
Amara Documentation
Release 1.2.0

Participatory Culture Foundation

Oct 02, 2017

Contents

1 Running Amara 3

2 Reporting bugs 5

3 API Documentation 7
3.1 Overview . 7

3.1.1 Authentication . 7
3.1.2 Data Formats . 8
3.1.3 Paginated Responses . 8
3.1.4 Browser Friendly Endpoints . 9
3.1.5 Value Formats . 9
3.1.6 Use HTTPS . 9
3.1.7 API interaction overview . 9
3.1.8 API Changes / Versioning . 10

3.2 Languages . 10
3.2.1 Languages Resource . 10

3.3 Videos . 10
3.3.1 Videos Resource . 10
3.3.2 Video URL Resource . 13

3.4 Subtitles . 14
3.4.1 Subtitle Language Resource . 14
3.4.2 Subtitles Resource . 16
3.4.3 Subtitle Actions Resource . 18
3.4.4 Subtitle Notes Resource . 18

3.5 Users . 19
3.5.1 Users Resource . 19
3.5.2 User Identifiers . 20
3.5.3 User fields . 20

3.6 Activity . 21
3.6.1 Video Activity Resource . 21
3.6.2 Team Activity Resource . 21
3.6.3 User Activity Resource . 22
3.6.4 Activity Types . 22
3.6.5 Legacy Activity Resource . 23

3.7 Messages . 25
3.7.1 Message Resource . 25

3.8 Teams . 25

i

3.8.1 Team Resource . 25
3.8.2 Members Resource . 27
3.8.3 Projects Resource . 28
3.8.4 Tasks Resource . 29
3.8.5 Notifications Resource . 31
3.8.6 Applications Resource . 31
3.8.7 Preferred Languages Resource . 32
3.8.8 Blacklisted Languages Resource . 32

3.9 Subtitle Request Resource . 32
3.9.1 Terminology . 32
3.9.2 Listing Requests . 33
3.9.3 Request Details . 35
3.9.4 Request Status Fields . 35
3.9.5 Creating Requests . 36
3.9.6 Updating Requests . 36
3.9.7 Deleting Requests . 37
3.9.8 Endorsing Subtitles . 37

4 Supported languages 39

5 HTTP Callbacks for Teams 41
5.1 Notification Details . 41

5.1.1 Video notifications . 41
5.1.2 Team member notifications . 42

6 Babelsubs 43
6.1 Storage . 43
6.2 Formatting . 43

7 Syncing and Importing 45
7.1 Youtube . 45

7.1.1 User Accounts . 45
7.1.2 Team Accounts . 45

7.2 Kaltura . 46
7.3 Brightcove . 46

8 Static Media 47
8.1 Settings . 47

8.1.1 Example . 47
8.1.2 MEDIA_BUNDLES . 48
8.1.3 STATIC_MEDIA_COMPRESSED . 48
8.1.4 STATIC_MEDIA_USES_S3 . 48

8.2 Compilation & Minification . 48
8.3 Media Directory Structure . 49
8.4 Development, Media Bundles, and Caching . 49
8.5 In Templates . 49

9 Developer’s Guide 51
9.1 Development Workflow . 51

9.1.1 Creating issues . 51
9.1.2 Branches / Repositories . 52
9.1.3 Other Git Repositories . 52
9.1.4 Testing . 52
9.1.5 Exception Logging . 52
9.1.6 Workflow . 53

ii

9.2 Testing . 54
9.2.1 Running tests . 54

9.3 Database Migrations . 54
9.4 Varnish . 55
9.5 Caching App . 56

9.5.1 Cache Groups . 56
9.6 Teams . 59

9.6.1 Team Workflows . 59
9.7 The Subtitle Editor . 61
9.8 Subtitle Workflows . 61

9.8.1 Overriding workflows . 61
9.8.2 Workflow Classes . 62
9.8.3 Behavior Functions . 63
9.8.4 Editor Notes . 64
9.8.5 Work Modes . 64
9.8.6 Actions . 64

9.9 The permission system . 66
9.9.1 Overview . 66
9.9.2 Checking for required permissions . 67
9.9.3 Workflows . 67

9.10 Optional Apps . 67
9.11 Internationalization (i18n) . 68

9.11.1 Guidelines . 68
9.11.2 Updating Django . 69
9.11.3 Partners . 69

9.12 Behaviors . 69

10 Contributing 71

11 License 73

12 Indices and tables 75

HTTP Routing Table 77

Python Module Index 79

iii

iv

Amara Documentation, Release 1.2.0

Contents:

Contents 1

Amara Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Running Amara

Check out the Quick Start on our github page (http://github.com/pculture/unisubs/).

3

http://github.com/pculture/unisubs/

Amara Documentation, Release 1.2.0

4 Chapter 1. Running Amara

CHAPTER 2

Reporting bugs

When you are reporting a bug, please look over the following suggestions. The more information you can provide, the
faster the bug can be fixed. And you will life easier for developers.

• In what environment is the bug happening?

5

Amara Documentation, Release 1.2.0

6 Chapter 2. Reporting bugs

CHAPTER 3

API Documentation

Amara provides a REST API to interactive with the site. Please contact us if you’d like to use the Amara API for
commercial purposes.

Overview

Authentication

Before interacting with the API, you must have an API key. In order to get one, create a user on the Amara website,
then go to the edit profile page. At the bottom of the page you will find a “Generate new key” button . Clicking on it
will fetch your user the needed API key.

Every request must have the username and the API keys as headers. For example:

X-api-username: my_username_here
X-api-key: my_api_key_here

Note: You can also use the deprecated X-apikey header to specify your key

So a sample request would look like this:

GET https://amara.org/api/videos/

Request Headers

• X-api-username – <Username>

• X-api-key – <API key>

7

http://www.amara.org/en/profiles/edit/

Amara Documentation, Release 1.2.0

Data Formats

The API accepts request data in the several formats. Use the Content-Type HTTP header to specify the format of
your request:

Format Content-Type
JSON (recommended) application/json
XML application/xml
YAML application/yaml

In this documentation, we use the term “Request JSON Object” to specify the fields of the objects sent as the request
body. Replace “JSON” with “XML” or “YAML” if you are using one of those input formats.

Here’s an example of request data formated as JSON:

{"field1": "value1", "field2": "value2", ... }

By default we will return JSON output. You can the Accept header to select a different output format. You can also
use the format query param to select the output formats. The value is the format name in lower case (for example
format=json).

We also support text/html as an output format and application/x-www-form-urlencoded and multipart/form-data as
input formats. However, this is only to support browser friendly endpoints. It should not be used in API client code.

Paginated Responses

Many listing API endpoints are paginated to prevent too much data from being fetched and returned at one time
(for example the video listing API). These endpoints are marked with paginated in their descriptions. Paginated
responses only return limited number of results per request, alongside links to the next/previous page.

Here’s an example paginated response from the Teams listing:

{
"meta": {

"previous": null,
"next": "http://amara.org/api/teams?limit=20&offset=20",
"offset": 0,
"limit": 20,
"total_count": 151

},
"objects": [

{
"name": "",
"slug": "tedx-import",
"description": "",
"is_visible": true,
"membership_policy": "Open",
"video_policy": "Any team member"

},
...

]
}

• The meta field contains pagination information, including next/previous links, the total number of results, and
how many results are listed per page

• The objects field contains the objects for this particular page

8 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

Browser Friendly Endpoints

All our API endpoints can be viewed in a browser. This can be very nice for exploring the API and debugging issues.
To view API endpoints in your browser simply log in to amara as usual then paste the API URL into your address bar.

Value Formats

• Dates/times use ISO 8601 formatting

• Language codes use BCP-47 formatting

Use HTTPS

All API requests should go through https. This is important since an HTTP request will send your API key over the
wire in plaintext.

The only exception is when exploring the API in a browser. In this case you will be using the same session-based
authentication as when browsing the site.

API interaction overview

All resources share a common structure when it comes to the basic data operations.

• GET request is used to viewing data

• POST request is used for creating new items

• PUT request is used for updating existing items

• DELETE request is used for deleting existing items

To view a list of videos on the site you can use

GET https://amara.org/api/videos/

To get info about the video with id “foo” you can use

GET https://amara.org/api/videos/foo

Many of the available resources will allow you to filter the response by a certain field. Filters are specified as GET
parameters on the request. For example, if you wanted to view all videos belong to a team called “butterfly-club”, you
could do:

GET https://amara.org/api/videos/?team=butterfly-club

In addition to filters, you can request that the response is ordered in some way. To order videos by title, you would do

GET https://amara.org/api/videos/?order_by=title

To create a video you can use

POST https://amara.org/api/videos/

To update the video with video id foo use:

PUT https://amara.org/api/videos/foo

3.1. Overview 9

Amara Documentation, Release 1.2.0

API Changes / Versioning

Sometimes we need to make backwards incompatible changes to the API. Here’s our system for allowing our partners
and other API consumers to deal with them:

• All changes are announced on the Amara Development Blog and the API Changes mailing list.

• When we make a change, we give clients between six weeks and three months of transition time, depending on
the complexity of the changes, to update their code to work with the new system.

• During the transition time, we return an HTTP header to indicate that the API will be changing. The name is
X-API-DEPRECATED and the value is the date the API will change in YYYYMMDD format.

• Clients can start using the new API during the transition time by sending the X-API-FUTURE header. The
value should be the date of the API that you want to use, also in YYYYMMDD format. If the X-API-FUTURE
date is >= the switchover date then the new API code will be used.

• You can use X-API-FUTURE to test changes to your API client code and to deploy new code that works with
the updated API. Using this method you can ensure your integration works seamlessly through the API change.

• If you aren’t able to change your request headers, then you can also use the api-future query parameter (for
example /api/videos/?api-future=20151021)

Languages

Languages Resource

API endpoint that lists all available languages on the Amara platform.

GET /api/languages/

Response JSON Object

• languages – maps language codes to language names

Videos

Videos Resource

List/Search/Lookup videos on Amara

Listing Videos

GET /api/videos/
List videos. You probably want to specify a query filter parameter to limit the results

List results are paginated.

Query Parameters

• video_url (url) – Filter by video URL

• team (slug) – Filter by team

• project (slug) – Filter by team project. Passing in null will return only videos that don’t
belong to a project

10 Chapter 3. API Documentation

https://about.amara.org/category/development-blog/
https://groups.google.com/a/amara.org/d/forum/api-users

Amara Documentation, Release 1.2.0

• order_by (string) – Change the list ordering. Possible values:

– title: ascending

– -title: descending

– created: older videos first

– -created: newer videos

Note:

• If no query parameter is given, the last 10 public videos are listed.

• If you pass in the project filter, you need to pass in a team

Get info on a specific video

GET /api/videos/(video-id)/

Response JSON Object

• id (video-id) – Amara video id

• primary_audio_language_code (bcp-47) – Audio language code

• title (string) – Video title

• description (string) – Video description

• duration (integer) – Video duration in seconds (or null if not known)

• thumbnail (url) – URL to the video thumbnail

• created (iso-8601) – Video creation date/time

• team (slug) – Slug of the Video’s team (or null)

• metadata (dict) – Dict mapping metadata names to values

• languages (list) – List of languages that have subtitles started. See below for a a
description.

• video_type (char) – Video type identifier

• all_urls (list) – List of URLs for the video (the first one is the primary video URL)

• activity_uri (uri) – Video Activity Resource

• urls_uri (url) – Video URL Resource

• subtitle_languages_uri (uri) – Subtitle languages Resource

• resource_uri (uri) – Video Resource

• original_language (string) – contains a copy of primary_audio_language_code
(deprecated)

Language data:

Response JSON Object

• code (string) – Language code

• name (string) – Human readable label for the language

3.3. Videos 11

Amara Documentation, Release 1.2.0

• published (boolean) – Are the subtitles publicly viewable?

• dir (string) – Language direction (“ltr” or “rtl”)

• subtitles_uri (url) – Subtitles Resource

• resource_uri (url) – Subtitles Language Resource

Adding a video

POST /api/videos/

Request JSON Object

• video_url (url) – The url for the video. Any url that Amara accepts will work here.
You can send the URL for a file (e.g. http:///www.example.com/my-video.ogv), or a link to
one of our accepted providers (youtube, vimeo, dailymotion)

• title (string) – title of the video

• description (string) – About this video

• duration (integer) – Duration in seconds, in case it can not be retrieved automatically
by Amara

• primary_audio_language_code (string) – language code for the main language
spoken in the video.

• thumbnail (url) – URL to the video thumbnail

• metadata (dict) – Dictionary of metadata key/value pairs. These handle extra informa-
tion about the video. Right now the type keys supported are speaker-name and location.
Values can be any string.

• team (string) – team slug for the video or null to remove it from its team.

• project (string) – project slug for the video or null to put it in the default project.

Note:

• When submitting URLs of external providers (i.e. youtube, vimeo), the metadata (title, description, duration)
can be fetched from them. If you’re submitting a link to a file (mp4, flv) then you can make sure those attributes
are set with these parameters. Note that these parameters (except the video duration) override any information
from the original provider or the file header.

• For all fields, if you pass an empty string, we will treat it as if the field was not present in the input (deprecated).

• For slug and project, You can use the string “null” as a synonym for the null object (deprecated).

