

 Navigation

 	
 index

 	
 next |

 	GA4GH 0.1.0a2 documentation

 [image: _images/logo_ga.png]

GA4GH Reference Implementation

This the documentation for the GA4GH reference client and
server applications.

Contents

	Introduction

	GA4GH API Demo

	Installation
	Deployment on Apache

	Deployment on Docker

	Configuration
	Data hierarchy

	Configuration file

	Development
	Development environment

	GitHub workflow

	Contributing

	Development utilities

	Organisation

 Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GA4GH 0.1.0a2 documentation

Introduction

The Data Working Group [http://ga4gh.org/#/] of the
Global Alliance for Genomics and Health [http://genomicsandhealth.org/]
has defined an
API [http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/]
to facilitate interoperable exchange of genomic data.
This is the the documentation for the reference implementation of the API.

	Simplicity/clarity

	The main goal of this implementation is to provide an easy to understand
and maintain implementation of the GA4GH API. Design choices
are driven by the goal of making the code as easy to understand as
possible, with performance being of secondary importance. With that
being said, it should be possible to provide a functional implementation
that is useful in many cases where the extremes of scale are not
important.

	Portability

	The code is written in Python for maximum portability, and it
should be possible to run on any modern computer/operating system (Windows
compatibility should be possible, although this has not been tested). Our coding
guidelines specify using a subset of Python 3 which is backwards compatible with Python 2
following the current best practices [http://python-future.org/compatible_idioms.html].
The project currently does not yet support Python 3, as support for it is lacking in several
packages that we depend on. However, our eventual goal is to support both Python 2
and 3.

	Ease of use

	The code follows the Python Packaging User Guide [http://python-packaging-user-guide.readthedocs.org/en/latest/].
Specifically, pip is used to handle python package dependencies (see below
for details). This allows for easy installation of the ga4gh reference code
across a range of operating systems.

 Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GA4GH 0.1.0a2 documentation

GA4GH API Demo

In this demo, we’ll install a copy of the GA4GH reference
implementation and run a local version of the server using some example
data. We then run some example queries on this server using various
different methods to illustrate the basics of the protocol.
The server can, of course, be run on any machine on the network,
but for simplicity we assume that the client and the server are running
on your local machine during this demo.

The instructions for installation here
are not intended to be used in a production deployment. See
the Installation section for a detailed guide on production installation.
To run the demo, you will need a working installation of
Python 2.7 [https://www.python.org/download/releases/2.7/]
and also have virtualenv [https://virtualenv.pypa.io/en/latest/]
installed. We also need to have zlib [http://www.zlib.net/]
installed so that we can build some of the packages that the
reference server depends on.

On Debian/Ubuntu, for example, we can install these
packages using:

$ sudo apt-get install python-dev python-virtualenv zlib1g-dev

First, we create a virtualenv sandbox to isolate the demo from the
rest of the system, and then activate it:

$ virtualenv ga4gh-env
$ source ga4gh-env/bin/activate

Now, install the ga4gh package [https://pypi.python.org/pypi/ga4gh]
from the Python package index [https://pypi.python.org/pypi]. This
will take some time, as some upstream packages will need to be built and
installed.

(ga4gh-env) $ pip install ga4gh --pre

(Older versions of pip [https://pip.pypa.io/en/latest/] might not recognise
the --pre argument; if not, it is safe to remove it.)

Now we can download some example data, which we’ll use for our demo:

(ga4gh-env) $ wget http://www.well.ox.ac.uk/~jk/ga4gh-example-data.tar
(ga4gh-env) $ tar -xvf ga4gh-example-data.tar

After extracting the data, we can then run the ga4gh_server application:

(ga4gh-env) $ ga4gh_server
* Running on http://0.0.0.0:8000/ (Press CTRL+C to quit)
* Restarting with stat

(The server is using a default configuration which assumes the
existence of the ga4gh-example-data directory for simplicity here; see
the Configuration section for detailed information on how we configure the
server.) We now have a server running in the foreground. When it receives requests,
it will print out log entries to the terminal.
Leave the server running and open another terminal to complete the
rest of the demo.

