

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	Amara 1.2.0 documentation

Welcome to Amara’s documentation!

Contents:

	Running Amara

	Reporting bugs

	API Documentation
	Authentication

	Data Formats

	API endpoint

	API interaction overview

	Partner video ids

	Available Resources
	Video Resource

	Video Language Resource

	Subtitles Resource

	Language Resource

	User Resource

	Video Url Resource

	Team Resource

	Team Member Resource

	Safe Team Member Resource

	Project Resource

	Task Resource

	Activity resource

	Message Resource

	Application resource

	Supported languages

	HTTP Callbacks for Teams
	Available Data

	Example

	Babelsubs
	Storage

	Formatting

	Syncing and Importing
	Youtube
	User Accounts

	Team Accounts

	Kaltura

	Brightcove

	Static Media
	Settings
	Example

	MEDIA_BUNDLES

	STATIC_MEDIA_COMPRESSED

	STATIC_MEDIA_USES_S3

	Compilation & Minification

	Media Directory Structure

	Development, Media Bundles, and Caching

	In Templates

	Developer’s Guide
	Development Workflow
	Git Setup

	Branches

	Workflow

	Integration Repository

	“Buffer” Branches

	Basic Example

	Buffer Branch Example

	Testing
	Running tests

	Caching
	Cache Groups

	Teams
	Team Workflows

	The Subtitle Editor

	Subtitle Workflows
	Editor Notes

	Work Modes

	Actions

	The permission system
	Overview

	Checking for required permissions

	Workflows

	Optional Apps

	Internationalization (i18n)
	Guidelines

	Updating Django

	Partners

	Behaviors

Contributing

The source code to Amara is available on Github [https://github.com/pculture/unisubs]. Feel free to fork the project and
open a pull request.

Before working on a sizeable feature, please do run it by us in our IRC
channel. We don’t want you to waste your time working on something we don’t
really want. We are at #amara on freenode.

License

Amara is freely available under the terms of the GNU Affero General Public
License. You can find the full text of the license here [http://www.gnu.org/licenses/agpl-3.0.html].

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

Running Amara

Check out the Quick Start on our github page
(http://github.com/pculture/unisubs/).

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

Reporting bugs

When you are reporting a bug, please look over the following suggestions. The
more information you can provide, the faster the bug can be fixed. And you
will life easier for developers.

	In what environment is the bug happening?

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

API Documentation

This is the documentation of v2 of Amara’s API. Please contact us
if you’d like to use the Amara API for commercial purposes.

Note

The v1 of the API is deprecated, but can still be accessed through
http://www.amara.org/api/1.0/documentation/ . Users should migrate
to the v2 of the API. If you’re missing a feature on the API, please let us
know [https://support.amara.org/] .

Authentication

Before interacting with the API, you must have an API key. In order to get one,
create a user on the Amara website, then go to the edit profile [http://www.amara.org/en/profiles/edit/] page. At the bottom of
the page you will find a “Generate new key” button . Clicking on it will fetch
your user the needed API key.

Every request must have the username and the API keys as headers. For example:

X-api-username: my_username_here
X-apikey: my_api_key_here

So a sample request would look like this:

$ curl -H 'X-api-username: my_username_here' -H 'X-apikey: my_api_key_here' \
 https://staging.amara.org/api2/partners/videos/

Data Formats

The API accepts request data and will output the following formats: JSON, XML
and YAML. Unless you have a strong reason not to, we recommend using the JSON
format, as it’s the one that gets the most usage (and therefore more testing).

To specify the format, add the Accept header appropriately, for example:

Accept: application/json

You can also specify the desired format in the url, sending the request
variable format=json.

API endpoint

The endpoint for the API is the environment base URL + /api2/partners/.

Possible environments:

	Staging: https://staging.amara.org/

	Production: https://www.amara.org/

Therefore, most clients should be making requests against:
https://www.amara.org/api2/partners/

All API requests should go through https. The staging environment might need
HTTP basic auth, please contact us to request credentials. When basic auth is
needed on staging, you end up with a request like this:

$ curl -H 'X-api-username: my_username_here' -H 'X-apikey: my_api_key_here' \
 --user basic_auth_username:basic_auth_password \
 https://staging.amara.org/api2/partners/videos/

If you’re under a partnership, you might have a different base URL. Please
contact us if you’re not sure.

API interaction overview

All resources share a common structure when it comes to the basic data
operations.

	GET request is used to viewing data

	POST request is used for creating new items

	PUT request is used for updating existing items

	DELETE request is used for deleting existing items

For example, in order to request a list of teams the user is current on, you
would issue the following request:

	
GET /api2/partners/teams/

	

To view a detail of the test team, you could do:

	
GET /api2/partners/teams/test/

	

Example response

{
 "created": "2012-04-18T09:26:59",
 "deleted": false,
 "description": "",
 "header_html_text": "",
 "is_moderated": false,
 "is_visible": true,
 "logo": null,
 "max_tasks_per_member": null,
 "membership_policy": "Open",
 "name": "test",
 "projects_enabled": false,
 "resource_uri": "/api2/partners/teams/test/",
 "slug": "test",
 "subtitle_policy": "Anyone",
 "task_assign_policy": "Any team member",
 "task_expiration": null,
 "translate_policy": "Anyone",
 "video_policy": "Any team member",
 "workflow_enabled": false
}

Many of the available resources will allow you to filter the response by a
certain field. Filters are specified as GET parameters on the request. For
example, if you wanted to view all videos belong to a team called
“butterfly-club”, you could do:

	
GET /api2/partners/videos?team=butterfly-club

	

In addition to filters, you can request that the response is ordered in some
way. To order videos by title, you would do

	
GET /api2/partners/videos?order_by=title

	

Each resource section will contain a list of relevant options.

Here is an example of creating a new team via curl.

curl -i -X POST -H "Accept: application/json" \
 -H 'X-api-username: my_username_here' -H 'X-apikey: my_api_key_here' \
 -H "Content-Type: application/json" \
 --data '{"name": "Team name", "slug": "team-name"}' \
 http://host/api2/partners/teams/

You can use the same fields that you get back when requesting a team detail.

To update a team, you could issue a request like this:

curl -i -X PUT -H "Accept: application/json" \
 -H 'X-api-username: my_username_here' -H 'X-apikey: my_api_key_here' \
 -H "Content-Type: application/json" \
 --data '{"name": "My team name"}' \
 https://host/api2/partners/teams/test/

Warning

The above example only includes the name field for
illustration. When sending a PUT request, always include all fields.
For a list of all fields, see the response to a GET request.

Partner video ids

If you are a partner, you can set the id field for a video. Simply supply
the usePartnerId parameter in your request and we will use your id for look
ups. The parameter can be sent as a parameter to any kind of API call. This
is useful if you already have a database of video ids and don’t want to
maintain a mapping between those ids and Amara ids.

For example, let’s say you have an Amara video with the id of yxsSV807Dcho.
Your application uses numeric id internally and you would like to tell Amara to
remember that this video has an id of 12345 on your system. You can modify
the video like this:

curl -i -X PUT -H "Accept: application/json" \
 -H 'X-api-username: my_username_here' -H 'X-apikey: my_api_key_here' \
 -H "Content-Type: application/json" \
 --data '{"usePartnerId": true, "id": "12345"}' \
 https://host/api2/partners/videos/yxsSV807Dcho/

And then, you can start referencing the video by the numeric id when
interacting with the API. For example, the following call will retrieve the
above video.

curl -i -X GET -H "Accept: application/json" \
 -H 'X-api-username: my_username_here' -H 'X-apikey: my_api_key_here' \
 -H "Content-Type: application/json" \
 https://host/api2/partners/videos/12345/?usePartnerId=true

Available Resources

The following resources are available to end users:

Video Resource

Represents a video on Amara.

Listing videos

	
GET /api2/partners/videos/

	

	Query Parameters:

		
	video_url – list only videos with the given URL, useful for finding out information about a video already on Amara.

	team – Only show videos that belong to a team identified by slug.

	project – Only show videos that belong to a project with the given slug.
Passing in null will return only videos that don’t belong to a project.

	order_by – Applies sorting to the video list. Possible values:

	title: ascending

	-title: descending

	created: older videos first

	-created : newer videos

Creating Videos:

	
POST /api2/partners/videos/

	

	Form Parameters:

		
	video_url – The url for the video. Any url that Amara accepts will work here. You can send the URL for a file (e.g. http:///www.example.com/my-video.ogv) , or a link to one of our accepted providers (youtube, vimeo, dailymotion, blip.tv)

	title – The title for the video :form description: About this video

	duration – Duration in seconds

	primary_audio_language_code – The language code representing main language spoken on the video. This helps the UI to show the best title for that video, or set “Subtitle” taks in the right language from the get-go - optional.

When submitting URLs of external providers (i.e. youtube, vimeo), the metadata
(title, description, duration) can be fetched from them. If you’re submitting a
link to a file (mp4, flv) then you can make sure those attributes are set with
these parameters. Note that these parameters do override any information from
the original provider.

Information about a specific video can be retrieved from the URL:

Video Detail:

	
GET /api2/partners/videos/[video-id]/

	

The video listing resource already returns a resource_uri for each video to
be used when retrieving the details.

Updating a video object:

	
PUT /api2/partners/videos/[video-id]/

	

With the same parameters for creation. Note that through out our system, a
video cannot have it’s URLs changed. So you can change other video attributes
(title, description) but the URL sent must be the same original one.

Moving videos between teams and projects

In order to move a video from one team to another, you can make a request to
change the video where you change the team value in the Video Resource.

In order to move the video from Team A to Team B, you would make the
following request.

curl -i -X PUT -H "Accept: application/json" \
 -H 'X-api-username: my_username_here' -H 'X-apikey: my_api_key_here' \
 -H "Content-Type: application/json" \
 --data '{"team": "team_b"}' \
 https://host/api2/partners/videos/video-id/

Please note that the value that is sent as the team is the team’s slug.
The user making the change must have permission to remove a video from the
originating team and permission to add a video to the target team.

Setting the team value to null will remove it from its current team.

A similar mechanism can be used to change what project a given video is filed
under. The important difference is that when moving a video to different
project, the team must be specified in the payload even if it doesn’t change.

