PDF of every parameter in the model changes as a function of iteration using
visualize.evolvePDF():

visualize.evolvePDF()

This function essentially produces a posteriorPDF every stepsize iterations. The default is stepsize = 50000.
You can then view the evolution in the PDF using a viewer application like Preview.

Plot the Covariance Matrix

You might wish to examine how the various parameters are correlated with each other. You can do this by plotting the
covariance matrix using visualize.covariance():

import visualize
visualize.covariance()

This will produce an enormous plot showing correlations between all of the model parameters. The plot is far too big
to reproduce here, but you can use Preview to zoom in on any panel of interest.
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CHAPTER 5

Indices and tables

• genindex

• modindex

• search
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