
UnrealROX Documentation
Release 0.0.1

Pablo Martinez-Gonzalez, Sergiu Oprea, Alberto Garcia-Garcia, Sergio Orts-Escolano and Jose Garcia-Rodriguez

Nov 16, 2018

Getting Started

1 Welcome 1
1.1 What is UnrealROX? . 1
1.2 Our motivation . 1
1.3 UnrealROX features . 1
1.4 Our contribution . 2

2 How to use UnrealROX 3

3 Project structure 5

4 Hardware and Software prerequisites 9

5 Installation 11

6 Scene configuration 13
6.1 Import scene to UnrealROX . 13
6.2 Do you need a robot for you scene? . 13
6.3 Check and configure scene objects! . 14
6.4 Build scene lighting . 14

7 VR Controllers 17
7.1 OculusVR . 17
7.2 HTC Vive PRO . 19

8 Recording 21
8.1 General configuration . 21
8.2 Configure HMD position . 22
8.3 Begin/Stop recording . 22

9 Playback 23
9.1 Convert recorded sequences to JSON . 23
9.2 Configure playback process . 23
9.3 Run playback process . 24

10 Troubleshooting 25

11 Changelog 27

i

12 Contact 29
12.1 Team Members . 29

13 Indices and tables 31

ii

CHAPTER 1

Welcome

1.1 What is UnrealROX?

UnrealROX is an extremely photorealistic virtual reality environment built over Unreal Engine 4 and designed for
generating synthetic data for various robotic vision tasks. This virtual reality environment enables robotic vision
researchers to generate realistic and visually plausible data with full ground truth for a wide variety of problems such
as class and instance semantic segmentation, object detection, depth estimation, visual grasping, navigation, and more.

1.2 Our motivation

State-of-the-art deep learning architectures need large amounts of accurately annotated data for achieving a good
performance. The lack of large-scale datasets which provide accurate ground truth (e.g. semantic segmentation,
depth and normal maps, etc.) is mainly because data annotation task is tedious and time-consuming. Because of
that, photorealistic virtual reality environments are becoming increasingly popular and widely used to generate huge
amounts of data with an accurate ground truth.

Taking advantage of this trend, we aim to provide a large-scale photorealistic dataset of indoor scenes where different
robots can explore, manipulate, and interact with different objects.

1.3 UnrealROX features

1. Grasping system for robot manipulation is independent of the object geometry and orientation, allowing the
robot to adopt different finger configurations.

2. Available for both Oculus Rift and HTC Vive Pro.

3. After recording, all scene, robot and camera information can be exported to a JSON file from Unreal Engine 4
(UE4)

4. With the JSON file and the unchanged scene where the sequence was recorded, you are able to generate the data
you need.

1

UnrealROX Documentation, Release 0.0.1

5. Scene cameras are fully configurable. You can place different cameras in the scene and also attach them to
specific robot joints.

6. This project is open-source. Anyone is welcome to contribute!

1.4 Our contribution

To the best of our knowledge, UnrealROX is the first photorealistic virtual reality environment based on Unreal Engine
4 and used for generating synthetic data for various robotic vision tasks.

2 Chapter 1. Welcome

CHAPTER 2

How to use UnrealROX

The main purpose of this section is teaching you yo successfully use UnrealROX with your photorrealistic scene!1.

To successfully use UnrealROX you need to perform the following steps:

1. Check for hardware and software prerrequisites: please check and satisfy all the Hardware and Software
prerequisites.

2. UnrealROX installation: consists basically on clone or download the UnrealROX github. For more details go
to Installation section.

3. Configure your scene: get or create your own awesome and photorrealistic scene. Migrate it to the UnrealROX
project. Put a robot in your scene and choose the objects to interact with. Configure the objects properly
and finally build scene lighting. The step by step guide for the scene configuration can be found in Scene
configuration section.

4. Learn how to control the robot: go to VR Controllers section and see the input map for your VR hardware.

5. Record your first sequence: configure the recording process and start recording your first sequence. For
knowing how to do this, go to Recording section.

