
UFO Documentation
Release 0.16.0

Matthias Vogelgesang

Jul 19, 2023

Contents

1 Users 1
1.1 Installation . 1
1.2 Using UFO . 7
1.3 Developing new task filters . 17
1.4 Frequently Asked Questions . 21

2 Developers 25
2.1 Reporting Bugs . 25
2.2 Changelog . 25

3 Additional notes 37
3.1 Copyright . 37

Index 39

i

ii

CHAPTER 1

Users

1.1 Installation

In this section, information about how to install the UFO library and the accompanying filter suite is described.

1.1.1 Installation on Linux

Installing RPM packages

We provide RPM-based packages for openSUSE, RHEL and CentOS7. First you have to add the openSUSE repository
matching your installation. Go to our OBS page, copy the URL that says “Go to download repository” and use that
URL with:

opensuse $ zypper addrepo <URL> repo-ufo-kit
centos $ wget <URL>/home:ufo-kit.repo -O /etc/yum.repos.d/ufo-kit.repo

Now update the repositories and install the framework and plugins:

opensuse $ zypper install ufo-core ufo-filters
centos $ yum install ufo-core ufo-filters

Installing Debian packages

UFO is part of Debian Sid and thus also available since Ubuntu 17.04. To install both the core framework and the
filters install:

$ apt install libufo-bin libufo-dev ufo-filters

1

https://build.opensuse.org/repositories/home:ufo-kit

UFO Documentation, Release 0.16.0

Installing from source

If you want to build the most recent development version, you have to clone the source from our repository, install all
required dependencies and compile the source.

Retrieving the source code

In an empty directory, issue the following commands to retrieve the current unstable version of the source:

$ git clone https://github.com/ufo-kit/ufo-core
$ git clone https://github.com/ufo-kit/ufo-filters

The latter is used for developers who have write-access to the corresponding repositories. All stable versions are
tagged. To see a list of all releases issue:

$ git tag -l

Installing dependencies

UFO has only a few hard source dependencies: GLib 2.0, JSON-GLib 1.0 and a valid OpenCL installation. Further-
more, it is necessary to build the framework with a recent version of CMake. Sphinx is used to create this docu-
mentation. This gives you a bare minimum with reduced functionality. To build all plugins, you also have to install
dependencies required by the plugins.

OpenCL development files must be installed in order to build UFO. However, we cannot give general advices as
installation procedures vary between different vendors. However, our CMake build facility is in most cases intelligent
enough to find header files and libraries for NVIDIA CUDA and AMD APP SDKs.

Ubuntu/Debian (Tested on Ubuntu 20.04.3 LTS)

On Debian or Debian-based system the following packages are required to build ufo-core:

$ apt install build-essential cmake meson libglib2.0-dev libjson-glib-dev

In case you want to use UFO with NVIDIA cards, you need to install the driver and CUDA. It also makes
sense to change the /lib/systemd/system/nvidia-persistenced.service persistence option from –no-persistence-mode to
–persistence-mode. This will speed up the initialization of the cards. CUDA installation (package versions may of
course quickly change)

$ apt install nvidia-driver-460 nvidia-utils-460 nvidia-cuda-toolkit

You will also need an OpenCL ICD loader. To simply get the build running, you can install

$ apt install ocl-icd-opencl-dev

Generating the introspection files for interfacing with third-party languages such as Python you must install

$ apt install gobject-introspection libgirepository1.0-dev

and advised to install

$ apt install python3-dev

2 Chapter 1. Users

http://developer.gnome.org/glib/stable/
http://live.gnome.org/JsonGlib
http://cmake.org
http://sphinx.pocoo.org

UFO Documentation, Release 0.16.0

To use the ufo-mkfilter script you also need the jinja2 Python package:

$ apt install python3-jinja2

Building the reference documentation and the Sphinx manual requires:

$ apt install gtk-doc-tools python3-sphinx sphinxcontrib-bibtex sphinx_rtd_theme

Additionally the following packages are recommended for some of the plugins:

$ apt install libtiff5-dev

openSUSE and CentOS7

For openSUSE (zypper) and CentOS7 the following packages should get you started:

$ [zypper|yum] install cmake gcc gcc-c++ glib2-devel json-glib-devel

Additionally the following packages are recommended for some of the plugins:

$ [zypper|yum] install libtiff-devel

Building ufo-core with CMake

Change into another empty build directory and issue the following commands to configure

$ cmake <path-to-ufo>

CMake will notify you, if some of the dependencies are not met. In case you want to install the library system-wide
on a 64-bit machine you should generate the Makefiles with

$ cmake -DCMAKE_INSTALL_LIBDIR=lib64 <path-to-ufo>

For earlier versions of PyGObject, it is necessary that the introspection files are located under /usr not /usr/
local. You can force the prefix by calling

$ cmake -DCMAKE_INSTALL_PREFIX=/usr <path-to-ufo>

Last but not least build the framework, introspection files, API reference and the documentation using

$ make

If everything went well, you can install the library with

$ make install

See also:

Why can’t the linker find libufo.so?

To run and build the tests do

$ cmake -DWITH_TESTS=ON <path-to-ufo>
$ make test

1.1. Installation 3

UFO Documentation, Release 0.16.0

Building ufo-core with meson

Configure the build with meson by changing into the root source directory and type

$ meson build

You can change the location of GNU installation directories during this step or later with the meson configure
tool

$ meson build --prefix=/usr
$ cd build && meson configure -Dprefix=/usr/local

Build, test and install everything with

$ cd build
$ ninja
$ ninja install

Building and running the tests

$ cd build
$ ninja configure -Dwith_tests=true
$ ninja test

Building ufo-filters

Once ufo-core is installed you can build the filter suite in a pretty similar way

$ mkdir -p build/ufo-filters
$ cd build/ufo-filters
$ cmake <path-to-ufo-filters> -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_LIBDIR=lib64
$ make
$ make install

Python support

ufo-core has GObject introspection to let third-party languages interface with the library. To build the support files
you need the GObject introspection scanner g-ir-scanner and compiler g-ir-compiler which you can get on
Ubuntu via

$ apt install python-gi-dev

In the python/ subdirectory of the source distribution, additional Python modules to interface more easily with the
framework is provided. To install the NumPy module and the high-level interface run

$ cd python/ && python setup install

Refer to the README for additional information.

1.1.2 Installation on MacOS X

Preface: This information is kindly provided by Andrey Shkarin and Roman Shkarin.

4 Chapter 1. Users

UFO Documentation, Release 0.16.0

1. Install the MacPorts from http://macports.org

Note: If you previously installed MacPorts, and it can not be started after latest installation. Error: port dlopen
(. . . You must download the tar.gz file and install it using a terminal:

./configure
make
sudo make install

2. Install the necessary packages through macports:

sudo port install glib2
sudo port install gtk2
sudo port install json-glib

3. Install CMake from http://cmake.org

4. Make ufo-core

1. Got to the directory ufo-core and run:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
cmake .

2. Run:

make
sudo make install

3. Installation is complete, perhaps the last lines are as follows:

-- Installing: /usr/local/lib/pkgconfig/ufo.pc
CMake Error at src/bindings/cmake_install.cmake:33 (FILE):
file INSTALL cannot find

"/Users/Andrey/Desktop/ufo-distr/ufo-core/src/bindings/../src/Ufo-0.1.gir".
Call Stack (most recent call first):

src/cmake_install.cmake:60 (INCLUDE)
cmake_install.cmake:32 (INCLUDE)

make: *** [install] Error 1

5. Make filters

1. Go to ufo-filters directory. Now, since libufo was installed in lib64, we must update the paths to look for
shared libraries:

export DYLD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64
export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

2. Run:

cmake .
make
sudo make install

6. Build the test project and verify that everything works.

1.1. Installation 5

http://macports.org
http://cmake.org

UFO Documentation, Release 0.16.0

1.1.3 Installation with Docker

Before, proceeding have a look at the Docker documentation and install Docker on your system.

