
Unity Accessibility Extensions
Documentation

Release Alpha

Sam Hebditch

Oct 28, 2019

Contents:

1 Introduction 3
1.1 Why? . 3
1.2 What are others doing on this front? . 3
1.3 How? . 4

2 Rationale 5
2.1 Raycasting . 5
2.2 Script Modularity . 6
2.3 Object Descriptions . 7
2.4 Priority Queue . 7

3 Installation Process 9
3.1 Initial Setup . 9
3.2 Additional Options . 11

4 Native Code Overivew 13
4.1 What platforms utilise native code? . 13
4.2 Structure and Layout . 13
4.3 A note on macOS . 13
4.4 A further note on Windows . 14
4.5 Native Plugin Overview . 14

5 Useful Links and Resources 15
5.1 Communities . 15
5.2 Tools and Resources . 15

i

ii

Unity Accessibility Extensions Documentation, Release Alpha

This set of documents is designed to outline and explain the principles behind the creation of the Unity Accessibility
Extensions, alongside documentation of the code and underlying technologies that enable this functionality.

These extensions are designed to aid visually impaired or blind people access Augmented, Virtual and Mixed Reality
experiecnes that have been created within Unity. One of the design goals for these extensions, along with making ex-
periecnes accessible, was to require as little input, or initial bring up to encourage developers to implement them. Unity
itself, is slowly making strides towards accessibility, with a new accessibility and inclusivity focus and thread being
set up on their community forums. however, it’s currently very lacking in featuers to make games and experiences
created within Unity accessible.

These tools make use of native operating system APIs, as outlined within the “Native Overview” page to provide
native fucntionality to aid the user.

I hope that these extensions prove a useful starting point, resouce, or reference and when paired with this documen-
tation, can provide you with a good idea of the methodology and process behind making an experience accesible for
those who are visually impaired or blind.

Sam Hebditch.

Contents: 1

Unity Accessibility Extensions Documentation, Release Alpha

2 Contents:

CHAPTER 1

Introduction

Think of this as a bit of a primer. In this page, I’m aiming to cover why exactly we built these extensions, alongside
how a brief, high level overview of how everything currently works.

1.1 Why?

This project was initially born out of a question asked during a demonstration of an augmented reality application
that we’d built. This question was simply, “How can we make this accessible - What features does Unity have for
accessibility?”. This was something I had no idea about, and as such, proceeded to dive into and research.

What I found, was that Unity did nothing in the way to work with Native accessibility APIs on a users device. And
whilst there were projects such as UAP, it only offered options to make the UI accessible, and not much else. This
then led me to question and explore how we could make augmented reality accessible, and what could be done with
Unity to enable it to hook into native, on-device APIs for Text-To-Speech etc. and create an inclusive experience.

Being a person that is Visually Impaired, my key focus has been building out the extensions to enable those with visual
impairments to access Augmented and Virtual Reality, alongside existing Unity 3D games and applications. However,
there is no reason why these extensions could not be built out to be inclusive of other disabilities. From the outside,
Unity might appear like a tool that is nigh on impossible to make accessible. However, it’s versatile nature, and ability
to interact with user created native code, make it suprisingly extensible.

1.2 What are others doing on this front?

Over the course of development, I’ve seen efforts from research teams at Microsoft to make VR accessible. However,
these appear to tie-in to the Graphics Rendering Stack/DirectX API on Windows, to provide a one-size-fits-all solution
that requires no developer input or modification of the code. The team are also building out extensions for Unity that
tie into these low-level tools, to provide additional levels of interaction.

However, this has been one of the few examples I’ve seen when it comes to making mixed reality and Unity applica-
tions accessible. In a brief study of some of most popular AR applications, such as Pokémon Go, IKEA Place, and
Google’s Measure AR, most were lacking in any kind of accomidations or modifications for those with specialised

3

https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935

Unity Accessibility Extensions Documentation, Release Alpha

requirements such as text-to-speech, descriptions of objects, larger text etc. Upon testing these apps out, and exploring
how they worked with services like TalkBack on, this revealed a large issue to me, Nobody was making AR/VR apps
accessible!

1.3 How?

I’ll be saving a deep dive into the technologies and techniques behind the extension later on in this documentation, but
here’s a high level overview to whet your appetite for the time being.

We use Raycasting to provide object detection, distance estimation. Once an object has been hit by a ray, we pull
several bits of data from it, including it’s name, a description (via a custom component that allows a developer to
include a long string.), and it’s distance. We feed these in, alongside camera rotation data (as it’s safe to assume that
in AR and VR, the camera in the scene is located in roughly the same position or perspective that the users head or
viewpoint will be), into a script to be parsed and turned into fully descriptive strings (such as, “The object is 1.5m
away from you, double tap to hear the description attached to it”), which get fed into a script that handles passing over
the data to native code which taps into the Text-to-Speech Engines on both Android and iOS.