{
 "team:" "team-slug",
 "project": "new-project"
}

Example response:

{
 "all_urls": [
 "http://vimeo.com/4951380"
],
 "created": "2012-05-15T06:05:14",
 "description": "Concierto Grupo NOMOI \n(Torrevieja 17/05/2009)\nProyecto TRANSMOSFERA\nAcci\u00f3n interactiva de m\u00fasica, teatro e imagen.\nJuan Pablo Zaragoza - V\u00eddeo y Guitarra sintetizada\nJos\u00e9 Mar\u00eda Pastor - Electr\u00f3nica\nRaul Ferrandez - Voz y acci\u00f3n teatral",
 "duration": null,
 "id": "PUuHIcJ5mq5S",
 "languages": [],
 "original_language": null,
 "project": null,
 "resource_uri": "/api2/partners/videos/PUuHIcJ5mq5S/",
 "site_url": "http://unisubs.example.com:8000/videos/PUuHIcJ5mq5S/info/",
 "team": null,
 "thumbnail": "http://b.vimeocdn.com/ts/142/595/14259507_640.jpg",
 "title": "Concierto NOMOI (Torrevieja 17/05/2009)"
}

Video Language Resource

Represents a language for a given video on Amara.

Listing video languages:

	
GET /api2/partners/videos/[video-id]/languages/

	

Creating Video Languages:

	
POST /api2/partners/videos/[video-id]/languages/

	

	Form Parameters:

		
	language_code – The language code (e.g ‘en’ or ‘pt-br’) to create.

	title – The title for the video localized to this language - optional

	description – Localized description for this language - optional.

	is_original – Boolean indicating if this is the original language for the video. - optional - defaults to false.

	is_original – If set to true, will mark this language as the primary audio language for the video (see VideoResource) - optional, defaults to false.

See also

To list available languages, see Language Resource.

Information about a specific video language can be retrieved from the URL:

	
GET /api2/partners/videos/[video-id]/languages/[lang-identifier]/

	

	Parameters:	
	lang-identifier – language identifier can be the language code (e.g. en) or the
numeric ID returned from calls to listing languages.

Example response:

{
 "completion": "100%",
 "created": "2012-05-17T12:25:54",
 "description": "",
 "id": "8",
 "is_original": false,
 "is_translation": false,
 "language_code": "cs",
 "num_versions": 1,
 "original_language_code": "en",
 "percent_done": 0,
 "resource_uri": "/api2/partners/videos/Myn4j5OI7BxL/languages/8/",
 "site_url": "http://unisubs.example.com:8000/videos/Myn4j5OI7BxL/cs/8/",
 "subtitle_count": 11,
 "title": "\"Postcard From 1952\" - Explosions in The Sky",
 "versions": [
 {
 "author": "honza",
 "status": "published",
 "text_change": "1.0",
 "time_change": "1.0",
 "version_no": 0
 }
]
}

Subtitles Resource

Represents the subtitle set for a given video language.

Fetching subtitles for a given language:

	
GET /api2/partners/videos/[video-id]/languages/[lang-identifier]/subtitles/?format=srt

	

	
GET /api2/partners/videos/asfssd/languages/en/subtitles/?format=dfxp

	

	
GET /api2/partners/videos/asfssd/languages/111111/subtitles/?format=ssa

	

	Query Parameters:

		
	format – The format to return the subtitles in. Supports all the
formats the regular website does: srt, ssa, txt, dfxp, ttml.

	version – the numeric version number to fetch. Versions are listed in the
VideoLanguageResouce request.

If no version is specified, the latest public version will be returned. For
videos that are not under moderation it will be the latest one. For videos
under moderation only the latest published version is returned. If no version
has been accepted in review, no subtitles will be returned.

Creating new subtitles for a language:

	
POST /api2/partners/videos/[video-id]/languages/[lang-identifier]/subtitles/

	

	
POST /api2/partners/videos/asfssd/languages/en/subtitles/

	

	Query Parameters:

		
	subtitles – The subtitles to submit

	sub_format – The format used to parse the subs. The same formats as
for fetching subtitles are accepted. Optional - defaults to srt.

	title – Give a title to the new revision

	description – Give a description to the new revision

	Form Parameters:

		
	is_complete – Boolean indicating if the complete subtitling set is available for this language - optional, defaults to false.

This will create a new subtitle version with the new subtitles.

Example response:

	
GET /api2/partners/videos/TRUFD3IyncAt/languages/en/subtitles/

	

{
 "description": "Centipede - Knife Party www.knifeparty.com\nFireworks - Pyro Spectaculars by Souza www.pyrospectaculars.com/\n\n(Sittin' On) The Dock of the Bay - Otis Redding\nLights - Journey\nFrisco Blues - John Lee Hooker\nSan Francisco (Be Sure to Wear Flowers in Your Hair) - Scott McKenzie \nI Left My Heart in San Francisco - Tony Bennett\n\nIf you didn't understand what was happening, you should probably watch it again.\nThis has been a Seventh Movement effort.",
 "note": "",
 "resource_uri": "",
 "site_url": "http://example-host/api2/partners/videos/TRUFD3IyncAt/en/1/",
 "sub_format": "srt",
 "subtitles": [
 {
 "end": 4,
 "id": 1,
 "start": 3,
 "start_of_paragraph": false,
 "text": "This is a cool bridge"
 },
 {
 "end": 5,
 "id": 2,
 "start": 4,
 "start_of_paragraph": false,
 "text": "Really cool"
 },
 {
 "end": 6,
 "id": 3,
 "start": 5,
 "start_of_paragraph": false,
 "text": "I love it"
 }
],
 "title": "The Golden Gate Way",
 "version_no": 0,
 "video": "The Golden Gate Way",
 "video_description": "Centipede - Knife Party www.knifeparty.com\nFireworks - Pyro Spectaculars by Souza www.pyrospectaculars.com/\n\n(Sittin' On) The Dock of the Bay - Otis Redding\nLights - Journey\nFrisco Blues - John Lee Hooker\nSan Francisco (Be Sure to Wear Flowers in Your Hair) - Scott McKenzie \nI Left My Heart in San Francisco - Tony Bennett\n\nIf you didn't understand what was happening, you should probably watch it again.\nThis has been a Seventh Movement effort.",
 "video_title": "The Golden Gate Way"
}

Language Resource

Represents a listing of all available languages on the Amara
platform.

Listing available languages:

	
GET /api2/partners/languages/

	

User Resource

One can list and create new users through the API.

Listing users:

	
GET /api2/partners/users/

	

User datail:

	
GET /api2/partners/users/[username]/

	

Creating Users:

	
POST /api2/partners/users/

	

	Form Parameters:

		
	username – the username for later login. 30 chars or fewer alphanumeric chars, @, _ and - are accepted.

	email – A valid email address

	password – any number of chars, all chars allowed.

	first_name – Any chars, max 30 chars. Optional.

	last_name – Any chars, max 30 chars. Optional.

	create_login_token – If sent the response will also include a url that when clicked will login the recently created user. This URL expires in 2 hours

The response also includes the ‘api_key’ for that user. If clients wish to make
requests on behalf of this newly created user through the api, they must hold
on to this key, since it won’t be returned in the detailed view.

Example response:

{
 "avatar": "http://www.gravatar.com/avatar/947b2f9a76cd39f5c7b7c8ad3a36?s=100&d=mm",
 "biography": "The guy with a boring name.",
 "first_name": "John",
 "full_name": "John Smith",
 "homepage": "http://example.com",
 "last_name": "Smith",
 "num_videos": 8,
 "resource_uri": "/api2/partners/users/jsmith/",
 "username": "jsmith"
}

Video Url Resource

One can list, update, delete and add new video urls to an existing video.

Listing video urls

	
GET /api2/partners/videos/[video-id]/urls/

	

Video URL detail:

	
GET /api2/partners/videos/[video-id]/urls/[url-id]/

	

Where the url-id can be fetched from the list of urls.

Updating video-urls:

	
PUT /api2/partners/videos/[video-id]/urls/[url-id]/

	

Creating video-urls:

	
POST /api2/partners/videos/[video-id]/urls/

	

	Form Parameters:

		
	url – Any URL that works for the regular site (mp4 files, youtube, vimeo,
etc) can be used. Note that the url cannot be in use by another video.

	primary – A boolean. If true this is the url the will be displayed first
if multiple are presents. A video must have one primary URL. If you add /
change the primary status of a url, all other urls for that video will have
primary set to false. If this is the only url present it will always be set
to true.

	original – If this is the first url for the video.

To delete a url:

	
DELETE /api2/partners/videos/[video-id]/urls/[url-id]/

	

If this is the only URL for a video, the request will fail. A video must have
at least one URL.

Team Resource

You can list existing teams:

	
GET /api2/partners/teams/

	

You can view details for an existing team:

	
GET /api2/partners/teams/[team-slug]/

	

Creating a team:

	
POST /api2/partners/teams/

	

	Form Parameters:

		
	name – (required) Name of the team

	slug – (required) A unique slug (used in URLs)

	description –

	is_visible – Should this team be publicly visible?

	membership_policy – See below for possible values

	video_policy – See below for possible values

	task_assign_policy – See below for possible values

	max_tasks_per_member – Maximum tasks per member

	task_expiration – Task expiration in days

Example payload:

{
 "name": "Full Team",
 "slug": "full-team",
 "description": "One full team",
 "is_visible": false,
 "membership_policy": "Invitation by any team member",
 "video_policy": "Admins only",
 "task_assign_policy": "Managers and admins",
 "max_tasks_per_member": 3,
 "task_expiration": 14
}

Updating a team:

	
PUT /api2/partners/teams/[team-slug]/

	

Deleting a team:

	
DELETE /api2/partners/teams/[team-slug]/

	

Note

You can only create new teams if you have been granted this
privilege. Contact us if you require a partner account.