To try out the server, we must send some requests to it using the GA4GH
protocol [http://ga4gh.org/#/api]. One way in which we can do this is to
manually create the JSON [http://json.org/] requests, and send these to the
server using cURL [http://curl.haxx.se/]:

$ curl --data '{"datasetIds":[], "name":null}' --header 'Content-Type: application/json' \
http://localhost:8000/v0.5.1/readgroupsets/search

In this example, we used the searchReadGroupSets [http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.searchReadGroupSets]
method to ask the server for all the ReadGroupSets on the server. It responded
by sending back some JSON, which cURL then printed to the terminal.

Creating these JSON requests by hand is tedious and error prone, and
so there is a client application to do this for us. To try this out, we
start another instance of our virtualenv, and then send the
equivalent command using:

$ source ga4gh-env/bin/activate
(ga4gh-env) $ ga4gh_client readgroupsets-search http://localhost:8000/v0.5.1

The output of this command is a simple summary of the ReadGroupSets that
are present on the server. We can also see the JSON messages passing
between the client and the server if we increase the verbosity level:

(ga4gh-env) $ ga4gh_client -vv readgroupsets-search http://localhost:8000/v0.5.1

We can perform similar queries for variant data using the
searchVariants [http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.searchVariants]
API call. First, we find the IDs of the VariantSets on the server using the
searchVariantSets [http://ga4gh.org/documentation/api/v0.5.1/ga4gh_api.html#/schema/org.ga4gh.searchVariantSets]
method:

(ga4gh-env) $ ga4gh_client variantsets-search http://localhost:8000/v0.5.1
1kg-phase1
1kg-phase3

This tells us that we have two VariantSets on the server, with IDs 1kg-phase1
and 1kg-phase3. In our example data, these correspond to a subset of the
data from 1000 Genomes [http://www.1000genomes.org/] phases 1 and 3.

We can then search for variants overlapping a given interval in a VariantSet
as follows:

(ga4gh-env) $ ga4gh_client variants-search http://localhost:8000/v0.5.1 \
--variantSetIds=1kg-phase1 --referenceName=2 --start=33100 --end=34000

The output of the client program is a summary of the data received in a
free text form. This is not intended to be used as the input to other
programs, and is simply a data exploration tool for users.
To really use our data, we should use a GA4GH client library.

Part of the GA4GH reference implementation is a Python client-side
library. This makes sending requests to the server and using the
responses very easy. For example, to run the same query as we
performed above, we can use the following code:

from __future__ import print_function

import ga4gh.client as client
import ga4gh.protocol as protocol

httpClient = client.HttpClient("http://localhost:8000/v0.5.1")
request = protocol.GASearchVariantsRequest()
request.variantSetIds = ["1kg-phase1"]
request.referenceName = "2"
request.start = 33100
request.end = 34000
for variant in httpClient.searchVariants(request):
 print(
 variant.referenceName, variant.start, variant.end,
 variant.referenceBases, variant.alternateBases, sep="\t")

If we save this script as ga4gh-demo.py we can then run it
using:

(ga4gh-env) $ python ga4gh-demo.py

TODO

	Add more examples of using the reads API and give
examples of using the references API. We should aim to have
a single complete example, where we start with a given
variant, and drill down into the reads in question programatically.

	Update the client API to be more user-friendly. We shouldn’t need
to create an instance of GASearchVariantsRequest to call
searchVariants. Rather, searchVariants should have the corresponding
values as parameters which have sensible defaults.

 Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GA4GH 0.1.0a2 documentation

Installation

This section documents the process of deploying the GA4GH reference
server in a production setting. The intended audience is therefore
server administrators. If you are looking for a quick demo of the
GA4GH API using a local installation of the reference server
please check out the GA4GH API Demo. If you are looking for
instructions to get a development system up and running, then
please go to the Development section.

Deployment on Apache

To deploy on Apache on Debian/Ubuntu platforms, do the following.