Currently, as of writing (16th May) - I’m exploring and creating a queuing system for information passed to the TTS,
so that a developer, user can choose which event they want to be spoken first, and also to ensure that the TTS isn’t
flooded with requests to handle rotation, object description etc. all at the same time.

Fig. 1: A flow chart outlining the flow of data/information from the camera in the scene, to it’s endpoint, the text to
speech engine.

4 Chapter 1. Introduction

CHAPTER 2

Rationale

The aim of this page is to cover, outline and describe the design decisions taken during the development of these
extensions for Unity. The aim of this page is also to describe some of the assumptions that we make in the scripts to
produce something that is easy to drop in, regardless of project size or configuration, and with minimal configuration
from the developer/user.

As mentioned above, one of the key goals for this project is to produce something that is modular, and easy to drop
in for a developer, with little to no input required or needed from them. Accessibility shouldn’t just be in the form
of making games and projects accessible, but making the tools to do so easy to implement and an easy process that
encourages people to factor in accessibility.

2.1 Raycasting

Raycasting is currently the only method we use for determining objects in a scene, it was chosen, as it’s part of the
standard Unity engine (as part of the physics system), it’s also got little to no performance impact. Whilst not tested,
I also believe that Unity is able to handle mutiple rays, meaning that it’s a solution that could integrate easily into
existing games that use Raycasting as part of their object collision/detection/physics systems.

2.1.1 Raycast source

Initially, I experimented with using rays fired from the camera in the scene, however I found that using
some augmented reality platforms don’t quite work. This led me to creating the Casting Cube com-
ponent, which when enabled and set up, will follow/mirror the direction of the main camera. From here,
we cast the ray in a foward direction, using transform.forward.

When describing this functionality, I allude, and liken it to a cane for a blind or visualy impaired person,
as it allows the user to sweep across the scene using their device, much like a cane would be used to
sweep in the real world. When paired up with the other scripts and functionality I’ve built, the user gets
feedback, just like they would when the cane hits something in the real world.

5

Unity Accessibility Extensions Documentation, Release Alpha

We do assume that the Camera is going to be paired up and configured to match the devices rotation and
movement, since we’ve focused on Augmented Reality so far, this typically makes perfect sense and has
been the case in all of our tests so far.

2.1.2 Raycast setup

In the setup script, we again, make a few assumptions to allow things to work somewhat seamlessly,
regardless of the set up that the developer has in place. We use tags to identify object, and rely on some
pre-existing tags in Unity. Primarily, we rely on the MainCamera tag initially to determine the camera
in the scene, and place all of the components required for raycasting as children of it.

It is worth noting though, that whilst we initially rely on the MainCamera tag, we do shift it over to a
ScnCamera tag that gets set up, and referenced throughout the scripts that have been created.

It’s also worth noting, that as we’re using Raycasting, all objects that you want to be detectable by the end
user require some form of collider on them to function/be picked up by the raycasting script.

2.2 Script Modularity

Initially, the scripts and code for this project was all handled within a singular script, there was no communication
between scripts, and things became very messy and hard to debug and modify without fear of breaking something
else. Below is an example of how this behaved:

Flow chart illustrating processing flow

Camera

Processing Script

Devices Text-to-Speech service

Raycasting Data Object Feedback

However, since then, we’ve moved away from this approach to something more modular, that allows for information
to be referenced and pulled from across the various scripts, and piped in to whatever may require it. This looks like
this:

6 Chapter 2. Rationale

Unity Accessibility Extensions Documentation, Release Alpha

Flow chart illustrating processing flow

Camera

Rotation Parser

Event Handler

Raycasting Data

Raycasting Script

Object Feedback

Object Description Script

Devices Text-to-Speech service

This allows us to pull data from the various scripts easily, and create bespoke functionality that only relies on certain
functions, without having to invoke and work with the entire accessibility extension codebase. Having modular, yet
centralised points to pull from has been successful, however, I’m not sure how performant it’d be in the long term or
on larger projects. We’re continuously investigating things such as ECS, or more event driven systems however.

2.3 Object Descriptions

Rather than write some bespoke structure or format for object descriptions, I’ve settled upon using long strings with
an Editor UI to accommodate holding longer strings and wrapping them to the ssize of the editor. This decision was
done to make things easier, and also saving converting between types etc. when passing data to the event handler, and
then the Text-to-Speech engine on a users device.

