

Overview

Unity8 PolicyKit project is a PolicyKit [https://www.freedesktop.org/wiki/Software/polkit/] agent that is run under
the Unity8 desktop. It displays requests from PolicyKit [https://www.freedesktop.org/wiki/Software/polkit/] as an
Unity8 Snap Decision. Upon receiving a response it then talks to
PAM [http://www.linux-pam.org/] and verifies the information and sends the auth back to
PolicyKit [https://www.freedesktop.org/wiki/Software/polkit/].

Architecture

This project dependes heavily on libpolkit-agent1 which is provided
by the PolicyKit project and implements the majority of the DBus interface
needed by PolicyKit. It then uses libnotify to communicate with Unit8
and create the snap decision.

Object Interactions

[image: digraph interactions { pk [label="Policy\nKit", href="https://www.freedesktop.org/wiki/Software/polkit/"]; agent [label="Agent", href="#agent"]; authman [label="Authentication\nManager", href="#authentication-manager"]; auth [label="Authentication", href="#authentication"]; u8 [label="Unity 8", href="https://launchpad.net/unity8"]; session [label="PAM Session", href="http://www.linux-pam.org/"]; pk -> agent [label="Requests\nAuth Check"]; agent -> authman [label="Create\nAuthentication"]; authman -> auth [label="Manage"]; auth -> session [label="Create\nSession"]; session -> auth [label="Request\nInformation"]; auth -> u8 [label="Create\nSnap Decision"]; u8 -> auth [label="User\nInput"]; auth -> session [label="User\nInput"]; session -> pk [label="Auth\nSucceeded"]; session -> auth [label="Auth\nFailed"]; }]

Threads

	Main Thread. Starts the process and initializes the base objects then
waits for Unix signals for the application.

	Agent Thread. Watches the PolicyKit agent interface and requests
authentication dialogs based on what PK asks for. It also sends responses
back to PolicyKit.

	Authentication Thread. Managed by the Authentication Manager this thread
handles all authentication dialogs and session management. It ensures that
we remain responsive to Unity8’s requests.

	GDBus Threads. GDBus creates threads that sends messages to the other
threads based on which bus the messages are on. (system and session)

Primary Classes

These classes make up the majority of how the code works and interacts,
there are a couple of helper classes that are not included but are available
in the source code.

Agent

	
class Agent

	Class that connects to PolicyKit as the agent and gets events on when PK wants an auth check.

Class to bridge the interface for the PolicyKit agent registration and signaling. It uses a small helper GLib object which is a subclass of libpolicykitagent’s PolkitAgentListener class. This is done in GObject, and then this class exists to provide C++ structures around that class.

If requested the agent will use the passed in AuthManager instance to create authorization UI’s to query the user. It maintains the cancellable objects from GLib and will request the AuthManager to cancel any UI requests if PolicyKit asks.

	Note

	The Agent Class should be instantiated once, as PolicyKit only allows one agent per session. Creating multiple instances will result in PolicyKit returning an error.

Public Functions

	
Agent(const std::shared_ptr<AuthManager> &authmanager)

	

	
~Agent()

	

	
void authRequest(const std::string &action_id, const std::string &message, const std::string &icon_name, const std::string &cookie, const std::list<std::string> &identities, const std::shared_ptr<GCancellable> &cancellable, const std::function<void(Authentication::State)> &callback)

	This is where an auth request comes to us from PolicyKit. Here we handle the cancellables and get a handle from the auth manager for cancelling the authentication.

	Parameters

	
	action_id: Type of action from PolicyKit

	message: Message to show to the user

	icon_name: Icon to show with the notification

	cookie: Unique string to track the authentication

	identities: Identities that can be used to authenticate this action

	cancellable: Object to notify when we need to cancel the authentication

	callback: Function to call when the user has completed the authorization

Private Functions

	
void unregisterCancellable(const std::string &handle)

	Disconnect from the g_cancellable

Private Members

	
std::shared_ptr<AuthManager> _authmanager

	Auth manager used to create authorization UI’s

	
GLib::ContextThread _thread

	Thread that the agent runs on

	
std::shared_ptr<AgentGlib> _glib

	GLib object that interfaces with libpolicykitagent

	
gpointer _agentRegistration

	Handle returned by libpolicykit to track our registration

	
std::map<std::string, std::pair<std::shared_ptr<GCancellable>, gulong>> cancellables

	All the cancellable objects we’re tracking indexed by the cookie that they were associated with.