First, we install some basic pre-requisite packages:

$ sudo apt-get install python-dev zlib1g-dev

Install Apache and mod_wsgi, and enable mod_wsgi:

$ sudo apt-get install apache2 libapache2-mod-wsgi
$ sudo a2enmod wsgi

Create the Python egg cache directory, and make it writable by
the www-data user:

$ sudo mkdir /var/cache/apache2/python-egg-cache
$ sudo chown www-data:www-data /var/cache/apache2/python-egg-cache/

Create a directory to hold the GA4GH server code, configuration
and data. For convenience, we make this owned by the current user
(but make sure all the files are world-readable).:

$ sudo mkdir /srv/ga4gh
$ sudo chown $USER /srv/ga4gh
$ cd /srv/ga4gh

Make a virtualenv, and install the ga4gh package:

$ virtualenv ga4gh-server-env
$ source ga4gh-server-env/bin/activate
(ga4gh-server-env) $ pip install --pre ga4gh # We need the --pre because ga4gh is pre-release
(ga4gh-server-env) $ deactivate

Download and unpack the example data:

$ wget http://www.well.ox.ac.uk/~jk/ga4gh-example-data.tar
$ tar -xf ga4gh-example-data.tar

Create the WSGI file at /srv/ga4gh/application.wsgi and write the following
contents:

from ga4gh.frontend import app as application
import ga4gh.frontend as frontend
frontend.configure("/srv/ga4gh/config.py")

Create the configuration file at /srv/ga4gh/config.py, and write the
following contents:

DATA_SOURCE = "/srv/ga4gh/ga4gh-example-data"

(Many more configuration options are available — see the Configuration
section for a detailed discussion on the server configuration and input data.)

Configure Apache. Edit the file /etc/apache2/sites-enabled/000-default.conf
and insert the following contents towards the end of the file
(within the <VirtualHost:80>...</VirtualHost> block):

WSGIDaemonProcess ga4gh \
 python-path=/srv/ga4gh/ga4gh-server-env/lib/python2.7/site-packages \
 python-eggs=/var/cache/apache2/python-egg-cache
WSGIScriptAlias /ga4gh /srv/ga4gh/application.wsgi

<Directory /srv/ga4gh>
 WSGIProcessGroup ga4gh
 WSGIApplicationGroup %{GLOBAL}
 Require all granted
</Directory>

Restart Apache:

$ sudo service apache2 restart

Test the installation by pointing a web-browser at the root URL; for example,
to test on the installation server use:

$ links http://localhost/ga4gh

We can also test the server by running some API commands; the instructions
in the GA4GH API Demo can be easily adapted here to test out the server across
the network.

There are any number of different ways in which we can set up a WSGI
application under Apache, which may be preferable in different installations.
(In particular, the Apache configuration here may be specific to
Ubuntu 14.04, where this was tested.)
See the mod_wsgi documentation [https://code.google.com/p/modwsgi/] for
more details. These instructions are also specific to Debian/Ubuntu and
different commands and directory structures will be required on
different platforms.

The server can be deployed on any WSGI compliant web server. See the
instructions in the Flask documentation [http://flask.pocoo.org/docs/0.10/deploying/] for more details on
how to deploy on various other servers.

TODO

	Add more detail on how we can test out the API by making some client
queries.

	Add links to the Configuration section to give details on how we
configure the server.

Troubleshooting

If you are encountering difficulties getting the above to work, it is helpful
to turn on debugging output. Do this by adding the following line to your
config file:

DEBUG = True

When an error occurs, the details of this will then be printed to the web server’s
error log (in Apache on Debian/Ubuntu, for example, this is /var/log/apache2/error.log).

Deployment on Docker

It is also possible to deploy the server using Docker.

First, you need an environment running the docker daemon. For non-production use, we recommend boot2docker [http://boot2docker.io/]. For production use you should install docker on a stable linux distro.
Please reference the platform specific Docker installation instructions [https://docs.docker.com/installation/]. OSX and Windows are instructions for boot2docker.

Local Dataset Mounted as Volume

If you already have a dataset on your machine, you can download and deploy the apache server in one command:

$ docker run -e GA4GH_DATA_SOURCE=/data -v /my/ga4gh_data/:/data:ro -d -p 8000:80 --name ga4gh_server afirth/ga4gh-server:latest

Replace /my/ga4gh_data/ with the path to your data.

This will:

	pull the automatically built image from Dockerhub [https://registry.hub.docker.com/u/afirth/ga4gh-server/]

	start an apache server running mod_wsgi on container port 80

	mount your data read-only to the docker container

	assign a name to the container

	forward port 8000 to the container.