Policy values

Membership policy:

	Open

	Application

	Invitation by any team member

	Invitation by manager

	Invitation by admin

Video policy:

	Any team member

	Managers and admins

	Admins only

Task assign policy:

	Any team member

	Managers and admins

	Admins only

Example response

{
 "created": "2012-04-18T09:26:59",
 "deleted": false,
 "description": "",
 "header_html_text": "",
 "is_moderated": false,
 "is_visible": true,
 "logo": null,
 "max_tasks_per_member": null,
 "membership_policy": "Open",
 "name": "test",
 "projects_enabled": false,
 "resource_uri": "/api2/partners/teams/test/",
 "slug": "test",
 "subtitle_policy": "Anyone",
 "task_assign_policy": "Any team member",
 "task_expiration": null,
 "translate_policy": "Anyone",
 "video_policy": "Any team member",
 "workflow_enabled": false
}

Team Member Resource

This resource allows you to change team membership information without the
target user’s input. This resource is only applicable to:

	Teams associated with the partner’s account

	Users who are already members of one of the partner’s teams

You can list existing members of a team:

	
GET /api2/partners/teams/[team-slug]/members/

	

Adding a new member to a team:

	
POST /api2/partners/teams/[team-slug]/members/

	

Updating a team member (e.g. changing their role):

	
PUT /api2/partners/teams/[team-slug]/members/[username]/

	

Removing a user from a team:

	
DELETE /api2/partners/teams/[team-slug]/members/[username]/

	

Example of adding a new user:

{
 "username": "test-user",
 "role": "manager"
}

Roles

	owner

	admin

	manager

	contributor

Warning

Changed behavior: the previous functionality was moved the Safe
Team Member Resource documented below.

Permissions

If a user belongs to a partner team, any admin or above on any of the partner’s
teams can move the user anywhere within the partner’s teams. Moving is done by
first adding the user to the target team and then by removing the user from the
originating team.

Safe Team Member Resource

This resource behaves the same as the normal Team Member resource with one
small difference. When you add a user to a team, we will send an invitation to
the user to join the team. If the user doesn’t exist, we will create it. The
standard Team Member resource simply adds the user to the team and returns.

Listing:

	
GET /api2/partners/teams/[team-slug]/safe-members/

	

Adding a new member to a team:

	
POST /api2/partners/teams/[team-slug]/safe-members/

	

Project Resource

List all projects for a given team:

	
GET /api2/partners/teams/[team-slug]/projects/

	

Project detail:

	
GET /api2/partners/teams/[team-slug]/projects/[project-slug]/

	

Create a new project:

	
POST /api2/partners/teams/[team-slug]/projects/

	

Example payload for creating a new project:

{
 "name": "Project name",
 "slug": "project-slug",
 "description": "This is an example project.",
 "guidelines": "Only post family-friendly videos."
}

Note

You can only create projects for a specific team.

Update an existing project:

	
PUT /api2/partners/teams/[team-slug]/projects/[project-slug]/

	

For example, to change the project’s name:

{
 "name": "Project"
}

Delete a project:

	
DELETE /api2/partners/teams/[team-slug]/projects/[project-slug]/

	

Task Resource

List all tasks for a given team:

	
GET /api2/partners/teams/[team-slug]/tasks/

	

	Query Parameters:

		
	assignee – Show only tasks assigned to a user identified by their
username.

	priority – Show only tasks with a given priority

	type – Show only tasks of a given type

	video_id – Show only tasks that pertain to a given video

	order_by – Apply sorting to the task list. Possible values:

	created Creation date

	-created Creation date (descending)

	priority Priority

	-priority Priority (descending)

	type Task type (details below)

	-type Task type (descending)

	completed – Show only complete tasks

	completed-before – Show only tasks completed before a given date
(unix timestamp)

	completed-after – Show only tasks completed before a given date
(unix timestamp)

	open – Show only incomplete tasks

Task detail:

	
GET /api2/partners/teams/[team-slug]/tasks/[task-id]/

	

Create a new task:

	
POST /api2/partners/teams/[team-slug]/tasks/

	

Update an existing task:

	
PUT /api2/partners/teams/[team-slug]/tasks/[task-id]/

	

Delete an existing task:

	
DELETE /api2/partners/teams/[team-slug]/tasks/[task-id]/

	

Fields

	approved - If the team supports workflows, you can set the stage in which
the task finds itself.

	In Progress

	Approved

	Rejected

	assignee - The username of the user that this task will be assigned to

	language

	priority - An arbitrary integer denoting priority level; each team can
set their own policy regarging priority of tasks

	video_id - The unique identifier of the video this task relates to

	type - Type of the task

	Subtitle

	Translate

	Review

	Approve

	version_no - Subtitle version number (required for Approve and
Review tasks)

	completed - null if the task hasn’t been completed yet; a datetime
string it has

An example response:

{
 "approved": null,
 "assignee": "johnsmith",
 "language": "en",
 "priority": 1,
 "resource_uri": "/api2/partners/teams/all-star/tasks/3/",
 "type": "Subtitle",
 "video_id": "Myn4j5OI7BxL",
 "completed": "2012-07-18T14:08:07"
}

Activity resource

This resource is read-only.

List activity items:

	
GET /api2/partners/activity/

	

	Query Parameters:

		
	team – Show only items related to a given team (team slug).

	team-activity – If team is given, we normally return activity on the
team’s videos. If you want to see activity for the team itself (members
joining/leaving and team video deletions, then add team-activity=1)

	video – Show only items related to a given video (video id)

	type – Show only items with a given activity type (int, see below)

	language – Show only items with a given language (language code)

	before – A unix timestamp in seconds

	after – A unix timestamp in seconds

Activity types:

	Add video

	Change title

	Comment

	Add version

	Add video URL

	Add translation

	Subtitle request

	Approve version

	Member joined

	Reject version

	Member left

	Review version

	Accept version

	Decline version

	Delete video

Activity item detail:

	
GET /api2/partners/activity/[activity-id]/

	

Example response:

{
 "type": 1,
 "comment": null,
 "created": "2012-07-12T07:02:19",
 "id": "1339",
 "language": "en",
 "new_video_title": "",
 "resource_uri": "/api2/partners/activity/1339/",
 "user": "test-user"
}

Message Resource

The message resource allows you to send messages to user and teams.

	
POST /api2/partners/message/

	

	Form Parameters:

		
	subject – Subject of the message

	content – Content of the message

	user – Recipient’s username

	team – Team’s slug

You can only send the user parameter or the team parameter at once.

Application resource

For teams with membership by application only.

List application items:

	
GET /api2/partners/teams/[team-slug]/applications

	

	Query Parameters:

		
	status – What status the application is at, possible values are ‘Denied’, ‘Approved’, ‘Pending’, ‘Member Removed’ and ‘Member Left’

	before – A unix timestamp in seconds

	after – A unix timestamp in seconds

	user – The username applying for the team

Application item detail:

	
GET /api2/partners/teams/[team-slug]/applications/[application-id]/

	

Example response:

{
 "created": "2012-08-09T17:48:48",
 "id": "12",
 "modified": null,
 "note": "",
 "resource_uri": "/api2/partners/teams/test-team/applications/12/",
 "status": "Pending",
 "user": "youtube-anonymous"

}

To delete an Application:

	
DELETE /api2/partners/teams/[team-slug]/applications/[application-id]/

	

Applications can have their statuses updated:

	
PUT /api2/partners/teams/[team-slug]/applications/[application-id]/

	

	Query Parameters:

		
	status – What status the application is at, possible values are ‘Denied’, ‘Approved’, ‘Pending’, ‘Member Removed’ and ‘Member Left’

Note that if an application is pending (has the status=’Pending’), the API can
set it to whatever new status. Else, if the application has already been
approved or denied, you won’t be able to set the new status. For cases were an
approval was wrongly issues, you’d want to remove the team member. Otherwise
you’d want to invite the user to the team.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

Supported languages

Abkhazian, Afar, Afrikaans, Akan, Albanian, American, Amharic, Arabic,
Aragonese, Armenian, Assamese, Asturian, Avaric, Avestan, Aymara, Azerbaijani,
Bambara, Bashkir, Basque, Belarusian, Bengali, Berber, Bihari, Bislama,
Bosnian, Breton, Bulgarian, Burmese, Catalan, Cebuano, Chamorro, Chechen,
Chewa, Chinese, Choctaw, Church, Chuvash, Cornish, Corsican, Cree, Creole,
Croatian, Czech, Danish, Divehi, Dutch, Dzongkha, Efik, English, Esperanto,
Estonian, Ewe, Faroese, Fijian, Filipino, Finnish, French, Frisian, Fula,
Fulah, Galician, Ganda, Georgian, German, Gikuyu, Greek, Greenlandic, Guaran,
Gujarati, Haida, Hausa, Hebrew, Herero, Hindi, Hiri, Hokkien, Hungarian, Hupa,
Ibibio, Icelandic, Ido, Igbo, Ilocano, Indonesian, Ingush, Interlingua,
Interlingue, Inuktitut, Inupia, Irish, Iroquoian, Italian, Japanese, Javanese,
Kannada, Kanuri, Karen, Kashmiri, Kazakh, Khmer, Klingon, Komi, Kongo, Korean,
Kuanyama, Kurdish, Kyrgyz, Lakota, Lao, Latin, Latvian, Limburgish, Lingala,
Lithuanian, Luba-Kasai, Luba-Katagana, Luhya, Luo, Luxembourgish, Macedo,
Macedonian, Madurese, Malagasy, Malay, Malayalam, Maltese, Mandinka, Manipuri,
Manx, Maori, Marathi, Marshallese, Metadata:, Mohawk, Moldavian, Mongolian,
Mossi, Naurunan, Navajo, Ndonga, Nepali, North, Northern, Norwegian, Occitan,
Ojibwe, Oriya, Oromo, Ossetian, Pali, Pashto, Persian, Polish, Portuguese,
Punjabi, Quechua, Romanian, Romansh, Rundi, Russian, Rusyn, Rwandi, Samoan,
Sango, Sanskrit, Sardinian, Scottish, Serbian, Serbo-Croatian, Shona, Sichuan,
Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Southern, Spanish,
Sundanese, Swahili, Swati, Swedish, Tagalog, Tahitian, Tajik, Tamil, Tartar,
Telugu, Tetum, Thai, Tibetan, Tigrinya, Tonga, Tsonga, Tswana, Turkish,
Turkmen, Twi, Ukrainian, Umbundu, Urdu, Uyghur, Uzbek, Venda, Vietnamese,
Volapuk, Walloon, Welsh, Wolof, Xhosa, Yiddish, Yoruba, Zhuang, Zulu.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

HTTP Callbacks for Teams

Enterprise customers can register an http callback so that any activity on their teams will fire an HTTP request.