Update an existing video

PUT /api/videos/(video-id)/
This uses the same fields as video creation, excluding video_url.

As with creating video, an update can not override the duration received from the provider or specified in the
file header.

12 Chapter 3. API Documentation

http:///www.example.com/my-video.ogv

Amara Documentation, Release 1.2.0

Delete an existing video

DELETE /api/videos/(video-id)/
This deletes a video.

If there are any subtitles/collaborations on the video, they will also be deleted.

Moving videos between teams and projects

• To move a video from one team to another, you can make a put request with a team value.

• Similarly, you can move a video to a different project using the project field. team must also be given in this
case.

• The user making the change must have permission to remove a video from the originating team and permission
to add a video to the target team.

Video URL Resource

Each video has at least 1 URL associated with it, but some can have more. This allows you to associate subtitles with
the video on multiple video providers (e.g. a youtube version, a vimeo version, etc).

One video URL is flagged the primary URL. This is what will gets used in the embedder and editor.

List URLs for a video

GET /api/videos/(video-id)/urls/
List results are paginated.

Response JSON Object

• video-id (string) – Amara video ID

• created (iso-8601) – creation date/time

• url (url) – URL string

• primary (boolean) – is this the primary URL for the video?

• original (boolean) – was this the URL that was created with the video?

• resource_uri (uri) – Video URL Resource

• videoid (string) – ID on the Hosting platform

• type (string) – Video type (Youtube, Vimeo, HTML5, etc.)

• id (integer) – Internal ID for the object (deprecated, use resource_uri rather than
trying to construct API URLs yourself).

Get details on a specific URL

GET (video-url-endpoint)
The response fields are the same as for the list endpoint

Use the resource_uri from the listing to find the video URL endpoint

3.3. Videos 13

Amara Documentation, Release 1.2.0

Add a URL for a video

POST /api/videos/(video-id)/urls/

Request JSON Object

• url (url) – Video URL. This can be any URL that works in the add video form for the
site (mp4 files, youtube, vimeo, etc). Note: The URL cannot be in use by another video.

• primary (boolean) – If True, this URL will be made the primary URL

• original (boolean) – Is this is the first url for the video?

Making a URL the primary URL for a video

PUT (video-url-endpoint)

Request JSON Object

• primary – Pass in true to make a video URL the primary for a video

Use the resource_uri from the listing to find the video URL endpoint

Deleting Video URLs

DELETE (video-url-endpoint)
Remove a video URL from a video

Use the resource_uri from the listing to find the video URL endpoint

Subtitles

Subtitle Language Resource

Container for subtitles in one language for a video. Subtitle languages are typically created when the first editing
session is started.

To see all possible languages see Supported languages.

Listing languages for a video

GET /api/videos/(video-id)/languages/
Get a list of subtitle languages for a video

List results are paginated.

Response JSON Object

• language_code (bcp-47) – Subtitle language

• name (string) – Human-readable name for this language

• is_primary_audio_language (boolean) – Is this language the primary language
spoken in the video?

• is_rtl (boolean) – Is this language RTL?

• resource_uri (uri) – Subtitle Language Resource

14 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

• created (iso-8601) – when the language was created

• title (string) – Video title, translated into this language

• description (string) – Video description, translated into this language

• metadata (dict) – Video metadata, translated into this language

• subtitles_complete (boolean) – Are the subtitles complete for this language?

• subtitle_count (integer) – Number of subtitles for this language

• reviewer (string) – Username of the reviewer for task-based teams

• approver (string) – Username of the approver for task-based teams

• is_translation (boolean) – Is this language translated from other languages? (dep-
recated)

• published (boolean) – Are the subtitles publicly viewable?

• original_language_code (string) – Source translation language (deprecated)

• num_versions (integer) – Number of subtitle versions, the length of the versions
array should be used instead of this (deprecated)

• id (integer) – Internal ID for the language (deprecated)

• is_original (boolean) – alias for is_primary_audio_language (deprecated)

• versions (list) – List of subtitle version data. See below for details.

Subtitle version data:

Response JSON Object

• author (user-data) – Subtitle author (see User fields)

• version_no (integer) – number of the version

• published (boolean) – is this version publicly viewable?

Note: original_language_code and is_translation fields are remnants from the old subtitle system. With the
new editor, users can use multiple languages as a translation source. These fields are should not be relied on.

Getting details on a specific language

GET /api/videos/(video-id)/languages/(language-code)/
The response data is the same as the listing

Creating subtitle languages

POST /api/videos/(video-id)/languages/

Request JSON Object

• language_code (string) – bcp-47 code for the language

• is_primary_audio_language (boolean) – Is this the primary spoken language of
the video? (optional).

• subtitles_complete (boolean) – Are the subtitles for this language complete? (op-
tional).

3.4. Subtitles 15

Amara Documentation, Release 1.2.0

• is_original (boolean) – Alias for is_primary_audio_language (deprecated)

• is_complete (boolean) – Alias for subtitles_complete (deprecated)

Subtitles Resource

Subtitle data in one language for a video.

Fetching subtitles for a given language

GET /api/videos/(video-id)/languages/(language-code)/subtitles/

Query Parameters

• sub_format – The format to return the subtitles in. This can be any format that amara
supports including dfxp, srt, vtt, and sbv. The default is json, which returns subtitle data
encoded list of json dicts.

• version_number – version number to fetch. Versions are listed in the VideoLan-
guageResouce request. If none is specified, the latest public version will be returned. If
you want the latest private version (and have access to it) use “last”.

• version – Alias for version_number (deprecated)

Response JSON Object

• version_number (integer) – version number for the subtitles

• subtitles (object) – Subtitle data. The format depends on the sub_format param

• author (user-data) – Subtitle author (see User fields)

• sub_format (string) – Format of the subtitles

• language (object) – Language data

• title (string) – Video title, translated into the subtitle’s language

• description (string) – Video description, translated into the subtitle’s language

• metadata (string) – Video metadata, translated into the subtitle’s language

• video_title (string) – Video title, translated into the video’s language

• video_description (string) – Video description, translated into the video’s lan-
guage

• notes_uri (uri) – Subtitle notes resource

• actions_uri (uri) – Subtitle actions resource

• resource_uri (uri) – Subtitles resource

• site_uri (url) – URL to view the subtitles on site

• video (string) – Copy of video_title (deprecated)

• version_no (integer) – Copy of version_number (deprecated)

Language data:

Response JSON Object

• code (bcp-47) – Language of the subtitles

16 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

• name (string) – Human-readable name for the language

• dir (string) – Language direction (“ltr” or “rtl”)

Getting subtitle data only

Sometimes you want just subtitles data without the rest of the data. This is possible using a special Accept header
or the format query parameter. This can be used to download a DFXP, SRT, or any other subtitle format that Amara
supports. If one of these is used, then the sub_format param will be ignored.

Format Accept header format query param
DFXP application/ttml+xml dfxp
SBV text/sbv sbv
SRT text/srt srt
SSA text/ssa ssa
WEBVTT text/vtt vtt

Examples:

GET /api/videos/(video-id)/languages/(language-code)/subtitles/?format=dfxp

GET /api/videos/(video-id)/languages/(language-code)/subtitles/
Accept: application/ttml+xml

Creating new subtitles

POST /api/videos/(video-id)/languages/(language-code)/subtitles/

Request JSON Object

• subtitles (object) – The subtitles to submit, as a string. The format depends on the
sub_format param.

• subtitles_url (object) – Alternatively, subtitles can be given as a text file URL. The
format depends on the sub_format param.

• sub_format (string) – The format used to parse the subs. The same formats as for
fetching subtitles are accepted. Optional - defaults to “dfxp”.

• title (string) – Give a title to the new revision

• description (string) – Give a description to the new revision

• action (string) – Name of the action to perform - optional, but recommended. If
given, the is_complete param will be ignored. For more details, see the subtitles action
documentation by following the actions_uri field.

• is_complete (boolean) – Boolean indicating if the complete subtitling set is available
for this language - optional, defaults to false. (deprecated, use action instead)

Deleting subtitles

DELETE /api/videos/(video-id)/languages/(language-code)/subtitles/
This will delete all subtitle versions for a language. It’s only allowed if the video is part of a team and the API
user is an admin for that team.

3.4. Subtitles 17

Amara Documentation, Release 1.2.0

Subtitle Actions Resource

Subtitle actions are operations on subtitles. Actions correspond to the buttons in the upper-right hand corner of the
subtitle editor (save, save a draft, approve, reject, etc). This resource is used to list and perform actions on the subtitle
set.

Note: You can also perform an action together with adding new subtitles using the action field of the subtitles resource.

Listing actions

GET /api/videos/(video-id)/languages/(language-code)/subtitles/actions/
Get a list of possible actions for a subtitle set.

Response JSON Object

• action (string) – Action name

• label (string) – Human-friendly string for the action

• complete (boolean) – Does this action complete the subtitles? If true, then when the
action is performed, we will mark the subtitles complete. If false, we will mark them in-
complete. If null, then we will not change the subtitles_complete flag.

Performing actions

POST /api/videos/(video-id)/languages/(language-code)/subtitles/actions/
Perform an action on a subtitle set. This is like opening the subtitles in the editor, not changing anything, and
clicking an action button (Publish, Save Draft, etc.)

Request JSON Object

• action (string) – name of the action to perform

Subtitle Notes Resource

Subtitle notes saved in the editor.

Note: Subtitle notes are currently only supported for team videos

Fetching notes

GET /api/videos/(video-id)/languages/(language-code)/subtitles/notes

Response JSON Object

• user (username) – Username of the note author

• datetime (iso-8601) – when the note was created

• body (string) – text of the note.

18 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

Adding notes

POST /api/videos/(video-id)/languages/(language-code)/subtitles/notes/

Request JSON Object

• body (string) – note body

Users

Users Resource

Fetching user data

GET /api/users/[identifier]/

Parameters

• identifier (user-identifier) – See User Identifiers

Response JSON Object

• username (username) – username

• id (string) – user ID

• first_name (string) – First name

• last_name (string) – Last name

• homepage (url) – Homepage URL

• biography (string) – Bio text

• num_videos (integer) – Number of videos followed by the user

• languages (list) – List of language codes for languages the user speaks.

• avatar (url) – URL to the user’s avatar image

• activity_uri (uri) – User Activity resource

• resource_uri (uri) – User resource

• full_name (string) – Full name of the user.

Note:

• Many of these fields will be blank if the user hasn’t set them from their profile page

• The full_name field is not used in the amara interface and there is no requirement that it needs to be first_name
+ last_name. This field is for API consumers that want to create users to match their internal users and use the
full names internally instead of first + last.

Creating Users

POST /api/users/

Request JSON Object

3.5. Users 19

Amara Documentation, Release 1.2.0

• username (username) – 30 chars or fewer alphanumeric chars, @, _ and are accepted.

• email (email) – A valid email address

• password (string) – any number of chars, all chars allowed.

• first_name (string) – Any chars, max 30 chars. (optional)

• last_name (string) – Any chars, max 30 chars. (optional)

• allow_3rd_party_login (boolean) – If set, account can be automatically linked to
3rd party account at first login. (optional)

• create_login_token (boolean) – If sent the response will also include a url that
when visited will login the created user. Use this to allow users to login without explicitly
setting their passwords. This URL expires in 2 hours. (optional)

• find_unique_username (boolean) – If username is taken, we will find a similar,
unused, username for the new user. If passed, make sure you check the username returned
since it might not be the same one that you passed in. If set, usernames can only be a
maximum of 24 characters to make room for potential extra characters. (optional)

Note: The response includes the email and api_key, which aren’t included in the normal GET response. If clients
wish to make requests on behalf of this newly created user through the api, they must hold on to this data.

Updating user accounts

PUT /api/users/[username]

Parameters

• username (username) – must match the username of the auth credentials sent

Inputs the same fields as POST, except username and find_unique_username.

User Identifiers

There are a couple ways to specify users:

• Username

• User ID prefixed with “id$” (id$abcdef123)

The user ID method is preferred since it’s possible for users to change their username.

User fields

Users are often contained in other resources, for example the team members, subtitle authors, etc. When those users
are represented, we use a dict with the following fields:

• username – Username

• id – User ID

• uri – Link to the user API endpoint

Example JSON:

20 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

{
"user": {
"username": "alice",
"id": "abcdef",
"uri": "https://amara.org/api/users/id$abcdef/"

}
}

When you post data to an endpoint with a userfield, you can specify the user using any of the identifiers listed abose.
For example, to create a team member you can send this data:

{
"user": "id$abcdef",
"role": "manager"

}

Activity

Video Activity Resource

GET /api/videos/(video-id)/activity/

Query Parameters

• type (string) – Filter by activity type (Activity Types)

• user (user-identifier) – Filter by user who performed the action (see User Identi-
fiers)

• language (bcp-47) – Filter by the subtitle language

• before (iso-8601) – Only include activity before this date/time

• after (iso-8601) – Only include activity after

Response JSON Object

• type (string) – Activity type (Activity Types)

• date (iso-8601) – Date/time of the activity

• user (user-data) – User who performed the activity (see User fields)

• video (video-id) – Video related to the activity (or null)

• language (bcp-47) – Language of the subtitles related to the activity (or null)

• video_uri (uri) – Link to the video resource endpoint

• language_uri (uri) – Link to the subtitle language resource endpoint

Depending on the activity type, extra fields may be present in the response data (Activity Types).

