

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 BSD

UniversalArchiveInterface [image: _images/UniversalArchiveInterface.svg]Build Status [https://travis-ci.org/fake-name/UniversalArchiveInterface][image: _images/UniversalArchiveInterface1.svg]Coverage Status [https://coveralls.io/r/fake-name/UniversalArchiveInterface]

API wrapper to allow seamless opening of many different compressed archive file
types from python with a consistent API.

Tested on python 2.7 and Python 3.4.

Python has libraries for a wide variety of archives:

	*.zip via zipfile (prepacked with python)

	*.rar via rarfile

	*.7z via pylzma

All of these libraries support a “zipfile like” interface. However, none
of them have a “zipfile compatible” interface (well, excepting zipfile
itself). They all have just enough bizarre quirks that code that is written for
one will not work with another.

This library is intended to wrap all of these libraries, and present a
completely consistent interface, so the higher-level code does not have to care
what type of archive it’s interfacing.

This was an outgrowth of my MangaCMS [https://github.com/fake-name/MangaCMS/]
project, that I decided was sufficently generally useful on it’s own
to warrant separate packaging.

Additional dependencies:
python-magic - For determining file-types.

API

Currently, the API is very simple, and only supports reading archive contents:
This will probably not change, due to the legal difficulties involved in
modifying *.rar files (the .rar file format is proprietary, and anything
other then decompressing them arguably requires a WinRar license. The
decompression code has been freely released.).

>>> import UniversalArchiveInterface as uar
>>> arch = uar.ArchiveReader(archPath='/path/to/archive.zip')
(or)
>>> arch = uar.ArchiveReader(fileContents={archive-contents-buffer})

The ArchiveReader class supports only a few methods:

>>> arch.getFileList()
['dir1/file1', 'dir1/file2', 'dir2/file3', 'file4']

>>> arch.open('dir1/file1')
<buffer object>

>>> arch.read('dir1/file1')
<file-contents>

The ArchiveReader class is also iterable:

for fileName, fileHandle in arch:
 print("filename '%s', filesize %s" % (fileName, len(fileHandle.read())))

Lastly, there is also a arch.close() method, for manually closing and freeing
the open file-handles, though the destructor generally can handle this
automatically.

The ArchiveReader class also provides two staticMethods:

	ArchiveReader.isArchive(filepath):

	ArchiveReader.bufferIsArchive(buffer):

Both return True if the passed path/buffer-contents is an archive the
library can handle, and false otherwise.

File type identification is via the python-magic library, which does not care
about file-extension.

Exceptions

All archive-format-specific exceptions are caught, and re-raised as generic
exceptions. UniveralArchiveInterface defines three exceptions:

	ArchiveError - Base exception

	CorruptArchive - Archive is corrupt

	NotAnArchive - Passed file is not an archive.

ArchiveError is the parent-exception of CorruptArchive and NotAnArchive.
NotAnArchive is raised when an archiveReader is instantiated on a file or
buffer that is not actually an archive. CorruptArchive is raised when an
archiveReader is instantiated on or access a corrupt archive.

Note that CorruptArchive can potentially be raised in multiple circumstances:
when the archiveReader is instantiated, when the file-listing is generated, or
when a file is actually accessed.

Notes:

getFileList() will only ever return valid archive-internal file-paths. This
was one of the major problem sources that initially led to this libraries’
creation: rarfile returns both files and directories when used as an
iterable, while zipfile does not. The rarfile library also returns paths
with double-back-slashes (\\) instead of single forward slashes (/) for
path separators, though it accepts and works fine with forward-slash delimiters.
Therefore, the iterator internally replaces all double-backslashes in rarfile
internal paths with forward-slashes.

TODO:
Better test coverage. Right now, it’s about 60% covered.
Most of the not-covered parts are the rar handling (I can’t create test-rars easily:
rar is a proprietary format, and 7zip can’t create them), and exception handling.
Almost all exceptions are caught, a logging message is emitted, and then the
exception is re-raised as a single exception type (generally ValueError), but
this is currently not well-tested. I need to corrupt some archives and write tests around
those corruped archives.

License:
BSD

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