Customers can then decide on how to act upon those notifications, for example querying through the API to fetch a new set of subtitles.

To register your Team to receive HTTP notfications get in contact with us, this process is done manually, there is no UI for this over the website at the moment.

Pick one URL where you’d like to get notified. Each team can have their own URL, or a URL can be used amongst serveral teams (for example in a public / private team setup)

Optionally you can use basic HTTP auth over that URL. We recomend the URL uses https for safer communication (even though no passwords or sensitive data will ever be sent).

A HTTP POST request will be sent to the desired URL. Bellow a list of available signals and the data passed to them.

Available Data

When a POST request is made to the chosen URL, the following data will be sent:

	event : A string, available events are:

	video-new : A new video has been added through the team (through the web ui)

	video-edited : Video data has been edited (video url, title, description)

	language-new : A new language has been added to the video. Either through the web UI (uploads or dialog) or through automatic transcription services.

	language-edit : An existing language has been edited (title, description). Either through the web UI (uploads or dialog) or through automatic transcription services

	subs-new : A new subtitle version has been created. Either through the web UI (uploads or dialog) or through automatic transcription services

	subs-approved : Subtitles under moderation have been approved.

	subs-rejected : Subtitles under moderation have been rejected.

	team: The slug for that team. The slug is a unique identifier that can be seen at the team’s public url page.

	project: The slug for that project. The slug is a unique identifier that can be seen at the project’s video listing page.

	video_id: The video id used in Amara to identify that video.

	api_url: The URL for the Amara API that will have the latest data for that event (subtitles, language or videos)

	language_code : The human readable language code (i.e ‘en’ or ‘es’) for the this event. If the event is a language or subtitle event the language will be sent, else if it’s a video event the parameter will be omitted.

Example

A notification looks like:
http://<NOTIFICATION_URL>?project=_root&api_url=%2Fapi2%2Fpartners%2Fvideos%2F<VIDEO_ID>%2Flanguages%2Fen%2F&team=<TEAM_SLUG>&language_code=en&video_id=<VIDEO_ID>&event=language-edit&language_id=682965

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

Babelsubs

We’ve split the subtitle handling into it’s own separate project, Babelsubs [https://github.com/pculture/babelsubs/]. Anything that has do to with parsing, generating and formatting subtitles should be handled over there. The main unisubs repo should only make calls to babelsubs with the desired operations / data.

Storage

Internally, we’re storing subtitles as the DFXP format. DFXP is the most complex, and most capable format of all. It’s also the only one with a real spec. The advantage is that it lets us tell our users that they can input DFXP, process it throughout our system and get their data out correctly, even for features we don’t currently support (like advanced styles).

Formatting

Formatting we do support:

	Bold text

	Italic text

	Underline

	Like breaks

Each format handles those different. On DFXP you have attributes on the xmlnodes (span, p and div) such as fontWeigh=’bold’ and textStyle=’italic’. Line breaks are
 tags.

For SRT and friends, we have the ‘b’, ‘i’ and ‘u’ tags. Line breaks are displayed with the right line separator.

For HTML (which is not a download format, but it’s displayed on the website), we have ‘em’, ‘strong’ and ‘style’ tags, and ‘br’ for line breaks.

Ideally, for testing a complete set of features we need to test:

	The forementioned formats (italics, bold, underline)

	Line breaks

	Single “>” and doubles “>>” . This is used to denote speaker changes and is widely used by our customers. They must come out correctly both when displayed on the website (subtitle view, the widget, the dialogs) and when downloaded. On DFXP those should use character entities.

For anything other than these tags, let’s say you have a video on web development, and they write a ‘<script>alert();</script> ‘ tag. Here’s what should happen:

	Should be stored with the tag chars escaped

	Should show up on the website (dialog, subtitle view and the widget) as is, but escaped (javascript shouldn’t run) , but it should be editable

	Non html / xml formats (such as srt) should display them as is

In general, here’s the intended workflow:

	On intake convert what we can to dfxp (such as a line break to
). Do not strip tags.

	On output (for the website only) escape anything other than the tags we expect (<script>, etc)

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

Syncing and Importing

The externalsites app handles linking Amara users/teams to accounts on
externalsites. This allows for:

	Syncing subtitles to the third party site when they are edited on Amara

	Importing new videos for the third party account

We support several sites, each works slightly differently

Youtube

Both user and team accounts can be linked to YouTube accounts, but they are
handled slightly differently. The general idea here is that the use case is
different for teams and users. In general, teams want to have finer grained
control over what gets imported to Amara and what gets synced back to their
YouTube channel. For users, we just import everything and sync everything.

User Accounts

	Users can link to YouTube from account section on their profile page

	A user can only link 1 YouTube account

	A YouTube account can only be linked to 1 user

	We create a video feed and import all videos for the YouTube channel.

	All subtitles for a video in that account will be synced

Team Accounts

	Teams can link to YouTube from their Settings -> Integrations page

	A team can link multiple YouTube accounts

	A YouTube account can only be linked to 1 team, but there is a way to share
the account with other teams.

	Subtitles are normally only synced for the team’s videos

	The linked team can add other teams to the syncing list, any of those team’s
videos will also be synced.

	We don’t auto-import videos for the YouTube channel.

	A YouTube account can’t be linked to both a team and a user

Kaltura

	Teams can link to Kaltura from their Settings -> Integrations page

	Once a team links to Kaltura, subtitles on their team videos with their
Kaltura partner id will be synced back to Kaltura.

Brightcove

	Teams can link to Brightcove from their Settings -> Integrations page

	Once a team links to Brightcove, subtitles on their team videos with their
Brightcove publisher id will be synced back to Brightcove.

	Teams can optionally choose to import videos from their Brightcove account.

	If importing, teams can either import all videos or videos matching certain
tags.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

Static Media

Static media files are handled by the staticmedia app. This app has several
goals:

	Combine multiple files into a single “media bundle”. Linking to a
single JS file results in faster page loads than linking to multiple files.

	Compress JS/CSS code.

	Support preprocessors like SASS.

	Support media files served from the local server or S3

	Store media files on S3 in a unique location for each deploy. This
allows us to upload media for our next deploy without affecting our current
one. It also allows us to the set the expire header to the far future which
is good for caching.

Settings

Example

MEDIA_BUNDLES = {
 "base.css": {
 "files": (
 "css/v1.scss",
 "css/bootstrap.css",
),
 },
 "site.js": {
 "files": (
 "js/jquery-1.4.3.js",
 "js/unisubs.site.js",
),
 },
}
STATIC_MEDIA_COMPRESSED = True

STATIC_MEDIA_USES_S3 = True
AWS_ACCESS_KEY_ID = 'abcdef'
AWS_SECRET_ACCESS_KEY = 'abcdef
STATIC_MEDIA_S3_BUCKET = 'bucket.name'
STATIC_MEDIA_S3_URL_BASE = '//s3.amazonaws.com/bucket.name'

MEDIA_BUNDLES

MEDIA_BUNDLES defines our Javascript/CSS media bundles.

The keys are the filename that we will generate. The extension of the
filename controls what type of media and should either by js or css.

The values are dicts that determine how we build the bundle. They can have
these properties:

	
files

	list of files to bundle together (paths are relative to the media directory)

	
add_amara_conf(optional)

	
If True, we will prepend javascript code to the source JS files. THis
will create global object called _amaraConf with these properties:

	baseURL: base URL for the amara website

	staticURL: base URL to the static media

STATIC_MEDIA_COMPRESSED

Set to False to disable compressing/minifying Javascript and CSS

STATIC_MEDIA_USES_S3

If True we Will Serve media files from amazon S3. This will change the URLs
that our template tags create for links to the media bundles.
STATIC_MEDIA_USES_S3 is usually True for production and False for
development.

If STATIC_MEDIA_USES_S3 is enabled, the following settings are available:

	AWS_ACCESS_KEY_ID: S3 access key.

	AWS_SECRET_ACCESS_KEY: S3 secret key.

	STATIC_MEDIA_S3_BUCKET: S3 bucket to store media in.

	STATIC_MEDIA_S3_URL_BASE: Base URL for S3 media.

Compilation & Minification

We use uglifyjs for Javascript files and SASS for CSS files. Using the SASS
extensions is optional. If you just have regular CSS files that SASS will
function simply as a CSS compressor.

Media Directory Structure

Regardless if media is uploaded to S3 or we are serving it from the local
instance, we structure the files the same way:

	css/ - CSS bundles

	js/ - Javascript bundles

	images/ - Image files

	fonts/ - font files

When serving media from the local server, the root URL for media files
will be /media/.

When serving media from S3, the root URL for media files will be
<STATIC_MEDIA_S3_URL_BASE><git-commit-id/

Development, Media Bundles, and Caching

For development servers, STATIC_MEDIA_USES_S3 is usually False, which causes
us to serve up the media bundles from the local server. It takes long enough
to compile media bundles that we don’t want to re-do it on every page request.
So we cache the result and use that for subsequent requests. Before using a
cached result, we check the mtime of all source files, and if any one is later
than when the cache was created, we rebuild.

This works fine for most use cases, but there are a couple ways that it will
fail. For example removing a file from the sources list won’t trigger a
rebuild. If you think this may be happening, just update the mtime on any
source file to trigger the rebuild manually.

In Templates

To link to media files in templates load the media_bundle library. Then
you can use these tags:

	media_bundle – include a CSS/JS media bundle (generates the entire
script/link tag)

	url_for – Get the URL to a media bundle.

	static_url – Get the base URL for static media.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

Developer’s Guide

This section contains information on the internal workings of the Amara
codebase.

	Development Workflow
	Git Setup

	Branches

	Workflow

	Integration Repository

	“Buffer” Branches

	Basic Example

	Buffer Branch Example

	Testing
	Running tests

	Caching
	Cache Groups

	Teams
	Team Workflows

	The Subtitle Editor

	Subtitle Workflows
	Editor Notes

	Work Modes

	Actions

	The permission system
	Overview

	Checking for required permissions

	Workflows

	Optional Apps

	Internationalization (i18n)
	Guidelines

	Updating Django

	Partners

	Behaviors

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Development Workflow

This guide describes the development workflow for Amara.