Team Activity Resource

GET /api/teams/(slug)/activity/

Query Parameters

• type (string) – Filter by activity type (Activity Types)

3.6. Activity 21

Amara Documentation, Release 1.2.0

• user (user-identifier) – Filter by user who performed the action (see User Identi-
fiers)

• video (video-id) – Filter by video

• video_language (bcp-47) – Filter by video language

• language (bcp-47) – Filter by the subtitle language

• before (iso-8601) – Only include activity before this date/time

• after (iso-8601) – Only include activity after

Response data is the same as the video activity resource.

User Activity Resource

GET /api/users/(username)/activity/

Query Parameters

• type (string) – Filter by activity type (Activity Types)

• video (video-id) – Filter by video

• video_language (bcp-47) – Filter by video language

• language (bcp-47) – Filter by the subtitle language

• team (slug) – Filter by team

• before (iso-8601) – Only include activity before this date/time

• after (iso-8601) – Only include activity after

Response data is the same as the video activity resource.

Activity Types

An activity type classifies the activity. Some types have extra data that is associated with them

22 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

Type Created When | Notes/Extra Fields
video-added Video added to amara

comment-added Comment posted

language will be
null for video comments
and set for subtitle
comments

version-added Subtitle version added
video-url-added URL added to video url will contain the new URL

video-url-edited Primary video URL change
old_url/new_url
will contain the
old/new primary URL

video-url-deleted URL removed from video url will contain the deleted URL

video-deleted Video deleted from amara
title will contain
the deleted video’s
title

Team Related Activity
member-joined User joined team
member-left User left team
Task Related Activity
version-approved Subtitles approved
version-rejected Subtitles sent back by approver
version-accepted Subtitles approved by reviewer
version-declined Subtitles sent back by reviewer

Legacy Activity Resource

Deprecated API endpoint that lists contains all amara activity. You should use the team/video/user query param to find
the activity you want. New code should use the Video, Team, or User, resources (see above).

List activity

GET /api/activity/

Query Parameters

• team (slug) – Show only items related to a given team

• team-activity (boolean) – If team is given, we normally return activity on the team’s
videos. If you want to see activity for the team itself (members joining/leaving and team
video deletions, then add team-activity=1)

• video (video-id) – Show only items related to a given video

• type (integer) – Show only items with a given activity type. Possible values:

1. Add video

2. Change title

3. Comment

4. Add version

5. Add video URL

3.6. Activity 23

Amara Documentation, Release 1.2.0

6. Add translation

7. Subtitle request

8. Approve version

9. Member joined

10. Reject version

11. Member left

12. Review version

13. Accept version

14. Decline version

15. Delete video

• language (bcp-47) – Show only items with a given language code

• before (timestamp) – Only include items before this time

• after (timestamp) – Only include items after this time

Note: If both team and video are given as GET params, then team will be used and video will be ignored.

Get details on one activity item

GET /api/activity/[activity-id]/

Response JSON Object

• type (integer) – activity type. The values are listed above

• date (datetime) – date/time of the activity

• video (video-id) – ID of the video

• video_uri (uri) – Video Resource

• language (bcp-47) – language for the activity

• language_url (uri) – Subtile Language Resource

• resource_uri (uri) – Activity Resource

• user (username) – username of the user user associated with the activity, or null

• comment (string) – comment body for comment activity, null for other types

• new_video_title (string) – new title for the title-change activity, null for other types

• id (integer) – object id (deprecated use resource_uri if you need to get details on a
particular activity)

24 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

Messages

Message Resource

POST /api/message/
Send a message to a user/team

Request JSON Object

• user (user-identifier) – Recipient (see User Identifiers)

• team (slug) – Recipient team’s slug

• subject (string) – Subject of the message

• content (string) – Content of the message

Note: You can only send either user or team, not both.

Teams

Team Resource

Get a list of teams

GET /api/teams/
Get a paginated list of all teams

Response JSON Object

• name (string) – Name of the team

• slug (slug) – Machine name for the team slug (used in URLs)

• type (string) – Team type. Possible values:

– default – default team type

– simple – simplified workflow team

– collaboration – collaboration team

• description (string) – Team description

• is_visible (boolean) – Should this team’s videos be publicly visible (True by de-
fault)?

• membership_policy (string) – Team membership policy. One of:

– Open

– Application

– Invitation by any team member

– Invitation by manager

– Invitation by admin

• video_policy (string) – Team video policy. One of:

3.7. Messages 25

Amara Documentation, Release 1.2.0

– Any team member

– Managers and admins

– Admins only

• activity_uri (uri) – Team activity resource

• members_uri (uri) – Team member list resource

• projects_uri (uri) – Team projects resource

• applications_uri (uri) – Team applications resource (or null if the membership pol-
icy is not by application)

• languages_uri (uri) – Team preferred/blacklisted languages resource

• tasks_uri (uri) – Team tasks resource (or null if tasks are not enabled)

• resource_uri (uri) – Team resource

GET /api/teams/(team-slug)/
Get details on a single team

The data is the same as the list endpoint

Updating team settings

PUT /api/teams/(team-slug)

Request JSON Object

• name (string) – (required) Name of the team

• slug (slug) – (required) Manchine name for the team (used in URLs)

• description (string) – Team description

• is_visible (boolean) – Should this team be publicly visible?

• membership_policy (string) – Team membership policy. One of:

– Open

– Application

– Invitation by any team member

– Invitation by manager

– Invitation by admin

• video_policy (string) – Team video policy. One of:

– Any team member

– Managers and admins

– Admins only

Creating a team

Amara partners can create teams via the API.

POST /api/teams/

26 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

Request JSON Object

• name (string) – (required) Name of the team

• slug (slug) – (required) Manchine name for the team (used in URLs)

• type (string) – Team type. Possible values:

– default – default team type

– simple – simplified workflow team

– collaboration – collaboration team

• description (string) – Team description

• is_visible (boolean) – Should this team be publicly visible?

• membership_policy (string) – Team membership policy. Possible values:

– Open

– Application

– Invitation by any team member

– Invitation by manager

– Invitation by admin

• video_policy (string) – Team video policy. Possible values:

– Any team member

– Managers and admins

– Admins only

Members Resource

API endpoint for team memberships

Listing members of a team

GET /api/teams/(team-slug)/members/

Response JSON Object

• user (user) – User associated with the membership (see User fields)

• role (string) – One of: owner, admin, manager, or contributor

Get info on a team member

GET /api/teams/(team-slug)/members/(user-identifier)/
The data is in the same format as the listing endpoint.

See User Identifiers for possible values for user-identifier

3.8. Teams 27

Amara Documentation, Release 1.2.0

Adding a member to the team

POST /api/teams/(team-slug)/members/

Request JSON Object

• user (user-identifier) – User to add (see User Identifiers)

• role (string) – One of: owner, admin, manager, or contributor

Change a team member’s role

PUT /api/teams/(team-slug)/members/(username)/

Request JSON Object

• role (string) – One of: owner, admin, manager, or contributor

Removing a user from a team

DELETE /api/teams/(team-slug)/members/(username)/

Projects Resource

List a team’s projects

GET /api/teams/(team-slug)/projects/

Response JSON Object

• name (string) – project name

• slug (slug) – slug for the project

• description (string) – project description

• guidelines (string) – Project guidelines for users working on it

• created (datetime) – datetime when the project was created

• modified (datetime) – datetime when the project was last changed

• workflow_enabled (boolean) – Are tasks enabled for this project?

• resource_uri (uri) – Project details resource

Get details on a project

GET /api/teams/(team-slug)/projects/(project-slug)/
The data is the same as the listing endpoint

Creating a project

POST /api/teams/(team-slug)/projects/

Request JSON Object

• name (string) – project name

28 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

• slug (slug) – slug for the project

• description (string) – project description (optional)

• guidelines (string) – Project guidelines for users working on it (optional)

Updating a project

PUT /api/teams/(team-slug)/projects/(project-slug)/
Uses the same data as the POST method

Delete a project

DELETE /api/teams/(team-slug)/projects/(project-slug)/

Tasks Resource

List all tasks for a team

GET /api/teams/(team-slug)/tasks/

Query Parameters

• assignee (user-identifier) – Show only tasks assigned to a username (see User
Identifiers)

• priority (integer) – Show only tasks with a given priority

• type (string) – Show only tasks of a given type

• video_id (video-id) – Show only tasks that pertain to a given video

• order_by (string) – Apply sorting to the task list. Possible values:

– created Creation date

– -created Creation date (descending)

– modified Last update date

– -modified Last update date (descending)

– priority Priority

– -priority Priority (descending)

– type Task type (details below)

– -type Task type (descending)

• completed (boolean) – Show only complete tasks

• completed-before (integer) – Show only tasks completed before a given date (as a
unix timestamp)

• completed-after (integer) – Show only tasks completed before a given date (as a
unix timestamp)

• open (boolean) – Show only incomplete tasks

3.8. Teams 29

Amara Documentation, Release 1.2.0

Get details on a specific task

GET /api/teams/(team-slug)/tasks/(task-id)/

Response JSON Object

• video_id (video-id) – ID of the video being worked on

• language (bcp-47) – Language code being worked on

• id (integer) – ID for the task

• type (string) – type of task. One of Subtitle, Translate, Review, or Approve

• assignee (user-data) – Task assignee (see User fields)

• priority (integer) – Priority for the task

• created (datetime) – Date/time when the task was created

• modified (datetime) – Date/time when the task was last updated

• completed (datetime) – Date/time when the task was completed (or null)

• approved (string) – Approval status of the task. One of In Progress, Approved,
or Rejected

• resource_uri – Task resource

Create a new task

POST /api/teams/(team-slug)/tasks/

Request JSON Object

• video_id (video-id) – Video ID

• language (bcp-47) – language code

• type (string) – task type to create. Must be Subtitle or Translate

• assignee (user-identifier) – Task assignee (User Identifiers)

• priority (integer) – Priority for the task (optional)

Update an existing task

PUT /api/teams/(team-slug)/tasks/(task-id)/

Request JSON Object

• assignee (user-identifier) – Task assignee (User Identifiers)

• priority (integer) – priority of the task

• send_back (boolean) – send a truthy value to send the back back (optional)

• complete (boolean) – send a truthy value to complete/approve the task (optional)

• version_number (integer) – Specify the version number of the subtitles that were
created for this task (optional)

Note: If both send_back and approved are specified, then send_back will take preference.

30 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

Delete an existing task

DELETE /api/teams/(team-slug)/tasks/(task-id)/

Notifications Resource

This endpoint can be used to view notifications sent to your team. See HTTP Callbacks for Teams for details on how
to set up notifications.

List notifications

GET /api/teams/(team-slug)/notifications/

Response JSON Object

• number (integer) – Notification number

• url (url) – URL of the POST request

• data (object) – Data that we posted to the URL.

• timestamp (iso-8601) – date/time the notification was sent

• in_progress (boolean) – Is the request still in progress?

• response_status (integer) – HTTP response status code (or null)

• error_message (string) – String describing any errors that occured

List results are paginated

Get details for a notification

GET /api/teams/(team-slug)/notifications/(number)/
This returns information on a single notification. The data has the same format as in the listing endpoint.

Applications Resource

This endpoint only works for teams with membership by application.

List applications

GET /api/teams/(team-slug)/applications

Query Parameters

• status (string) – Include only applications with this status

• before (integer) – Include only applications submitted before this time (as a unix
timestamp)

• after (integer) – Include only applications submitted after this time (as a unix times-
tamp)

• user (user-identifier) – Include only applications from this user (see User Identi-
fiers)

List results are paginated

3.8. Teams 31

Amara Documentation, Release 1.2.0

Get details on a single application

GET /api/teams/(team-slug)/applications/(application-id)/:

Response JSON Object

• user (user-data) – Applicant user data (see User fields)

• note (string) – note given by the applicant

• status (string) – status value. Possible values are Denied, Approved, Pending,
Member Removed and Member Left

• id (integer) – application ID

• created (datetime) – creation date/time

• modified (datetime) – last modified date/time

• resource_uri (uri) – Application resource

Approve/Deny an application

PUT /api/teams/(team-slug)/applications/(application-id)/

Request JSON Object

• status (string) – Denied to deny the application and Approved to approve it.

Preferred Languages Resource

Preferred languages will have tasks auto-created for each video.

PUT /api/teams/(team-slug)/languages/preferred/
Send a list of language codes as data.

Blacklisted Languages Resource

Subtitles for blacklisted languages will not be allowed.

PUT /api/teams/(team-slug)/languages/blacklisted/
Send a list of language codes as data.

Subtitle Request Resource

This API endpoint is used for subtitle requests for teams new team that use the collaboration model. At this point it’s
only used by a limited number of teams, but we hope to make it available to everyone in the near future.

Terminology

Several teams can be involved in a subtitle request. We use these terms to distinguish the teams:

• source team – Team that the video is part of.

• work team – Team that is creating the subtitles. We call this the initial work to differentiate it from the evalua-
tions.

32 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

• evaulation teams – Teams that are evaluating/checking the subtitles. Each request can have 0-3 evaluation teams.

All subtitle request endpoints are contained inside the main endpoint for a team. When the docs say something like
“source team only”, it refers to that team.