As a general rule of thumb for object descriptions, try and make them as descriptive as possible, but succinct. It’s
worth testing out how your descriptions sound on a device with TalkBack or VoiceOver enabled, just to see if they’re
too long or if they potentially get in the way of a user receiving other bits of information.

2.4 Priority Queue

As of the 30th May 2019 - SH has merged Master and ExperimentalEventDelegation Branches, making this the default
behaviour as of now (until further tweaks and changes)

In the event driven branch, there is configuration tied to each event that determines the priority of an event. As a
developer, you can remap and change the priority levels, if you feel it makes sense to do so. Currently the priority
levels are as follows:

• Priority 1: Raycasting Feedback: This will always take priority, as the main means for the user to interact with
the AR/VR/MR world.

2.3. Object Descriptions 7

Unity Accessibility Extensions Documentation, Release Alpha

• Priority 2: Rotation Feedback: An additional bit of informtation that will help a blind or visually impaired user
orient theirselves, however, not as important as the raycast feedback

• Priority 3: Object Description: As this is a bit of feedback that requires user action to trigger it, it’s the lowest
priority currently.

It’s possible to add an unlimited amount of priorities, there is a custom struct set up so that an int, alongside a string
can be passed along through Unity’s messaging system. This int is used to define the priority of the event, and is
passed on as such to the queuing system itself.

It’s worth noting though that the priority queueing system currently adds in a lot of latency. SH, as of 12th Sept. ‘19
has experimented with potential resolutions and fixes for this, including using a fixed size prioirty queue, but has not
had much luck at the moment.

8 Chapter 2. Rationale

CHAPTER 3

Installation Process

As mentioned on the rationale page, the aim for these extensions was to be able to easily set up and configure these
extensions with little to no developer input (reconfiguration of scenes, refactoring code, etc.) As such, the installation
process is as automated as possible, nonetheless, it’s worth documenting it, including current quirks and oddities when
it comes to configuring the extensions at the moment.

3.1 Initial Setup

Initial set up is relatively easy, download the latest package from the releases page, and import it as you would any
other custom Unity package.

Fig. 1: A screenshot depeicting the menus needed to go through to import custom packages.

9

Unity Accessibility Extensions Documentation, Release Alpha

Once this is done, you’ll notice a new item appear within your Unity menu bar, much like the above screenshot.
To start the initial setup, click placeholder. A simple dialog will appear that gives you options for configuring the
components required in the script, along with the status of each of these components.

Fig. 2: The menu items that appear once the package import is complete

There is a two step process to setting up the extensions, handily outlined within the status window. We firstly set up
the global configuration object, which handles all of the main scripts, before re-tagging the camera and adding in our
raycasting source object.

The above images showcase the setup dialog before, and after the setup process has been completed.

10 Chapter 3. Installation Process

Unity Accessibility Extensions Documentation, Release Alpha

3.2 Additional Options

There are some additional options contained within the initial setup window, below is a brief outline and explanation
of these.

• Debug Mode: This is mode enables debugging messaging, and other information to be visible when working
within the editor. It will also enable debugging lines when working with Raycasting in the editor, alowing
you to view the directions that the raycast is going in, whether it’s intersecting or hitting an object, or
casting infinitely into the distance.

• Custom Camera Tag Currently, the script will create a new tag called ScnCam and apply this to camera, these
options can circumvent this, and disable this functionality, instead allowing the user to use the default
Unity camera tag, or a completely bespoke camera tag, allowing for integration (as some render pipelines
might be dependant on custom tags etc.)

3.2. Additional Options 11

Unity Accessibility Extensions Documentation, Release Alpha

12 Chapter 3. Installation Process

CHAPTER 4

Native Code Overivew

This is designed to give you an overivew of the Native Code and integrations that are used throughout the accesibility
extensions, and explain how, and why, we use them (Although, I’d like to thing some of it its fairly self explanatory!)

4.1 What platforms utilise native code?

Currently, due to Unity platform limitations, most, if not all of the current platforms that we support and work with
(Android, iOS, MacOS etc.) use some degree of native code to enable certain elements of functionality that are simply
not possible within Unity. The key bit of fucntionality enabled by these elements of native code is Text-to-Speech
and speech synthesis, something with Unity is not aware of, yet capable of interfacing with, itself. Alongside this, we
also use native code to detect things like the Locale of the users device, and whether they’ve got accessibility services
enabled. I have plans to use native code in the future to provide things such as haptic feedback for devices that support
it.

4.2 Structure and Layout

We utilise and follow Unity’s guidelines for creating plugins where possible. Following the /Plugins/ folder structure
where required. Currently, the plugins we use are spread across multiple different scripts and files, however, there is
the potential for this to be consolidated and tidied up in the future (However, not now, as having things slightly spread
and disconnected like this makes it easier to debug).

