
Upkit Documentation
Release 0.4.x

Vu Le

Oct 26, 2018

Contents

1 Introduction 1
1.1 What is Upkit? . 1
1.2 Why should you use it? . 1
1.3 Authors . 2
1.4 License . 2
1.5 Acknowledgments . 2

2 Getting started with Upkit 3
2.1 Prerequisites . 3
2.2 Installation . 3
2.3 Step 1: Create Upkit project . 3
2.4 Step 2: Edit Upkit config file upkit.yaml . 4
2.5 Step 3: Link to create Unity projects . 4

3 Link configuration and linkspec 5
3.1 Link configuration file . 5
3.2 Package linkspec . 8

4 Tutorials 11
4.1 Create a reusable package . 11
4.2 Repackage an existing Unity package . 12

5 Upkit Commands 13
5.1 link command . 13
5.2 create-package command . 13

6 Indices and tables 15

i

ii

CHAPTER 1

Introduction

1.1 What is Upkit?

Upkit is a command line toolkit that helps create/organize your Unity3D projects. With a simple configuration file,
Upkit automatically resolves the project dependencies, symbolic-links them and generates a ready-to-use Unity project
for you.

For those in a hurry, please go to Getting Started to see Upkit in action.

1.2 Why should you use it?

1.2.1 Our usecase

If you are like us, these are what you need when developing a Unity project:

• Total separation of 3rd party assets, plugins, dependencies from your assets/codes, to reduce the project size.

• Quick package swapping for prototyping and production.

• Simple dependency resolving, from Nuget or Git repositories, or elsewhere.

• Simple configuration.

1.2.2 Limitations of existing tools

At first glance, Upkit shares some similarities with Projeny, which is a great tool that we frequently used in our team.
However, as Projeny model imposes a flat, exclusive package hierarchy, off-the-shelf packages do not often work well
together. For example, two packages having the same native library folder Plugins/Android will clash. Even
when there are no name clashes, Unity-compatible Nuget packages are not easily linked at times.

Unity 2018 officially comes with an easy-to-use built-in Package Manager. As of this writing, however, most of the
Asset Store packages are still unavailable in the Package Manager, except those from Unity Technologies. Another

1

Upkit Documentation, Release 0.4.x

drawback with current Package Manager is that we cannot use it for internal cross-project packages. This means that
most of the time, we have to fall back to traditional approaches.

1.2.3 Upkit remedies those issues and adds some more tricks

Upkit was initially designed as our solution to the aforementioned limitations, which is a tool sitting between Nuget
(dependency resolving step) and Projeny (project linking step) in our pipeline. As our projects evolve, we decided to
simplify the whole process by combining the two steps into Upkit, making it even easier to use by adding the following
features:

• Single (YAML) file configuration, for dependency resolving, linking, etc.

• Link anything with Linkspec determining how folders, files are linked to your Unity project.

• Create distributable packages (with Linkspec).

• Out-of-the-box support for Nuget and Git dependencies.

1.3 Authors

• Vu Le - Initial work - FindersEyes

1.4 License

This project is licensed under the MIT License - see the LICENSE.md file for details

1.5 Acknowledgments

• This tool uses xmltodict, pyyaml, yamlordereddictloader, and jinja2 under the hood. Thanks
to the respected authors for the hard work.

2 Chapter 1. Introduction

https://github.com/finderseyes
https://github.com/finderseyes/upkit/LICENSE.md

CHAPTER 2

Getting started with Upkit

These instructions will use upkit to create a simple Unity3D project which depends on Newtonsoft.Json on Nuget
Gallery.

The source code to this project can be also found under examples/simple-app.

2.1 Prerequisites

• Python 2.7 or above, with pip.

• (optional) nuget for resolving Nuget dependencies.

• (optional) git for resolving Git dependencies.

2.2 Installation

$ pip install upkit

2.3 Step 1: Create Upkit project

Creating a new Upkit project is as simple as:

$ upkit create-package simple-app

3

https://github.com/finderseyes/upkit/tree/develop/examples/simple-app

Upkit Documentation, Release 0.4.x

2.4 Step 2: Edit Upkit config file upkit.yaml

Upkit will create a new folder named simple-app, where you can find upkit.yaml. This file contains all the
information Upkit needs in order to create your Unity project. Now, modify it to let Upkit know the project will
depends on NewtonSoft.Json:

upkit.yaml
params:

project: '{{__dir__}}/project'

links:
- target: '{{__assets__}}'
source: '{{__dir__}}/assets'
content: ['*']

- target: '{{__plugins__}}'
source: '{{__dir__}}/plugins'
content: ['*']

- target: '{{__project__}}/ProjectSettings'
source: '{{__dir__}}/settings'

- target: '{{__project__}}/Packages'
source: '{{__dir__}}/packages'

Add project dependencies here:
- source: 'nuget:Newtonsoft.Json@11.0.2#lib/net35'
target: '{{__plugins__}}/Newtonsoft.Json'

Notice the second-last line where we instruct Upkit to resolve a Nuget library with nuget: scheme. Yes, it’s that
simple.