Contents

	Development Workflow
	Git Setup

	Branches

	Workflow
	Create an Issue

	Create a Feature Branch

	Create an Instance

	Make Changes on the Feature Branch

	Keep the Feature Branch Up To Date

	Run the Full Test Suite

	Resolve the Ticket for QA

	Merging Back to the Base Branch

	Delete the Feature Branch

	Delete the Instance

	Deploy to Production

	Integration Repository

	“Buffer” Branches

	Basic Example

	Buffer Branch Example

Git Setup

TODO: Write a git precommit hook and describe how to install it.

Branches

Amara development tries to follow a “one branch per feature or bugfix” workflow
(for the most part). There are two main parts.

First, the master branch is the “base” branch. It’s what gets deployed to
staging and production servers. Commits should never be made directly on this
base branch (except for merges).

Actual code changes should always be made on “feature” branches. Each feature
branch should contain changes related to a single feature or bugfix. Each
feature or bugfix should have an issue in the bug tracker (Sifter). Each
feature branch should be named after its issue number (e.g. i-1234 would be
a branch for issue 1234).

Workflow

The Amara development workflow should go something like this.

Create an Issue

First, a Sifter issue is created for the task. It might be a new feature, a bug
fix, or some code cleanup. For this example we’ll assume the issue number is
1234.

Create a Feature Branch

A Git branch for the issue is created from the current head of master, and
it is named i-1234.

Create an Instance

To test changes non-locally an instance will need to be created for the feature
branch. You should do this as soon as you create the branch, so that test data
will be populated (and later migrated) correctly.

Create the “demo” instance using either Launchpad (https://launchpad.amara.org)
or Fabric.

Using Launchpad, login and select the “Create Demo from Branch”
workflow. Select the branch from the dropdown and an optional url. You will
need to enter the full url name: (i.e. mybranch.demo.amara.org). If you
don’t specify a custom url, the branch name will be used.

If you use fabric, use the following:

fab demo:<username>,<branch_name> create_demo

Or to use a custom url:

fab demo:<username>,<branch_name> create_demo:url_prefix=mybranch.demo.amara.org

Make Changes on the Feature Branch

Changes that fulfill the issue are made on that branch. The repository now
looks like this:

.
 O i-1234
 |
 O
 /
O master
|

Commit messages should start with the issue number, a colon, and a space, like
this:

1234: Remove the foo from the bar

This makes it easy to grep the Git log for changes related to a specific issue.

If at all possible, the developer should add a test case that covers the
feature/bug as a separate commit first.

They can then push that to the branch on GitHub, watch it fail, then add the
code that fixes the problem and watch it start passing. This is a good sanity
check that their code (and test) does what they think it does.

Keep the Feature Branch Up To Date

As the programmer works on the feature branch, other feature branches may have
been merged into master by other people. The programmer should merge these
changes back into their feature branch as often as possible to keep it up to
date. For example:

.
 master O
 /|
 | | O i-1234
 work by another . | |
dev on a different . | |
 feature branch . | |
 | | O
 \|/
 O
 |

The programmer working on i-1234 should merge these changes into their
feature branch to keep it up to date:

.
 O i-1234
 /|
 master O |
 /| |
 | | O
 work by another . | |
dev on a different . | |
 feature branch . | |
 | | O
 \|/
 O
 |

Run the Full Test Suite

The small set of tests should be run automatically after every commit. Once the
programmer thinks they’ve solved the issue they should kick off the full suite
of Selenium tests and wait for the results (by email).

TODO: Describe how to do this.

Resolve the Ticket for QA

Along with the automated test suite which should be run automatically, QA will
need to test the changes. Once the developer has received the full tests
results (and they’re passing) they should resolve the Sifter ticket. QA will
then test the instance running from the i-1234 branch.

If there’s a problem, they’ll reopen the ticket and the developer can make some
more changes on the feature branch. Otherwise they’ll comment on the ticket and
say that it’s ready to go.

Merging Back to the Base Branch

Once QA has tested a feature branch, the developer should send a pull request
to merge i-1234 back into master. The other developers should review
all the code as a last line of defense against bugs.

If there’s a problem, the original developer should make some more changes on
i-1234 that fix the problem, QA retests, and a new pull request should be
made.

Otherwise, the branch can be merged into master.

Delete the Feature Branch

Once the feature branch (i-1234) has been merged back into the base branch
(master) it can be deleted.

You can find commits made on a particular feature branch later by grepping
through the commit logs for 1234:, thanks to the commit message format.

The git command to delete a branch both locally and remotely is:

git push origing --delete i-1234

Delete the Instance

From the launchpad, choose Delete Demo and remove it. If you use fabric, use
the following:

fab demo:<username>,<branch_name> remove_demo

Deploy to Production

Once the feature branch has been merged back into the base branch and deleted,
the base branch can be deployed to production.

TODO: Have Evan describe how to do this.

Integration Repository

The integration repository should function the same way as the main repository.

If you don’t need to make any changes inside of it there’s no need to create
an empty i-#### feature branch in it though.

TODO: Add more details here.

“Buffer” Branches

Sometimes there are larger projects that span multiple Sifter issues which don’t
make sense to deploy individually. When this is the case, a “buffer” branch
should be used.

A “buffer” branch is a separate Git branch with a descriptive name like
data-model-refactor or new-editor. Once created it takes over the role
of the “base” branch for changes related to that project.

Instead of creating i-2222 as a branch off of master, it would be
created as a branch off of new-editor. It would be kept up to date by
merging new-editor back in, and once complete a pull request to merge it
back into new-editor would be created.

Note that new-editor itself should be kept up to date with changes from
master as well.

An instance can be deployed to track the buffer branch itself (in addition to
instances for each feature branch off of it).

Once all the development has been completed, the buffer branch itself can be
merged back into master and deployed.

Basic Example

Let’s walk through a full example of a workflow. First, we’ll start with
a clean slate:

.

O master
|
⋯

Now someone creates a feature branch for an issue and makes some changes:

.

 O i-1111
 |
 O
 /
O master
|
⋯

At the same time, someone else creates a feature branch for a different
issue:

.

i-2222 O
 |
 | O i-1111
 | |
 | O
 \ /
 O master
 |
 ⋯

Now the first developer marks their ticket as resolved, QA tests, and everything
is okay.

They create a pull request to merge i-1111 back into master. The other
developers review it and it looks fine, so they merge it and delete the feature
branch:

.

 O master
i-2222 O |\
 | | |
 | | O
 | | |
 | | O
 \|/
 O
 |
 ⋯

Now the second developer notices that there are new changes on master, so
they merge master into their feature branch to keep the feature branch up to
date:

.

i-2222 O
 |\
 | O master
 O |\
 | | |
 | | O
 | | |
 | | O
 \|/
 O
 |
 ⋯

They make a few more changes:

.

i-2222 O
 |
 O
 |
 O
 |\
 | O master
 O |\
 | | |
 | | O
 | | |
 | | O
 \|/
 O
 |
 ⋯

They mark the ticket as resolved, QA tests, they create a pull request, devs
review, and their feature branch gets merged into master and deleted:

.

 O master
 /|
 O |
 | |
 O |
 | |
 O |
 |\|
 | O
 O |\
 | | |
 | | O
 | | |
 | | O
 \|/
 O
 |
 ⋯

Buffer Branch Example

TODO: This.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Testing

The Amara project uses the Nose [http://nose.readthedocs.org/en/latest/]
testing framework.

Running tests

You should always run your tests inside the Vagrant VM because the test suite
depends on a running Solr instance.

To run all unittests:

$ dev test

To run tests for a specific Django app:

$ dev test videos

To run a specific test class:

$ dev test videos.tests:ViewsTest

To run a specific test case within a test class:

$ dev test videos.tests:ViewsTest.test_index

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Caching

Amara uses a couple tricks for caching things.

Cache Groups

Cache groups are used to manage a group of related cache values. They add
some extra functionality to the regular django caching system:

	Key prefixing: cache keys are prefixed with a string to avoid name
collisions

	Invalidation: all values in the cache group can be invalidated together.
Optionally, all values can be invalidated on server deploy

	Optimized fetching: we can remember cache usage patterns in order to use
get_many() to fetch all needed keys at once (see Cache Patterns)

	Protection against race conditions: (see
Race condition prevention)

Typically cache groups are associated with objects. For example we create a
cache group for each user and each video. The user cache group stores things
like the user menu HTML and message HTML. The video cache group stores the
language list and other sections of the video/language pages.

Overview

	A CacheGroup is a group of cache values that can all be invalidated together

	You can automatically create a CacheGroup for each model instance

	CacheGroups can be used with a cache pattern. This makes it so we
remember which cache keys are requested and fetch them all using
get_many()

Let’s take the video page caching as an example. To implement caching,
we create cache groups for Team, Video, and User instances. Here’s a few
examples of how we use those cache groups:

	Language list: we store the rendered HTML in the video cache

	User menu: we store the rendered HTML in the user cache (and we
actually use that for all pages on the site)

	Add subtitles form: we store the list of existing languages in the
video cache (needed to set up the selectbox)

	Follow video button: we store a list of user ids that are following
the videos in the video cache. To the user is currently following we
search that list for their user ID.

	Add subtitles permissions: we store a list of member user ids in the
team cache. To check if the user can view the tasks/collaboration
page we search that list of the user ID

When we create the cache groups, we use the video-page cache pattern.
This makes it so we can render the page with 3 cache requests. One
get_many fetches the Video instance and all cache values related to the video,
and similarly for the Team and User.

Cache invalidation is always tricky. We use a simple system where if a change
could affect any cache value, we invalidate the entire group of values.
For example if we add/remove a team member then we invalidate the cache for
the team.

Cache Patterns

Cache patterns help optimize cache access. When a cache pattern is set for a
CacheGroup we will do a couple things:

	Remember which keys were fetched from cache.

	On subsequent runs, we will try to use get_many() to fetch all cache
values at once.

This speeds things up by reducing the number of round trips to memcached.

Behind the scenes

The main trick that CacheGroup uses is to store a “version” value in the
cache, which is simply a random string. We also pack the version value
together with all of our cache values. If a cache value’s version doesn’t
match the version for the cache group, then it’s considered invalid. This
allows us to invalidate the entire cache group by changing the version value
to a different string.