Listing Requests

GET /api/teams/(team-slug)/subtitle-requests/

Query Parameters

• type (string) – Type of request. Possible values:

– local (default) – The simple case, requests where the team is both the source and work
team.

– outgoing – Request where the team is the source team, but not the work team.

– incoming – Request where the team is the work team, but not the source team.

– evaluations – Request where the team is the evaluation team.

• status (string) – (source team only) Filter by overall status. Possible values:

– in-progress – initial work in progress

– in-evaluation – evaluation in progress

– in-evaluation1 – 1st evaluation in progress

– in-evaluation2 – 2nd evaluation in progress

– in-evaluation[N] – Nth evaluation in progress

– complete – all work complete

• work_status (string) – (work team only) Filter by status of the intial work (not in-
cluding evaluations).

– in-progress – initial work in progress

– available – assignment currently available

– assigned – assignment in progress

– needs-subtitler – transcribe/translate assignment available

– being-subtitled – transcribe/translate assignment in progress

– needs-reviewer – review assignment available

– being-reviewed – review assignment in progress

– needs-approver – approval assignment available

– being-approved – approval assignment in progress

– complete – initial work complete

• evaluation_status (string) – (evaluation teams only) Filter by status of the evalu-
ation. Possible values:

– upcoming – evaluation not ready to be started

– in-progress – evaluation in progress

– available – evaluation assignment currently available

3.9. Subtitle Request Resource 33

Amara Documentation, Release 1.2.0

– assigned – evaluation assignment in progress

– complete – evaluation complete

• video (video-id) – Filter by video ID

• video_title (string) – Filter by video title

• video_language (bcp-47) – Filter by video language

• language (bcp-47) – Filter by subtitle request language

• project (slug) – Filter by team project

• assignee (username) – Filter by assignee

• sort (string) – Sort order. Possible values:

– -creation (default) – creation date/time (latest first)

– creation – creation date/time (earliest first)

– -due – due date/time (latest first)

– due – due date/time (earliest first)

– -completion – latest completion date/time (latest first)

– completion – latest completion date/time (earliest first)

Response JSON Object

• job_id (job-id) – ID for the request

• video (video-id) – Video for the request

• language (bcp-47) – Language code of the subtitle request

• source_team (slug) – Team that the video is part of

• team (slug) – Team handling the request (source team only)

• evaluation_teams (slug-list) – Team evaluating the request. Only present for
requests for the team’s videos.

• status (string) – (source team only) Overall request status. Possible values:

– in-progress – initial work in progress

– in-evaluation1 – 1st evaluation in progress

– in-evaluation2 – 2nd evaluation in progress

– in-evaluation[N] – Nth evaluation in progress

– complete – all work complete

• work_status (string) – (work team only) Status of the intial work (not including
evaluations). Possible values:

– needs-subtitler – transcribe/translate assignment available

– being-subtitled – transcribe/translate assignment in progress

– needs-reviewer – review assignment available

– being-reviewed – review assignment in progress

– needs-approver – approval assignment available

– being-approved – approval assignment in progress

34 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

– complete – initial work complete

• evaluation_status (string) – (evaluation teams only) Status of the evaluation.
Possible values:

– upcoming – evaluation not ready to be started

– available – evaluation assignment currently available

– assigned – evaluation assignment in progress

– complete – evaluation complete

• created (datetime) – when the request was created.

• completed (datetime) – (source team only) when the entire request was completed, or
null.

• work_completed (datetime) – (work team only) when the initial work was com-
pleted, or null.

• evaluation_completed (datetime) – (evaluation team only) when the initial work
was completed, or null.

• subtitler (user) – (work team only) user creating the subtitles (see User fields)

• reviewer (user) – (work team only) user reviewing the subtitles (see User fields).

• approver (user) – (work team only) user approving the subtitles (see User fields).

• evaluator (user) – (evaluation teams only) user evaluating the subtitles (see User
fields).

• video_uri (uri) – Video API resource

• subtitles_uri (uri) – Subtitles resource

• actions_uri (uri) – Subtitle actions resource

• resource_uri (uri) – Subtitle request details resource

List results are paginated.

Request Details

GET /api/teams/(team-slug)/subtitle-requests/(job-id)/
Response data is the same as above.

Request Status Fields

We return several status fields for requests (status, work_status, evaluation_status). The status field
that you see depends on the team’s relationship to the request (where “the team” is identified by the team-slug
param in the URL). This gives each team a different view of the request. Each team gets the information revelant to
it’s work, and doesn’t get information about the work being done by other teams.

As an example, consider a request that has 2 evaluation teams. As the request progresses, here are the values that we
will return for the various status fields:

3.9. Subtitle Request Resource 35

Amara Documentation, Release 1.2.0

status work_status evaluation_status (team1) evaluation_status (team2)
in-progress needs-subtitler pending pending
in-progress being-subtitled pending pending
in-progress needs-reviewer pending pending
in-progress being-reviewed pending pending
in-progress needs-approver pending pending
in-progress being-approved pending pending
in-evaluation1 complete available pending
in-evaluation1 complete assigned pending
in-evaluation2 complete complete available
in-evaluation2 complete complete assigned
complete complete complete complete

• status will be returned to the source team

• work_status will be returned to the work team

• evaluation_status will be returned to evaluation teams

• Multiple status fields can be returned if the team fits into more than one of the above categories

Creating Requests

POST /api/teams/(team-slug)/subtitle-requests/

Request JSON Object

• video (video-id) – Video ID. This must be part of the team identified in the URL path

• language (bcp-47) – language code for the subtitles

• team (slug) – Team to work on the subtitles. This can be any team you are an admin of.
(optional, defaults to the team the video is a part of.)

• evaluation_teams (list-of-slugs) – Teams to evaluate the subtitles after the ini-
tial work is done. They can be any team you are an admin of. (optional)

The API user must be an admin of the source team to create a subtitle request.

Updating Requests

PUT /api/teams/(team-slug)/subtitle-requests/(job-id)/

Request JSON Object

• subtitler (user) – (work team only) User to assign as the subtitler, or null to unassign
the current subtitler (see User Identifiers).

• reviewer (user) – (work team only) User to assign as the reviewer, or null to unassign
the current reviewer (see User Identifiers).

• approver (user) – (work team only) User to assign as the approver, or null to unassign
the current approver (see User Identifiers).

• work_status (string) – (work team only) Set to “complete” to mark the subtitles
complete. This is the only value we currently support.

• team (slug) – (source team only) Change the team working on the subtitle request. This
is only possible if work has not been started.

36 Chapter 3. API Documentation

Amara Documentation, Release 1.2.0

• evaluation_teams (slug) – (source team only) Change the teams evaluating on the
subtitle request. This is only possible if evaluations have not been started.

• evaluator (user) – (evaluation teams only) User to assign as the evaluator, or null to
unassign the current evaluator (see User Identifiers).

Deleting Requests

DELETE /api/teams/(team-slug)/subtitle-requests/(job-id)/

Assigning a user:

PUT /api/teams/my-team/subtitle-requests/abc123/

{
"subtitler": "alice"

}

Unassigning a user:

PUT /api/teams/my-team/subtitle-requests/abc123/

{
"subtitler": null

}

Marking a subtitle request complete

PUT /api/teams/my-team/subtitle-requests/abc123/

{
"work_status": "complete"

}

Moving a subtitle request to another team

PUT /api/teams/my-team/subtitle-requests/abc123/

{
"team": "other-team-slug"

}

Endorsing Subtitles

If you have an assignment, you can use the Subtitles Resource to submit subtitles. Use the endorse action to endorse
them, moving the request to the next stage. You can also use the Subtitle Actions Resource to endorse the subtitles
without submiting any changes.

3.9. Subtitle Request Resource 37

Amara Documentation, Release 1.2.0

38 Chapter 3. API Documentation

CHAPTER 4

Supported languages

Abkhazian, Afar, Afrikaans, Akan, Albanian, American, Amharic, Arabic, Aragonese, Armenian, Assamese, As-
turian, Avaric, Avestan, Aymara, Azerbaijani, Bambara, Bashkir, Basque, Belarusian, Bengali, Berber, Bihari, Bis-
lama, Bosnian, Breton, Bulgarian, Burmese, Catalan, Cebuano, Chamorro, Chechen, Chewa, Chinese, Choctaw,
Church, Chuvash, Cornish, Corsican, Cree, Creole, Croatian, Czech, Danish, Divehi, Dutch, Dzongkha, Efik, English,
Esperanto, Estonian, Ewe, Faroese, Fijian, Filipino, Finnish, French, Frisian, Fula, Fulah, Galician, Ganda, Geor-
gian, German, Gikuyu, Greek, Greenlandic, Guaran, Gujarati, Haida, Hausa, Hebrew, Herero, Hindi, Hiri, Hokkien,
Hungarian, Hupa, Ibibio, Icelandic, Ido, Igbo, Ilocano, Indonesian, Ingush, Interlingua, Interlingue, Inuktitut, Inupia,
Irish, Iroquoian, Italian, Japanese, Javanese, Kannada, Kanuri, Karen, Kashmiri, Kazakh, Khmer, Klingon, Komi,
Kongo, Korean, Kuanyama, Kurdish, Kyrgyz, Lakota, Lao, Latin, Latvian, Limburgish, Lingala, Lithuanian, Luba-
Kasai, Luba-Katagana, Luhya, Luo, Luxembourgish, Macedo, Macedonian, Madurese, Malagasy, Malay, Malayalam,
Maltese, Mandinka, Manipuri, Manx, Maori, Marathi, Marshallese, Metadata:, Mohawk, Moldavian, Mongolian,
Mossi, Naurunan, Navajo, Ndonga, Nepali, North, Northern, Norwegian, Occitan, Ojibwe, Oriya, Oromo, Ossetian,
Pali, Pashto, Persian, Polish, Portuguese, Punjabi, Quechua, Romanian, Romansh, Rundi, Russian, Rusyn, Rwandi,
Samoan, Sango, Sanskrit, Sardinian, Scottish, Serbian, Serbo-Croatian, Shona, Sichuan, Sindhi, Sinhala, Slovak,
Slovenian, Somali, Sotho, Southern, Spanish, Sundanese, Swahili, Swati, Swedish, Tagalog, Tahitian, Tajik, Tamil,
Tartar, Telugu, Tetum, Thai, Tibetan, Tigrinya, Tonga, Tsonga, Tswana, Turkish, Turkmen, Twi, Ukrainian, Umbundu,
Urdu, Uyghur, Uzbek, Venda, Vietnamese, Volapuk, Walloon, Welsh, Wolof, Xhosa, Yiddish, Yoruba, Zhuang, Zulu.

39

Amara Documentation, Release 1.2.0

40 Chapter 4. Supported languages

CHAPTER 5

HTTP Callbacks for Teams

Enterprise customers can register a URL for http callbacks so that activity on their teams will fire an HTTP POST
requests to that URL.

To register your Team to receive HTTP notifications, please send your request to us at enterprise@amara.org and we
will set it up for you. You can also contact us with inquiry about any custom notifications that are not listed in our
general offering below.

Please indicate a URL where you’d like to get notified. Each team can have their own URL, or a common URL can
be used for several teams. We recommend that the selected URL uses HTTPS protocol for safer communication.

Notification Details

We currently send notifications for the following events related to team videos and team members.

Video notifications

Video notifications always include the following data:

• event

• amara_video_id

• youtube_video_id (null if the video is not hosted on YouTube)

• team

• project

• primary_team (used when the same callback URL is shared between multiple teams and the event that
triggered callback happened on another team).

Supported events for videos:

41

mailto:enterprise@amara.org

Amara Documentation, Release 1.2.0

video-added Sent when a video is added to your team, or moved to your team from another team.

Additional data: old_team (if video is moved from another team)

video-removed Sent when a video is removed from your team, or moved to another team.

Additional data: new_team (if video is moved to another team)

video-made-primary Sent when one of the multiple URLs for a video on your team is set as the primary
URL.

Additional data: url

video-moved-project Sent when a video on your team is moved to a different project.

Additional data: old_project

subtitles-published Sent when a new subtitle version for a video on your team is published.

Additional data: language_code, amara_version

subtitle-unpublished Sent when subtitles are deleted for a video on your team.

Additional data: language_code

Team member notifications

Team member notifications always include the following data:

• event

• username

• team

• primary_team (used when the same callback URL is shared between multiple teams and the event that
triggered callback happened on another team)

Supported events for team members:

member-added Sent when a user is added to your team.

member-removed Sent when a user is removed from your team.

member-profile-changed Sent when the information in a team member’s profile is changed.

For each event we can customize the data that is sent with the notification.

Also, all notifications are numbered. You can use the number field in the notification to keep track of the events in
your team(s).

To view previously sent notifications use the Team Notifications API.

42 Chapter 5. HTTP Callbacks for Teams

CHAPTER 6

Babelsubs

We’ve split the subtitle handling into it’s own separate project, Babelsubs. Anything that has do to with parsing,
generating and formatting subtitles should be handled over there. The main unisubs repo should only make calls to
babelsubs with the desired operations / data.

Storage

Internally, we’re storing subtitles as the DFXP format. DFXP is the most complex, and most capable format of all.
It’s also the only one with a real spec. The advantage is that it lets us tell our users that they can input DFXP, process
it throughout our system and get their data out correctly, even for features we don’t currently support (like advanced
styles).