For more information on docker run options, see the run reference [https://docs.docker.com/reference/run/].

Demo Dataset Inside Container

If you do not have a dataset yet, you can deploy a container which includes the demo data:

$ docker run -d -p 8000:80 --name ga4gh_demo afirth/ga4gh-server:develop-demo

This is identical to the production container, except that a copy of the demo data is included and appropriate defaults are set.

Developing Client Code: Run a Client Container and a Server

In this example you run a server as a daemon in one container, and the client as an ephemeral instance in another container.
From the client, the server is accessible at http://server/, and the /tmp/mydev directory is mounted at /app/mydev/. Any changes you make to scripts in mydev will be reflected on the host and container and persist even after the container dies.

#make a development dir and place the example client script in it
$ mkdir /tmp/mydev
$ curl https://raw.githubusercontent.com/ga4gh/server/develop/scripts/demo_example.py > /tmp/mydev/demo_example.py
$ chmod +x /tmp/mydev/demo_example.py

start the server daemon
assumes the demo data on host at /my/ga4gh_data
$ docker run -e GA4GH_DEBUG=True -e GA4GH_DATA_SOURCE=/data -v /my/ga4gh_data/:/data:ro -d --name ga4gh_server afirth/ga4gh-server:latest

start the client and drop into a bash shell, with mydev/ mounted read/write
--link adds a host entry for server, and --rm destroys the container when you exit
$ docker run -e GA4GH_DEBUG=True -v /tmp/mydev/:/app/mydev:rw -it --name ga4gh_client --link ga4gh_server:server --entrypoint=/bin/bash --rm afirth/ga4gh-server:latest

call the client code script
root@md5:/app# ./mydev/demo_example.py

call the command line client
root@md5:/app# ga4gh_client variantsets-search http://server/current

#exit and destroy the client container
root@md5:/app# exit

Ports

The -p 8000:80 argument to docker run will run the docker container in the background, and translate calls from your host environment
port 8000 to the docker container port 80. At that point you should be able to access it like a normal website, albeit on port 8000.
Running in boot2docker [http://boot2docker.io/], you will need to forward the port from the boot2docker VM to the host.
From a terminal on the host to forward traffic from localhost:8000 to the VM 8000 on OSX:

$ VBoxManage controlvm boot2docker-vm natpf1 "ga4gh,tcp,127.0.0.1,8000,,8000"

For more info on port forwarding see the VirtualBox manual [https://www.virtualbox.org/manual/ch06.html#natforward] and this wiki article [https://github.com/CenturyLinkLabs/panamax-ui/wiki/How-To%3A-Port-Forwarding-on-VirtualBox].

Advanced

If you want to build the images yourself, that is possible. The afirth/ga4gh-server repo [https://registry.hub.docker.com/u/afirth/ga4gh-server/]
builds automatically on new commits, so this is only needed if you want to modify the Dockerfiles, or build from a different source.

The prod and demo builds are based off of mod_wsgi-docker [https://github.com/GrahamDumpleton/mod_wsgi-docker], a project from the author of mod_wsgi.
Please reference the Dockerfiles and documentation for that project during development on these builds.

Examples

Build the code at server/ and run for production, serving a dataset on local host located at /my/dataset

$ cd server/
$ docker build -t my-repo/my-image .
$ docker run -e GA4GH_DATA_SOURCE=/dataset -v /my/dataset:/dataset:ro -itd -p 8000:80 --name ga4gh_server my-repo/my-image

Build and run the production build from above, with the demo dataset in the container
(you will need to modify the FROM line in /deploy/variants/demo/Dockerfile if you want to use your image from above as the base):

$ cd server/deploy/variants/demo
$ docker build -t my-repo/my-demo-image .
$ docker run -itd -p 8000:80 --name ga4gh_demo my-repo/my-demo-image

Variants

Other Dockerfile implementations are available in the variants folder which install manually.
To build one of these images:

$ cd server/deploy/variants/xxxx
$ docker build -t my-repo/my-image .
$ docker run -itd -p 8000:80 --name my_container my-repo/my-image

Troubleshooting Docker

DNS

The docker daemon’s DNS may be corrupted if you switch networks, especially if run in a VM.
For boot2docker, running udhcpc on the VM usually fixes it.
From a terminal on the host:

$ eval "$(boot2docker shellinit)"
$ boot2docker ssh
> sudo udhcpc
(password is tcuser)

DEBUG

To enable DEBUG on your docker server, call docker run with -e GA4GH_DEBUG=True

$ docker run -itd -p 8000:80 --name ga4gh_demo -e GA4GH_DEBUG=True afirth/ga4gh-server:develop-demo

This will set the environment variable which is read by config.py

You can then get logs from the docker container by running docker logs (container) e.g. docker logs ga4gh_demo

 Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GA4GH 0.1.0a2 documentation

Configuration

The GA4GH reference server has two basic elements to its configuration:
the Data hierarchy and the Configuration file.

Data hierarchy

Data is input to the GA4GH server as a directory hierarchy, in which
the structure of data to be served is represented by the file system. For now,
we support only one dataset, but this will be generalised to multiple
datasets in later releases. An example data layout might be:

ga4gh-data/
 /variants/
 variantSet1/
 chr1.vcf.gz
 chr1.vcf.gz.tbi
 chr2.vcf.gz
 chr2.vcf.gz.tbi
 # More VCFs
 variantSet2/
 chr1.bcf
 chr1.bcf.csi
 chr2.bcf
 chr2.bcf.csi
 # More BCFs
 /reads/
 readGroupSet1
 sample1.bam
 sample1.bam.bai
 sample2.bam
 sample2.bam.bai
 # More BAMS

Configuration file

The GA4GH reference server is a Flask application [http://flask.pocoo.org/]
and uses the standard Flask configuration file mechanisms [http://flask.pocoo.org/docs/0.10/config/].
Many configuration files will be very simple, and will consist of just
one directive instructing the server where to look for data; for
example, we might have

DATA_SOURCE = "/path/to/data/root"

For production deployments, we shouldn’t need to add any more configuration
than this, as the all other keys have sensible defaults. However,
all of Flask’s builtin configuration values [http://flask.pocoo.org/docs/0.10/config/]
are supported, as well as the extra custom configuration values documented
here.

When debugging deployment issues, it can be very useful to turn on extra debugging
information as follows:

DEBUG = True

Warning

Debugging should only be used temporarily and not left on by default.

Configuration Values

	DEFAULT_PAGE_SIZE

	The default maximum number of values to fill into a page when responding
to search queries. If a client does not specify a page size in a query,
this value is used.

	MAX_RESPONSE_LENGTH

	The approximate maximum size of a response sent to a client in bytes. This
is used to control the amount of memory that the server uses when
creating responses. When a client makes a search request with a given
page size, the server will process this query and incrementally build
a response until (a) the number of values in the page list is equal
to the page size; (b) the size of the serialised response in bytes
is >= MAX_RESPONSE_LENGTH; or (c) there are no more results left in the
query.

	REQUEST_VALIDATION

	Set this to True to strictly validate all incoming requests to ensure that
they conform to the protocol. This may result in clients with poor standards
compliance receiving errors rather than the expected results.

	RESPONSE_VALIDATION

	Set this to True to strictly validate all outgoing responses to ensure
that they conform to the protocol. This should only be used for development
purposes.

 Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	GA4GH 0.1.0a2 documentation

Development

Thanks for your interest in helping us develop the GA4GH reference
implementation! There are lots of ways to contribute, and it’s easy
to get up and running. This page should provide the basic information
required to get started; if you encounter any difficulties
please let us know [https://github.com/ga4gh/server/issues]

Warning

This guide is a work in progress, and is incomplete.

Development environment

We need a development Python 2.7 installation, Git, and some basic
libraries. On Debian or Ubuntu, we can install these using

$ sudo apt-get install python-dev zlib1g-dev git

Note

TODO: Document this basic step for other platforms? We definitely want
to tell people how to do this with Brew or ports on a Mac.

If you don’t have admin access to your machine, please contact your system
administrator, and ask them to install the development version of Python 2.7
and the development headers for zlib [http://www.zlib.net/].

Once these basic prerequisites are in place, we can then bootstrap our
local Python installation so that we have all of the packages we require
and we can keep them up to date. Because we use the functionality
of the recent versions of pip and other tools, it is important to
use our own version of it and not any older versions that may be
already on the system.