Private Static Functions

	
void cancelStatic(GCancellable *cancel, gpointer user_data)

	Static function to do the cancel

	
void cancelCleanup(gpointer data)

	Static function to clean up the data needed for cancelling

Authentication Manager

	
class AuthManager

	Class that tracks all the various Authentications that can be in-flight at a given time and gives them a thread to work on.

The authentication manager is mostly a tracker and factory class for Authentication objects. When an authentication is requested it creates the object and keeps track of it until it either completes the authentication or is cancelled. It also keeps a GLib mainloop around that the authentication objects can all use.

For bookkeeping purposes this class is also the one that initializes and uninitializes libnotify and makes sure the notification server has the proper capabilities.

Public Functions

	
AuthManager()

	

	
~AuthManager()

	

	
std::string createAuthentication(const std::string &action_id, const std::string &message, const std::string &icon_name, const std::string &cookie, const std::list<std::string> &identities, const std::function<void(Authentication::State)> &finishedCallback)

	Starts an Authentication.

Creates the authentication object on the notification thread using the buildAuthentication function. It also creates a more complex callback where, when the callback is called it also removes this authentication from the in_flight map which is tracking Authentication objects.
	Parameters

	
	action_id: Type of action from PolicyKit

	message: Message to show to the user

	icon_name: Icon to show with the notification

	cookie: Unique string to track the authentication

	identities: Identities that can be used to authenticate this action

	finishedCallback: Function to call when the user has completed the authorization

	
bool cancelAuthentication(const std::string &handle)

	Cancels an Authentication that is currently running.
	Parameters

	
	handle: the handle of the Authentication object

Protected Functions

	
std::shared_ptr<Authentication> buildAuthentication(const std::string &action_id, const std::string &message, const std::string &icon_name, const std::string &cookie, const std::list<std::string> &identities, const std::function<void(Authentication::State)> &finishedCallback)

	The actual call to create the object, split out so that it can be replaced in the test suite with a mock.

Private Members

	
std::map<std::string, std::shared_ptr<Authentication>> in_flight

	All of the Authentication objects that currently exist

	
GLib::ContextThread thread

	GLib thread for authentications

Authentication

	
class Authentication

	
Public Types

	
enum State

	When the Authentication is complete the result of it.

Values:

	
CANCELLED

	Authentication was cancelled

	
SUCCESS

	Authentication succeeded

Public Functions

	
Authentication(const std::string &in_action_id, const std::string &in_message, const std::string &in_icon_name, const std::string &in_cookie, const std::list<std::string> &in_identities, const std::function<void(State)> &in_finishedCallback)

	

	
~Authentication()

	

	
void start()

	Used to start the session working, split out from the constructor so that we can separate the two in the test suite.

	
void cancel()

	Cancel the authentication. Hide the notification if visiable and call the callback.

	
void checkResponse()

	Checks the response from the user by looking at the response action and then passes the value to the Session object

	
void setInfo(const std::string &info)

	Set the info string to show the user. If there is no info menu item then one is created for the information. If there is currently one it will be updated to be the new string

	
void setError(const std::string &error)

	Set the error string to show the user. If there is no error menu item then one is created for the information. If there is currently one it will be updated to be the new string

	
void addRequest(const std::string &request, bool password)

	Add a request for information from the user. This is a menu item in the menu model. If there isn’t an item, it is created here, else it is updated to include this request.

Protected Functions

	
std::shared_ptr<NotifyNotification> buildNotification(void)

	Build the notification object along with all the hints that are required to be rather complex GVariants.

	
std::shared_ptr<Session> buildSession(const std::string &identity)

	Builds a session object from an identity and a cookie. After building it connects to all the signals and passes their calls to the appropriate function on the Authentication object.

	Parameters

	
	identity: A PK identity string

	cookie: An unique identifier for this authentication

	
void showNotification()

	Show a notification to the user, may include building it if it has been built previously.

	
void hideNotification()

	Hide a notification. This includes closing it if open and free’ing the _notification variable. It also will reset the response action and remove all the items from the menu.

	
void issueCallback(State state)

	Sends the callback, once and only once. It ensures that we don’t call it multiple times and that it exits.