Formatting

Formatting we do support:

• Bold text

• Italic text

• Underline

• Like breaks

Each format handles those different. On DFXP you have attributes on the xmlnodes (span, p and div) such as
fontWeigh=’bold’ and textStyle=’italic’. Line breaks are
 tags.

For SRT and friends, we have the ‘b’, ‘i’ and ‘u’ tags. Line breaks are displayed with the right line separator.

For HTML (which is not a download format, but it’s displayed on the website), we have ‘em’, ‘strong’ and ‘style’ tags,
and ‘br’ for line breaks.

Ideally, for testing a complete set of features we need to test:

43

https://github.com/pculture/babelsubs/

Amara Documentation, Release 1.2.0

• The forementioned formats (italics, bold, underline)

• Line breaks

• Single “>” and doubles “>>” . This is used to denote speaker changes and is widely used by our customers.
They must come out correctly both when displayed on the website (subtitle view, the widget, the dialogs) and
when downloaded. On DFXP those should use character entities.

For anything other than these tags, let’s say you have a video on web development, and they write a
‘<script>alert();</script> ‘ tag. Here’s what should happen:

• Should be stored with the tag chars escaped

• Should show up on the website (dialog, subtitle view and the widget) as is, but escaped (javascript shouldn’t
run) , but it should be editable

• Non html / xml formats (such as srt) should display them as is

In general, here’s the intended workflow:

• On intake convert what we can to dfxp (such as a line break to
). Do not strip tags.

• On output (for the website only) escape anything other than the tags we expect (<script>, etc)

44 Chapter 6. Babelsubs

CHAPTER 7

Syncing and Importing

The externalsites app handles linking Amara users/teams to accounts on externalsites. This allows for:

• Syncing subtitles to the third party site when they are edited on Amara

• Importing new videos for the third party account

We support several sites, each works slightly differently

Youtube

Both user and team accounts can be linked to YouTube accounts, but they are handled slightly differently. The general
idea here is that the use case is different for teams and users. In general, teams want to have finer grained control
over what gets imported to Amara and what gets synced back to their YouTube channel. For users, we just import
everything and sync everything.

User Accounts

• Users can link to YouTube from account section on their profile page

• A user can only link 1 YouTube account

• A YouTube account can only be linked to 1 user

• We create a video feed and import all videos for the YouTube channel.

• All subtitles for a video in that account will be synced

Team Accounts

• Teams can link to YouTube from their Settings -> Integrations page

• A team can link multiple YouTube accounts

45

Amara Documentation, Release 1.2.0

• A YouTube account can only be linked to 1 team, but there is a way to share the account with other teams.

• Subtitles are normally only synced for the team’s videos

• The linked team can add other teams to the syncing list, any of those team’s videos will also be synced.

• We don’t auto-import videos for the YouTube channel.

• A YouTube account can’t be linked to both a team and a user

Kaltura

• Teams can link to Kaltura from their Settings -> Integrations page

• Once a team links to Kaltura, subtitles on their team videos with their Kaltura partner id will be synced back to
Kaltura.

Brightcove

• Teams can link to Brightcove from their Settings -> Integrations page

• Once a team links to Brightcove, subtitles on their team videos with their Brightcove publisher id will be synced
back to Brightcove.

• Teams can optionally choose to import videos from their Brightcove account.

• If importing, teams can either import all videos or videos matching certain tags.

46 Chapter 7. Syncing and Importing

CHAPTER 8

Static Media

Static media files are handled by the staticmedia app. This app has several goals:

• Combine multiple files into a single “media bundle”. Linking to a single JS file results in faster page loads
than linking to multiple files.

• Compress JS/CSS code.

• Support preprocessors like SASS.

• Support media files served from the local server or S3

• Store media files on S3 in a unique location for each deploy. This allows us to upload media for our next
deploy without affecting our current one. It also allows us to the set the expire header to the far future which is
good for caching.

Settings

Example

MEDIA_BUNDLES = {
"base.css": {

"files": (
"css/v1.scss",
"css/bootstrap.css",

),
},
"site.js": {

"files": (
"js/jquery-1.4.3.js",
"js/unisubs.site.js",

),
},

}

47

Amara Documentation, Release 1.2.0

STATIC_MEDIA_COMPRESSED = True

STATIC_MEDIA_USES_S3 = True
AWS_ACCESS_KEY_ID = 'abcdef'
AWS_SECRET_ACCESS_KEY = 'abcdef
STATIC_MEDIA_S3_BUCKET = 'bucket.name'
STATIC_MEDIA_S3_URL_BASE = '//s3.amazonaws.com/bucket.name'

MEDIA_BUNDLES

MEDIA_BUNDLES defines our Javascript/CSS media bundles.

The keys are the filename that we will generate. The extension of the filename controls what type of media and should
either by js or css.

The values are dicts that determine how we build the bundle. They can have these properties:

files
list of files to bundle together (paths are relative to the media directory)

add_amara_conf(optional)

If True, we will prepend javascript code to the source JS files. THis will create global object called
_amaraConf with these properties:

•baseURL: base URL for the amara website

•staticURL: base URL to the static media

STATIC_MEDIA_COMPRESSED

Set to False to disable compressing/minifying Javascript and CSS

STATIC_MEDIA_USES_S3

If True we Will Serve media files from amazon S3. This will change the URLs that our template tags create for links
to the media bundles. STATIC_MEDIA_USES_S3 is usually True for production and False for development.

If STATIC_MEDIA_USES_S3 is enabled, the following settings are available:

• AWS_ACCESS_KEY_ID: S3 access key.

• AWS_SECRET_ACCESS_KEY: S3 secret key.

• STATIC_MEDIA_S3_BUCKET: S3 bucket to store media in.

• STATIC_MEDIA_S3_URL_BASE: Base URL for S3 media.

Compilation & Minification

We use uglifyjs for Javascript files and SASS for CSS files. Using the SASS extensions is optional. If you just have
regular CSS files that SASS will function simply as a CSS compressor.

48 Chapter 8. Static Media

Amara Documentation, Release 1.2.0

Media Directory Structure

Regardless if media is uploaded to S3 or we are serving it from the local instance, we structure the files the same way:

• css/ - CSS bundles

• js/ - Javascript bundles

• images/ - Image files

• fonts/ - font files

When serving media from the local server, the root URL for media files will be /media/.

When serving media from S3, the root URL for media files will be
<STATIC_MEDIA_S3_URL_BASE><git-commit-id/

Development, Media Bundles, and Caching

For development servers, STATIC_MEDIA_USES_S3 is usually False, which causes us to serve up the media bundles
from the local server. It takes long enough to compile media bundles that we don’t want to re-do it on every page
request. So we cache the result and use that for subsequent requests. Before using a cached result, we check the mtime
of all source files, and if any one is later than when the cache was created, we rebuild.

This works fine for most use cases, but there are a couple ways that it will fail. For example removing a file from the
sources list won’t trigger a rebuild. If you think this may be happening, just update the mtime on any source file to
trigger the rebuild manually.

In Templates

To link to media files in templates load the media_bundle library. Then you can use these tags:

• media_bundle – include a CSS/JS media bundle (generates the entire script/link tag)

• url_for – Get the URL to a media bundle.

• static_url – Get the base URL for static media.

8.3. Media Directory Structure 49

Amara Documentation, Release 1.2.0

50 Chapter 8. Static Media

CHAPTER 9

Developer’s Guide

This section contains information on the internal workings of the Amara codebase.

Development Workflow

This guide describes the development workflow for Amara.

Contents

• Development Workflow

– Creating issues

– Branches / Repositories

– Other Git Repositories

– Testing

– Exception Logging

– Workflow

Creating issues

Please follow these guidelines when creating issues, to ensure that they are easy to implement:

• Do a quick search to check for any existing issues before creating a new one.

• Make sure the title clearly and succinctly captures the issue at hand

• For bugs, describe the steps needed to reproduce the problem and what the correct behavior is.

• Try to describe the severity of the issue. Who is it affecting? How bad is the current behavior, etc.

51

Amara Documentation, Release 1.2.0

Branches / Repositories

The production branch is what gets deployed to our production server. It’s what gets deployed to production
server. staging branch is what gets deployed to the staging server.

Commits should never be made directly to production and only trivial commits should be made to staging. Instead,
Amara development tries to follow a “one branch per feature or bugfix” workflow (See Workflow)

As you work on your topic branch, other branches may have been merged into staging by other people. Make sure
you merge staging back to your branch as often as possible to keep it up-to-date.

Other Git Repositories

Inside the unisubs repository, you may want to check out some other repositories.

If you have access to our private repository (https://github.com/pculture/amara-enterprise/). Check that out inside the
root directory of the unisubs repository to add the extra functionality. See Optional Apps for details on how this works.

We also have a couple other repositories that integrate into unisubs:

• https://github.com/pculture/babelsubs/

• https://github.com/pculture/unilangs/

Both of these get installed inside your docker container. Normally you don’t need to do anything to use them. However,
if you want to test changes to those repositories you need to check out a local copy:

• Check out the git repository inside the root unisubs directory.

• Make a symlink from the root directory to the python package (for example: ln -s babelsubs-git/
babelsubs .)

• After this the unisubs code will be using your local checkout rather than the default package. Make changes
there, test them on your dev environment, then commit/push the changes back to a branch on the pculture
repository, then open a PR to maste.

• When we deploy amara, we pick up the the latest commit in master for these libraries. So once your changes
are merged to master, they will be live the next time we deploy.

Testing

At a minimum, make sure you run the tests after your changes and ensure that all tests pass.

If possible, use test driven development. Write new tests that cover the issue you’re working on before you start any
code. Write code that makes the test pass. Then consider refactoring code to fix the problem in a cleaner way.

Exception Logging

When catching exceptions, be sure to log these with a descriptive message and the stacktrace. Exceptions should be
caught whenever it’s necessary for flow control, an exception is expected, or where user input may cause unexpected
behavior (such as forms). In the case where a caught exception is an expected part of flow control, such as making an
invalid choice in a form, logging isn’t necessary and doesn’t need to be included.

As an example, here is a function that logs exceptions:

52 Chapter 9. Developer’s Guide

https://github.com/pculture/amara-enterprise/
https://github.com/pculture/babelsubs/
https://github.com/pculture/unilangs/

Amara Documentation, Release 1.2.0

def foo(self, a, b):
try:

self.do_something(a, b)
except InvalidChoiceError:

self.invalid_choice_count += 1
except ValueError:

logger.error("Invalid input type in Class.foo()", exc_info=True)
except Exception:

logger.error("General exception in foo()", exc_info=True)

Workflow

We use zenhub for project management. It’s basically a chrome extension that adds a kanban-like board to github. You
can get it from https://www.zenhub.com/.

Zenhub adds a pipeline field to github issues. We use this field to track the current status of work on the issue. We use
the following pipelines:

• Icebox – Issues that have been deprioritized, or are inside an Epic to be scheduled later

• Discovery – Issues that need to be triaged further and/or prioritized

• Waiting for Design – Issues that need design decisions, mockups, or css before back-end implementation

• To Do – Scheduled issues that a developer hasn’t started yet

• In Progress – Issues that a developer is currently working on

• Testing – Issue that a developer believes to be handled and needs testing to verify the fix

• Waiting for Deploy – Issue that has been fixed in the staging branch and we need to deploy the change
to production

Here’s the workflow for a typical issue:

• Prep work

– Someone creates a github issue that captures the bug/feature and puts it in the Discovery pipeline

– The issue is prioritized and scheduled into a sprint

– Developer reviews issue Friday before the sprint begins, adds story points to the issue

• Initial development

– A developer creates topic branches for both the unisubs and amara-enterprise repositories
to handle the issue. The branches should be named after its repository and issue number (e.g.
gh-enterprise-1234 or gh-unisubs-5678 would be branches for github issue 1234 in the
amara-enterprise repo and github issue 5678 in the unisubs repo, respectively). Changes for the issue
get commited to these branches.

– Once development on the issue is complete, developer moves the issue to the Testing pipeline and adds
any relevant notes for testing to the issue.

• Testing

– Tester tests the changes.

– If there are problems, tester notes them on the issue and moves it back to In progress.

– Developer fixes the problems, adds a note to the issue, moves it back to Testing, and we start testing
again

9.1. Development Workflow 53

https://www.zenhub.com/

Amara Documentation, Release 1.2.0

– Finally, tester approves the changes, then hands it back to developer to do a pull request

• Review

– Developer merges any new code from staging/master back into the topic branches

– Developer creates a pull request for unisubs and/or amara-enterprise depending on which repositories were
changed for the issue

– A second developer reviews the code

– If there are issues, the developer #2 adds comments to the PR and works with developer #1 to resolve them

– Once developer #2 thinks the code is ready, they merge the PR

– Once we decide that staging is ready to be deployed to production, we will merge the staging branch to
production then deploy andnd moves the issue to the Waiting for deploy pipeline

• Deploy - At some point we will deploy the code. - Usually this happens on a monday. - We first deploy staging,
do a check to see if things are okay, then deploy production - Once production is deployed, tester closes all
issues in Waiting for deploy

Testing

The Amara project uses the Nose testing framework.

Running tests

You should always run your tests inside the Vagrant VM because the test suite depends on a running Solr instance.

