

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/], and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[Unreleased]

[0.9.0] - 2020-01-02

Added

	Added Shadow devices

	Added option to clear bindings

	Added Filters for plugins

	Button to Filter: Allows toggling of a filter using a button

	Axis to Filter: Allows toggling of a filter using an axis

	Added device cache allowing configuration of disconnected devices

	Added per input blocking for supported providers

	Provider Report now contains ErrorMessage property. If the provider is not live, this should contain a string indicating why

	[Tobii Provider] If IsLive is false, now reports reason in ErrorMessage

	[SpaceMouse provider] IsLive is always true, as HID is always present

	[MIDI provider] IsLive is always true, as MIDI is always present

	[TitanOne Provider] IsLive now reflects connected status of device

	[TitanOne Provider] Reports 0 devices if IsLive is false

	[vJoy Provider] IsLive now reflects whether driver is installed

	[Interception Provider] IsLive is false if no devices are found, assumes driver is not installed

Fixed

	Child profiles now properly inherit all parent devices. Fixes crash on activating profile

	IOWrapper device list is now refreshed every time devices are queried

Changed

	Updated to IOWrapper v0.11.2

	[Interception Provider] Blockable property of BindingDescriptor now indicates if input is blockable or not. This is controlled by whether BlockingEnabled in the settings file is true or not

	[XInput Provider] Only show Xinput devices in ProviderReport that are currently connected

	[DS4WindowsApi Provider] Only show DS4 devices in ProviderReport that are currently connected

	[SpaceMouse Provider] Only show SpaceMouse devices in ProviderReport that are currently connected

	[Tobii Provider] IsLive now reflects state of driver

	[Tobii Provider] Only show Tobii devices in ProviderReport that are currently connected

	[ViGEm Provider] Do not show devices if Bus Driver not installed

Removed

	[Interception Provider] BlockingControlledByUi setting removed

[0.8.0] - 2019-07-27

Added

	Material design

	Quick access button to add new profile

	Profile overview in the main window

	Added save button to profile window

	Added Anti-Deadzone helper

	Added Anti-Deadzone option to AxisToAxis plugin

	Added ButtonToEvent plugin

	Added input validation for plugin values

Changed

	Updated to IOWrapper v0.10.5

	Button to Axis parameters changed to two axis values and option for initialization

	Redesigned main window dashboard

	Redesigned profile window

	Show active profile in process bar

	Replaced menu with toolbar in main window

	Replaced dialog windows with proper dialogs

	Replaced menu with toolbar in profile window

	UCR Unblocker now uses the current directory as default

	Sensitivity to Axis Merger plugin added

	Improved circular deadzone calculation

Removed

	Removed states

Fixed

	Sum Mode in Axis Merger plugin no longer overflows

	Unblocking no longer crashes if the UCR path has spaces

	Bind Mode button now only responds to mouse down and not mouse up (Fixes binding Space bar re-triggering Bind Mode on release)

[0.7.0] - 2019-01-03

Changed

	Button to Axis parameters changed to two axis values and option for initialization

	Plugin updates are now of type short instead of long. Some operations are performed using int, to avoid wrap-around or crashes.

	Subscription and Bind Mode callbacks are now executed as Tasks and are an Action rather than dynamic

 Contributing to Universal Control Remapper

Contributing to Universal Control Remapper

Thank you for taking your time to contribute to Universal Control Remapper!

The following is a set of guidelines for contributing to Universal Control Remapper. These are mostly guidelines, not rules. Please use your best judgement when contributing and feel free to contact us if you have any questions.