Rady-to-use Images

You can pull the following images from the ufo-kit repository on dockerhub without the need of Building them.
They contain the complete software stack including ufo-core, ufo-filters, tofu and their dependencies (except NVIDIA
driver), so after the installation you can start using all the available tools, including GUIs:

docker pull tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04
docker pull tfarago/ufo-kit:ufo-intel-ubuntu-20.04

Build

Depending on the GPUs in your system you have to use a different Dockerfile. Before doing so, create an empty
directory and copy the respective Dockerfile from the docker directory and rename it to Dockerfile. In the case
of the AMD-based Dockerfile you have to download AMD-APP-SDK-v3.0-0.113.50-Beta-linux64, and move it into
the same directory. Now go into the directory and type:

$ docker build -t ufo .

This will build an image tagged ufo containing both ufo-core and ufo-filters.

Usage on AMD

Run the image in a new Docker container using:

$ docker run -it --device=/dev/ati/card0 ufo

Usage on NVIDIA

Install nvidia-container-runtime and then pull the image:

$ docker pull tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04

and run:

$ docker run --rm -it --gpus all tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04

If you want to use the graphical user interfaces (GUIs) run:

$ sudo xhost +local:username
$ docker run --rm -it --gpus all -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY
→˓tfarago/ufo-kit:ufo-nvidia-ubuntu-20.04

Usage on Intel

First install the OpenCL runtime (Ubuntu-specific but it should be similar for other distributions):

6 Chapter 1. Users

https://docs.docker.com/engine/installation
https://hub.docker.com/r/tfarago/ufo-kit/
https://github.com/ufo-kit/ufo-core
https://github.com/ufo-kit/ufo-filters
https://github.com/ufo-kit/tofu
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
https://nvidia.github.io/nvidia-container-runtime/

UFO Documentation, Release 0.16.0

$ sudo apt-get install intel-opencl-icd

then pull the image:

$ docker pull tfarago/ufo-kit:ufo-intel-ubuntu-20.04

and run the following:

$ docker run --rm -it --device /dev/dri:/dev/dri tfarago/ufo-kit:ufo-intel-ubuntu-20.
→˓04

or this for GUI support:

$ sudo xhost +local:username
$ docker run --rm -it --device /dev/dri:/dev/dri -v /tmp/.X11-unix:/tmp/.X11-unix -e
→˓DISPLAY=$DISPLAY tfarago/ufo-kit:ufo-intel-ubuntu-20.04

1.1.4 Installation on Windows with WSL2

With Windows 11 and WSL2 it is possible to use Intel OpenCL GPU support. Please follow Intel’s documentation for
detailed installation procedure. Long story short, you need to install WSL2 and Ubuntu 20.04 from Microsoft Store,
then the Intel driver inside Windows and then OpenCL runtime inside Ubuntu 20.04 running in the WSL. After that,
follow the normal installation procedure (without the nvidia packages) described in Ubuntu/Debian (Tested on Ubuntu
20.04.3 LTS).

1.2 Using UFO

UFO is a framework for high-speed image processing at Synchrotron beamlines. It facilitates every available hardware
device to process tomographic data as fast as possible with on-line reconstruction as the ultimate goal.

It is written in C using the GLib and GObject libraries to provide an object-oriented API.

After installing the framework you’re ready to build your own image processing pipeline or implement a new filter.

1.2.1 Quick start guide

There are three ways to specify and execute a graph of tasks. The simplest method requires you to construct a pipeline
on the command line using the ufo-launch tool which is similar to gst-launch from the GStreamer package. The
second method involves writing a JSON file that is executed by the ufo-runjson utility, the other way uses the
provided language bindings to setup the task graph specifically.

To influence the execution from the process environment check the existing environment variables.

Launching pipelines on the command line

The ufo-launch tool receives a list of tasks separated by exclamation marks ! and executes the data flow in that
order. To specify task parameters, you can add key-value pairs seperated by an equal sign. For example, to split a
multi EDF file to single TIFFs you would do:

$ ufo-launch read path=file.edf ! write filename=out-%05i.tif

You can concatenate an arbitrary number of tasks. For example to blur the lena image you would something like this:

1.2. Using UFO 7

https://www.intel.com/content/www/us/en/artificial-intelligence/harness-the-power-of-intel-igpu-on-your-machine.html
https://www.intel.com/content/www/us/en/download/19344/30579/intel-graphics-windows-dch-drivers.html?
https://github.com/intel/compute-runtime/releases/tag/21.35.20826
http://en.wikipedia.org/wiki/Synchrotron
http://developer.gnome.org/glib/
http://developer.gnome.org/gobject/stable/index.html
http://docs.gstreamer.com/display/GstSDK/gst-launch

UFO Documentation, Release 0.16.0

$ ufo-launch read path=lena.tif ! blur size=20 sigma=5 ! write

Some tasks receive multiple inputs which requires the use of brackets to collect all arguments. For example, a simple
flat field correction would look like this:

$ ufo-launch [read path=radios, read path=darks, read path=flats]! flat-field-correct
→˓! write filename=foo.tif

Using a JSON description

Our UFO JSON format has the advantage to be language-agnostic and portable across different versions of the UFO
framework. Let’s start with a simple example, that computes the one-dimensional Fourier-transform on a set of input
files:

{
"nodes" : [

{
"plugin": "read",
"name": "reader",
"properties" : { "path": "*.tif" }

},
{

"plugin": "fft",
"name": "fft"

},
{

"plugin": "write",
"name": "writer",
"properties" : { "filename": "fft-%05i.tif" }

}
],
"edges" : [

{
"from": { "name": "reader" },
"to": { "name": "fft" }

},
{

"from": { "name": "fft" },
"to": { "name": "writer" }

}
]

}

Save this to a file named fft.json and execute it by calling the ufo-runjson tool:

$ ufo-runjson fft.json

C interface

A simple UFO program written in C that loads the JSON description can look like this:

/* ufo/ufo.h is the only header allowed to be included */
#include <ufo/ufo.h>

(continues on next page)

8 Chapter 1. Users

UFO Documentation, Release 0.16.0

(continued from previous page)

int main (void)
{

UfoTaskGraph *graph;
UfoBaseScheduler *scheduler;
UfoPluginManager *manager;

#if !(GLIB_CHECK_VERSION (2, 36, 0))
g_type_init ();

#endif

graph = UFO_TASK_GRAPH (ufo_task_graph_new ());
manager = ufo_plugin_manager_new ();

ufo_task_graph_read_from_file (graph, manager, "hello-world.json", NULL);

scheduler = ufo_scheduler_new ();
ufo_base_scheduler_run (scheduler, graph, NULL);

/* Destroy all objects */
g_object_unref (graph);
g_object_unref (scheduler);
g_object_unref (manager);
return 0;

}

You can compile this with:

$ gcc `pkg-config --cflags ufo` foo.c -o foo `pkg-config --libs ufo`

As you can see we simply construct a new UfoGraph object from a JSON encoded configuration file and execute the
computation pipeline with a UfoScheduler object.