To run all unittests:

$ dev test

To run tests for a specific Django app:

$ dev test videos

To run a specific test class:

$ dev test videos.tests:ViewsTest

To run a specific test case within a test class:

$ dev test videos.tests:ViewsTest.test_index

Database Migrations

We use a MySQL database for Amara, which means every so often we need to update the database schema. This is
tricky to do because we don’t want to take down the site to do this. This means that we need to write migrations in a
way that allows both the old and new code to run at the same time. This section has some advice on how to do this.

The main idea is to split the migration into parts and gradually change the schema using multiple deploys in a way that
is compatible with the previous deploy.

54 Chapter 9. Developer’s Guide

http://nose.readthedocs.org/en/latest/

Amara Documentation, Release 1.2.0

As an example, let’s suppose we want to replace the Video.duration field, which is an integer column, with
Video.duration_string which is stored in “hh:mm:ss” form. Let’s ignore the fact that this would be pretty silly and
focus on how this would be done. We would split it into 4 stages:

• Stage 1: Add the new field and start writing values to it:

– Create a migration that adds the duration_string field. Note that the field should have null=True, even if
durations are always required, otherwise we’ll have a database error when the old code writes rows to the
videos table without duration_string set.

– Add code to set the duration_string field whenever we set video durations.

– Add a management command to update all videos and set duration_string. This command should be run
after the old code has stopped running and before the stage2 code starts.

– Continue to write to Video.duration, since the old code is relying on it.

– Don’t use the duration_string field when displaying video duration, since it will not be always be set.

• Stage 2: Start using the new field

– Start using duration_string for displaying the duration

– Remove the null=True clause from the field, if necessary

• Stage 3: Stop writing to the new field

– Remove code that writes to Video.duration

– Remove Video.duration from the Video model

– Don’t create a DB migration to remove Video.duration yet, since that would case an error when the code
from stage2 tried to write to that field

• Stage 4: Drop the old field

– Create a DB migration that drops the Video.duration column

Note: The same process works if you were just adding a new field, or dropping an old field. In those cases you can
just skip some steps.

Each stage should be in a separarate branch, typically named gh-[issue#]-stageX. We only deploy 1 stage at a
time.

This process adds extra complexity when developing, but reduces the complexity of deployment, since there’s never a
window when the site is down and we’re waiting for a migration to run.

It’s possible that we have migrations that can’t be split up like this. If so, that’s fine, we just need to take the site down
for some time period.

Varnish

We use Varnish (http://varnish-cache.org/) as a reverse proxy/caching server in front of our app. The code is at
github.com/pculture/amara-cache. Our general system is:

• Most pages use cache-control: private and are not cached by Varnish

• Pages that are mostly static like the homepage and watch pages are cached.

• We vary by Accept-Language and Cookie

• In the Varnish VCL, we try to normalize/reduce those headers to improve cache hits. We make it so:

9.4. Varnish 55

http://varnish-cache.org/

Amara Documentation, Release 1.2.0

– Cookie only contains the sessionid

– Accept-Language is normalized, so it only contains the language that we want to display the page in.

Caching App

Amara uses a couple tricks for caching things.

Cache Groups

Cache groups are used to manage a group of related cache values. They add some extra functionality to the regular
django caching system:

• Key prefixing: cache keys are prefixed with a string to avoid name collisions

• Invalidation: all values in the cache group can be invalidated together. Optionally, all values can be invalidated
on server deploy

• Optimized fetching: we can remember cache usage patterns in order to use get_many() to fetch all needed keys
at once (see Cache Patterns)

• Protection against race conditions: (see Race condition prevention)

Typically cache groups are associated with objects. For example we create a cache group for each user and each video.
The user cache group stores things like the user menu HTML and message HTML. The video cache group stores the
language list and other sections of the video/language pages.

Overview

• A CacheGroup is a group of cache values that can all be invalidated together

• You can automatically create a CacheGroup for each model instance

• CacheGroups can be used with a cache pattern. This makes it so we remember which cache keys are requested
and fetch them all using get_many()

Let’s take the video page caching as an example. To implement caching, we create cache groups for Team, Video, and
User instances. Here’s a few examples of how we use those cache groups:

• Language list: we store the rendered HTML in the video cache

• User menu: we store the rendered HTML in the user cache (and we actually use that for all pages on the site)

• Add subtitles form: we store the list of existing languages in the video cache (needed to set up the selectbox)

• Follow video button: we store a list of user ids that are following the videos in the video cache. To the user is
currently following we search that list for their user ID.

• Add subtitles permissions: we store a list of member user ids in the team cache. To check if the user can view
the tasks/collaboration page we search that list of the user ID

When we create the cache groups, we use the video-page cache pattern. This makes it so we can render the page with
3 cache requests. One get_many fetches the Video instance and all cache values related to the video, and similarly for
the Team and User.

Cache invalidation is always tricky. We use a simple system where if a change could affect any cache value, we
invalidate the entire group of values. For example if we add/remove a team member then we invalidate the cache for
the team.

56 Chapter 9. Developer’s Guide

Amara Documentation, Release 1.2.0

Cache Patterns

Cache patterns help optimize cache access. When a cache pattern is set for a CacheGroup we will do a couple things:

• Remember which keys were fetched from cache.

• On subsequent runs, we will try to use get_many() to fetch all cache values at once.

This speeds things up by reducing the number of round trips to memcached.

Behind the scenes

The main trick that CacheGroup uses is to store a “version” value in the cache, which is simply a random string. We
also pack the version value together with all of our cache values. If a cache value’s version doesn’t match the version
for the cache group, then it’s considered invalid. This allows us to invalidate the entire cache group by changing the
version value to a different string.

Here’s some example data to show how it works.

key value in cache computed value
version abc N/A
X abc:foo foo
Y abc:bar bar
Z def:bar invalid

Note: We also will prefix the all cache keys with the “<prefix>:” using the prefix passed into the CacheGroup
constructor.

Note: If invalidate_on_deploy is True, then we will append ”:<commit-id>” to the version key. This way the version
key changes for each deploy, which will invalidate all values.

Race condition prevention

The typical cache usage pattern is:

1. Fetch from the cache

2. If there is a cache miss then:

(a) calculate the value

(b) store it to cache.

This pattern will often have a race condition if another process updates the DB between steps 2a and 2b. Even if the
other process invalidates the cache, the step 2b will overwrite it, storing an outdated value.

This is not a problem with CacheGroup because of the way it handles the version key. When we get the value from
cache, we also fetch the version value. If the version value isn’t set, we set it right then. Then when we store the value,
we also store the version key that we saw when we did the get. If the version changes between the get() and set() calls,
then the value stored with set() will not be valid. This works somewhat similarly to the memcached GETS and CAS
operations.

9.5. Caching App 57

Amara Documentation, Release 1.2.0

Cache Groups and DB Models

Cache groups can save and restore django models using get_model() and set_model(). There is a pretty conservative
policy around this. Only the actual row data will be stored to cache – other attributes like cached related instances are
not stored. Also, restored models can’t be saved to the DB. All of this is to try to prevent overly aggressive caching
from causing weird/wrong behavior.

To add caching support to your model, add ModelCacheManager as an attribute to your class definition.

class caching.cachegroup.CacheGroup(prefix, cache_pattern=None, invalidate_on_deploy=True)
Manage a group of cached values

Parameters

• prefix (str) – prefix keys with this

• cache_pattern (str) – cache pattern identifier

• invalidate_on_deploy (bool) – Invalidate values when we redeploy

get(key)
Get a value from the cache

This method also checks that the version of the value stored matches the version in our version key.

If there is no value set for our version key, we set it now.

get_many(keys)
Get multiple keys at once

If there is no value set for our version key, we set it now.

set(key, value, timeout=None)
Set a value in the cache

set_many(values, timeout=None)
Set multiple values in the cache

get_or_calc(key, work_func, *args, **kwargs)
Shortcut for the typical cache usage pattern

get_or_calc() is used when a cache value stores the result of a function. The steps are:

•Try self.get(key)

•If there is a cache miss then

–call work_func() to calculate the value

–store it in the cache

get_model(ModelClass, key)
Get a model stored with set_model()

Note: To be catious, models fetched from the cache don’t allow saving. If the cache data is out of date,
we don’t want to saave it to disk.

set_model(key, instance, timeout=None)
Store a model instance in the cache

Storing a model is a tricky thing. This method works by storing a tuple containing the values of the DB
row. We store it like that for 2 reasons:

•It’s space efficient

58 Chapter 9. Developer’s Guide

Amara Documentation, Release 1.2.0

•It drops things like cached related objects. This is probably good since it makes it so we don’t also
cache those objects, which can lead to unexpected behavior and bugs.

Parameters

• key – key to store the instance with

• instance – Django model instance, or None to indicate the model does not exist in the
DB. This will make get_model() raise a ObjectDoesNotExist exception.

invalidate()
Invalidate all values in this CacheGroup.

class caching.cachegroup.ModelCacheManager(default_cache_pattern=None)
Manage CacheGroups for a django model.

ModelCacheManager is meant to be added as an attribute to a class. It does 2 things: manages CacheGroups for
the model class and implements the python descriptor protocol to create a CacheGroup for each instance. If you
add cache = ModelCacheManager() to your class definition, then:

•At the class level, MyModel.cache will be the ModelCacheManager instance

•At the instance level, my_model.cache will be a CacheGroup specific to that instance

get_cache_group(pk, cache_pattern=None)
Create a CacheGroup for an instance of this model

Parameters

• pk – primary key value for the instance

• cache_pattern – cache pattern to use or None to use the default cache pattern for this
ModelCacheManager

invalidate_by_pk(pk)
Invalidate a CacheGroup for an instance

This is a shortcut for get_cache_group(pk).invalidate() and can be used to invalidate without having to load
the instance from the DB.

get_instance(pk, cache_pattern=None)
Get a cached instance from it’s cache group

This will create a CacheGroup, get the instance from it or load it from the DB, then reuse the CacheGroup
for the instance’s cache. If a cache pattern is used this means we can load the instance and all of the needed
cache values with one get_many() call.

Teams

Teams are a key concept in amara. A team is a group of users that work together to subtitle videos. Teams are typically
made of members of a group that produces video and wants to add subtitles.

Team Workflows

Team workflows are ways for teams to get their subtitling work done. Team workflows compliment the Subtitle
Workflows and add team-specific features.

Team workflows are responsible for:

9.6. Teams 59

Amara Documentation, Release 1.2.0

• Providing a SubtitleWorkflow for team videos

• Handling the workflow settings page

• Handling the dashboard page

• Creating extra tabs or the teams section

class teams.workflows.teamworkflows.TeamWorkflow(team)

label = NotImplemented
Human-friendly name for this workflow. This is what appears on the team creation form.

workflow_settings_view = NotImplemented
view function for the workflow settings page.

Note: All workflows should allow the user to change membership_policy and video_policy in their
workflow settings page.

setup_team()
Do any additional setup for newly created teams.

get_subtitle_workflow(team_video)
Get the SubtitleWorkflow for a video with this workflow.

extra_pages(user)
Get extra team pages to handle this workflow.

These pages will be listed as tabs in the team section. Workflows will typically use this for things like
dashboard pages.

Parameters -- user viewing the page (user) –

Returns class:TeamPage objects

Return type list of

extra_settings_pages(user)
Get extra team settings pages to handle this workflow.

This works just like extra_pages(), but the pages will show up as tabs under the settings section.

Parameters -- user viewing the page (user) –

Returns class:TeamPage objects

Return type list of

class teams.workflows.teamworkflows.TeamPage(name, title, url)
Represents a page in the team’s section

name
machine-name for this tuple. This is value to use for current in the _teams/tabs.html template

title
human friendly tab title

url
URL for the page

class teams.workflows.old.workflow.OldTeamWorkflow(team)
Workflow for old-style teams

60 Chapter 9. Developer’s Guide

Amara Documentation, Release 1.2.0

We have tried to tackle the issue of team workflows in several ways. The most infamous has to be the tasks
sytem. This class acts the glue between the new workflow components and the old systems.

The plan is to migrate all our teams from OldTeamWorkflow to newer workflow styles. At that point we can
get rid of OldTeamWorkflow and also probably a bunch of other things like the tasks code, the Workflow table,
several Team model fields, etc.

The Subtitle Editor

The subtitle editor is one of the larger features of amara. It’s implemented using several components in a couple
different areas:

• The view subtitles.views.subtitle_editor serves up the page

• The page runs javascript that lives in media/src/js/subtitle-editor

• We save subtitles using the API code (currently in a private repository, but we plan to merge it in to the main
one soon)

See also:

Subtitle Workflows

Subtitle Workflows

Subtitle workflows control how subtitle sets get edited and published. In particular they control:

• Work Modes – Tweak the subtitle editor behavior (for example review mode)

• Actions – User actions that can be done to subtitle sets (Publish, Approve, Send back, etc).

• Permissions – Who can edit subtitles, who can view private subtitles

Overriding workflows

By default, we use a workflow that makes sense for public videos – Anyone can edit, the only action is Publish, etc.