6. Get your perfect data: generate the ground truth for the recorded sequences. Go to Playback section and finish
this tutorial!

• For any question/request or contribute to UnrealROX project and make it grow, please contact any of the authors
of this project.

• To report any bug or issue, please use Github issue tracker.

Thanks for using UnrealROX project!

1 this tutorial was done with Unreal Engine 4.18. We cannot guarantee UnrealROX work properly with other UE version.

3

https://github.com/3dperceptionlab/unrealrox

UnrealROX Documentation, Release 0.0.1

4 Chapter 2. How to use UnrealROX

CHAPTER 3

Project structure

In the following figure we can see the directory structure of UnrealROX:

• docs folder contains all the UnrealROX documentation generated with Sphinx.

• Config folder contains main configuration files for setting values that control engine behavior. Values set in the
game project Config files override the values set in the Engine/Config directory. Config files are generated by
default when creating a blank UE4 project.

• Content folder contains content for the engine or game including asset packages and maps. Here you can find
subfolders such as:

– Mannequin which contains UE4 mannequin’s annimation, material, meshes and texture assets.

– Maps which contains a basic scene where you can graps objects with basic geometries and test robot’s
behaviour. Here you should migrate your photorrealistic scene!

• Plugins folder contains plugins used in the engine.

• Source folder contains source files with the all project’s implementation. Code is structured in:

– TODO

• RecordedSequences folder which contain the sequences you have recorded which are stored in .txt files.

• GeneratedSequences folder which contain the ground truth generated for the recorded sequences. In Figure 2
we can see the directory structure of the generated data. At the root (vienese_001) we have the sequence name
which is composed by the scene name (e.g. vienese) and the number of sequence (e.g. 001 because it is the first
sequence). Then we create a folder for each data modality, in which we store the frames organized in directories
for each one of the cameras.

5

UnrealROX Documentation, Release 0.0.1

Fig. 1: Figure 1. UnrealROX project directory tree.

6 Chapter 3. Project structure

UnrealROX Documentation, Release 0.0.1

Fig. 2: Figure 2. Ground truth directory tree.

7

UnrealROX Documentation, Release 0.0.1

8 Chapter 3. Project structure

CHAPTER 4

Hardware and Software prerequisites

First of all and before installation, you will need to statisfy some hardware and software prerequisites:

1. Software: For the development of UnrealROX we used Windows 10 OS. UnrealROX was not tested on Linux
or MacOS. Software requirements are the following:

1.1 VR software. You have to install either the Oculus or HTC Vive Pro software, or both.

1.1.1 Oculus SDK. Download and install Oculus SDK for Windows. Oculus SDK version used
for the development of UnrealROX was 1.30.0 and published on 08/10/2018.

1.1.2 HTC Vive Pro SDK. Download and install Vive Software.

1.2 Visual Studio. In order to compile UnrealROX and Unreal Engine you will need Visual Studio. For
this purpose you need to install Visual Studio 2017 with the configuration file we provide (put link). In
the Visual Studio Installer you can import a VS configuration file and all required individual packages and
workloads will be automatically installed. This is important in order to avoid some errors when compiling
UnrealROX software or different versions of Unreal Engine.

1.3 Unreal Engine 4.18 or higher. UnrealROX was originally implemented using UE 4.18 version (im-
plementation on 4.19 and 4.20 comming soon). UE4 installation can be done in two ways depending if
you need the mask segmentations of your recorded data.

1.3.1 I don’t need mask segmentations. In this case you will only need to follow Unreal Engine
official instalation guide and install the compatible UE4 version with UnrealROX.