Contributing

	Fork Universal Control Remapper on Github

	Create a new branch for your change, refer to Branching

	Commit changes to your own repository following the Commit guidelines

	Note your changes in the CHANGELOG.md

	Create a pull request for your new branch targeting UCR/develop, refer to Pull requests

Branching

This repository is using GitFlow as branching strategy which means features and hotfixes are handled with branches. Contributions directly on the develop branch is only for minor changes and contributions directly to the master branch is prohibited, as it is considered the release branch. The name of your branch should be prefixed with one of the following prefixes depending on your change:

	feature/: Prefix when you are adding new functionality

	hotfix/: Prefix when you are fixing existing functionality

The name of your branch, following the prefix, should clearly indicate what is changing

Commit guidelines

Commit message are just as important as the code it describes as it describes what and why the codebase has changed. Your commit messages should adhere to the following guidelines:

	Use the present tense (“Add feature” not “Added feature”)

	Use the imperative mood (“Move cursor to…” not “Moves cursor to…”)

	Limit the first line to 72 characters or less

	Reference issues and pull requests liberally after the first line

Pull requests

Create a new pull request targeting UCR/develop when your branch is ready to be added. The pull request title should describe your change and the description should describe what has changed and why it was changed. Reference any issues or related pull requests in the description, if any.

Pull request are checked by quality gates which needs to be passed before it is considered for merge. The change must build on the continuous integration Appveyor and any issues found by SonarQube should be fixed. Any required change should be committed on your own branch until quality gates are passing.

Your pull request are then code reviewed and eventually merged. Your changes are then released as part of the next release.

 Universal Control Remapper

Universal Control Remapper

[image: _images/release-v0.9.0-blue.svg]GitHub release [https://github.com/Snoothy/UCR/releases/tag/v0.9.0] [image: _images/IOWrapper-v0.11.2-blue.svg]IOWrapper version [https://github.com/evilC/IOWrapper] [image: _images/ucr.svg]license [https://github.com/Snoothy/UCR/blob/master/LICENSE] [image: _images/total.svg]Github All Releases [https://github.com/Snoothy/UCR/releases] [image: _images/UCR.svg]AppVeyor [https://ci.appveyor.com/project/Snoothy/ucr] [image: _images/measure.svg]Sonarcloud Status [https://sonarcloud.io/dashboard?id=Snoothy_UCR]

Universal Control Remapper is a complete rewrite of the original UCR [https://github.com/evilC/UCR], created in collaboration with evilC [https://github.com/evilC/].

Universal Control Remapper is a Windows application which allows the end-user to remap any inputs from devices, such as keyboards, mice, joysticks, racing wheels, eye trackers, etc. to virtual output devices. Remapping is achieved by transforming inputs through plugins to a desired output device.

Table of Contents

	Downloads

	Documentation

	Support / Discussion / Feedback

	Features

	Device support

	License

Downloads

The latest release of Universal Control Remapper can be downloaded from GitHub [https://github.com/snoothy/ucr/releases] and with a number of basic plugins. Extra experimental or niche plugins can be found in the UCR-Plugins repository [https://github.com/HidWizards/UCR-Plugins].
You may also need to install other drivers etc, for example to allow creation of virtual Xbox or DirectInput controllers. See the Providers page [https://github.com/Snoothy/UCR/wiki/Core-Providers] for details on these.

Test builds, patches, updated components, new or enhanced plugins etc., are often posted to the UCR channel in the HidWizards Discord server linked below. If you encounter any problems, it is best to check this channel for pinned patches.

Documentation

Documentation for Universal Control Remapper are hosted on GitHub at https://github.com/snoothy/ucr/wiki.

Support / Discussion / Feedback

Please do not use the UCR thread on the AutoHotkey forums. Either raise an issue on the issue tracker [https://github.com/Snoothy/UCR/issues] or join us in the HidWizards chat channel on Discord [https://discord.gg/MmnhQYQ]

Features

	Remap any number of inputs to any number of outputs on emulated output devices, with full analog support

	Profiles and nesting allows for easy configuration

	Endless remapping potential through plugin extension support

	Remapping and device order persists through reboots and unplugging of devices

	Profiles can be switched by external programs through Command line parameters (CLI)

	HidGuardian [https://github.com/nefarius/ViGEm/tree/master/Sys/HidGuardian] support through HidCerberus for true HID remapping

	Remap your own, or unsupported, input/output devices through extension support for device providers

	Uses no injection making it compatible with games using anti-tampering technologies, such as Denuvo

Device support

UCR supports input and output devices through plugins using the IOWrapper [https://github.com/evilC/IOWrapper] backend. UCR is released with standard plugins but can be extended with third party plugins to add additional device support.