Rather than loading the structure from a file, you can also construct it by hand:

#include <ufo/ufo.h>

int main (void)
{

UfoTaskGraph *graph;
UfoPluginManager *manager;
UfoBaseScheduler *scheduler;
UfoTaskNode *reader;
UfoTaskNode *writer;

#if !(GLIB_CHECK_VERSION (2, 36, 0))
g_type_init ();

#endif

graph = UFO_TASK_GRAPH (ufo_task_graph_new ());
manager = ufo_plugin_manager_new ();
scheduler = ufo_scheduler_new ();
reader = ufo_plugin_manager_get_task (manager, "read", NULL);
writer = ufo_plugin_manager_get_task (manager, "write", NULL);

g_object_set (G_OBJECT (reader),
"path", "/home/user/data/*.tif",
"number", 5,

(continues on next page)

1.2. Using UFO 9

UFO Documentation, Release 0.16.0

(continued from previous page)

NULL);

ufo_task_graph_connect_nodes (graph, reader, writer);
ufo_base_scheduler_run (scheduler, graph, NULL);
return 0;

}

Python Interface

There are no plans to support any languages with manually written language bindings. However, UFO is a GObject-
based library from which gir (GObject Introspection) files can be generated at build time. Any language that supports
GObject Introspection and the gir/typelib format is thus able to integrate UFO. No manual intervention is need if
the GObject Introspection tools are found.

Because several languages support GObject Introspection, you have to consult the appropriate reference manuals to
find out how the GObjects are mapped to their language equivalents. Some of the options are

• Python: PyGObject

• Javascript: Gjs and Seed

• Vala has direct support using the --pkg option

A GNOME wiki page lists all available runtime bindings.

The simple example from the beginning – with Python-GObject installed – would look like this:

from gi.repository import Ufo

manager = Ufo.PluginManager()
graph = Ufo.TaskGraph()
scheduler = Ufo.Scheduler()

graph.read_from_file(manager, "some-graph.json")
scheduler.run(graph)

Similarly, constructing the graph by hand maps one-to-one to the Python object and keyword system:

from gi.repository import Ufo

graph = Ufo.TaskGraph()
manager = Ufo.PluginManager()
scheduler = Ufo.Scheduler()

reader = manager.get_task('read')
writer = manager.get_task('write')
reader.set_properties(path='/home/user/data/*.tif', number=5)

graph.connect_nodes(reader, writer)
scheduler.run(graph)

1.2.2 Application programming interface

This section explains the application programming interface of UFO in order to build programs integrating the UFO
processing chain rather than using one of the higher-level programs. For the remainder of this section, we will use
both the Python and C interfaces to illustrate the main concepts. They are functionally equivalent, just remember that

10 Chapter 1. Users

http://live.gnome.org/PyGObject
http://live.gnome.org/Gjs
http://live.gnome.org/Seed
http://live.gnome.org/GObjectIntrospection/Users

UFO Documentation, Release 0.16.0

the C module prefixes UFO_, ufo_ and Ufo translate to the Python package Ufo and some conventions such as
constructors (ending with _new) and exceptions (last parameter of type GError **) translate seamlessly into their
Python equivalents.

In almost all cases, the steps to set up a processing chain are the same:

1. Instantiation of a plugin manager in order to load tasks

2. Configuration and parameterization of the tasks

3. Instantiation of a task graph to specify the data flow

4. Instantiate of a scheduler to run the task graph object

Preliminaries

We assume that UFO is built and installed correctly with the header (for the C API) and the introspection files (ending
in .typelib for Python). You can verify that you compilation and linkage is possible by calling:

pkg-config --cflags --libs ufo

which should give reasonable output. To get started you have to include the necessary header files or import the
respective Python meta module. Note that with recent Python introspection releases, you have to specify the version
of the module you want to import before actually importing the module.

/* C and C++ */
#include <ufo/ufo.h>

Python
import gi
gi.require_version('Ufo', '0.0')
from gi.repository import Ufo

Instantiating tasks

Tasks are loaded dynamically at run-time and require a plugin manager to locate them in the configured search paths.
The very first thing you want to do is create a new plugin manager. In GObject C every object is reference-counted, so if
you want to add and remove ownership to an object call g_object_ref() and g_object_unref() respectively.
In Python this is done automatically.

/* C and C++ */
UfoPluginManager *pm;

pm = ufo_plugin_manager_new ();

/* some time later */

g_object_unref (pm);

Python
pm = Ufo.PluginManager()

Once you have a plugin manager, you can load new tasks (which are actually task nodes!) by passing the name to the
get_task() method. From now on, any time you will see a GError ** pointer location means as the last method
argument, you can either pass NULL to ignore it or pass the address of GError * pointer to receive information in
case something went wrong. In Python these are automatically translated to run-time exceptions you may examine.

1.2. Using UFO 11

UFO Documentation, Release 0.16.0

/* C and C++ */
UfoTaskNode *read_task;
UfoTaskNode *write_task;
GError *error = NULL;

read_task = ufo_plugin_manager_get_task (pm, "read", &error);
write_task = ufo_plugin_manager_get_task (pm, "read", &error);

if (error != NULL) {
g_printerr ("error: %s\n", error->message);
g_error_free (error);

}

g_object_unref (read_task);
g_object_unref (write_task);

Python
pm = Ufo.PluginManager()
read_task = pm.get_task('read')
write_task = pm.get_task('write')

The default search path is determined at built time of libufo however you can extend that by adding additional paths
to the UFO_PLUGIN_PATH environment variable.

Configuring tasks

Once you loaded all required tasks you most likely want to configure them. To make this as flexible as possible we use
the GObject property mechanism which gives us type-safe parameters that you can monitor for changes. It is possible
to set a single property, however this is a bit of a hassle in C, or many at once:

/* C and C++ */
/* Setting a single value. */
GValue path = {0,};

g_value_init (&path, G_TYPE_STRING);
g_value_set_string (&path, "/home/data/*.tif");
g_object_set_property (read_task, "path", &path);
g_value_unset (&path);

/* Setting multiple values. Mark end with NULL. */
g_object_set (read_task,

"path", "/home/data/*.tif",
"start", 10,
"number", 100,
NULL);

Python
read_task.props.path = '/home/data/*.tif'
read_task.set_properties(path='/home/data/*.tif', start=10, number=100)

The properties of the standard UFO tasks are documented at http://ufo-filters.readthedocs.io.

12 Chapter 1. Users

http://ufo-filters.readthedocs.io

UFO Documentation, Release 0.16.0

Connecting tasks

To specify the flow from one task to another, you must connect them in a task graph object. Note that although you
could connect them in a wrong way, for example a writer into a reader, you will get an error once you try to execute
such a graph.

There is the simple connect_nodes() interface for standard cases which will connect the output of a task to the
first input of another task and the complete connect_nodes_full() interface which will allow you to specify
the input port of the receiving task.