	
Authentication()

	Null constructor for mocking in the test suite

Private Members

	
std::string action_id

	Type of action from PolicyKit

	
std::string message

	Message to show to the user

	
std::string icon_name

	Icon to show with the notification

	
std::string cookie

	Unique string to track the authentication

	
std::list<std::string> identities

	Identities that can be used to authenticate this action

	
std::function<void(State)> finishedCallback

	Function to call when the user has completed the authorization

	
bool callbackSent = false

	Ensure that we only call the callback once.

	
guint actionsExport = 0

	ID returned by GDBus for the export of the action group

	
guint menusExport = 0

	ID returned by GDBus for the export of the menus

	
std::string dbusPath

	Unique path we built for this authentication object for exporting things on DBus

	
std::shared_ptr<GDBusConnection> sessionBus

	Reference to the session bus so we can ensure it lives as long as we do

	
std::shared_ptr<NotifyNotification> notification

	If we have a notification shown, this is the reference to it. May be nullptr.

	
std::shared_ptr<GSimpleActionGroup> actions

	Action group containing the response action

	
std::shared_ptr<GMenu> menus

	The menu model to export to the snap decision. May include info or error items as well as the response item.

	
std::shared_ptr<Session> session

	The PolicyKit session that asks us for information

Session GLib Interface

	
class Session

	An interface for the session functionality of libpolicykitagent so that we can mock it out.

It is basically impossible to test against PAM without going crazy, so we created an interface to mock it out. This class makes the session interface into nice C++ objects but also virtualizes it so that it can be mocked.

Public Functions

	
Session(const std::string &identity, const std::string &cookie)

	

	
~Session()

	

	
void initiate()

	Starts the session so that signals start flowing

	
void resetSession()

	Resets the session so it’ll start again

	
core::Signal<const std::string&, bool> &request()

	Gets the request signal so that it can be connected to.

	
void requestResponse(const std::string &response)

	Returns a response from the user to the session.
	Parameters

	
	response: Text response

	
core::Signal<const std::string&> &info()

	Gets the info signal so that it can be connected to.

	
core::Signal<const std::string&> &error()

	Gets the error signal so that it can be connected to.

	
core::Signal<bool> &complete()

	Gets the complete signal so that it can be connected to.

Protected Functions

	
Session()

	

Private Members

	
std::shared_ptr<Impl> impl

	Someone should implement this

	
class Impl

	Implementation of the Session class.

This implementation wraps up the PolkitAgentSession object with some static functions that get turned into core::signal’s. It also aligns its lifecycle with the GObject one.

Public Functions

	
Impl(const std::string &in_identity, const std::string &in_cookie)

	

	
~Impl()

	

	
void requestResponse(const std::string &response)

	Sends a response to the Polkit Session.
	Parameters

	
	response: Text response from the user

	
void go()

	Internal implementation functions don’t have to have good names

	
void reset()

	Clears the internal GObject and then reinitializes it to get another session going

Public Members

	
core::Signal<const std::string&, bool> request

	Signal from the session that requests information from the user. Includes the text to be shown and whether it is a password or not.

	
core::Signal<const std::string&> info

	Signal from the session that includes info to show to the user

	
core::Signal<const std::string&> error

	Signal from the session that includes an error to show to the user

	
core::Signal<bool> complete

	Signal from the session that says the session is complete, a boolean for whether it was successful or not.

	
gulong gsig_request = 0

	GLib signal handle

	
gulong gsig_show_info = 0

	GLib signal handle

	
gulong gsig_show_error = 0

	GLib signal handle

	
gulong gsig_completed = 0

	GLib signal handle

Private Functions

	
void clearSession()

	Clears the saved GObject and makes sure to disconnect all of its signals

Private Members

	
std::string identity

	Identity we’re running against

	
std::string cookie

	Cookie of the transaction

	
PolkitAgentSession *session

	GObject based session object that we’re wrapping

	
bool sessionComplete

	A sentinal to say whether complete has been signaled, if not we need to cancel before unref’ing the session.

Private Static Functions

	
static void requestCb(PolkitAgentSession *session, const gchar *text, gboolean password, gpointer user_data)

	Static callback for the request signal. Passed up to the request C++ signal.

	
static void infoCb(PolkitAgentSession *session, const gchar *text, gpointer user_data)

	Static callback for the info signal. Passed up to the info C++ signal.

	
static void errorCb(PolkitAgentSession *session, const gchar *text, gpointer user_data)

	Static callback for the error signal. Passed up to the error C++ signal.

	
static void completeCb(PolkitAgentSession *session, gboolean success, gpointer user_data)

	Static callback for the complete signal. Passed up to the complete C++ signal. Also sets the session complete flag which ensures we don’t cancel on destruction.

Quality

Merge Requirements

Submitter Responsibilities

	Ensure the project compiles and the test suite executes without error

	Ensure that non-obvious code has comments explaining it

	If the change works on specific profiles, please include those in the merge description.

Reviewer Responsibilities

	Did the Jenkins build compile? Pass? Run unit tests successfully?

	Are there appropriate tests to cover any new functionality?

	Have the integration tests updated appropriately?

	Can you understand what is happening without asking on IRC?