Supported input

	Xbox 360 controllers (XInput)

	DirectInput controllers, includes gamepads, racing wheels, HOTAS, etc.

	Keyboard (using interception [https://github.com/oblitum/Interception])

	Mouse (using interception [https://github.com/oblitum/Interception])

	Tobii Eye tracker

Supported output

	Xbox 360 controller (XInput) (using ViGEm [https://github.com/nefarius/ViGEm])

	Dualshock 4 controller (using ViGEm [https://github.com/nefarius/ViGEm])

	DirectInput controller (using vJoy [https://github.com/shauleiz/vJoy])

	Keyboard (using interception [https://github.com/oblitum/Interception])

	Mouse (using interception [https://github.com/oblitum/Interception])

Building and Contributing

It is required to run the build script before building with Visual Studio. Run .\build.ps1 InitProject from powershell to initialize the required dependencies. All subsequent builds can be done from Visual Studio 2017.

Please see CONTRIBUTING when you’ve decided to contribute to Universal Control Remapper

License

Universal Control Remapper is Open Source software and is released under the MIT license [https://github.com/Snoothy/UCR/blob/master/LICENSE].

 Changelog

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/], and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[Unreleased]

Added

Changed

Deprecated

Removed

Fixed

0.11.2 - 2019-12-18

Fixed

	[ViGEm Provider] Fix Issue #41No longer crashes if ViGEm not installed

0.11.1 - 2019-12-15

Added

	[Tobii Provider] If IsLive is false, now reports reason in ErrorMessage

	[SpaceMouse provider] IsLive is always true, as HID is always present

	[MIDI provider] IsLive is always true, as MIDI is always present

	[TitanOne Provider] IsLive now reflects connected status of device

	[TitanOne Provider] Reports 0 devices if IsLive is false

	[vJoy Provider] IsLive now reflects whether driver is installed

	[Interception Provider] IsLive is false if no devices are found, assumes driver is not installed

0.11.0 - 2019-12-14

Added

	Provider Report now contains ErrorMessage property
If the provider is not live, this should contain a string indicating why

Changed

	[ViGEm Provider] Do not show devices if Bus Driver not installed

0.10.11 - 2019-12-13

Changed

	[Tobii Provider] IsLive now reflects state of driver

	[Tobii Provider] Only show Tobii devices in ProviderReport that are currently connected

0.10.8 - 2019-12-13

Changed

	[XInput Provider] Only show Xinput devices in ProviderReport that are currently connected

	[DS4WindowsApi Provider] Only show DS4 devices in ProviderReport that are currently connected

	[SpaceMouse Provider] Only show SpaceMouse devices in ProviderReport that are currently connected

0.10.7 - 2019-12-12

Changed

	[Interception Provider] Blockable property of BindingDescriptor now indicates if input is blockable or notThis is controlled by whether BlockingEnabled in the settings file is true or not

Removed

	[Interception Provider] BlockingControlledByUi setting removed

0.10.6 - 2019-08-10

Fixed

	Fix for IOWrapper Issue #33 / UCR issue #98DirectInput should no longer freeze when PollThreads are started or stopped

0.10.5 - 2019-06-24

Changed

	[Interception Provider] Polling now uses Multimedia Timer, allowing poll rates down to 1ms. Controlled via Settings.xml

	[Interception Provider] (Dev Option) Allowing selecting block via UI is controlled via Settings.xml

	[Interception Provider] (Tester Option) Allowing selecting threaded or non-threaded pass-through of stroke is controlled via Settings.xml

	[Interception Provider] Keyboard now supports per-mapping blocking (Block one button, but not another)

0.10.4 - 2019-06-16 (PRE-RELEASE)

Changed

	[DirectInput Provider] Fix #31 - Axis values are no longer inverted

	[Interception Provider] Mouse now supports per-mapping blocking (Block one button, but not another)

0.10.3 - 2019-06-08

Changed

	[ViGEm Provider] Rename DS4 LT / RT to L2 (LT) and R2 (RT)

Fixed

	[Interception Provider] Fix #30When multiple mouse buttons changed state in one update of the mouse, only one event would be fired for one of the buttons

0.10.2 - 2019-03-13

Added

	[DirectInput Provider] Duplicate devices now have #2, #3 etc after their name

Fixed

	If a provider crashes on load, it no longer stops IOWrapper from loading

	[Interception Provider] Windows keys are now mappable. Previously, if the non-extended scancode did not have a key name, the extended version of the scancode was not checked

	[Interception Provider] F13-F24 are now mappable.