/* C and C++ */
UfoTaskGraph *graph;

graph = UFO_TASK_GRAPH (ufo_task_graph_new ());

/* simple API */
ufo_task_graph_connect_nodes (graph, read, write);

/* complete API */
ufo_task_graph_connect_nodes_full (graph, read, write, 0);

Python
graph = Ufo.TaskGraph()

simple API
graph.connect_nodes(read, write)

complete API
graph.connect_nodes_full(read, write, 0)

Execution

The last step is execution of the data flow structure. This requires a scheduler object on which we call the run method
with the task graph:

/* C and C++ */
UfoBaseScheduler *scheduler;

scheduler = ufo_scheduler_new ();
ufo_base_scheduler_run (scheduler, graph, &error);

Python
scheduler = Ufo.Scheduler()
scheduler.run(graph)

You can configure the execution using scheduler properties and some of the Environment variables.

Reference

To get a complete reference, please install gtk-doc and install the generated API reference. You can view it with the
Devhelp program. Another option is to browse the automatically generated PyGObject API reference.

1.2. Using UFO 13

https://lazka.github.io/pgi-docs/#Ufo-0.0

UFO Documentation, Release 0.16.0

1.2.3 Environment variables

You can modify the run-time behaviour by setting environment variables:

G_MESSAGES_DEBUG
Controls the output of the library. By default nothing is printed on stdout. Set this to all to see debug output.

UFO_PLUGIN_PATH
Colon-separated list of paths in which plugin manager looks for additional task modules. The plugins are load
with descending priority.

UFO_KERNEL_PATH
Colon-separated list of search paths for OpenCL kernel files.

UFO_DEVICES
Controls which OpenCL devices should be used. It works similar to the CUDA_VISIBLE_DEVICES environ-
ment variables, i.e. set it to 0,2 to choose the first and third device that’s available.

UFO_DEVICE_TYPE
Controls which OpenCL device types should be considered for execution. The variable is a comma-separated
list with strings being cpu, gpu and acc, i.e. to use both CPU and GPUs set UFO_DEVICE_TYPE=”cpu,gpu”.

1.2.4 Task execution

This section provides a deeper look into the technical background concerning scheduling and task execution. The
execution model of the UFO framework is based on the Ufo.TaskGraph that represents a network of intercon-
nected task nodes and the Ufo.BaseScheduler that runs these tasks according to a pre-defined strategy. The
Ufo.Scheduler is a concrete implementation and is the default choice because it is able to instantiate tasks in a
multi-GPU environment. For greater flexibility, the Ufo.FixedScheduler can be used to define arbitrary GPU
mappings.

Profiling execution

By default, the scheduler measures the run-time from initial setup until processing of the last data item finished. You
can get the time in seconds via the time property

g = Ufo.TaskGraph()
scheduler = Ufo.Scheduler()
scheduler.run(g)
print("Time spent: {}s".format(scheduler.time))

To get more fine-grained insight into the execution, you can enable tracing

scheduler.props.enable_tracing = True
scheduler.run(g)

and analyse the generated traces for OpenCL (saved in opencl.PID.json) and general events (saved in trace.
PID.json). To visualize the trace events, you can either use the distributed ufo-prof tool or Google Chrome or
Chromium by going to chrome://tracing and loading the JSON files.

Broadcasting results

Connecting a task output to multiple consumers will in most cases cause undefined results because some data is
processed differently than others. A certain class of problems can be solved by inserting explicit Ufo.CopyTask

14 Chapter 1. Users

UFO Documentation, Release 0.16.0

nodes and executing the graph with a Ufo.FixedScheduler. In the following example, we want write the same
data twice with a different prefix:

from gi.repository import Ufo

pm = Ufo.PluginManager()
sched = Ufo.FixedScheduler()
graph = Ufo.TaskGraph()
copy = Ufo.CopyTask()

data = pm.get_task('read')

write1 = pm.get_task('write')
write1.set_properties(filename='w1-%05i.tif')

write2 = pm.get_task('write')
write2.set_properties(filename='w2-%05i.tif')

graph.connect_nodes(data, copy)
graph.connect_nodes(copy, write1)
graph.connect_nodes(copy, write2)

sched.run(graph)

Note: The copy task node is not a regular plugin but part of the core API and thus cannot be used with tools like
ufo-runjson or ufo-launch.

1.2.5 JSON Configuration Format

JSON is a self-contained, human-readable data-interchange format. It is pure Unicode text and language independent.
The main structures objects containing key/value pairs (hash-tables, dictionaries, associative arrays . . .) and ordered
lists (arrays, vectors, sequences . . .) of objects or values. For a complete description you may refer to the complete
reference at json.org.

The configuration of a filter setup is stored in a JSON-encoded text file with a .json suffix. The root object must at
least contain a nodes and an edges array

{ "nodes": [], "edges": [] }

Nodes array

The nodes array contains filter objects that are executed on run-time. Information how they are connected is provided
in the Edges array.

Filter object

A filter consists at least of a plugin key string pointing to the filter that is going to be used and a name string field
for unique identification. Of course, plugins have to be available as a shared object in UFO’s path.

To configure the filter, the properties field can be used. This is an object that maps string keys specifying the
actual filter property to the value. Therefore, the Python code to set a property

1.2. Using UFO 15

http://json.org
http://json.org

UFO Documentation, Release 0.16.0

read = graph.get_filter('read')
read.set_properties(path='/home/user/data/*.tif', count=5)

translates to

{ "path": "/home/user/data/*.tif", "count": 5 }

Example nodes array

An example node array looks like this:

"nodes" : [
{

"plugin": "read",
"name": "read",
"properties" : { "path": "/home/user/data/*.tif", "count": 5 }

},
{

"plugin": "write",
"name": "write"

}
]

Edges array

The edges array specifies how the nodes in a Nodes array are connected. Each entry is an object that contains two
objects from and to. In both objects you have to specify at least the node name with the name key. Furthermore, if
there are several inputs or outputs on a node, you have to tell which input and output to use with the input on the to
node and the output key on the from node. If you omit these, they are assumed to be 0.

To connect the nodes defined in the Example nodes array all you have to do is

"edges" : [
{

"from": {"name": "read"},
"to": {"name": "write", "input": 2}

}
]

Note, that the names specify the name of the node, not the plugin.

Loading and Saving the Graph

The UfoGraph class exports the ufo_graph_read_from_json and ufo_graph_read_save_to_json
methods which are responsible for loading and saving the graph. In Python this would simply be:

from gi.repository import Ufo

g1 = Ufo.TaskGraph()

set up the filters using graph.get_filter() and filter.connect_to()

g1.run()

(continues on next page)

16 Chapter 1. Users

UFO Documentation, Release 0.16.0

(continued from previous page)

g1.save_to_json('graph.json')

g2 = Ufo.TaskGraph()
g2.load_from_json('graph.json')
g2.run()

1.3 Developing new task filters

UFO filters are simple shared objects that expose their GType and implement the UfoFilter class.

1.3.1 Writing a task in C

Writing a new UFO filter consists of filling out a pre-defined class structure. To avoid writing the GObject boild plate
code, you can call

ufo-mkfilter AwesomeFoo

to generate the header and source file templates. The name must be a camel-cased version of your new filter.

You are now left with two files ufo-awesome-foo-task.c and ufo-awesome-foo-task.h. If you intend
to distribute that filter with the main UFO filter distribution, copy these files to ufo-filters/src. If you are not
depending on any third-party library you can just add the following line to the CMakeLists.txt file:

set(ufofilter_SRCS
...
ufo-awesome-foo-task.c
...)

You can compile this as usual by typing

make

in the CMake build directory of ufo-filters.

Initializing filters

Regardless of filter type, the ufo_awesome_foo_task_init() method is the constructor of the filter object and
the best place to setup all data that does not depend on any input data.