To override the workflow by Video (for example for videos in a certain type of team):

• Create a VideoWorkflow subclass

• Create a LanguageWorkflow subclass (make this returned by VideoWork-
flow.get_default_language_workflow())

• Override get_workflow() and return your custom VideoWorkflow

To override the workflow for by SubtitleLanguage (for example you can override the workflow for the SubtitleLan-
guage covered by professional service request):

• Create a LanguageWorkflow subclass

• Override get_language_workflow() and return your custom LanguageWorkflow

9.7. The Subtitle Editor 61

Amara Documentation, Release 1.2.0

Workflow Classes

class subtitles.workflows.VideoWorkflow(video)
VideoWorkflow subclasses work with LanguageWorkflow subclasses to control the overall workflow for editing
and publishing subtitles. Workflows control the work modes, actions, permissions, etc. for subtitle sets.

user_can_view_video(user)
Check if a user can view the video

Returns True/False

user_can_edit_video(user)
Check if a user can view the video

Returns True/False

get_add_language_mode(user)
Control the add new language section of the video page

Parameters user (User) – user viewing the page

Returns

Value that specifies how the section should appear

• None/False: Don’t display anything

• “<standard>”: Use the standard behavior a link that opens the create subtitles dialog.

• any other string: Render this in the section. You probably want to send the string through
mark_safe() to avoid escaping HTML tags.

extra_tabs(user)
Get extra tabs for the videos page

Returns

list of (name, title) tuples. Name is used for the tab id, title is a human friendly title.

For each tab name you should create a video-<name>.html and video-<name>-tab.html tem-
plates. If you need to pass variables to those templates, create a setup_tab_<name> method
that inputs the same args as the methods from VideoPageContext and returns a dict of vari-
ables for the template.

get_default_language_workflow(language_code)
Get the default LanguageWorkflow for this VideoWorkflow.

This will be used unless some other component overrides it with get_language_workflow()

class subtitles.workflows.LanguageWorkflow(video, language_code)

get_work_mode(user)
Get the work mode to use for an editing session

Parameters user (User) – user who is editing

Returns WorkMode object to use

Return type :class

get_actions(user)
Get available actions for a user

Parameters user (User) – user who is editing

62 Chapter 9. Developer’s Guide

Amara Documentation, Release 1.2.0

Returns class:Action objects that are available to the user.

Return type list of

action_for_add_subtitles(user, complete)
Get an action to use for add_subtitles()

This is used when pipeline.add_subtitles() is called, but not passed an action. This happens for a couple
reasons:

•User saves a draft (in which case complete will be None)

•User is adding subtitles via the API (complete can be True, False, or None)

Subclasses can override this method if they want to use different actions to handle this case.

Parameters

• user (User) – user adding subtitles

• complete (bool or None) – complete arg from add_subtitles()

Returns Action object or None.

get_editor_notes(user)
Get notes to display in the editor

Returns EditorNotes object

Return type :class

user_can_view_private_subtitles(user)
Check if a user can view private subtitles

Private subtitles are subtitles with visibility or visibility_override set to “private”. A typical use is to limit
viewing of the subtitles to members of a team.

Returns True/False

user_can_delete_subtitles(user, language_code)
Check if a user can delete a language

Returns True/False

user_can_edit_subtitles(user)
Check if a user can edit subtitles

Returns True/False

Behavior Functions

subtitles.workflows.get_workflow(video)
Get the workflow to use for a video.

By default this method returns the workflow for public, non-team videos. Other apps can override it to customize
the behavior.

subtitles.workflows.get_language_workflow(video, language_code)
Override the default LanguageWorkflow for a subtitle set

Normally this method returns None, which means use the default for the VideoWorkflow. Other apps can
override this and control the workflow for specific video languages.

See also:

behaviors module for how you can override these functions.

9.8. Subtitle Workflows 63

Amara Documentation, Release 1.2.0

Editor Notes

class subtitles.workflows.EditorNotes(video, language_code)
Manage notes for the subtitle editor.

EditorNotes handles fetching notes for the editor and posting new ones.

heading
heading for the editor section

notes
list of SubtitleNotes for the editor (or any model that inherits from SubtitleNoteBase)

post(user, body)
Add a new note.

Parameters

• user (CustomUser) – user adding the note

• body (unicode) – note text

Work Modes

class subtitles.workflows.WorkMode
Work modes are used to change the workflow section of the editor and affect the overall feel of the editing
session. Currently we only have 2 work modes:

•class NormalWorkMode
The usual work mode with typing/syncing/review steps.

•class subtitles.workflows.ReviewWorkMode(heading, help_text=None)
Review someone else’s work (for example a review/approve task)

Parameters heading (str) – heading to display in the workflow area

Actions

Actions are things things that users can do to a subtitle set other than changing the actual subtitles. They correspond
to the buttons in the editor at the bottom of the workflow session (publish, endorse, send back, etc). Actions can occur
alongside changes to the subtitle lines or independent of them.

class subtitles.workflows.Action
Base class for actions

Other components can define new actions by subclassing Action, setting the class attributes, and optionally
implementing perform().

name
Machine-friendly name

label
human-friendly label. Strings should be run through ugettext_lazy()

in_progress_text
text to display in the editor while this action is being performed. Strings should be run through uget-
text_lazy()

visual_class
visual class to render the action with. This controls things like the icon we use in our editor button. Must
be one of the CLASS_ constants

64 Chapter 9. Developer’s Guide

Amara Documentation, Release 1.2.0

complete
how to handle subtitles_complete. There are 3 options:

•True – this action sets subtitles_complete

•False – this action unsets subtitles_complete

•None (default) - this action doesn’t change subtitles_complete

subtitle_visibility
Visibility value for newly created

SubtitleVersions(“public” or “private”)

CLASS_ENDORSE
visual class constant for endorse/approve buttons

CLASS_SEND_BACK
visual class constant for reject/send-back buttons

require_synced_subtitles()
Should we require that all subtitles have timings?

The default implementation uses the complete attribute

validate(user, video, subtitle_language, saved_version)
Check if we can perform this action.

Parameters

• user (User) – User performing the action

• video (Video) – Video being changed

• subtitle_language (SubtitleLanguage) – SubtitleLanguage being changed

• saved_version (SubtitleVersion or None) – new version that was created
for subtitle changes that happened alongside this action. Will be None if no changes were
made.

Raises ActionError – this action can’t be performed –

perform(user, video, subtitle_language, saved_version)
Perform this action

Parameters

• user (User) – User performing the action

• video (Video) – Video being changed

• subtitle_language (SubtitleLanguage) – SubtitleLanguage being changed

• saved_version (SubtitleVersion or None) – new version that was created
for subtitle changes that happened alongside this action. Will be None if no changes were
made.

update_language(user, video, subtitle_language, saved_version)
Update the subtitle language after adding subtitles

Parameters

• user (User) – User performing the action

• video (Video) – Video being changed

• subtitle_language (SubtitleLanguage) – SubtitleLanguage being changed

9.8. Subtitle Workflows 65

Amara Documentation, Release 1.2.0

• saved_version (SubtitleVersion or None) – new version that was created
for subtitle changes that happened alongside this action. Will be None if no changes were
made.

editor_data()
Get a dict of data to pass to the editor for this action.

class subtitles.workflows.Publish
Publish action

Publish sets the subtitles_complete flag to True

The permission system

The permission system in Amara subtitles is very flexible to allow for the needs of different teams. This document
will give you a high level overview of what is possible. You should read this before trying to understand the source
code.

Overview

Let’s start with some language. In the simplest case, when a user is part of a team, they can have one of the following
roles:

• Contributor

– Transcribe

– Translate

– Assign tasks to themselves

• Manager

– Review subtitles

– Approve subtitles

– Assign tasks to other people

– Everything that a contributor can do

• Admin

– Assign new managers

– Delete subtitles

– Everything that a manager can do

• Owner

– Everything

Note: This is just an example to give you an idea of how this could work.

A user’s role is stored in the teams.models.TeamMember model which stores a reference to the user and team
objects.

66 Chapter 9. Developer’s Guide

Amara Documentation, Release 1.2.0

Checking for required permissions

When you want to check if a certain user has the required privileges to perform a task, you should use one of the
functions in teams.permissions. For example, if you’d like to check if a user can approve a video, you could do
something like this:

from teams.permissions import can_approve

if can_approve(video, user):
Do something that requires the approval permission

Note: There is no middleware to attach the current user’s privileges to the request instance. Instead, you have
explicitly call the necessary function whenever you want to verify the user’s privileges.

Workflows

A team can choose their own workflow to efficiently manage their videos, translations and volunteers. When you are
setting up a workflow for your team, you can decide how certain actions will be performed. For example:

• Who can join the team?

• Who can and remove videos from the team?

• Who can assign tasks?

• How many tasks a user can have at a time?

• How many days should a user get to complete a task?

• Who can transcribe subtitles?

• Who can translate subtitles?

• Is there a review process?

• Is there an approval process?

So, why should you care? For example, you don’t trust your contributors with transcription of new videos since it’s
somewhat difficult. Therefore, you can choose to only allow managers and above to transcribe videos and contributors
to only translate videos to different languages. Or, the quality of the subtitles is crucial to you and you want to make
sure that nothing less than that ever gets out. So, you would turn on both the review and approval process. This way
three sets of eyes will look at the subtitles before it goes public.

Optional Apps

Amara.org uses several apps/packages that are stored in private github repositories that add extra functionality for paid
partnerships. These apps are optional – the amara codebase runs fine without them.

The coding issue is how to make amara work without these repositories, but automatically pull them in if they are
present. Here’s how we do it:

• For each repository we create a file inside the optional/ directory:

– The filename is the name of the repository

– The contents are the git commit ID that we want to use

9.10. Optional Apps 67

Amara Documentation, Release 1.2.0

• To enable a repository, it must be checked out in the amara root directory, using the same name as the git
repository.

• The optionalapps module handles figuring out which repositories are present and how we should modify things
at runtime

optionalapps.setup_path()
Add optional repositories to the python path

optionalapps.get_repository_paths()
Get paths to optional repositories that are present

Returns list of paths to our optional repositories. We should add these to sys.path so that we can
import the apps.

optionalapps.get_apps()
Get a list of optional apps

Returns list of app names from our optional repositories to add to INSTALLED_APPS.

optionalapps.get_urlpatterns()
Get Django urlpatterns for URLs from our optional apps.

This function finds urlpatterns inside the urls module for each optional app. In addition a module variable can
define a variable called PREFIX to add a prefix to the urlpatterns.

Returns url patterns containing urls for our optional apps to add to our root urlpatterns

optionalapps.exec_repository_scripts(filename, globals, locals)
Add extra values to the settings module.

This function looks for files named filename in each optional repository. If that exists, then we call execfile() to
run the code using the settings globals/locals. This simulates that code being inside the current scope.

Internationalization (i18n)

Unisubs has some complex requirements in terms of 18n. This is a rough guide of how things work.

Django’s system is gnu’s get text system. For example:

pt

The first two letters are the language code, according to ISO 639-1. In this case Portuguese.

If the locale has variation as to the country, for example Portugal’s Portuguese vs Brazilian’s portuguese then the locale
name is appended an underscore + the country two digit code, which is ISO 3166. Therefore the locales for portuguese
speaking countries are:

pt_BR -> Brazilian Portuguese
pt_PT -> Portugal's Portuguese

Some of the less common languages are not covered by ISO 639-1 but are by ISO 639-3.

Guidelines

Most of the heavy lifting is handled by our Unilangs library.

Steps for adding a new language:

68 Chapter 9. Developer’s Guide

http://www.gnu.org/software/gettext/manual/gettext.html#Locale-Names
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_639-3
https://github.com/pculture/unilangs

Amara Documentation, Release 1.2.0

• Figure Out the ISO code If ISO 639-1 covers it, it’s the prefered way to handle this, as it would keep our code
streamlined with Django’s. If not, then we should prefer ISO 639-3. One can depend on the list of ISO 693-1
and the list of ISO 693-3 on Wikipedia.

Also if it’s more of an uknown language it’s useful to look at the Wikipedia entry for it. Sometimes, we have
a request to include a language that doesn’t make sense. For example there is no Norwegian(no), but there
are dialects (nb and nn) that are used. Usually the Wikipedia page will discuss similar languages and specific
dialects.

• Update Unilangs INTERNAL_NAMES: Add the language code, the English name for the language, and the
language in it’s own name to the unilangs.py file .

• Update the unisubs standard: Add the language code to our standard .

• Update other codecs: If django supports that locale (as in we can i18n the site’s UI) update the ‘dango’ standard.
If other standards (such as ISO-693-1) support it, update them too.

Of course, once you’ve updated unlilangs, you’ll need to update the virtual envs on all installations of the app.

Updating Django

One must be careful when updating the Django’s version. As new locales are added between releases, we must check
if the locale is already added on our end with a different encoding. If that happens, we’ll have duplication . This has
beaten us before.

Partners

Different partners might have different language requirements while mapping to their own internal systems. We should
update this guide once we have more specifics on how we’re implementing those mappings.

Behaviors

Extensible behavior functions

This module allows one app to define a “behavior function”, which other apps can then override to change the behavior.
This is the Chain of responsibility pattern which helps keep modules loosely coupled.

A typical use for this is the subtitle that we display for video cards, underneath the title. Normally, we don’t show
anything there, but for TED we show the speaker name. Putting the code that deals with this inside the videos app is
bad practice because:

• It’s adding complexity to the videos app. Handling team requirements is outside of its scope.

• It requires importing from the teams app, but the teams app needs to import from the videos app. So we now
have a circular dependency.