	[Interception Provider] Pause is now mappable.

0.10.1 - 2019-01-27

Changed

	[MIDI Provider] Note path shortened, now selected note displays better in UI

	[MIDI Provider] CC now uses the full -32768..32767 range

Fixed

	[MIDI Provider] Note naming fixed. Now starts at Octave -2, and goes up to Octave 8, ending at G8

	[MIDI Provider] Pitch Wheel now works in Bind Mode

	[MIDI Provider] Fix notes, CCs etc only reaching 32766 instead of 32767

	[MIDI Provider] ProcessUpdate no longer crashes if preProcessedUpdates is null

	[Interception Provider] Left/Right Mouse Wheel labels are no longer switched

0.10.0 - 2019-01-03

Changed

	Subscription and Bind Mode callbacks are now executed as Tasks and are an Action rather than dynamic

 IOWrapper

IOWrapper

Unless you are a developer, this project is probably of no use to you. End Users should download UCR [https://github.com/Snoothy/UCR] instead

Project Overview

IOWrapper is the “Back End” for Universal Control Remapper (UCR) 2 [https://github.com/Snoothy/UCR] , handling all the device interaction.Technically, however, IOWrapper is a stand-alone project which is not inherently coupled to the UCR front-end.

The purpose of the IOWrapper library is to present a list of devices to the consumer; both input (The user typed a key, moved a joystick etc) and output (Faking user input). The consumer can make “subscriptions” to devices in order to receive input or send output.

Primer

APIs

Whilst Windows has standard APIs for I/O - for example DirectInput (Flight sticks, steering wheels etc), XInput (Xbox controllers) and RawInput (Keyboards, mice, joysticks), there are also other devices which require custom APIs (eg vJoy for faking DirectInput joysticks), so IOWrapper needs to be extensible.

Providers

Support for new forms of I/O can be added to IOWrapper via plugins dubbed “Providers”. A Provider typically wraps one API, however this does not need to be the case.

Providers are MEF plugins that expose IProvider or one of it’s derived interfaces. Each has their own folder, which can contain dependent DLLs etc.

A “Provider Libraries” project is provided, with helper classes etc to simplify the process of writing new Providers - their use is entirely optional.

Normalization

UCR (The front end which sits on top of IOWrapper) is API Agnostic - that is to say that it does not care how a device is identified, or in what format data from the device comes in, everything is normalized to a consistent way of reporting.

However, the current system will probably need to be overhauled at some point, as

Devices

The primary way of identifying devices is by a string - the “Handle”, which for APIs which is often the USB VID/PID of the device.

Duplicate device disambiguation is handled by the “DeviceInstance”, which is a positive integer.
Providers, if possible, should make attempts to make instance ordering consistent, ideally between boots.
ie, as long as you do not plug the devices into different ports, Instance 0 should remain 0, 1 should remain 1 etc.

Buttons / Axes etc

Inputs on a device are referred to by Type (Axis, Button or POV), Index and SubIndex.SubIndex is optional, and is typically used to denote a derived value (eg an input which represents a direction on a POV hat)

Input Values

All input values in IOWrapper are currently normalized to signed 16-bit integers for axes, or 0 (Unpressed) / 1 (Pressed) for buttons. In this way, plugins in the UCR front end are always dealing with a consistent range of values.

Writing a Provider

So you have some funky new input device, and you want to make it work with UCR?
Here is a handy sequence of steps you can take to incrementally make progress, even with minimal C# knowledge.

Starting Out

	Write some Proof-of-Concept C# code that can read the device

	Create a new Class Libraryproject in IOWrapper.