The ufo__awesome_foo_task_class_init() method on the other hand ist the class constructor that is used
to override virtual methods by setting function pointers in each classes’ vtable.

You must override the following methods: ufo_awesome_task_get_num_inputs,
ufo_awesome_task_get_num_dimensions, ufo_awesome_task_get_mode,
ufo_awesome_task_setup, ufo_awesome_task_get_requisition,
ufo_awesome_task_process and/or ufo_awesome_task_generate.

get_num_inputs, get_num_dimensions and get_mode are called by the run-time in order to determine
how many inputs your task expects, which dimensions are allowed on each input and what processing mode your task
runs

1.3. Developing new task filters 17

UFO Documentation, Release 0.16.0

static guint
ufo_awesome_task_get_num_inputs (UfoTask *task)
{

return 1; /* We expect only one input */
}

static guint
ufo_awesome_task_get_num_dimensions (UfoTask *task, guint input)
{

return 2; /* We ignore "input" and always expect 2 dimensions */
}

static UfoTaskMode
ufo_awesome_task_get_mode (UfoTask *task)
{

/* We process one item after another */
return UFO_TASK_MODE_PROCESSOR;

}

The mode decides which functions of a task are called. Each task can provide a process function that takes input
data and optionally writes output data and a generate function that does not take input data but writes data. Both
functions return a boolean value to signal if data was produced or not (e.g. end of stream):

• UFO_TASK_MODE_PROCESSOR: The task reads data and optionally writes data. For that it must implement
process.

• UFO_TASK_MODE_GENERATOR: The task only produces data (e.g. file readers) and must implement
generate.

• UFO_TASK_MODE_REDUCTOR: The tasks reads the input stream and produces another output stream. Reading
is accomplished by implementing process whereas production is done by generate.

setup can be used to initialize data that depends on run-time resources like OpenCL contexts etc. This method is
called only once

static void
ufo_awesome_task_setup (UfoTask *task,

UfoResources *resources,
GError **error)

{
cl_context context;

context = ufo_resources_get_context (resources);

/*
Do something with the context like allocating buffers or create
kernels.

*/
}

On the other hand, get_requisition is called on each iteration right before process. It is used to determine
which size an output buffer must have depending on the inputs. For this you must fill in the requisition structure
correctly. If our output buffer needs to be as big as our input buffer we would specify

static void
ufo_awesome_task_get_requisition (UfoTask *task,

UfoBuffer **inputs,
UfoRequisition *requisition)

(continues on next page)

18 Chapter 1. Users

UFO Documentation, Release 0.16.0

(continued from previous page)

{
ufo_buffer_get_requisition (inputs[0], requisition);

}

Finally, you have to override the process method

static gboolean
ufo_awesome_task_process (UfoTask *task,

UfoBuffer **inputs,
UfoBuffer *output,
UfoRequisition *requisition)

{
UfoGpuNode *node;
cl_command_queue cmd_queue;
cl_mem host_in;
cl_mem host_out;

/* We have to know to which GPU device we are assigned to */
node = UFO_GPU_NODE (ufo_task_node_get_proc_node (UFO_TASK_NODE (task)));

/* Now, we can get the command queue */
cmd_queue = ufo_gpu_node_get_cmd_queue (node);

/* ... and get hold of the data */
host_in = ufo_buffer_get_device_array (inputs[0], cmd_queue);
host_out = ufo_buffer_get_device_array (output, cmd_queue);

/* Call a kernel or do other meaningful work. */
}

Tasks can and will be copied to speed up the computation on multi-GPU systems. Any parameters that are accessible
from the outside via a property are automatically copied by the run-time system. To copy private data that is only
visible at the file scope, you have to override the UFO_NODE_CLASS method copy and copy the data yourself. This
method is always called before setup so you can be assured to re-create your private data on the copied task.

Note: It is strongly encouraged that you export all your parameters as properties and re-build any internal data
structures off of these parameters.

Actions performed after inputs have stopped

Every filter can listen to the inputs_stopped signal which is emitted when no more input data will come.
By registering a callback function for this signal, your filter can execute cleanup actions which need to be done
prior to filter destruction. This is typically useful when tasks are referenced in a multithreaded application
from an outside environment, like Python. It could happen that an outside thread waits for a task to do some-
thing with an input, but if that input never comes, the outside thread might block forever. For instance, this
might happen when ufo_output_task_get_output_buffer of the OutputTask is called. Thus, the
task listens to the inputs_stopped signal and stops blocking the outside caller when it arrives. If you need
to execute such cleanup actions, call g_signal_connect (self, "inputs_stopped", (GCallback)
your_callback_func, NULL) in the init function of your task.

1.3. Developing new task filters 19

UFO Documentation, Release 0.16.0

Additional source files

For modularity reasons, you might want to split your filter sources into different compilation units. In order to compile
and link them against the correct library, add the following statements to the src/CMakeLists.txt file

set(awesome_foo_misc_SRCS foo.c bar.c baz.c)

in case your filter is still called AwesomeFoo. Notice, that the variable name matches the plugin name with under-
scores between the lower-cased letters.

Writing point-based OpenCL filters

For point-based image operations it is much faster to use the cl-plugin that writing a full-fledged C filter. We create
a new file simple.cl, that contains a simple kernel that inverts our normalized input (you can silently ignore the
scratch parameter for now):

kernel void invert(global float *input, global float *output)
{

/* where are we? */
int index = get_global_id(1) * get_global_size(0) + get_global_id(0);
output[index] = 1.0f - input[index];

}

We wire this small kernel into this short Python script:

from gi.repository import Ufo

pm = Ufo.PluginManager()
reader = pm.get_filter('reader')
writer = pm.get_filter('writer')

this filter applies the kernel
cl = pm.get_filter('opencl')
cl.set_properties(filename='simple.cl', kernel='invert')

g = Ufo.TaskGraph()
g.connect_nodes(reader, cl)
g.connect_nodes(cl, writer)

s = Ufo.Scheduler()
s.run(g)

For more information on how to write OpenCL kernels, consult the official OpenCL reference pages.

Reporting errors at run-time

From within a filter (or any library for that matter) never call functions such as exit() or abort(). This pre-
vents the calling application from identification of the problem as well as recovery. Instead use the builtin GError
infrastructure that – as a bonus – map nicely to exceptions in Python:

static void
ufo_awesome_task_setup (UfoTask *task,

UfoResources *resources,
GError **error)

{

(continues on next page)

20 Chapter 1. Users

http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

UFO Documentation, Release 0.16.0

(continued from previous page)

if (error_condition) {
g_set_error (error, UFO_TASK_ERROR, UFO_TASK_ERROR_SETUP,

"Error because of condition");
return;

}
}

Note that g_set_error receives printf-style format strings which means you should be as specific as possible with
the given error message.

1.3.2 The GObject property system

Wait until a property satisfies a condition

For some filters it could be important to not only wait until input buffers arrive but also properties change their values.
For example, the back-projection should only start as soon as it is assigned a correct center-of-rotation. To implement
this, we have to define a condition function that checks if a GValue representing the current property satisfies a certain
condition

static gboolean is_larger_than_zero(GValue *value, gpointer user_data)
{

return g_value_get_float(value) > 0.0f;
}

As the filter installed the properties it also knows which type it is and which g_value_get_*() function to call.
Now, we wait until this conditions holds using ufo_filter_wait_until

/* Somewhere in ufo_filter_process() */
ufo_filter_wait_until(self, properties[PROP_CENTER_OF_ROTATION],

&is_larger_than_zero, NULL);

Warning: ufo_filter_wait_until might block indefinitely when the condition function never returns
TRUE.