$ wget https://bootstrap.pypa.io/get-pip.py
$ python get-pip.py --user

This creates a user specific [https://www.python.org/dev/peps/pep-0370/]
site-packages installation for Python, which is based in your ~/.local
directory. This means that you can now install any Python packages you like
without needing to either bother your sysadmin or worry about breaking your
system Python installation. To use this, you need to add the newly installed
version of pip to your PATH. This can be done by adding something
like

export PATH=$HOME/.local/bin:$PATH

to your ~/.bashrc file. (This will be slightly different if you use
another shell like csh or zsh.)

We then need to activate this configuration by logging out, and logging back in.
Then, test this by running:

$ pip --version
pip 6.0.8 from /home/username/.local/lib/python2.7/site-packages (python 2.7)

We are now ready to start developing!

GitHub workflow

First, go to https://github.com/ga4gh/server and click on the ‘Fork’
button in the top right-hand corner. This will allow you to create
your own private fork of the server project where you can work.
See the GitHub documentation [https://help.github.com/articles/fork-a-repo/]
for help on forking repositories.
Once you have created your own fork on GitHub, you’ll need to clone a
local copy of this repo. This might look something like:

$ git clone git@github.com:username/server.git

We can then install all of the packages that we need for developing the
GA4GH reference server:

$ cd server
$ pip install -r requirements.txt --user

This will take a little time as the libraries that we require are
fetched from PyPI and built.

It is also important to set up an
upstream remote [https://help.github.com/articles/configuring-a-remote-for-a-fork/]
for your repo so that you can sync up with the changes that other people
are making:

$ git remote add upstream https://github.com/ga4gh/server.git

All development is done against the develop branch. The stable
branch is meant to be kept stable since it is the branch releases are
based on – don’t touch it! These are the two mainline branches.
Our branching model is loosely based on the one described
here [http://nvie.com/posts/a-successful-git-branching-model/].

All development should be done in a topic branch. That is, a branch
that the developer creates him or herself. These steps will create
a topic branch (replace TOPIC_BRANCH_NAME appropriately):

$ git fetch --all
$ git checkout develop
$ git merge --ff-only upstream/develop
$ git checkout -b TOPIC_BRANCH_NAME

Topic branch names should include the issue number (if there is a tracked
issue this change is addressing) and provide some hint as to what the
changes include. For instance, a branch that addresses the (imaginary)
tracked issue with issue number #123 to add more widgets to the code
might be named 123_more_widgets.

At this point, you are ready to start adding, editing and deleting files.
Stage changes with git add. Afterwards, checkpoint your progress by
making commits:

$ git commit -m 'Awesome changes'

(You can also pass the --amend flag to git commit if you want to
incorporate staged changes into the most recent commit.)

Once you have changes that you want to share with others, push your
topic branch to GitHub:

$ git push origin TOPIC_BRANCH_NAME

Then create a pull request using the GitHub interface. This pull request
should be against the develop branch (this should happen automatically).

At this point, other developers will weigh in on your changes and will
likely suggest modifications before the change can be merged into
develop. When you get around to incorporating these suggestions,
it is likely that more commits will have been added to the develop
branch. Since you (almost) always want to be developing off of the
latest version of the code, you need to perform a rebase to incorporate
the most recent changes from develop into your branch.

$ git fetch --all
$ git checkout develop
$ git merge --ff-only upstream/develop
$ git checkout TOPIC_BRANCH_NAME
$ git rebase develop

At this point, several things could happen. In the best case, the rebase
will complete without problems and you can continue developing. In other
cases, the rebase will stop midway and report a merge conflict. That is,
git has determined that it is impossible for it to determine how to
combine the changes from the new commits in the develop branch and
your changes in your topic branch and needs manual intervention to
proceed. GitHub has some
documentation [https://help.github.com/articles/resolving-merge-conflicts-after-a-git-rebase/] on how to resolve rebase merge conflicts.

Once you have updated your branch to the point where you think that you
want to re-submit the code for other developers to consider, push the
branch again, this time using the force flag:

$ git push --force origin TOPIC_BRANCH_NAME

If you had tried to push the topic branch without using the force flag,
it would have failed. This is because non-force pushes only succeed when
you are only adding new commits to the tip of the existing remote branch.
When you want to do something other than that, such as insert commits
in the middle of the branch history (what git rebase does), or modify a
commit (what git commit --amend does) you need to blow away the remote
version of your branch and replace it with the local version. This is
exactly what a force push does.