	Copy the Pre/Post build events from one of the other providers (eg DirectInput)

	Decorate your class with [Export(typeof(IProvider))]

	Implement IInputProvider
All of the methods can just be left empty, or just return null

	Reference the needed projects (You will probably only need the provider interface and DTOs)

	Set a breakpoint in your constructor and hit F5, you should hit your breakpoint.
For now, the constructor can be used to kick off whatever POC code you desire

Normalizing input

Until now, your POC code is probably just logging out raw values etc - you now need to normalize what is coming from the device into a language that IOWrapper understands.

You will need to invent a translation scheme to describe each possible kind of input in terms of a BindingDescriptor (Type/Index/SubIndex.)
For example, DirectInput reports all input with an Offset (An integer), so the provider uses a look-up dictionary to find the Type (Axis/Button/POV) given the Offset, and the Index property is used to denote which axis or button, so we can just use the raw Offset value for that.
DirectInput can have 4 POV hats (which each natively report 0..360), but the front-end allows subscribing to a direction of a POV (Up/Down/Left/Right) as if it were a button, so this being a derived value, we use SubIndex to encode which of the four directions of the hat that the subscription is for.

The other task here is to normalize the values reported for axes and buttons. Axes should report in the range -32768…32767 and buttons should report 0 for released and 1 for pressed.

Setting up the Test App

Edit the console app in the solution that is used to test providers.

There are numerous helper classes and pre-built descriptors in there, but ultimately all you need to do is call SubscribeInput on the IOController and pass it a ProviderDescriptor that matches your Provider.
The other descriptors that you pass can just be empty for now.

Handling Subscriptions

Your next goal is to handle subscription requests.

When a user selects an input in the front end, SubscribeInput is called.
It is the Provider’s job to fire the contained callback when the input described by the subscription request happens. Conversely, UnsubscribeInput should cancel that subscription.
It is also generally desirable to stop any threads (eg poll threads) when there are no subscriptions.

The subscription request will contain a BindingDescriptor, which describes the input to be subscribed to, using the translation scheme you came up with in the previous step.
The Provider Libraries project contains a useful SubscriptionHandler class which can store your subscription requests for you, and will also enable you to determine whether a given button or axis has any subscriptions. This class uses ConcurrentDictionary and so is thread-safe, so when your poll loop receives input, you can just look up in the dictionary to tell if that input has any subscriptions or not, and whether to fire the callback.

By this point, you should be able to use the Test App to subscribe to your various inputs, and Unsubscribe.

Reporting

Now you can subscribe to stuff, but if you integrated it into UCR right now, it would be useless, as the user would have no way of selecting the input to bind to - the Device Group window would not contain anything, and even if it did, the Input selection control would not contain any axes or buttons for that device.
This is handled via Reports - you need to implement GetInputList and GetInputDeviceReport. These basically populate the menus in the front end with text, and tell the front end what BindingDescriptor to pass to the back end when the user selects that input.

Multiple Devices

When starting out, you can hard-wire everything to your test device, but often with a Provider it will need to support many different devices.

In this instance, you will probably want to take the code you have at some point, and move it into a device class containing it’s own poll thread and subscription handler.

If the device is identified by USB Vendor Id and Product Id (VID / PID), then it is convention to encode this as the DeviceHandle string of the DeviceDescriptor. See DirectInput for an example.

If you wish to support multiple identical devices, you need to use the DeviceInstance property of the DeviceDescriptor.

Tidying Up

In order for the provider to play nice, it must properly implement IDisposable. When the provider is Disposed, kill all threads. If you do not do this, UCR may well hang on exit.

Try to consider performance, especially if working with high frequency data (eg mouse movement).

Procedure for targetting a new IOWrapper version in UCR

	Make an IOWrapper release, tag it with a version number

	Create a new branch in UCR called feature/iowrapper-<version number>eg feature/iowrapper-1.2.3.4

	Open a powershell prompt to <UCR folder>\submodules\IOWrapper

	git fetch

	git checkout -q <hash of new IOWrapper version>eg git checkout -q a621ada

	Commit changes to UCR branch

	cd ..\..

	.\build.ps1 Clean

	.\build.ps1

 <no title>

 Contains the IOController

Responsibilities include:

	Acts as an interface between the Providers and the front-end.The front-end does not directly call Providers - all calls to Providers route through the IOController.