Instead, videos defines the get_video_subtitle behavior, which can then be overriden by other apps. This allows us to
change the behavior without having to add complexity/dependencies to the videos app. The code works something
like this.

Example

9.12. Behaviors 69

http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/List_of_ISO_639-3_codes
https://github.com/pculture/unilangs/blob/9bc90849d2784850e701cebcc24924d5653f5256/unilangs/unilangs.py#L140
https://github.com/pculture/unilangs/blob/9bc90849d2784850e701cebcc24924d5653f5256/unilangs/unilangs.py#L646
http://http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern/

Amara Documentation, Release 1.2.0

>>> @behavior
... def get_video_subtitle(video)
... return video.title
>>> @get_video_subtitle.override
... def get_video_subtitle_for_team_foo(video):
... team_video = video.get_team_video()
... if team_video and team_video.slug == 'foo'
... return 'My Team: %s' % video.title
... else:
... return DONT_OVERRIDE

70 Chapter 9. Developer’s Guide

CHAPTER 10

Contributing

The source code to Amara is available on Github. Feel free to fork the project and open a pull request.

Before working on a sizeable feature, please do run it by us in our IRC channel. We don’t want you to waste your time
working on something we don’t really want. We are at #amara on freenode.

71

https://github.com/pculture/unisubs

Amara Documentation, Release 1.2.0

72 Chapter 10. Contributing

CHAPTER 11

License

Amara is freely available under the terms of the GNU Affero General Public License. You can find the full text of the
license here.

73

http://www.gnu.org/licenses/agpl-3.0.html

Amara Documentation, Release 1.2.0

74 Chapter 11. License

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

75

Amara Documentation, Release 1.2.0

76 Chapter 12. Indices and tables

HTTP Routing Table

/(video-url-endpoint)
GET (video-url-endpoint), 13
PUT (video-url-endpoint), 14
DELETE (video-url-endpoint), 14

/api
GET /api/activity/, 23
GET /api/activity/[activity-id]/, 24
GET /api/languages/, 10
GET /api/teams/, 25
GET /api/teams/(slug)/activity/, 21
GET /api/teams/(team-slug)/, 26
GET /api/teams/(team-slug)/applications,

31
GET /api/teams/(team-slug)/applications/(application-id)/:,

32
GET /api/teams/(team-slug)/members/, 27
GET /api/teams/(team-slug)/members/(user-identifier)/,

27
GET /api/teams/(team-slug)/notifications/,

31
GET /api/teams/(team-slug)/notifications/(number)/,

31
GET /api/teams/(team-slug)/projects/,

28
GET /api/teams/(team-slug)/projects/(project-slug)/,

28
GET /api/teams/(team-slug)/subtitle-requests/,

33
GET /api/teams/(team-slug)/subtitle-requests/(job-id)/,

35
GET /api/teams/(team-slug)/tasks/, 29
GET /api/teams/(team-slug)/tasks/(task-id)/,

30
GET /api/users/(username)/activity/, 22
GET /api/users/[identifier]/, 19
GET /api/videos/, 10
GET /api/videos/(video-id)/, 11
GET /api/videos/(video-id)/activity/,

21
GET /api/videos/(video-id)/languages/,

14
GET /api/videos/(video-id)/languages/(language-code)/,

15
GET /api/videos/(video-id)/languages/(language-code)/subtitles/,

16
GET /api/videos/(video-id)/languages/(language-code)/subtitles/actions/,

18
GET /api/videos/(video-id)/languages/(language-code)/subtitles/notes,

18
GET /api/videos/(video-id)/urls/, 13
POST /api/message/, 25
POST /api/teams/, 26
POST /api/teams/(team-slug)/members/,

28
POST /api/teams/(team-slug)/projects/,

28
POST /api/teams/(team-slug)/subtitle-requests/,

36
POST /api/teams/(team-slug)/tasks/, 30
POST /api/users/, 19
POST /api/videos/, 12
POST /api/videos/(video-id)/languages/,

15
POST /api/videos/(video-id)/languages/(language-code)/subtitles/,

17
POST /api/videos/(video-id)/languages/(language-code)/subtitles/actions/,

18
POST /api/videos/(video-id)/languages/(language-code)/subtitles/notes/,

19
POST /api/videos/(video-id)/urls/, 14
PUT /api/teams/(team-slug), 26
PUT /api/teams/(team-slug)/applications/(application-id)/,

32
PUT /api/teams/(team-slug)/languages/blacklisted/,

32
PUT /api/teams/(team-slug)/languages/preferred/,

32
PUT /api/teams/(team-slug)/members/(username)/,

77

Amara Documentation, Release 1.2.0

28
PUT /api/teams/(team-slug)/projects/(project-slug)/,

29
PUT /api/teams/(team-slug)/subtitle-requests/(job-id)/,

36
PUT /api/teams/(team-slug)/tasks/(task-id)/,

30
PUT /api/users/[username], 20
PUT /api/videos/(video-id)/, 12
DELETE /api/teams/(team-slug)/members/(username)/,

28
DELETE /api/teams/(team-slug)/projects/(project-slug)/,

29
DELETE /api/teams/(team-slug)/subtitle-requests/(job-id)/,

37
DELETE /api/teams/(team-slug)/tasks/(task-id)/,

31
DELETE /api/videos/(video-id)/, 13
DELETE /api/videos/(video-id)/languages/(language-code)/subtitles/,

17

/https:
GET https://amara.org/api/videos/, 9
GET https://amara.org/api/videos/?order_by=title,

9
GET https://amara.org/api/videos/?team=butterfly-club,

9
GET https://amara.org/api/videos/foo, 9
POST https://amara.org/api/videos/, 9
PUT https://amara.org/api/videos/foo, 9

78 HTTP Routing Table

Python Module Index

c
caching, 56
caching.cachegroup, 56

o
optionalapps, 67

s
subtitles.workflows, 61

t
teams.workflows.teamworkflows, 59

u
utils.behaviors, 69

79

Amara Documentation, Release 1.2.0

80 Python Module Index

Index

A
Action (class in subtitles.workflows), 64
action_for_add_subtitles() (subti-

tles.workflows.LanguageWorkflow method),
63

add_amara_conf, 48

C
CacheGroup (class in caching.cachegroup), 58
caching (module), 56
caching.cachegroup (module), 56
CLASS_ENDORSE (subtitles.workflows.Action at-

tribute), 65
CLASS_SEND_BACK (subtitles.workflows.Action at-

tribute), 65
complete (subtitles.workflows.Action attribute), 64

E
editor_data() (subtitles.workflows.Action method), 66
EditorNotes (class in subtitles.workflows), 64
exec_repository_scripts() (in module optionalapps), 68
extra_pages() (teams.workflows.teamworkflows.TeamWorkflow

method), 60
extra_settings_pages() (teams.workflows.teamworkflows.TeamWorkflow

method), 60
extra_tabs() (subtitles.workflows.VideoWorkflow

method), 62

F
files, 48

G
get() (caching.cachegroup.CacheGroup method), 58
get_actions() (subtitles.workflows.LanguageWorkflow

method), 62
get_add_language_mode() (subti-

tles.workflows.VideoWorkflow method),
62

get_apps() (in module optionalapps), 68

get_cache_group() (caching.cachegroup.ModelCacheManager
method), 59

get_default_language_workflow() (subti-
tles.workflows.VideoWorkflow method),
62

get_editor_notes() (subti-
tles.workflows.LanguageWorkflow method),
63

get_instance() (caching.cachegroup.ModelCacheManager
method), 59

get_language_workflow() (in module subti-
tles.workflows), 63

get_many() (caching.cachegroup.CacheGroup method),
58

get_model() (caching.cachegroup.CacheGroup method),
58

get_or_calc() (caching.cachegroup.CacheGroup method),
58

get_repository_paths() (in module optionalapps), 68
get_subtitle_workflow() (teams.workflows.teamworkflows.TeamWorkflow

method), 60
get_urlpatterns() (in module optionalapps), 68
get_work_mode() (subti-

tles.workflows.LanguageWorkflow method),
62

get_workflow() (in module subtitles.workflows), 63

H
heading (subtitles.workflows.EditorNotes attribute), 64

I
in_progress_text (subtitles.workflows.Action attribute),

64
invalidate() (caching.cachegroup.CacheGroup method),

59
invalidate_by_pk() (caching.cachegroup.ModelCacheManager

method), 59

L
label (subtitles.workflows.Action attribute), 64

81

Amara Documentation, Release 1.2.0

label (teams.workflows.teamworkflows.TeamWorkflow
attribute), 60

LanguageWorkflow (class in subtitles.workflows), 62

M
ModelCacheManager (class in caching.cachegroup), 59

N
name (subtitles.workflows.Action attribute), 64
name (teams.workflows.teamworkflows.TeamPage

attribute), 60
notes (subtitles.workflows.EditorNotes attribute), 64

O
OldTeamWorkflow (class in

teams.workflows.old.workflow), 60
optionalapps (module), 67

P
perform() (subtitles.workflows.Action method), 65
post() (subtitles.workflows.EditorNotes method), 64
Publish (class in subtitles.workflows), 66

R
require_synced_subtitles() (subtitles.workflows.Action

method), 65
ReviewWorkMode (class in subtitles.workflows), 64

S
set() (caching.cachegroup.CacheGroup method), 58
set_many() (caching.cachegroup.CacheGroup method),

58
set_model() (caching.cachegroup.CacheGroup method),

58
setup_path() (in module optionalapps), 68
setup_team() (teams.workflows.teamworkflows.TeamWorkflow

method), 60
subtitle_visibility (subtitles.workflows.Action attribute),

65
subtitles.workflows (module), 61
SubtitleVersions (subtitles.workflows.Action attribute),

65

T
TeamPage (class in teams.workflows.teamworkflows), 60
teams.workflows.teamworkflows (module), 59
TeamWorkflow (class in

teams.workflows.teamworkflows), 60
title (teams.workflows.teamworkflows.TeamPage at-

tribute), 60

U
update_language() (subtitles.workflows.Action method),

65

url (teams.workflows.teamworkflows.TeamPage at-
tribute), 60

user_can_delete_subtitles() (subti-
tles.workflows.LanguageWorkflow method),
63

user_can_edit_subtitles() (subti-
tles.workflows.LanguageWorkflow method),
63

user_can_edit_video() (subti-
tles.workflows.VideoWorkflow method),
62

user_can_view_private_subtitles() (subti-
tles.workflows.LanguageWorkflow method),
63

user_can_view_video() (subti-
tles.workflows.VideoWorkflow method),
62

utils.behaviors (module), 69

V
validate() (subtitles.workflows.Action method), 65
VideoWorkflow (class in subtitles.workflows), 62
visual_class (subtitles.workflows.Action attribute), 64

W
workflow_settings_view (teams.workflows.teamworkflows.TeamWorkflow

attribute), 60
WorkMode (class in subtitles.workflows), 64
WorkMode.NormalWorkMode (class in subti-

tles.workflows), 64

82 Index

	Running Amara
	Reporting bugs
	API Documentation
	Overview
	Authentication
	Data Formats
	Paginated Responses
	Browser Friendly Endpoints
	Value Formats
	Use HTTPS
	API interaction overview
	API Changes / Versioning

	Languages
	Languages Resource

	Videos
	Videos Resource
	Video URL Resource

	Subtitles
	Subtitle Language Resource
	Subtitles Resource
	Subtitle Actions Resource
	Subtitle Notes Resource

	Users
	Users Resource
	User Identifiers
	User fields

	Activity
	Video Activity Resource
	Team Activity Resource
	User Activity Resource
	Activity Types
	Legacy Activity Resource

	Messages
	Message Resource

	Teams
	Team Resource
	Members Resource
	Projects Resource
	Tasks Resource
	Notifications Resource
	Applications Resource
	Preferred Languages Resource
	Blacklisted Languages Resource

	Subtitle Request Resource
	Terminology
	Listing Requests
	Request Details
	Request Status Fields
	Creating Requests
	Updating Requests
	Deleting Requests
	Endorsing Subtitles

	Supported languages
	HTTP Callbacks for Teams
	Notification Details
	Video notifications
	Team member notifications

	Babelsubs
	Storage
	Formatting

	Syncing and Importing
	Youtube
	User Accounts
	Team Accounts

	Kaltura
	Brightcove

	Static Media
	Settings
	Example
	MEDIA_BUNDLES
	STATIC_MEDIA_COMPRESSED
	STATIC_MEDIA_USES_S3

	Compilation & Minification
	Media Directory Structure
	Development, Media Bundles, and Caching
	In Templates

	Developer's Guide
	Development Workflow
	Creating issues
	Branches / Repositories
	Other Git Repositories
	Testing
	Exception Logging
	Workflow

	Testing
	Running tests

	Database Migrations
	Varnish
	Caching App
	Cache Groups

	Teams
	Team Workflows

	The Subtitle Editor
	Subtitle Workflows
	Overriding workflows
	Workflow Classes
	Behavior Functions
	Editor Notes
	Work Modes
	Actions

	The permission system
	Overview
	Checking for required permissions
	Workflows

	Optional Apps
	Internationalization (i18n)
	Guidelines
	Updating Django
	Partners

	Behaviors

	Contributing
	License
	Indices and tables
	HTTP Routing Table
	Python Module Index