2.5 Step 3: Link to create Unity projects

The final step is to generate a Unity project, by calling:

$ cd simple-app
$ upkit link

Upkit will take a few seconds to resolve project’s dependencies and generate a Unity project under simple-app/
project. Open the folder in Unity as a project and you are ready to go.

4 Chapter 2. Getting started with Upkit

CHAPTER 3

Link configuration and linkspec

3.1 Link configuration file

At the heart of each link operation is a YAML configuration file, which defines how symbolic links should be
created to make a Unity project. By default, the file is named upkit.yaml, and can be changed to whatever needed.
A typical configuration should look like this:

params:
project: '{{__dir__}}/project'
project_packages: '{{__dir__}}/packages'

links:
- source: '{{project_packages}}/Scripts'
target: '{{__assets__}}/Scripts'

3.1.1 Parameters

To make linking more configurable, there are two types of parameters supported by Upkit:

• Built-in parameters: those with name enclosed by __, for instance __dir__ and __assets__, are gener-
ated by Upkit and shall not be defined. The list of built-in parameters are defined here.

• User parameters: those defined by user, under params section.

For each configuration file, there MUST be a project parameter defined, which tells Upkit where to generate the
links.

Defining and expanding parameters

Defining a parameter can be as simple as:

5

Upkit Documentation, Release 0.4.x

params:
some_param: 'some value'

However, most of the time, parameters are defined by expanding other existing parameters using Jinja syntax, such as:

params:
platform: 'ios'
project: '{{__dir__}}/project-{{platform}}'
project_settings: '{{project}}/ProjectSettings'

Builtin parameters

The table below describes Upkit built-in parameters.

Note that only __cwd__ and __dir__ are accessible in params section.

Overwriting parameters

Given a configuration, its user-defined parameters can be overwriten at link-time by passing -p
param_name=param_value to link command. This is particularly useful when you need to use the
configuration file as a template for multiple Unity projects with slightly different parameters. For example, a
configuration for multiple platforms may look like:

params:
platform: 'ios'
project: '{{__dir__}}/project-{{platform}}'

...

Execute the following commands:

$ upkit link
$ upkit link -p platform=android
$ upkit link -p platform=windows

will create project-ios, project-android and project-windows as separate Unity project folders.

3.1.2 Linkspec

To generate Unity projects, Upkit requires a list of link specifications, or linkspecs, which basically is a way to tell
Upkit where to find a package, its content (all or partial) and a target to which the content is linked. A linkspec may
be defined using properties in the table below:

Linkspec properties

source property

The source property describes a source package location containing files and folder to link. There are three types of
source packages supported by Upkit:

• Local file or folder, when source takes the syntax /path/to/local-file-or-folder.

• A Nuget package, when source takes the syntax nuget:(package_id)@(package_version)[#(sub_path)],
in which:

6 Chapter 3. Link configuration and linkspec

Upkit Documentation, Release 0.4.x

– package_id and package_verion are required.

– sub_path is optional.

• A Git repository, when source takes the syntax git:(repository_url)[@(branch_or_tag)][#(sub_path)],
in which:

– repository_url is required.

– branch_or_tag and sub_path are optional.

When source refers to a Nuget package or a Git repository, Upkit first resolves the package or repository into a local
folder under the container folder given by -w parameter (default to .packages), and then uses the resolved folder
as a local source. If sub_path is given, the sub-path in the resolved folder is used as the local source instead.

Examples:

• {{__dir__}}/Scripts

• nuget:NewtonSoft.Json@11.0.2

• nuget:NewtonSoft.Json@11.0.2#lib/net35

• git:https://github.com/finderseyes/upkit.git@develop

• git:https://github.com/finderseyes/upkit.git#examples/simple-app

• git:https://github.com/finderseyes/upkit.git@develop#examples/simple-app

content property

By default, if content is not specified, Upkit treats a linkspec as link-all i.e. it will create one link from its source
to its target. To patially link a source, declare its content as a list of glob patterns in the example below:

include everything
content: ['*']

include only files or folders under scripts/ and textures/.
content: ['scripts/*', 'textures/*']

When content is specified, Upkit will create multiple links, one for each item in the source content to an item with
the same name under target. For example, given the following content items:

(source)/data/child/A/
(source)/data/B.txt
(source)/C.png

Upon linking, the following links will be created:

(target)/A/ --> (source)/data/child/A/
(target)/B.txt --> (source)/data/B.txt
(target)/C.png --> (source)/C.png

exclude property

exclude can be used in tandem with content to ignore some of the files and folders in a source content. exclude
takes a list of patterns similar to content. For example:

content: ['*']
exclude: ['Document', 'Document.meta']

3.1. Link configuration file 7

Upkit Documentation, Release 0.4.x

will include everything under a source package, except its Document and Document.meta.

target property

As the name implies, target is a local path defining where a source or its content should be linked to.

links property

A linkspec may use sub-links, under links property, when it needs to define multiple link targets. Each item in
links is also a linkspec, except that it shall not have further sub-links i.e. source, target, content, and
exclude are allowed but not links.

links is often used in package linkspec files as explained in Package linkspec. However, it can also be used to link
packages where no linkspec file is provided, or to overwrite the linkspec of incompatible packages.