1.3.2 I need mask segmentations. In order to get mask segmentations from UE4 you need to
recompile the complete engine from scratch. The first step is to get the source code for your
UE4 version following the Unreal Engine get source code guide (you should use the release
branch in the Unreal Engine github repo). In the aforementioned guide there are also compilation
instructions depending on your operating system. Before compiling the engine do the following:

• Go to /Engine/Source/Runtime/Engine/Private/StaticMeshRender.cpp and search for if
(bProxyIsSelected && EngineShowFlags.VertexColors && AllowDebugViewmodes()) con-
dition (Line 982 for UE 4.18, line 1020 for UE 4.19 and line 1063 for UE 4.20).

• Remove bProxyIsSelected flag. The presence of this flag disables the visualization of per
vertex coloring.

9

https://developer.oculus.com/downloads/package/oculus-sdk-for-windows/
https://www.vive.com/us/setup/vive/
https://docs.unrealengine.com/en-us/GettingStarted/Installation
https://docs.unrealengine.com/en-us/GettingStarted/Installation
https://docs.unrealengine.com/en-us/GettingStarted/DownloadingUnrealEngine
https://github.com/EpicGames/UnrealEngine/blob/4.18/Engine/Source/Runtime/Engine/Private/StaticMeshRender.cpp#L982
https://github.com/EpicGames/UnrealEngine/blob/4.19/Engine/Source/Runtime/Engine/Private/StaticMeshRender.cpp#L1020
https://github.com/EpicGames/UnrealEngine/blob/4.20/Engine/Source/Runtime/Engine/Private/StaticMeshRender.cpp#L1063

UnrealROX Documentation, Release 0.0.1

• Compile engine code with Visual Studio 2017 or higher.

2. Hardware:

2.1. GPU. Make sure your GPU driver is well installed and updated. You need a good GPU to run
smoothly a photorealistic scene alongside UnrealROX system. We used a Titan X GPU.

2.2 Overall hardware requirements. For a smooth experience in photorealistic virtual environments
rendered by Unreal Engine we recommend a good performance hardware configuration.

2.3 VR headset. Check if Oculus VR and/or HTC Vive PRO perform properly and if their installation
and calibration was done correctly to achieve a good tracking.

3. You are now ready to install UnrealROX, import your photorrealistic scene and create your own awesome
dataset!

10 Chapter 4. Hardware and Software prerequisites

CHAPTER 5

Installation

After checking Hardware and Software prerequisites you can proceed with the installation of UnrealROX. You will
only need to clone or download UnrealROX github and that’s all. UnrealROX is a UE4 project you can easily compile
with Visual Studio.

Before the compilation make sure UnrealROX is selected in Visual Studio as entry point in order to avoid compiling
the engine! Also you should run the project in Development Editor mode to achieve a good performance.

When first openning the UnrealROX project you might get the following message:

Fig. 1: Figure 1. You need to rebuild the required modules in order to run the UnrealROX project.

Rebuild the required modules in order to properly run the UnrealROX project.

11

https://github.com/3dperceptionlab/unrealrox

UnrealROX Documentation, Release 0.0.1

12 Chapter 5. Installation

CHAPTER 6

Scene configuration

Now you have the UnrealROX project you will learn how to use it properly. First of all you need to get a photorrealistic
scene or create your own. The scenes we used are the following:

• Interactive House

• Viennese Apartment

• Xoio Berlin Flat

• Hamburg House

• Studio Apartment

• etc.

6.1 Import scene to UnrealROX

To import your scene to the UnrealROX project you need to:

1. Migrate your scene to UnrealROX. On the one hand we have the UnrealROX project to which we want to
import the scene from other UE4 project. Open your scene project and go to the Content Browser and localize
.umap file of your scene, right-click and go to Asset Actions->Migrate. Now you need to navigate to the Content
folder of UnrealROX project and select it as target for migrating your scene.

6.2 Do you need a robot for you scene?

1. (Experimental) Import your own robot. We are currently working on this feature (import a robot using its
URDF robot model). In order to import your own robot you need the corresponding meshes, textures and
skeleton. You also need to define constraints to control robot’s movement and physics simulation. Then you
need to configure the grasping system placing some triggers (e.g. sphere triggers) on robot’s fingers/gripper and
also code a new logic for the new hand or gripper.