	Ensuring that one SubscriberGuid is only ever subscribed to one Provider at a time.

	Loading the Provider DLLs

 <no title>

 Providers add support for an API or even a specific device to IOWrapperCore Providers are the default ones which ship with UCR

 <no title>

 Experimental DS4 Provider.Largely abandoned, awaiting Nefarius’ FireShock / WireShock to replace it.

 <no title>

 Provider for the Interception driver API [http://www.oblita.com/interception]
Adds support for Keyboard and Mouse (Multi-device, with per-input blocking)

 Research

 Adds support for MIDI devices

Research

Useful Links

https://www.midi.org/specifications-old/category/reference-tables

http://www.personal.kent.edu/~sbirch/Music_Production/MP-II/MIDI/midi_protocol.htm

Encoding Format

Representing MIDI messages as BindingDescriptors

The challenge is to represent all the MIDI events we are interested in as a BindingDescriptor.

public class BindingDescriptor
{
 /// <summary>
 /// The Type of the Binding - ie Button / Axis / POV
 /// </summary>
 public BindingType Type { get; set; }

 /// <summary>
 /// The Type-specific Index of the Binding
 /// This is often a Sparse Index (it may often be a BitMask value) ...
 /// ... as it is often refers to an enum value in a Device Report
 /// </summary>
 public int Index { get; set; } = 0;

 /// <summary>
 /// The Type-specific SubIndex of the Binding
 /// This is typically unused, but if used generally represents a derived or optional value
 /// For example:
 /// With each POV reporting natively as an Angle (Like an Axis)
 /// But in IOWrapper, bindings are to a *Direction* of a POV (As if it were a button)
 /// So we need to specify the angle of that direction in SubIndex...
 /// ... as well as the POV# in Index. Directinput supports 4 POVs
 /// </summary>
 public int SubIndex { get; set; } = 0;
}

MIDI format

Most data in MIDI is analog, so Type will always be Axis.

This leaves us with Index and SubIndex (Two integers) to represent all the bindings we are interested in.

In MIDI, for the items we are interested in, there are 3 pieces of data which identify a specific input:

Channel

Each MIDI device can send messages on a number of channels.

Mask: 0xF (0..16)

CommandCode

Identifies the type of event that happened.

Mask: 0xF0 (128..255)

Note / Controller Number etc

For Notes, you get a Note Number, for ControlChange (eg faders), you get a controller number.

In either case, this is a number in the range 0..127

Mapping Strategy

Index maps to a combination of Channel and CommandCode

Note that CommandCodes NoteOn and NoteOff are two separate events, so we cannot use a direct mapping of command code to BindingDescriptor. Probably simplest is to use the On code to represent both on and off CommandCodes

SubIndex maps to Note / Controller Number

Sample Data

Behringer Motor 49

Keys

Vel is 0..127

Left-most:

Channel: 1, Event: 144 (0 NoteOn Ch: 1 C2 Vel:9 Len: 0), Note: 24 (0 NoteOn Ch: 1 C2 Vel:9 Len: 0)
Channel: 1, Event: 128 (0 NoteOff Ch: 1 C2 Vel:127), Note: 24 (0 NoteOff Ch: 1 C2 Vel:127)

Right-most:

Channel: 1, Event: 144 (0 NoteOn Ch: 1 C6 Vel:67 Len: 0), Note: 72 (0 NoteOn Ch: 1 C6 Vel:67 Len: 0)
Channel: 1, Event: 128 (0 NoteOff Ch: 1 C6 Vel:127), Note: 72 (0 NoteOff Ch: 1 C6 Vel:127)

Holding keys:

Channel: 1, Event: 144 (0 NoteOn Ch: 1 C2 Vel:10 Len: 0), Note: 24 (0 NoteOn Ch: 1 C2 Vel:10 Len: 0)
Channel: 1, Event: 208 (0 ChannelAfterTouch Ch: 1)
Channel: 1, Event: 208 (0 ChannelAfterTouch Ch: 1)
Channel: 1, Event: 208 (0 ChannelAfterTouch Ch: 1)
Channel: 1, Event: 208 (0 ChannelAfterTouch Ch: 1)
Channel: 1, Event: 208 (0 ChannelAfterTouch Ch: 1)
Channel: 1, Event: 128 (0 NoteOff Ch: 1 C2 Vel:127), Note: 24 (0 NoteOff Ch: 1 C2 Vel:127)