3.2 Package linkspec

A package linkspec file could be included in a package to make linking with it easier when shared across multiple
projects. Given a package A, Upkit tries to look for its linkspec file in the following paths:

A/linkspec.yaml
A/linkspec.yml
A/content/linkspec.yaml
A/content/linkspec.yml

The format of linkspec file is also a linkspec as explained in Linkspec section.

In the case where a package A has a linkspec file, linking with it can be as simple as:

upkit.yaml
links:

- source: '/source/to/A'

3.2.1 __source__ and __target__ parameters

In linkspec files, two additional built-in parameters __source__ and __target__ are available, if specified.

3.2.2 Overwrite package linkspec

A package linkspec can be overwriten in a configuration file if one of these properties are defined:

• content

• exclude

• links

In such case, Upkit will ignore the package linkspec and use the one in link configuration. For example:

8 Chapter 3. Link configuration and linkspec

Upkit Documentation, Release 0.4.x

upkit.yaml
links:

- source: '/source/to/A'
target: '/target/to-link'
content: ['data/*']

In this case, Upkit links all items under A/data to target, regardless of whatever A linkspec file defines.

3.2. Package linkspec 9

Upkit Documentation, Release 0.4.x

10 Chapter 3. Link configuration and linkspec

CHAPTER 4

Tutorials

4.1 Create a reusable package

Source code for this tutorial can be found in examples/shared-package

In this tutorial we will create a package DemoPackage which exports the following items when linked to project:

•
Assets/

DemoPackage/
Scenes/

Plugins/
DemoPackage/

4.1.1 Step 1: Create app and demo-package project

Run the following commands to create the projects:

$ upkit create-package app
$ upkit create-package demo-package

You will notice the following structure each generated project:

•
assets/ -> project Assets content
packages/ -> Unity 2018 packages folder
plugins/ -> project Plugins content
project/ -> the generated project
settings/ -> project settings
linkspec.yaml -> package linkspec
package.nuspec -> predefined Nuspec file, if you want to build to a Nuget package
upkit.yaml -> link configuration

Note we also use create app using create-package command, as it can also be shared to another project.

11

https://github.com/finderseyes/upkit/tree/develop/examples/shared-package

Upkit Documentation, Release 0.4.x

4.1.2 Step 2: Build demo-package

Let’s assume that demo-package has a few scripts and a demo scene as an example to its users. Create the following
folders in demo-packages:

• (demo-package)
assets/

Scenes/
plugins/

DemoPackage/

Then link it

$ cd demo-package && upkit link

Open demo-package/project in Unity, you will see the project structure as:

../_images/tut1-001.png

Add a scene to the Assets/Scenes and create something fancy under Assets/Plugins/DemoPackage.

4.1.3 Step 3: Update demo-package linkspec

The next step is to edit the package linkspec so that others can use it. The default generated linkspec.yaml would
suffice in most cases, we want to modify it so that the package demo Scenes will be linked under DemoPackage/
Scenes the target project to avoid name conflicts.

Open demo-package/linkspec.yaml and modify its first link target from target:
'{{__assets__}}' to target: '{{__assets__}}/DemoPackage'.

4.1.4 Step 4: Link demo-package with app

Linking with demo-package is as simple as adding it as a source in app/upkit.yaml:

app/upkit.yaml
...
links:

...
- source: '{{__dir__}}/../demo-package'

Finally, from app folder, run $ upkit link, then open the Unity project under app/project. That’s it, the
demo-package is linked to your app already.

4.2 Repackage an existing Unity package

Work in progress

12 Chapter 4. Tutorials

CHAPTER 5

Upkit Commands

5.1 link command

Usage Resolves and links dependencies for a project with a given configuration.

Syntax

$ upkit link [-w PACKAGE_FOLDER] [-p PARAMS] [config]

Parameters

• config (optional, default to upkit.yaml) is the path to the link configuration file.

• -w (optional, default to .packages) is the path to the folder containing resolved Nuget and Git packages.

• -p (optional) defines a parameter to use when linking, and can be passed multiple times for multiple parameters,
for example upkit link -p a=1 -p b=2.

– If there is an existing parameter in the given configuration file, its value will be overwriten by the value in
-p parameter.

5.2 create-package command

Usage Creates an empty package, which can be used as the boilerplate for a new Upkit project.

Syntax

$ upkit create-package [--link] location

Parameters

• location (required) is the name or location of an empty folder for the new package.

• --link (optional, default to False) to execute link command after the project is generated.

13

Upkit Documentation, Release 0.4.x

14 Chapter 5. Upkit Commands

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	Introduction
	What is Upkit?
	Why should you use it?
	Authors
	License
	Acknowledgments

	Getting started with Upkit
	Prerequisites
	Installation
	Step 1: Create Upkit project
	Step 2: Edit Upkit config file upkit.yaml
	Step 3: Link to create Unity projects

	Link configuration and linkspec
	Link configuration file
	Package linkspec

	Tutorials
	Create a reusable package
	Repackage an existing Unity package

	Upkit Commands
	link command
	create-package command

	Indices and tables