See also:

How can I synchronize two properties?

1.4 Frequently Asked Questions

1.4.1 Installation

Why can’t the linker find libufo.so?

In the rare circumstances that you installed UFO from source for the first time by calling make install, the
dynamic linker does not know that the library exists. If this is the case issue

$ sudo ldconfig

on Debian systems or

1.4. Frequently Asked Questions 21

UFO Documentation, Release 0.16.0

$ su
$ ldconfig

on openSUSE systems.

If this is not working, the library is neither installed into /usr/lib nor /usr/local/lib on 32-bit systems or
/usr/lib64 and /usr/local/lib64 on 64-bit systems.

How are kernel files loaded?

In a similar way as plugins. However, OpenCL kernel files are not architecture specific and are installed to
${PREFIX}/share/ufo. Additional search paths can be added at run-time through the UFO_KERNEL_PATH
environment variable.

1.4.2 Usage

Why do I get a “libfilter<foo>.so not found” message?

Because the UFO core system is unable to locate the filters. By default it looks into ${LIBDIR}/ufo. If you don’t
want to install the filters system-wide, you can tell the system to try other paths as well by appending paths to the
UFO_PLUGIN_PATH environment variable.

How can I control the debug output from libufo?

Generally, UFO emits debug messages under the log domain Ufo. If you use a UFO-based tool and cannot see debug
messages, you might have to enable them by setting the G_MESSAGES_DEBUG environment variable, i.e.:

export G_MESSAGES_DEBUG=Ufo

To handle these messages from within a script or program, you must set a log handler that decides what to do with the
messages. To ignore all messages in Python, you would have to write something like this:

from gi.repository import Ufo, GLib

def ignore_message(domain, level, message, user):
pass

if __name__ == '__main__':
GLib.log_set_handler("Ufo", GLib.LogLevelFlags.LEVEL_MASK,

ignore_message, None)

How can I use Numpy output?

Install the ufo-python-tools. You can then use the BufferInput filter to process Numpy arrays data:

from gi.repository import Ufo
import ufo.numpy
import numpy as np

arrays = [i*np.eye(100, dtype=np.float32) for i in range(1, 10)]
buffers = [ufo.numpy.fromarray(a) for a in arrays]

(continues on next page)

22 Chapter 1. Users

http://developer.gnome.org/glib/unstable/glib-Message-Logging.html#g-log-set-handler

UFO Documentation, Release 0.16.0

(continued from previous page)

pm = Ufo.PluginManager()
numpy_input = pm.get_task('bufferinput')
numpy_input.set_properties(buffers=buffers)

How can I synchronize two properties?

Although this is a general GObject question, synchronizing two properties is particularly important if the receiving
filter depends on a changed property. For example, the back-projection should start only if a center-of-rotation is
known. In Python you can use the bind_property function from the ufotools module like this:

from gi.repository import Ufo
import ufotools.bind_property

pm = Ufo.PluginManager()
cor = g.get_task('centerofrotation')
bp = g.get_task('backproject')

Now connect the properties
ufotools.bind_property(cor, 'center', bp, 'axis-pos')

In C, the similar g_object_bind_property function is provided out-of-the-box.

1.4. Frequently Asked Questions 23

UFO Documentation, Release 0.16.0

24 Chapter 1. Users

CHAPTER 2

Developers

2.1 Reporting Bugs

Bug reports regarding the UFO framework should be submitted to the ufo-core issue tracker. Anything related to
specific filter behaviour should be filed on the ufo-filters issue tracker.

2.2 Changelog

Here you can see the full list of changes between each ufo-core release.

2.2.1 Version 0.16

Enhancements:

• OutputTask signals end via “inputs-stopped” signal

• InputTask: Improve performance

• Add ufo_buffer_set/get_layout and pass through

Fixes:

• Better error propagation

• Fix #116: allow _get_requisition to report errors

• Fix #130: add ufo_buffer_swap_data interface

• Fix #143: invalid object dereference

• Fix #145: remove sphinx-tabs dependency

• Fix #146: multi GPU expansion broke

• Fix #147: do correct comparison

25

https://github.com/ufo-kit/ufo-core/issues
https://github.com/ufo-kit/ufo-filters/issues

UFO Documentation, Release 0.16.0

• Fix #148: re-write longest path algorithm

• Fix #154: add UFO_RESOURCES_CHECK_SET_AND_RETURN

Breaks:

• Remove _with_opts functions

• Retire ufo_graph_{{shallow_}copy|subgraph,flatten}

• Raise GLib version to 2.38

• Remove address options from CLI tools

• Remove daemon and messenger API

2.2.2 Version 0.15.2

This is another bugfix release to help Debian adoption.

2.2.3 Version 0.15.1

This is bugfix release that fixes #143 which causes segfaults with certain task graph conditions.

2.2.4 Version 0.15

Released on January 4th 2018.

Enhancements:

• Manual and API documentation has been much improved

• Passing -Dintrospection=false to meson disables introspection data

• An error is generated if duplicate node names exist in JSON

• Added ufo_profiler_call_blocking to wait for execution

• Added ufo_resources_get_kernel_from_source_with_opts

• Added an NVIDIA Dockerfile example

• The deadlock warning has been turned into a debug message

• The scheduler returns early if no OpenCL platform is found

• Fix #135: added UFO_GPU_NODE_INFO_NAME

Fixes:

• UFO is compiled with gnu99 now to avoid GLOB_TILDE complaints

• Fixed wrong references and highlighting in the manual

• if UFO_DEVICE_TYPE=cpu is set, no GPUs are used

• Fix #142: fixed multi input and GPU processing

• Fix #142: prune graph correctly for multiple GPU

• Fix #137: support JSON array properties

• Fix #133: output build flag string for each device

26 Chapter 2. Developers

UFO Documentation, Release 0.16.0

• Fix #132: do not segfault on unknown properties

• Fix #126: abort execution without resources

• Fix #129: allocate enough memory for index array

• Fix #125: build and install manpages with meson

Breaks:

• Property sets have been removed from the JSON specification

2.2.5 Version 0.14

Released on September 5th 2017.

Enhancements:

• meson build system support has been added

• Improve documentation

• Improve expansion for multi-input node graphs

• Output warning in case expansion is not possible

• Use g_printerr to print errors on stderr instead of stdout

• ufo-launch returns exit code 1 on execution error

• Make device usage debug output unambiguous

• #123: allow vector properties via ufo-launch

• #120: generate buffer timestamps with the –timestamps option

Fixes:

• Fix a minor memory leak in ufo-launch

• Fix problem with CMake install dir

• Fix #119: compile OpenCL programs for each device with device-specific flags to allow kernel developers
optimizations for each device

• Fix #121: use the same command-line interface for both runjson and launch

Breaks:

• We dropped support for Autotools, CMake and meson are the only options to build at the moment.

2.2.6 Version 0.13

Released on January 25th 2017.

Enhancements:

• ufo-runjson: Add the -s/–scheduler flag to choose a scheduler different from the regular one.

• Restructure docs and add section about broadcasts

• Added ufo_resources_get_kernel_source function to have an API to access directly a source file from CL/kernel
path.

Fixes:

2.2. Changelog 27

UFO Documentation, Release 0.16.0

• Fixup for compilation and installation on MacOS

2.2.7 Version 0.12.1

Bugfix release released on November 28th 2016.