13

https://ue4arch.com/projects/interactive-house/
https://ue4arch.com/projects/viennese-apartment/
https://www.unrealengine.com/marketplace/xoio-berlin-flat
https://ue4arch.com/projects/hamburg/
https://www.unrealengine.com/marketplace/studio-apartment

UnrealROX Documentation, Release 0.0.1

1. Put the robot in your scene. From this point we will only work on the UnrealROX project. In the UE4 editor go
to the Content Browser and navigate to Mannequin->Meshes selecting your pawn (e.g. ROXMannequinPawn)
and drag it to the scene. You can scale your robot to match with your scene scale.

6.3 Check and configure scene objects!

You need to check object pivots are placed correctly in order to properly simulate physics during interaction. You also
need to configure the objects you will interact with. To do this, following the next steps:

1. Check object pivots. Run your scene and check that all object pivots are placed at the lowest geometric center
of the mesh. The mesh center is determined by the X and Y axes values, meanwhile the Z axis value should be
the lowest of the mesh. This is important to track all the objects correctly during the recording and playback
steps and also for the physics simulation during interaction. However, this is a tedious task thus realistic scenes
have lots of objects. Due to this, we use the plugin Pivot Tool which works like a charm (we don’t include it in
the project because of license conflicts). We highly recommend to use Pivot Tool, thus you can configure all the
objects in seconds.

2. Configure interactable objects. Choose the object you want to interact with from the World Outlier (by default
placed on the right side in the UE4 editor) and do the following:

2.1. You need object to be movable. Go to Transform->Mobility and set the object to Movable.
Almost all the objects are static by default.

2.2. You need physics simulation. Go to Physics and check Simulate Physics option.

2.3. You need overlap events. Go to Collision and check Generate Overlap Events option. This is a
must for the grasping system in order to grab an object correctly. If this option is disabled, grasping
wouldn’t work.

2.4. You need an accurate collision mesh. You also need to check object geometry to achieve
a visually plausible grasping. Right-click on the object and Edit. In the Object Editor you need
to visualize the simple and complex collision meshes and visually check its accuracy. If object
geometry is complex and the collision mesh is rough, you should improve this by auto generating
convex collision (go to editor menubar and Collision->Auto Convex Collision) with maximum hull
verts and accuracy. For the objects with a complex geometry you should set the Collision Complexity
to Use simple collision as complex. In this way you will achieve a more realistic grasping, however,
physics simulation will be much more complicated so when interacting with two or more objects you
may notice an unstable behavior.

6.4 Build scene lighting

Lighting configuration is a time-consuming step. In order to optimize this process pay attention to the general scene
lightning configuration.

1. Build scene lighting. Now you need to build project lighting! The steps above are very important, especially
the step of setting the objects as movable. You need to set lighting configuration according to your PC specs. By
default, lighting configuration is too demanding for a mid-high range computer. For a fast and feasible lighting
generation we recommend the following configuration you can do in the World Settings->Lightmass. See the
Figure 1.

Scene ready to record your own sequences!

14 Chapter 6. Scene configuration

https://www.unrealengine.com/marketplace/pivot-tool

UnrealROX Documentation, Release 0.0.1

Fig. 1: Figure 1. Scene light configuration we used to build lighting and produce photorealistic results.

6.4. Build scene lighting 15

UnrealROX Documentation, Release 0.0.1

16 Chapter 6. Scene configuration

CHAPTER 7

VR Controllers

In this section we will describe the input map for both OculusVR and HTC Vive PRO controllers.

7.1 OculusVR

In the following figure (Figure 2) we can see a representation of Oculus controllers with the functions assigned to each
of the buttons.

Using:

• Left and Right Joysticks:

– to move and orient the robot in the scene

– (by first pressing the left joystick) user will be able to position the first person camera according to its
height. Use right joystick to move on Z axis and left joystick for movement on X and Y axes1.