Here’s some example data to show how it works.

	key
	value in cache
	computed value

	version
	abc
	N/A

	X
	abc:foo
	foo

	Y
	abc:bar
	bar

	Z
	def:bar
	invalid

Note

We also will prefix the all cache keys with the “<prefix>:” using the
prefix passed into the CacheGroup constructor.

Note

If invalidate_on_deploy is True, then we will append ”:<commit-id>” to the
version key. This way the version key changes for each deploy, which will
invalidate all values.

Race condition prevention

The typical cache usage pattern is:

	Fetch from the cache

	If there is a cache miss then:

	calculate the value

	store it to cache.

This pattern will often have a race condition if another process updates the
DB between steps 2a and 2b. Even if the other process invalidates the cache,
the step 2b will overwrite it, storing an outdated value.

This is not a problem with CacheGroup because of the way it handles the
version key. When we get the value from cache, we also fetch the version
value. If the version value isn’t set, we set it right then. Then when we
store the value, we also store the version key that we saw when we did the
get. If the version changes between the get() and set() calls, then the
value stored with set() will not be valid. This works somewhat similarly to
the memcached GETS and CAS operations.

Cache Groups and DB Models

Cache groups can save and restore django models using get_model() and
set_model(). There is a pretty conservative policy around this. Only the
actual row data will be stored to cache – other attributes like cached
related instances are not stored. Also, restored models can’t be saved to the
DB. All of this is to try to prevent overly aggressive caching from causing
weird/wrong behavior.

To add caching support to your model, add ModelCacheManager as an
attribute to your class definition.

	
class caching.cachegroup.CacheGroup(prefix, cache_pattern=None, invalidate_on_deploy=True)

	Manage a group of cached values

	Parameters:	
	prefix (str) – prefix keys with this

	cache_pattern (str) – cache pattern identifier

	invalidate_on_deploy (bool) – Invalidate values when we redeploy

	
get(key)

	Get a value from the cache

This method also checks that the version of the value stored matches
the version in our version key.

If there is no value set for our version key, we set it now.

	
get_many(keys)

	Get multiple keys at once

If there is no value set for our version key, we set it now.

	
set(key, value, timeout=None)

	Set a value in the cache

	
set_many(values, timeout=None)

	Set multiple values in the cache

	
get_or_calc(key, work_func, *args, **kwargs)

	Shortcut for the typical cache usage pattern

get_or_calc() is used when a cache value stores the result of a
function. The steps are:

	Try self.get(key)

	If there is a cache miss then
	call work_func() to calculate the value

	store it in the cache

	
get_model(ModelClass, key)

	Get a model stored with set_model()

Note

To be catious, models fetched from the cache don’t allow saving.
If the cache data is out of date, we don’t want to saave it to
disk.

	
set_model(key, instance, timeout=None)

	Store a model instance in the cache

Storing a model is a tricky thing. This method works by storing a
tuple containing the values of the DB row. We store it like that for
2 reasons:

	It’s space efficient

	It drops things like cached related objects. This is probably good
since it makes it so we don’t also cache those objects, which can
lead to unexpected behavior and bugs.

	Parameters:	
	key – key to store the instance with

	instance – Django model instance, or None to indicate the model
does not exist in the DB. This will make get_model()
raise a ObjectDoesNotExist exception.

	
invalidate()

	Invalidate all values in this CacheGroup.

	
class caching.cachegroup.ModelCacheManager(default_cache_pattern=None)

	Manage CacheGroups for a django model.

ModelCacheManager is meant to be added as an attribute to a class. It
does 2 things: manages CacheGroups for the model class and implements the
python descriptor protocol to create a CacheGroup for each instance. If
you add cache = ModelCacheManager() to your class definition,
then:

	At the class level, MyModel.cache will be the ModelCacheManager instance

	At the instance level, my_model.cache will be a CacheGroup
specific to that instance

	
get_cache_group(pk, cache_pattern=None)

	Create a CacheGroup for an instance of this model

	Parameters:	
	pk – primary key value for the instance

	cache_pattern – cache pattern to use or None to use the default
cache pattern for this ModelCacheManager

	
invalidate_by_pk(pk)

	Invalidate a CacheGroup for an instance

This is a shortcut for get_cache_group(pk).invalidate() and can be
used to invalidate without having to load the instance from the DB.

	
get_instance(pk, cache_pattern=None)

	Get a cached instance from it’s cache group

This will create a CacheGroup, get the instance from it or load it
from the DB, then reuse the CacheGroup for the instance’s cache. If a
cache pattern is used this means we can load the instance and all of
the needed cache values with one get_many() call.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Teams

Teams are a key concept in amara. A team is a group of users that work
together to subtitle videos. Teams are typically made of members of a group
that produces video and wants to add subtitles.

	Team Workflows

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

 	Teams

Team Workflows

Team workflows are ways for teams to get their subtitling work done. Team
workflows compliment the Subtitle Workflows and add team-specific
features.

	Team workflows are responsible for:

	
	Providing a SubtitleWorkflow for team videos

	Handling the workflow settings page

	Handling the dashboard page

	Creating extra tabs or the teams section

	
class teams.workflows.teamworkflows.TeamWorkflow(team)

	
	
type_code = NotImplemented

	Team.workflow_type value for this workflow.

	
label = NotImplemented

	Human-friendly name for this workflow. This is what appears on the
team creation form.

	
dashboard_view = NotImplemented

	view function for the dashboard page.

	
workflow_settings_view = NotImplemented

	view function for the workflow settings page.

Note

All workflows should allow the user to change membership_policy and
video_policy in their workflow settings page.

	
setup_team()

	Do any additional setup for newly created teams.

	
get_subtitle_workflow(team_video)

	Get the SubtitleWorkflow for a video with this workflow.

	
extra_pages()

	Get extra team pages to handle this workflow.

These pages will be listed as tabs in the team section. Workflows
will typically use this for things like dashboard pages.

	Returns:	list of TeamPage objects

	
class teams.workflows.teamworkflows.TeamPage

	Represents a page in the team’s section

	
name

	machine-name for this tuple. This is value to use for current in
the _teams/tabs.html template

	
title

	human friendly tab title

	
url

	URL for the page

	
class teams.workflows.old.workflow.OldTeamWorkflow(team)

	Workflow for old-style teams

We have tried to tackle the issue of team workflows in several ways. The
most infamous has to be the tasks sytem. This class acts the glue between
the new workflow components and the old systems.

The plan is to migrate all our teams from OldTeamWorkflow to newer
workflow styles. At that point we can get rid of OldTeamWorkflow and also
probably a bunch of other things like the tasks code, the Workflow table,
several Team model fields, etc.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

The Subtitle Editor

The subtitle editor is one of the larger features of amara. It’s implemented
using several components in a couple different areas:

	The view subtitles.views.subtitle_editor serves up the page

	The page runs javascript that lives in
media/src/js/subtitle-editor

	We save subtitles using the API code (currently in a private repository,
but we plan to merge it in to the main one soon)

See also

Subtitle Workflows

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Subtitle Workflows

Subtitle workflows control how subtitle sets get edited and published. In
particular they control:

	Work Modes – Tweak the subtitle editor behavior (for example review mode)

	Actions – User actions that can be done to subtitle sets (Publish,
Approve, Send back, etc).

	Permissions – Who can edit subtitles, who can view private subtitles

	
class subtitles.workflows.Workflow(video)

	A workflow class controls the overall workflow for editing and publishing
subtitles. Workflows control the work modes, actions, and permissions for
a set of subtitles.

By default, we use a workflow that makes sense for public videos – Anyone
can edit, the only action is Publish, etc. However, other components can
create custom workflows for specific videos by:

	Creating a Workflow subclass

	Overriding get_workflow() and returning a custom workflow object

	
get_work_mode(user, language_code)

	Get the work mode to use for an editing session

	Parameters:	
	user (User) – user who is editing

	language_code (str) – language being edited

	Returns:	WorkMode object to use

	
get_actions(user, language_code)

	Get available actions for a user

	Parameters:	
	user (User) – user who is editing

	language_code (str) – language being edited

	Returns:	list of Action objects that are available to the user.

	
action_for_add_subtitles(user, language_code, complete)

	Get an action to use for add_subtitles()

This is used when pipeline.add_subtitles() is called, but not passed
an action. This happens for a couple reasons:

	User saves a draft (in which case complete will be None)

	User is adding subtitles via the API (complete can be True, False,
or None)

Subclasses can override this method if they want to use different
actions to handle this case.

	Parameters:	
	user (User) – user adding subtitles

	language_code (str) – language being edited

	complete (bool or None) – complete arg from add_subtitles()

	Returns:	Action object or None.

	
extra_tabs(user)

	Get extra tabs for the videos page

	Returns:	list of (name, title) tuples. name is used for the tab id, title
is a human friendly title. For each tab name you should create a
video-<name>.html and video-<name>-tab.html templates. If you
need to pass variables to those templates, create a
setup_tab_<name> method that inputs the same args as the methods
from VideoPageContext and returns a dict of variables for the
template.

	
get_add_language_mode(user)

	Control the add new language section of the video page

	Parameters:	user (User) – user viewing the page

	Returns:	
	None/False: Don’t display anything

	“<standard>”: Use the standard behavior – a link that opens
the create subtitles dialog.

	any other string: Render this in the section. You probably want
to send the string through mark_safe() to avoid escaping HTML
tags.

	
get_editor_notes(language_code)

	Get notes to display in the editor

	Returns:	EditorNotes object

	
user_can_view_private_subtitles(user, language_code)

	Check if a user can view private subtitles

Private subtitles are subtitles with visibility or visibility_override
set to “private”. A typical use is to limit viewing of the subtitles
to members of a team.

	Returns:	True/False

	
user_can_view_video(user)

	Check if a user can view the video

	Returns:	True/False

	
user_can_edit_subtitles(user, language_code)

	Check if a user can edit subtitles

	Returns:	True/False

	
subtitles.workflows.get_workflow(video)

	Get the workflow to use for a subtitle set

This method uses the behaviors module, to allow
other apps to override this and control the workflow for specific
subtitles sets. A typical example is the tasks system which creates a
custom workflow for videos owned by tasks teams.