• Do not install the Docbook XML build dir

• Document UFO_BUFFER_DEPTH_INVALID

• Enable Large File Support

• Check ftell and return NULL on error

• Add forgotten manpage to the build list

• Initialize uninitialized variable

• Enable _FORTIFY_SOURCE feature flag

2.2.8 Version 0.12

Released on November 24th 2016.

Enhancements:

• ufo-launch: convert string to enum values

• ufo-runjson: add -t/–trace flag doing the same thing as ufo-launch

• Documentation updates

Fixes:

• Fix manual heading

• ufo-mkfilter: fix template and type handling

• Add manpage for ufo-prof

Breaks:

• Add UFO_BUFFER_DEPTH_INVALID with value zero which means adding to the API and breaking ABI

• Remove package target from the build system

2.2.9 Version 0.11.1

Bugfix release released on November 12th 2016.

• Install systemd unit file through pkg-config

• Fix #110: install templates correctly

• Do not run xmllint on manpage generation output

• Remove unused CMake modules

• Remove executable bit from source files

• Remove PACKAGE_* variables

28 Chapter 2. Developers

UFO Documentation, Release 0.16.0

2.2.10 Version 0.11

Released on November 8th 2016

Enhancements:

• Build manpages for the tools

• Update TomoPy integration

• Add UFO_DEVICE_TYPE environment variable

• Properly build on MacOS

• Unify debug message output format

• ufo-launch: rewrite specification parser allowing more flexible descriptions

• ufo-launch: add –quieter

• ufo-mkfilter: add –type and –use-gpu

Fixes:

• Check if we have with multiple roots to exit early

• Show version information consistently

• ufo-prof: support Python < 3.0

Breaks:

• GNUInstallDirs instead is now used instead of our own ConfigurePaths CMake module which might
affect installation paths on your system. Please note that for example -DPREFIX thus becomes -
DCMAKE_INSTALL_PREFIX.

• Remove CPack

• ufod: unused –paths option removed

• ufo-runjson: unused –path option removed

• ufo-launch: do not execute graph when –dump’ing

2.2.11 Version 0.10

Released on May 24th 2016

Enhancements:

• Add UFO_GPU_NODE_INFO_MAX_MEM_ALLOC_SIZE

• Fix #103: allow ufo-launch to use arbitrary graphs with new workflow specification and more robust parsing

• Look for AMD APP SDK 3.0

• Cache programs to avoid rebuilding them

• ufo-runjson now also outputs the number of processed items

• Fix #104: output type and blurb with -v

Fixes:

• Fix #106: match word characters to find plugins

• Fix #101: really unref non-intermediate nodes

2.2. Changelog 29

UFO Documentation, Release 0.16.0

• ufo-launch: query only valid graph

• Fixed misleading documentation

• Fixed some leaks and unreferenced resources

• Stop num-processed from being serialized into JSON field

• ufod: fix segfault if no address is specified

Breaks:

• ufo-query: print errors on stderr instead of stdout

• ufo-launch: removed –progress and –time in favor of –quiet

• Removed public ufo_signal_emit symbol

• Use date and time to differentiate trace profiles

• Replace clprof with ufo-prof

2.2.12 Version 0.9.1

Release on January 12th 2016.

Enhancements:

• Pass a property map to scheduler in the Python wrapper

• Added convenience wrapper to copy into a buffer

Fixes:

• Fix version numbering from 0.8.x to 0.9.x

• Fix documentation issues

• Fix build problems if libzmq is not present

• ufo-launch unrefs non-intermediate nodes

2.2.13 Version 0.9

Release on November 3rd 2015.

Enhancements:

• Generally improved debug output

• Add support for plugin packages as demonstrated by the ART plugins

• Add Docker installation method

• Add simple fabfile to start ufod instances

• Allow reductors to pause processing

• Add ufo-query binary to retrieve info about tasks

• Add ufo_buffer_set_device_array API call

• Python: add ufo.numpy.empty_like

• ufo-launch: add –dump flag to serialize to JSON

• ufo-launch: add Bash completion script

30 Chapter 2. Developers

UFO Documentation, Release 0.16.0

• ufo-launch: pass address list

Fixes:

• Fix segfault with long-running tasks

• Prevent daemon from leaking OpenCL resources

• Fix broken continuous daemon operation

• ufo-launch: fix parsing uint64

• Use same reductor policy for both schedulers

• Fix ufo_buffer_new_with_data

• Fix nano second to second conversion

Breaks:

• Specify device subset with UFO_DEVICES

• Do not prepend . to trace and profile output

• Change ufo_buffer_set_host_array signature

• Use common timestamp unit for both trace types

2.2.14 Version 0.8

Release on May 19th 2015.

This release breaks with the distinction of ArchGraph and Resources. The former is removed with its functionality
moved to the latter. Besides that numerous improvements have been incorporated:

• ufo-launch: add –time and –trace options

• Added a systemd unit for ufod

• Fixed cluster communication.

• Fixed #86: use CL_INTENSITY instead of CL_R

• Handle kernel path with environment variable UFO_KERNEL_PATH

• ufo-launch now parses boolean properties

• Removed hard dependency on ZeroMQ

• Removed WITH_DEBUG and WITH_PROFILING CMake variables

• Add JSON-based TANGO server for remote computation

• Removed ufo_base_scheduler_get_gpu_nodes()

• Fixed #80: add ufo_gpu_node_get_info()

• Fixed re-running the same task graph

• Removed tifffile dependency

• Fixed #78: reset num-processed before execution

• Fixed #77: initialize threads when accessing the GIL

2.2. Changelog 31

UFO Documentation, Release 0.16.0

2.2.15 Version 0.7

Released on February 20th 2015.

This is a major update from the previous version released a year ago. Besides numerous bug fixes and compatibility
enhancements we

• added ufo_signal_emit for threadsafe signal emission

• export plugin and kernel directories via pkg-config so that thirdparty plugins easily know where to install them-
selves

• added the ufo-launch tool to run basic pipelines directly from the command line

• merged the ufo-python-tools and ufo-tests repos with the core repository

• added additional buffer depths

• parse the UFO_PLUGIN_PATH environment variable to specify additional plugin locations

• added a copy task which copies data from input 0

• added a fixed scheduler for manual assignment of hardware resources to task nodes

• added “processed” and “generated” signals to tasks which emit whenever either action completed

• added UFO_DEVICE_TYPE_ACC for accelerator devices

• added buffer views for larger-than-GPU data

• output OpenCL profiler information as Chrome JSON

• added ufo_resources_get_kernel_with_opts()

• added ufo_buffer_set_host_array()

• added ufo_buffer_get/set_metadata(), ufo_buffer_get_metadata_keys() and ufo_buffer_copy_meta_data()

• added ufo_buffer_get_device_array_with_offset()

• added ufo_buffer_get_location()

and broke compatibility by

• retiring the UfoConfig infrastructure and

• replacing g_message() with g_debug()

2.2.16 Version 0.6

Released on January 24th 2014.

Due to the inclusion of Autotools builds, we restructured and cleaned up installation paths, along the lines of GLib.
That means headers are installed into major API version dependent directories, e.g. now /usr/include/ufo-0/ufo. We
also split hardware-dependent and -independent files, thus kernels go into /usr/share/ufo now. In the same vein, we
also lowered the SO version down to 0, so please if you have installed from source, make sure to remove any traces of
an old UFO installation before installing the latest version.