Warning

Never use the force flag to push to upstream. Never use the force
flag to push to develop or stable. Only use the force flag on
your repository and on your topic branches. Otherwise you run the risk of
screwing up the mainline branches, which will require manual
intervention by a senior developer and manual changes by every
downstream developer. That is a recoverable situation, but also one
that we would rather avoid. (Note: a hint that this has happened is
that one of the above listed merge commands that uses the --ff-only
flag to merge a remote mainline branch into a local mainline branch
fails.)

One task that you might be asked to do before your topic branch can be
merged is “squashing your commits.” We want the git history to be clean
and informative, and we do that by crafting one and only one commit
message per logical change. In the normal course of development (unless
one is constantly committing with the --amend flag) many intermediate
commits can be created that should be squashed down to (usually) one before
it can be merged. Do this with (assuming you are in your topic branch):

$ git rebase -i develop

This will launch an editor that will give you control over how you want
to structure your commits. Usually you just want to “pick” the first
commit and “squash” all of the subsequent commits, and then ensure that
the final commit message is clean (best practice is to give a short
summary of the change on the first line, a blank line, and then a more
detailed description of the change following, with the issue number
– if there is one – in the detailed description). More information
about the interactive rebase process can be found
here [https://help.github.com/articles/about-git-rebase/].
Once the commits are to your liking, you can push the branch to your
remote repository (which will require a force push if you reordered
or deleted commits that existed in the remote version of the branch).

(It usually is a good idea to squash commits before rebasing your topic
branch on top of a mainline branch. Any commit in your topic branch
could cause a merge conflict, and it’s usually easier to ensure only
one merge conflict will potentially occur, rather than performing a merge
conflict resolution for each commit in your topic branch – the worst case.)

Once your pull request has been merged into develop, you can close
the pull request and delete the remote branch in the GitHub interface.
Locally, run this command to delete the topic branch:

$ git branch -D TOPIC_BRANCH_NAME

Only the tip of the iceberg of git and GitHub has been covered in this
section, and much more can be learned by browsing their documentation.
For instance, get help on the git commit command by running:

$ git help commit

Contributing

See the files CONTRIBUTING.md and STYLE.md for an overview of
the processes for contributing code and the style guidelines that we
use.

Development utilities

All of the command line interface utilities have local scripts
that simplify development: for example, we can run the local version of the
ga2sam program by using:

$ python ga2sam_dev.py

To run the server locally in development mode, we can use the server_dev.py
script, e.g.:

$ python server_dev.py

will run a server using the default configuration. This default configuration
expects a data hierarchy to exist in the ga4gh-example-data directory.
This default configuration can be changed by providing a (fully qualified)
path to a configuration file (see the Configuration
section for details).

Organisation

The code for the project is held in the ga4gh package, which corresponds to
the ga4gh directory in the project root. Within this package, the
functionality is split between the client, server, protocol and
cli modules. The cli module contains the definitions for the
ga4gh_client and ga4gh_server programs.

An important file in the project is ga4gh/_protocol_definitions.py.
This file defines the classes for the GA4GH protocol.
The file is generated using the scripts/process_schemas.py script,
which takes input data from the
GA4GH schemas repo [https://github.com/ga4gh/schemas].
To generate a new _protocol_definitions.py file, use

$ python scripts/process_schemas.py -i path/to/schemas desiredVersion

Where desiredVersion is the version that will be written to the
_protocol_definitions.py file. This version must be in the form
major.minor.revision where major, minor and revision can be any
alphanumeric string.

 Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	GA4GH 0.1.0a2 documentation

Index

 Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_static/logo_ga.png
Global Alliance
for Genomics & Health

_static/plus.png

_static/comment-bright.png

_images/logo_ga.png
Global Alliance
for Genomics & Health

_static/file.png

search.html

 Navigation

 		
 index

 		GA4GH 0.1.0a2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Global Alliance for Genomics and Health.
 Created using Sphinx 1.3.1.

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