Editor Notes

	
class subtitles.workflows.EditorNotes(video, language_code)

	Manage notes for the subtitle editor.

EditorNotes handles fetching notes for the editor and posting new ones.

	
heading

	heading for the editor section

	
notes

	list of SubtitleNotes for the editor (or any model that
inherits from SubtitleNoteBase)

	
post(user, body)

	Add a new note.

	Parameters:	
	user (CustomUser) – user adding the note

	body (unicode) – note text

Work Modes

	
class subtitles.workflows.WorkMode

	Work modes are used to change the workflow section of the editor and
affect the overall feel of the editing session. Currently we only have 2
work modes:

	
	
class NormalWorkMode

	The usual work mode with typing/syncing/review steps.

	
	
class subtitles.workflows.ReviewWorkMode(heading)

	Review someone else’s work (for example a review/approve task)

	Parameters:	heading (str) – heading to display in the workflow area

Actions

Actions are things things that users can do to a subtitle set other than
changing the actual subtitles. They correspond to the buttons in the editor
at the bottom of the workflow session (publish, endorse, send back, etc).
Actions can occur alongside changes to the subtitle lines or independent of
them.

	
class subtitles.workflows.Action

	Base class for actions

Other components can define new actions by subclassing Action, setting the
class attributes, and optionally implementing perform().

	
name = NotImplemented

	Machine-friendly name

	
label = NotImplemented

	human-friendly label. Strings should be run through ugettext_lazy()

	
in_progress_text = NotImplemented

	text to display in the editor while this action is being performed.
Strings should be run through ugettext_lazy()

	
visual_class = None

	visual class to render the action with. This controls things like the
icon we use in our editor button. Must be one of the CLASS_ constants

	
complete = None

	complete defines how to handle subtitles_complete. There are 3 options:

	True – this action sets subtitles_complete

	False – this action unsets subtitles_complete

	None (default) - this action doesn’t change subtitles_complete

	
subtitle_visibility = 'public'

	Visibility value for newly created SubtitleVerisons.

	
CLASS_ENDORSE = 'endorse'

	endorse/approve buttons

	
CLASS_SEND_BACK = 'send-back'

	reject/send-back buttons

	
validate(user, video, subtitle_language, saved_version)

	Check if we can perform this action.

	Parameters:	
	user (User) – User performing the action

	video (Video) – Video being changed

	subtitle_language (SubtitleLanguage) – SubtitleLanguage being
changed

	saved_version (SubtitleVersion or None) – new version that was
created for subtitle changes that happened alongside this
action. Will be None if no changes were made.

	Raises:	ActionError – this action can’t be performed –

	
perform(user, video, subtitle_language, saved_version)

	Perform this action

	Parameters:	
	user (User) – User performing the action

	video (Video) – Video being changed

	subtitle_language (SubtitleLanguage) – SubtitleLanguage being
changed

	saved_version (SubtitleVersion or None) – new version that was
created for subtitle changes that happened alongside this
action. Will be None if no changes were made.

	
update_language(user, video, subtitle_language, saved_version)

	Update the subtitle language after adding subtitles

	Parameters:	
	user (User) – User performing the action

	video (Video) – Video being changed

	subtitle_language (SubtitleLanguage) – SubtitleLanguage being
changed

	saved_version (SubtitleVersion or None) – new version that was
created for subtitle changes that happened alongside this
action. Will be None if no changes were made.

	
editor_data()

	Get a dict of data to pass to the editor for this action.

	
class subtitles.workflows.Publish

	Publish action

Publish sets the subtitles_complete flag to True

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

The permission system

The permission system in Amara subtitles is very flexible to allow for the
needs of different teams. This document will give you a high level overview of
what is possible. You should read this before trying to understand the source
code.

Overview

Let’s start with some language. In the simplest case, when a user is part of a
team, they can have one of the following roles:

	
	Contributor

	
	Transcribe

	Translate

	Assign tasks to themselves

	
	Manager

	
	Review subtitles

	Approve subtitles

	Assign tasks to other people

	Everything that a contributor can do

	
	Admin

	
	Assign new managers

	Delete subtitles

	Everything that a manager can do

	
	Owner

	
	Everything

Note

This is just an example to give you an idea of how this could work.

A user’s role is stored in the teams.models.TeamMember model which stores a
reference to the user and team objects.

Checking for required permissions

When you want to check if a certain user has the required privileges to perform
a task, you should use one of the functions in teams.permissions. For
example, if you’d like to check if a user can approve a video, you could do
something like this:

from teams.permissions import can_approve

if can_approve(video, user):
 # Do something that requires the approval permission

Note

There is no middleware to attach the current user’s privileges to the
request instance. Instead, you have explicitly call the necessary
function whenever you want to verify the user’s privileges.

Workflows

A team can choose their own workflow to efficiently manage their videos,
translations and volunteers. When you are setting up a workflow for your team,
you can decide how certain actions will be performed. For example:

	Who can join the team?

	Who can and remove videos from the team?

	Who can assign tasks?

	How many tasks a user can have at a time?

	How many days should a user get to complete a task?

	Who can transcribe subtitles?

	Who can translate subtitles?

	Is there a review process?

	Is there an approval process?

So, why should you care? For example, you don’t trust your contributors with
transcription of new videos since it’s somewhat difficult. Therefore, you can
choose to only allow managers and above to transcribe videos and contributors
to only translate videos to different languages. Or, the quality of the
subtitles is crucial to you and you want to make sure that nothing less than
that ever gets out. So, you would turn on both the review and approval
process. This way three sets of eyes will look at the subtitles before it goes
public.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Optional Apps

Amara.org uses several apps/packages that are stored in private github
repositories that add extra functionality for paid partnerships. These apps
are optional – the amara codebase runs fine without them.

The coding issue is how to make amara work without these repositories, but
automatically pull them in if they are present. Here’s how we do it:

	For each repository we create a file inside the optional/ directory:
	The filename is the name of the repository

	The contents are the git commit ID that we want to use

	To enable a repository, it must be checked out in the amara root directory,
using the same name as the git repository.

	The optionalapps module handles figuring out which repositories are present
and how we should modify things at runtime

	
optionalapps.get_repository_paths()

	Get paths to optional repositories that are present

	Returns:	list of paths to our optional repositories. We should add these to
sys.path so that we can import the apps.

	
optionalapps.get_apps()

	Get a list of optional apps

	Returns:	list of app names from our optional repositories to add to
INSTALLED_APPS.

	
optionalapps.get_urlpatterns()

	Get Django urlpatterns for URLs from our optional apps.

This function finds urlpatterns inside the urls module for each optional
app. In addition a module variable can define a variable called PREFIX to
add a prefix to the urlpatterns.

	Returns:	url patterns containing urls for our optional apps to add to our root
urlpatterns

	
optionalapps.add_extra_settings(globals, locals)

	Add extra values to the settings module.

This function looks for files named settings_extra.py in each optional
repository. If that exists, then we call execfile() to run the code using
the settings globals/locals. This simulates that code being inside the
settings module.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 next |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Internationalization (i18n)

Unisubs has some complex requirements in terms of 18n. This is a rough guide of
how things work.

Django’s system is gnu’s get text system [http://www.gnu.org/software/gettext/manual/gettext.html#Locale-Names]. For
example:

pt

The first two letters are the language code, according to ISO 639-1 [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes]. In this case
Portuguese.

If the locale has variation as to the country, for example Portugal’s
Portuguese vs Brazilian’s portuguese then the locale name is appended an
underscore + the country two digit code, which is ISO 3166 [http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2]. Therefore the locales for
portuguese speaking countries are:

pt_BR -> Brazilian Portuguese
pt_PT -> Portugal's Portuguese

Some of the less common languages are not covered by ISO 639-1 but are by ISO
639-3 [http://en.wikipedia.org/wiki/ISO_639-3].

Guidelines

Most of the heavy lifting is handled by our Unilangs [https://github.com/pculture/unilangs] library.

Steps for adding a new language:

	Figure Out the ISO code
If ISO 639-1 covers it, it’s the prefered way to handle this, as it would keep our code streamlined with Django’s. If not, then we should prefer ISO 639-3. One can depend on the list of
ISO 693-1 [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes] and the list of ISO 693-3 [http://en.wikipedia.org/wiki/List_of_ISO_639-3_codes] on Wikipedia.

Also if it’s more of an uknown language it’s useful to look at the Wikipedia entry for it. Sometimes, we have a request to include a language that doesn’t make sense. For example there is no Norwegian(no), but there are dialects (nb and nn) that are used. Usually the Wikipedia page will discuss similar languages and specific dialects.

	Update Unilangs INTERNAL_NAMES: Add the language code, the English name for the language, and the language in it’s own name to the unilangs.py file [https://github.com/pculture/unilangs/blob/9bc90849d2784850e701cebcc24924d5653f5256/unilangs/unilangs.py#L140] .

	Update the unisubs standard:
Add the language code to our standard [https://github.com/pculture/unilangs/blob/9bc90849d2784850e701cebcc24924d5653f5256/unilangs/unilangs.py#L646] .

	Update other codecs:
If django supports that locale (as in we can i18n the site’s UI) update the ‘dango’ standard.
If other standards (such as ISO-693-1) support it, update them too.

Of course, once you’ve updated unlilangs, you’ll need to update the virtual envs on all installations of the app.

Updating Django

One must be careful when updating the Django’s version. As new locales are
added between releases, we must check if the locale is already added on our end
with a different encoding. If that happens, we’ll have duplication . This has
beaten us before.

Partners

Different partners might have different language requirements while mapping to
their own internal systems. We should update this guide once we have more
specifics on how we’re implementing those mappings.

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	
 previous |

 	Amara 1.2.0 documentation

 	Developer’s Guide

Behaviors

Extensible behavior functions

This module allows one app to define a “behavior function”, which other apps
can then override to change the behavior. This is the Chain of responsibility pattern [http://http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern/] which helps keep modules loosely coupled.

A typical use for this is the title that we display on the video page.
Normally we just print a simple video title, but if the video is part of
certain teams we want to print a modified title. Putting the code that deals
with this inside the videos app is bad practice because:

	It’s adding complexity to the videos app. Handling team requirements is
outside of its scope.