Manual Integration Test Plan

	
	PolicyKit Prompt Check to ensure a prompt comes up when requested

	
	Install the terminal app

	
	Execute pkexec ls

	
	Ensure that a dialog is shown by Unity8 that asks for your password

	Make sure that the password is not requested on the terminal

	
	Enter the user’s password in the dialog

	
	The command won’t show anything if it is successful, error will result in error messages

Index

 A
 | S

A

 	
 	Agent (C++ class)

 	Agent::_agentRegistration (C++ member)

 	Agent::_authmanager (C++ member)

 	Agent::_glib (C++ member)

 	Agent::_thread (C++ member)

 	Agent::Agent (C++ function)

 	Agent::authRequest (C++ function)

 	Agent::cancelCleanup (C++ function)

 	Agent::cancellables (C++ member)

 	Agent::cancelStatic (C++ function)

 	Agent::unregisterCancellable (C++ function)

 	Agent::~Agent (C++ function)

 	Authentication (C++ class)

 	Authentication::action_id (C++ member)

 	Authentication::actions (C++ member)

 	Authentication::actionsExport (C++ member)

 	Authentication::addRequest (C++ function)

 	Authentication::Authentication (C++ function), [1]

 	Authentication::buildNotification (C++ function)

 	Authentication::buildSession (C++ function)

 	Authentication::callbackSent (C++ member)

 	Authentication::cancel (C++ function)

 	Authentication::CANCELLED (C++ class)

 	Authentication::checkResponse (C++ function)

 	Authentication::cookie (C++ member)

 	Authentication::dbusPath (C++ member)

 	
 	Authentication::finishedCallback (C++ member)

 	Authentication::hideNotification (C++ function)

 	Authentication::icon_name (C++ member)

 	Authentication::identities (C++ member)

 	Authentication::issueCallback (C++ function)

 	Authentication::menus (C++ member)

 	Authentication::menusExport (C++ member)

 	Authentication::message (C++ member)

 	Authentication::notification (C++ member)

 	Authentication::session (C++ member)

 	Authentication::sessionBus (C++ member)

 	Authentication::setError (C++ function)

 	Authentication::setInfo (C++ function)

 	Authentication::showNotification (C++ function)

 	Authentication::start (C++ function)

 	Authentication::State (C++ type)

 	Authentication::SUCCESS (C++ class)

 	Authentication::~Authentication (C++ function)

 	AuthManager (C++ class)

 	AuthManager::AuthManager (C++ function)

 	AuthManager::buildAuthentication (C++ function)

 	AuthManager::cancelAuthentication (C++ function)

 	AuthManager::createAuthentication (C++ function)

 	AuthManager::in_flight (C++ member)

 	AuthManager::thread (C++ member)

 	AuthManager::~AuthManager (C++ function)

S

 	
 	Session (C++ class)

 	Session::complete (C++ function)

 	Session::error (C++ function)

 	Session::Impl (C++ class)

 	Session::impl (C++ member)

 	Session::Impl::clearSession (C++ function)

 	Session::Impl::complete (C++ member)

 	Session::Impl::completeCb (C++ function)

 	Session::Impl::cookie (C++ member)

 	Session::Impl::error (C++ member)

 	Session::Impl::errorCb (C++ function)

 	Session::Impl::go (C++ function)

 	Session::Impl::gsig_completed (C++ member)

 	Session::Impl::gsig_request (C++ member)

 	Session::Impl::gsig_show_error (C++ member)

 	Session::Impl::gsig_show_info (C++ member)

 	Session::Impl::identity (C++ member)

 	
 	Session::Impl::Impl (C++ function)

 	Session::Impl::info (C++ member)

 	Session::Impl::infoCb (C++ function)

 	Session::Impl::request (C++ member)

 	Session::Impl::requestCb (C++ function)

 	Session::Impl::requestResponse (C++ function)

 	Session::Impl::reset (C++ function)

 	Session::Impl::session (C++ member)

 	Session::Impl::sessionComplete (C++ member)

 	Session::Impl::~Impl (C++ function)

 	Session::info (C++ function)

 	Session::initiate (C++ function)

 	Session::request (C++ function)

 	Session::requestResponse (C++ function)

 	Session::resetSession (C++ function)

 	Session::Session (C++ function), [1]

 	Session::~Session (C++ function)

 nav.xhtml

 Table of Contents

 		Overview

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_images/graphviz-62328475f8d7603c8ed1b6d212ff5c8dd6eff174.png
Requests
Auth Check

Create
Authentication

Authentication
Manager

Authentication

PAM Session

Auth
Succeeded

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