4.3 A note on macOS

Whilst it was initially planned that I’d use native code, to tie into the native NSSpeechSynthesizer - However,
this has been slightly difficult to achieve, and has preseented more problems than the TTS implementation on iOS did.

Instead, we use the C# System.Diagnostics.Process functionality, to trigger off system processes. In this
case, this works well, as macOS has a built in say command, which can be triggered via the terminal.

13

Unity Accessibility Extensions Documentation, Release Alpha

There are also additional plans to implement a picker for the various voices availible on a users device, to enable
developers to test out how their strings sound in different locales, currently, this has been a p.i.t.a. due to serialization
fun.

4.4 A further note on Windows

Initially, I had planned to use System.Speech.Synthesis in C#, however, I found that Untiy and Mono don’t
include this functionality, and importing and including the DLLs seems to be a massive pain, with inconsistent results.

Looking for alternatives, I found a wrapper for the native C++ Speech API, created by Chad Weisshaar (this can be
found here). I did look to build upon this, by exposing some additional functionality that native functionality has on
other platforms (e.g. rate/speed of speech, pitch control), however found that I in the time frame I set myself, I couldn’t
get this to work. Also, limited knowledge of SAPI, C++ and C, seemed to get in the way.

It’s also worth noting that the Windows native code is currently 64-Bit only. Chad does provide source for rebuilding
to 32-Bit though, meaning it’s possible to build and recompile this if required.

4.5 Native Plugin Overview

As mentioned above, both iOS and Android utilise native plugins to provide text-to-speech functionality. We also use
tiny bits of native code to detect locale of the device, as well as the status of accessibility services (e.g. whether the
user has accessibility services enabled, or not).

Windows platforms currently use native code, but to a limited extent, with simple TTS relying on the system default
settings being the only supported functionality.

Each bit of native code is hooked up and contained within a couple of scripts, that expose simple APIs that can be used
to do things such as speak out a string, or return the devices location value, or the status of the native text-to-speech
engine.

Native code can be found in the following areas:

• TTS.cs

– All native code is contained within one string, which uses ifdefs to call upon the appropriate code,
and return a ICU locale value, which gets passed on where needed.

• TextToSpeech.cs

– Native code is spread across a couple of different functions within this script, to handle setting up the
text-to-speech engine where needed, actually speaking out the appropriate strings, and stopping the
speech where needed.

• WindowsVoice.cs

– This provides native TTS under windows, native functions from the C++ wrapper/plugin for the
speech API, are passed through, and exposed in here.

• OSXSaySpeech.cs

– This handles the say command, and command execution and lifespan on macOS.

14 Chapter 4. Native Code Overivew

https://chadweisshaar.com/blog/2015/07/02/microsoft-speech-for-unity/

CHAPTER 5

Useful Links and Resources

Starting out this project, I didn’t find much in the way of useful links and resources for making Unity experiences
accessible, yet alone making any kind of XR experience accessible.

Since starting this journey, however, I’ve found several links, tools, resources and references that may prove useful for
someone diving into this, or curious about this!

5.1 Communities

• Unity: Accessibility and Inclusivity Thread https://forum.unity.com/threads/accessibility-and-
inclusion.694477/

Currently a bit dead, but a worthwhile insight that I’m hoping will get updated as the Unity team implement
and improve upon accessiblity features within the editor, and at the API/engine level.

• XR Access Initiative https://www.xraccess.org/

A community focused around making AR, VR and XR accessibile to those with visual impairements.
Offers a wide variety of links to tools, guidelines, and players within the XR accesibility space.

• W3C Immersive Web Working Group https://www.w3.org/immersive-web/

Whilst this a community centered around immersive web technologies, such as WebXR, there is some
crossover as the group begin to explore how current web APIs, or future APIs can be used to make these
accessible. In November 2019, the W3C are planning on hosting an inclusive design workshop for the
immersive web, which should produce some interesting results for those looking to eplore web based
immserive tech, links to that can be found here.

5.2 Tools and Resources

15

https://forum.unity.com/threads/accessibility-and-inclusion.694477//
https://forum.unity.com/threads/accessibility-and-inclusion.694477//
https://www.xraccess.org/
https://www.w3.org/immersive-web/
https://www.w3.org/2019/08/inclusive-xr-workshop/

	Introduction
	Why?
	What are others doing on this front?
	How?

	Rationale
	Raycasting
	Script Modularity
	Object Descriptions
	Priority Queue

	Installation Process
	Initial Setup
	Additional Options

	Native Code Overivew
	What platforms utilise native code?
	Structure and Layout
	A note on macOS
	A further note on Windows
	Native Plugin Overview

	Useful Links and Resources
	Communities
	Tools and Resources