• Left and Right Grasp: grab an object with the left or right hand correspondly.

• Y button: restart the level placing all the objects to its initial position. First person camera configuration is
mantained.

• X button: reset VR changing first person camera to its default position and configuration

• B button: turn ON/OFF HUD used for debugging purposes. It enables a mirror to see better robot head position
while configuring first person camera

• A button: begin/stop recording process which will dump all the scene information to a .txt file. This file will be
used for the playback process.

• Unused buttons: oculus button and left and right triggers.

1 Robot head is attached to the VR headset tracking user’s head position. This entails some problems such as, user’s height. You will need to
configure camera position according with your height before recording.

17

UnrealROX Documentation, Release 0.0.1

Fig. 1: Figure 2. Oculus controllers representation with the correspondence between the robot actions and cotroller
buttons.

18 Chapter 7. VR Controllers

UnrealROX Documentation, Release 0.0.1

7.2 HTC Vive PRO

TODO: HTC Vive PRO controllers

7.2. HTC Vive PRO 19

UnrealROX Documentation, Release 0.0.1

20 Chapter 7. VR Controllers

CHAPTER 8

Recording

During the recording process all scene information such as, camera location, its configuration and objects pose and
orientation, among others, are dumped in a .txt file which is stored by default on the RecordedSequences folder located
in the root of the UnrealROX project. Recording process is the same regardless of used VR hardware. VR controllers
have their own input map, so there are different instructions for each of the used hardware.

8.1 General configuration

To configure recording process you need to search for ROXTracker in the World Outliner panel from UE4 editor.
ROXTracker contains general, recording and playback configuration options. Figure 1 and 2 represent general and
specific recording parameters.

Fig. 1: Figure 1. General parameters for recording and playback steps. Check Record Mode if you want to record your
sequence.

The default path for the Scene Save Directory is the project’s root directory. Scene Folder indicates the folder where
recorded sequences are stored. You can freely change these parameters.

Before start recording you should configure the following parameters:

• Record mode: you should check this option if you want to record your own sequences (see Figure 1).

• Select scene cameras: you should select scene cameras which you want to capture data. Go to Recording-
>Camera Actors and add the cameras you want to use during recording (see Figure 2).

• Scene file name prefix: you can also configure the prefix filename for the .txt files with the recorded sequences.
Default: scene.

21

UnrealROX Documentation, Release 0.0.1

Fig. 2: Figure 2. Specific configurable parameters for recording process.

8.2 Configure HMD position

Before recording you need to check for the HMD position. You need to check if your HMD and its attached camera
are in the correct position. This is variable according to user’s height, so, you need to manually configure your main
camera position (the main camera is what you see on your Oculus headset). For the configuration1:

• with OculusVR: you need to press left joystick to enable HMD position changes. You are now able to change
camera position along Z axis using right joystick and also camera translation on X and Y axes with the left
joystick. A good tip for adjusting camera position is checking if shoulders position is corresponding with user’s
real shoulder position. User’s should also be able to see its chest by looking down.

• with HTC Vive PRO: TODO

8.3 Begin/Stop recording

To begin/stop recording, user need to:

• with OculusVR: press A button from the right controller. Press again to stop recording.

• with HTC Vive PRO: TODO

A red collored message will appear both on the screen and HMD when recording a sequence. Once recording process
is stopped, a scene.txt file will be created with all scene information.

With the above instructions you will be able to record your own dataset!

1 Once HMD position is configured, restarting the scene using VR controllers wouldn’t change this configuration.

22 Chapter 8. Recording

CHAPTER 9

Playback

With this final step you will generate the ground truth (e.g. semantic segmentation and depth maps, normal maps,
stereo pairs, and also instance segmentation, etc.) of your recorded sequence. First of all you need to convert your
recordings stored as .txt files in the RecordedSequences folder to .json files compatible with the playback process.

9.1 Convert recorded sequences to JSON

Go to ROXTracker located in the World Outliner panel in the UE4 editor and search for JSON Management (see Figure
1).