	It requires importing from the teams app, but the teams app needs to import
from the videos app. So we now have a circular dependency.

Instead, videos defines the make_video_title behavior, which can then be
overriden by other apps. This allows us to change the behavior without having
to add complexity/dependencies to the videos app. The code works something
like this.

Example

>>> @behavior
... def make_video_title(video)
... return video.title
>>> @make_video_title.override
... def make_video_title_for_team_foo(video):
... team_video = video.get_team_video()
... if team_video and team_video.slug == 'foo'
... return 'My Team: %s' % video.title
... else:
... return DONT_OVERRIDE

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Amara 1.2.0 documentation

 HTTP Routing Table

 /api2

 			

 		
 /api2	

 	
 	
 GET /api2/partners/activity/	

 	
 	
 GET /api2/partners/activity/[activity-id]/	

 	
 	
 GET /api2/partners/languages/	

 	
 	
 GET /api2/partners/teams/	

 	
 	
 GET /api2/partners/teams/[team-slug]/	

 	
 	
 GET /api2/partners/teams/[team-slug]/applications	

 	
 	
 GET /api2/partners/teams/[team-slug]/applications/[application-id]/	

 	
 	
 GET /api2/partners/teams/[team-slug]/members/	

 	
 	
 GET /api2/partners/teams/[team-slug]/projects/	

 	
 	
 GET /api2/partners/teams/[team-slug]/projects/[project-slug]/	

 	
 	
 GET /api2/partners/teams/[team-slug]/safe-members/	

 	
 	
 GET /api2/partners/teams/[team-slug]/tasks/	

 	
 	
 GET /api2/partners/teams/[team-slug]/tasks/[task-id]/	

 	
 	
 GET /api2/partners/teams/test/	

 	
 	
 GET /api2/partners/users/	

 	
 	
 GET /api2/partners/users/[username]/	

 	
 	
 GET /api2/partners/videos/	

 	
 	
 GET /api2/partners/videos/TRUFD3IyncAt/languages/en/subtitles/	

 	
 	
 GET /api2/partners/videos/[video-id]/	

 	
 	
 GET /api2/partners/videos/[video-id]/languages/	

 	
 	
 GET /api2/partners/videos/[video-id]/languages/[lang-identifier]/	

 	
 	
 GET /api2/partners/videos/[video-id]/languages/[lang-identifier]/subtitles/?format=srt	

 	
 	
 GET /api2/partners/videos/[video-id]/urls/	

 	
 	
 GET /api2/partners/videos/[video-id]/urls/[url-id]/	

 	
 	
 GET /api2/partners/videos/asfssd/languages/111111/subtitles/?format=ssa	

 	
 	
 GET /api2/partners/videos/asfssd/languages/en/subtitles/?format=dfxp	

 	
 	
 GET /api2/partners/videos?order_by=title	

 	
 	
 GET /api2/partners/videos?team=butterfly-club	

 	
 	
 POST /api2/partners/message/	

 	
 	
 POST /api2/partners/teams/	

 	
 	
 POST /api2/partners/teams/[team-slug]/members/	

 	
 	
 POST /api2/partners/teams/[team-slug]/projects/	

 	
 	
 POST /api2/partners/teams/[team-slug]/safe-members/	

 	
 	
 POST /api2/partners/teams/[team-slug]/tasks/	

 	
 	
 POST /api2/partners/users/	

 	
 	
 POST /api2/partners/videos/	

 	
 	
 POST /api2/partners/videos/[video-id]/languages/	

 	
 	
 POST /api2/partners/videos/[video-id]/languages/[lang-identifier]/subtitles/	

 	
 	
 POST /api2/partners/videos/[video-id]/urls/	

 	
 	
 POST /api2/partners/videos/asfssd/languages/en/subtitles/	

 	
 	
 PUT /api2/partners/teams/[team-slug]/	

 	
 	
 PUT /api2/partners/teams/[team-slug]/applications/[application-id]/	

 	
 	
 PUT /api2/partners/teams/[team-slug]/members/[username]/	

 	
 	
 PUT /api2/partners/teams/[team-slug]/projects/[project-slug]/	

 	
 	
 PUT /api2/partners/teams/[team-slug]/tasks/[task-id]/	

 	
 	
 PUT /api2/partners/videos/[video-id]/	

 	
 	
 PUT /api2/partners/videos/[video-id]/urls/[url-id]/	

 	
 	
 DELETE /api2/partners/teams/[team-slug]/	

 	
 	
 DELETE /api2/partners/teams/[team-slug]/applications/[application-id]/	

 	
 	
 DELETE /api2/partners/teams/[team-slug]/members/[username]/	

 	
 	
 DELETE /api2/partners/teams/[team-slug]/projects/[project-slug]/	

 	
 	
 DELETE /api2/partners/teams/[team-slug]/tasks/[task-id]/	

 	
 	
 DELETE /api2/partners/videos/[video-id]/urls/[url-id]/	

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Amara 1.2.0 documentation

 Python Module Index

 c |
 o |
 s |
 t |
 u

 			

 		
 c	

 	[image: -]
 	
 caching	

 	
 	
 caching.cachegroup	

 			

 		
 o	

 	
 	
 optionalapps	

 			

 		
 s	

 	[image: -]
 	
 subtitles	

 	
 	
 subtitles.workflows	

 			

 		
 t	

 	[image: -]
 	
 teams	

 	
 	
 teams.workflows.teamworkflows	

 			

 		
 u	

 	[image: -]
 	
 utils	

 	
 	
 utils.behaviors	

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 routing table |

 	
 modules |

 	Amara 1.2.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	Action (class in subtitles.workflows)

 	action_for_add_subtitles() (subtitles.workflows.Workflow method)

 	

 	add_amara_conf

 	add_extra_settings() (in module optionalapps)

C

 	

 	CacheGroup (class in caching.cachegroup)

 	caching (module)

 	caching.cachegroup (module)

 	

 	CLASS_ENDORSE (subtitles.workflows.Action attribute)

 	CLASS_SEND_BACK (subtitles.workflows.Action attribute)

 	complete (subtitles.workflows.Action attribute)

D

 	

 	dashboard_view (teams.workflows.teamworkflows.TeamWorkflow attribute)

E

 	

 	editor_data() (subtitles.workflows.Action method)

 	EditorNotes (class in subtitles.workflows)

 	

 	extra_pages() (teams.workflows.teamworkflows.TeamWorkflow method)

 	extra_tabs() (subtitles.workflows.Workflow method)

F

 	

 	files

G

 	

 	get() (caching.cachegroup.CacheGroup method)

 	get_actions() (subtitles.workflows.Workflow method)

 	get_add_language_mode() (subtitles.workflows.Workflow method)

 	get_apps() (in module optionalapps)

 	get_cache_group() (caching.cachegroup.ModelCacheManager method)

 	get_editor_notes() (subtitles.workflows.Workflow method)

 	get_instance() (caching.cachegroup.ModelCacheManager method)

 	get_many() (caching.cachegroup.CacheGroup method)

 	

 	get_model() (caching.cachegroup.CacheGroup method)

 	get_or_calc() (caching.cachegroup.CacheGroup method)

 	get_repository_paths() (in module optionalapps)

 	get_subtitle_workflow() (teams.workflows.teamworkflows.TeamWorkflow method)

 	get_urlpatterns() (in module optionalapps)

 	get_work_mode() (subtitles.workflows.Workflow method)

 	get_workflow() (in module subtitles.workflows)

H

 	

 	heading (subtitles.workflows.EditorNotes attribute)

I

 	

 	in_progress_text (subtitles.workflows.Action attribute)

 	invalidate() (caching.cachegroup.CacheGroup method)

 	

 	invalidate_by_pk() (caching.cachegroup.ModelCacheManager method)

L

 	

 	label (subtitles.workflows.Action attribute)

 	

 	(teams.workflows.teamworkflows.TeamWorkflow attribute)

M

 	

 	ModelCacheManager (class in caching.cachegroup)

N

 	

 	name (subtitles.workflows.Action attribute)

 	

 	(teams.workflows.teamworkflows.TeamPage attribute)

 	

 	notes (subtitles.workflows.EditorNotes attribute)

O

 	

 	OldTeamWorkflow (class in teams.workflows.old.workflow)

 	

 	optionalapps (module)

P

 	

 	perform() (subtitles.workflows.Action method)

 	post() (subtitles.workflows.EditorNotes method)

 	

 	Publish (class in subtitles.workflows)

R

 	

 	ReviewWorkMode (class in subtitles.workflows)

S

 	

 	set() (caching.cachegroup.CacheGroup method)

 	set_many() (caching.cachegroup.CacheGroup method)

 	set_model() (caching.cachegroup.CacheGroup method)

 	

 	setup_team() (teams.workflows.teamworkflows.TeamWorkflow method)

 	subtitle_visibility (subtitles.workflows.Action attribute)

 	subtitles.workflows (module)

T

 	

 	TeamPage (class in teams.workflows.teamworkflows)

 	teams.workflows.teamworkflows (module)

 	TeamWorkflow (class in teams.workflows.teamworkflows)

 	

 	title (teams.workflows.teamworkflows.TeamPage attribute)

 	type_code (teams.workflows.teamworkflows.TeamWorkflow attribute)

U

 	

 	update_language() (subtitles.workflows.Action method)

 	url (teams.workflows.teamworkflows.TeamPage attribute)

 	user_can_edit_subtitles() (subtitles.workflows.Workflow method)

 	

 	user_can_view_private_subtitles() (subtitles.workflows.Workflow method)

 	user_can_view_video() (subtitles.workflows.Workflow method)

 	utils.behaviors (module)

V

 	

 	validate() (subtitles.workflows.Action method)

 	

 	visual_class (subtitles.workflows.Action attribute)

W

 	

 	Workflow (class in subtitles.workflows)

 	workflow_settings_view (teams.workflows.teamworkflows.TeamWorkflow attribute)

 	

 	WorkMode (class in subtitles.workflows)

 	WorkMode.NormalWorkMode (class in subtitles.workflows)

 Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		
 index

 		
 routing table |

 		
 modules |

 		Amara 1.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Participatory Culture Foundation.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