Minor changes include:

• Added “time” property to scheduler.

• Scheduler can now use and existing arch graph and return associated resources.

• By default only GPU devices are used.

32 Chapter 2. Developers

UFO Documentation, Release 0.16.0

• Documentation is now hosted at ufo-core.readthedocs.org.

• Added “num-processed” property.

Developers

• Replace GList for loops with g_list_for macro

• Include compat.h

• Renamed and install mkfilter as ufo-mkfilter.

• ufo-core is now monitored by Travis CI

• Removed the python/ subdir which is replaced by ufo-python-tools

• Removed unnecessary clprof tool.

Bugfixes

• Fix and simplify deploy script

• Require json-glib in pkgconfig

• Link to documentation on rtd.org

• Fix .gir generation

• Fix installation path for header files

• Do not error on deprecated declarations

2.2.17 Version 0.5

Released on October 28th 2013.

• Added MPI support as an alternative to ZMQ.

• Added basic math operations for use with filters.

• UFO can now be used reliably in a multithreaded Python context. That means, calling ufo_scheduler_run
in a Python thread will “just work”. This change allows run-time injection of NumPy buffers into the task graph.

Developers

• Add -DDEBUG when debug is enabled so we can #ifdef it

• Add GLib version guards

• ufo-core compiles with Clang

• CMake 2.6 is used solely throughout the sources

• Add convenience function ufo_buffer_new_with_size

• Add a shim macros to support both zmq 2 and 3

• Add UFO_USE_GPU env var to restrict to single GPU

• Added ufo_resource_manager_get_cached_kernel that always returns the same kernel object when given the
same file and kernel name. Note, that you have to guard it properly and do not call clSetKernelArg from
multiple threads at the same time.

2.2. Changelog 33

UFO Documentation, Release 0.16.0

• Add profile tracing to produce a JSON trace event file, that can be read and visualized with Google’s Chrome
browser. It can be enabled with UfoScheduler::enable-tracing set to TRUE.

Bug fixes

• Fix #6: Don’t use enum values as bit flags

• Fix bug: no plugin name is sent to remote nodes

• Fix copy segfault in when source has not alloc’d

• Removed dependency on a C++ compiler

• Fix reduction problem

2.2.18 Version 0.4

Released on July 18th 2013.

Major changes

• Rewrote internal architecture for better scheduling.

• Remove profiler levels and add more output

• Implement input data partitioning: On clusters where distributed data access is possible, we can achieve perfect
linear scalability by partitioning the input data set.

• Install SIGTERM handler for cleanup of node server

Features

• Add ufo_task_graph_get_json_data

• Streamline and simplify scheduling

• Provide function to flatten graph

• Provide graph copy functionality

• Add node indices for copies

• Add all paths as OpenCL include paths

• Write out JSON version

• Search in UFO_PLUGIN_PATH env var

Bug fixes

• Fix problems with AMD platforms

• Fix timestamp readout

• Fix potential single integer overflow

• Exit when JSON tasks could not be found

• Fix remote tasks getting stuck

34 Chapter 2. Developers

UFO Documentation, Release 0.16.0

• Unref expanded nodes explicitly

• Fix #189: don’t copy nodes with more than one input

• Fix #219: Warn instead of segfault

• Fix annotation for older GI compiler

• Fix problem with first remote data item

• Fix platform selection

• Fix problems with objects that are not unreffed

• Refactor buffer and add support for #184

• Refactor resources and fix #183

• Fix buffer for broadcast operations

2.2.19 Version 0.3

Released on February 8th 2013.

Major breakage

• A graph is now a simple data structure and not a specific graph of task nodes. This is implemented by a
TaskGraph.

• Filters are now called TaskNodes and connected with ufo_task_graph_connect_nodes and
ufo_task_graph_connect_nodes_full respectively.

Graph expansion

With 0.2, Using multiple GPUs was possible by manually splitting paths in the graph and assigning GPUs. Now, task
graphs are automatically expanded depending on the number of available GPUs and remote processing slaves that are
started with the newly added ufod server software.

Minor improvements

• A deploy.sh script has been added for easier deployment of the software stack. This is especially useful
to install everything in the home directory of the user, who only needs to setup LD_LIBRARY_PATH and
GI_TYPELIB_PATH correctly to run the software.

2.2.20 Version 0.2

Released on November 8th 2012.

Major breakage

• Filters are now prefixed again with libfilter to allow introspected documentation. Thus, any filter built for
0.1 cannot be used because they are simply not found.

• ufo_plugin_manager_get_filter() received a new third parameter error that reports errors when
opening and loading a UfoFilter from a shared object.

2.2. Changelog 35

UFO Documentation, Release 0.16.0

• ufo_resource_manager_add_program() is removed.

• The kernel file name must be passed to ufo_resource_manager_get_kernel().

• The CHECK_ERROR macro defined in ufo-resource-manager.h was renamed to
CHECK_OPENCL_ERROR to better reflect its real purpose.

• The old JSON specification has been changed to reflect the possibilities of the current API. Thus, JSON files
that worked under Ufo 0.1 cannot be read with Ufo 0.2.

• Removed the otherwise unused ufo_buffer_get_transfer_time() and replaced this with the more
flexible ufo_buffer_get_transfer_timer().

• Rename ufo_filter_initialize() to ufo_filter_set_plugin_name() that reflects its true
meaning.

Scheduling

A more scheduable way to run filters has been implemented with the virtual process_cpu() and
process_gpu() methods. Contrary to the old way, they act on one working set at a time that is passed as an
array of pointers to UfoBuffer. Sometimes, a filter needs to setup data depending on the input size. For this reason,
the virtual method initialize() takes a second parameter that is again a list of pointers to buffer objects.

Moreover, the UfoScheduler class has been added that is combining the work previously accomplished by
ufo_filter_process() and ufo_graph_run(). The scheduler orchestrates the filters and assigns resources
in a meaningful way.

If written in the new kernel style, producer filters must return a boolean flag denoting if data was produced or not.

General improvements

• The manual was restructured considerably.

• Saving graphs as JSON files has been added via ufo_graph_save_to_json().

• Filters can now wait until their properties satisfy a condition using ufo_filter_wait_until(), see also
Wait until a property satisfies a condition.

• A new method ufo_resource_manager_get_kernel_from_source() so that filters can load ker-
nels directly from source.

• Streamlined error handling: Filters should not issue g_warnings or g_errors on their own anymore but
create an error with g_error_new and return that.

2.2.21 Version 0.1.1

• Ticket #55: tests/test-channel blocks indefinitely

36 Chapter 2. Developers

CHAPTER 3

Additional notes

3.1 Copyright

UFO and this documentation is:

Copyright 2011 Karlsruhe Institute of Technology (Institute for Data Processing and Electronics) and Tomsk Poly-
technic University

37

UFO Documentation, Release 0.16.0

38 Chapter 3. Additional notes

Index

E
environment variable

G_MESSAGES_DEBUG, 14
UFO_DEVICE_TYPE, 14
UFO_DEVICES, 14
UFO_KERNEL_PATH, 14, 22
UFO_PLUGIN_PATH, 12, 14

U
UFO_KERNEL_PATH, 22
UFO_PLUGIN_PATH, 12

39

	Users
	Installation
	Using UFO
	Developing new task filters
	Frequently Asked Questions

	Developers
	Reporting Bugs
	Changelog

	Additional notes
	Copyright

	Index