Fig. 1: Figure 1. Convert recorded sequences to JSON.

Set the Input Scene TXT File Name and also the Output Scene Json File Name and click on Generate Sequence Json.
Json files will be stored in the RecordedSequences folder.

9.2 Configure playback process

Go to ROXTracker located in the World Outliner panel in the UE4 editor and search for Playback (see Figure 2).

Proceed with the following steps:

• Specify JSON files: add JSON file names to the Json File Names array.

23

UnrealROX Documentation, Release 0.0.1

Fig. 2: Figure 2. Configurable parameters for the playback process.

• Start from a given frame: if playback process was accidentally interrupted you can resume the process indi-
cating the latest generated frame (Default: 0).

• Select the desired data to generate: check the desired options you want to generate. You can also choose RGB
data format.

• Path: choose where to save the data. Screenshots Save Directory and Screenshots Folder parameters.

• Data resolution: choose generated data resolution (Default: 1920x1080).

9.3 Run playback process

In order to proceed with the playback process, you will need to uncheck Record mode from the general ROXTracker
configuration (see Figure 1 from Recording section). Run project in the Selected Viewport mode1. All the data will be
saved by default on GeneratedSequences folder located in the root of UnrealROX project.

1 If your main purpose is to generate data and you run the project in VR Preview mode, UnrealROX wouldn’t work properly.

24 Chapter 9. Playback

CHAPTER 10

Troubleshooting

Issues to be fixed. Any other problems and solutions?

In the following table we will list all the issues:

Issues Description
1 Pawn and scene seems to be huge when playing the project in VR mode.

For each issue ID we will provide a solution:

Solution Description
1 Check “VR” section in “Settings” -> “World Settings”. “World to Meters” must be 100.0.

25

UnrealROX Documentation, Release 0.0.1

26 Chapter 10. Troubleshooting

CHAPTER 11

Changelog

Indicate the most important changes and new features!

27

UnrealROX Documentation, Release 0.0.1

28 Chapter 11. Changelog

CHAPTER 12

Contact

UnrealROX is an open source project hosted at UnrealROX github .

• Please use the issue tracker if you found any bug or want a new feature.

• Everyone is welcomed to contribute and make this project grow! Please contact any of the following team
members.

12.1 Team Members

• Alberto Garcia-Garcia

• Pablo Martinez-Gonzalez

• Sergiu Oprea

• John Castro-Vargas

• Sergio Orts-Escolano

• Jose Garcia-Rodriguez

• Alvaro Jover-Alvarez

29

https://github.com/3dperceptionlab/unrealrox
https://github.com/3dperceptionlab/unrealrox/issues
https://scholar.google.es/citations?user=SQ2viFYAAAAJ&hl=es
https://scholar.google.es/citations?user=d7F3nPUAAAAJ&hl=es
https://scholar.google.es/citations?user=JlZbbzIAAAAJ&hl=es
https://scholar.google.es/citations?user=B1K2viQAAAAJ&hl=es
https://scholar.google.es/citations?user=dznX1DMAAAAJ&hl=es
https://scholar.google.es/citations?user=GNTkqaYAAAAJ&hl=es
https://vorixo.github.io/devtricks/

UnrealROX Documentation, Release 0.0.1

30 Chapter 12. Contact

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

31

	Welcome
	What is UnrealROX?
	Our motivation
	UnrealROX features
	Our contribution

	How to use UnrealROX
	Project structure
	Hardware and Software prerequisites
	Installation
	Scene configuration
	Import scene to UnrealROX
	Do you need a robot for you scene?
	Check and configure scene objects!
	Build scene lighting

	VR Controllers
	OculusVR
	HTC Vive PRO

	Recording
	General configuration
	Configure HMD position
	Begin/Stop recording

	Playback
	Convert recorded sequences to JSON
	Configure playback process
	Run playback process

	Troubleshooting
	Changelog
	Contact
	Team Members

	Indices and tables