Pads

Vel is 0..127

P1:

Channel: 2, Event: 144 (0 NoteOn Ch: 2 F#5 Vel:67 Len: 0), Note: 66 (0 NoteOn Ch: 2 F#5 Vel:67 Len: 0)
Channel: 2, Event: 128 (0 NoteOff Ch: 2 F#5 Vel:127), Note: 66 (0 NoteOff Ch: 2 F#5 Vel:127)

P8:

Channel: 2, Event: 144 (0 NoteOn Ch: 2 C#6 Vel:107 Len: 0), Note: 73 (0 NoteOn Ch: 2 C#6 Vel:107 Len: 0)
Channel: 2, Event: 128 (0 NoteOff Ch: 2 C#6 Vel:127), Note: 73 (0 NoteOff Ch: 2 C#6 Vel:127)

Knobs

0..127

Whilst they endlessly rotate, it does not loop around.

There are LEDs to indicate current level.

E1:

Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 71 Value 0)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 71 Value 1)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 71 Value 2)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 71 Value 3)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 71 Value 4)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 71 Value 5)

E8:

Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 78 Value 0)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 78 Value 1)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 78 Value 2)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 78 Value 3)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 78 Value 4)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 78 Value 5)

Sliders

0..127

F1:

Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 21 Value 0)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 21 Value 1)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 21 Value 2)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 21 Value 3)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 21 Value 5)

F8:

Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 28 Value 0)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 28 Value 1)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 28 Value 2)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 28 Value 4)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 28 Value 5)

F9 (Special in some way?)

Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 53 Value 0)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 53 Value 1)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 53 Value 2)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 53 Value 3)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 53 Value 4)
Channel: 2, Event: 176 (0 ControlChange Ch: 2 Controller 53 Value 5)

Pitch wheels

Pitch Bend (-8192..8191):

Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8051 (-141))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8073 (-119))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8095 (-97))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8117 (-75))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8138 (-54))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8160 (-32))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8192 (0))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8204 (12))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8226 (34))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8247 (55))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8269 (77))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8291 (99))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8313 (121))
Channel: 1, Event: 224 (0 PitchWheelChange Ch: 1 Pitch 8335 (143))

Modulation (0..127):

Channel: 1, Event: 176 (0 ControlChange Ch: 1 Controller Modulation Value 0)
Channel: 1, Event: 176 (0 ControlChange Ch: 1 Controller Modulation Value 1)
Channel: 1, Event: 176 (0 ControlChange Ch: 1 Controller Modulation Value 2)
Channel: 1, Event: 176 (0 ControlChange Ch: 1 Controller Modulation Value 3)
Channel: 1, Event: 176 (0 ControlChange Ch: 1 Controller Modulation Value 4)
Channel: 1, Event: 176 (0 ControlChange Ch: 1 Controller Modulation Value 5)

 <no title>

 Adds support for the Titan One [https://www.consoletuner.com/] deviceEnables output to a physical console

 <no title>

 Adds support for the Tobii Eye Tracker [https://tobiigaming.com/]Eye position and head tracking data

Requires the Visual C++ Redistributable for Visual Studio 2012 [https://www.microsoft.com/en-us/download/details.aspx?id=30679]

 <no title>

 Adds support for the ViGEm Virtual Bus [https://vigem.org/] to allow creation of virtual console controllers

 <no title>

 Adds support for the vJoy [http://vjoystick.sourceforge.net/site/] device driver API to enable emulation of virtual DirectInput devices

 <no title>

 Adds support for DirectInput devices (Flightsticks, Steering wheels etc)

 <no title>

 Provider for Xbox devices

 <no title>

 Objects used to communicate with the back-end.These are used as a common format to describe Providers, Devices, desired Subscriptions etc

 <no title>

 Contains Libraries that may optionally be used by Providers

 <no title>

 Libraries to help with assisting querying devices (Detecting which are connected, what their capabilities are etc)

 <no title>

 A central hub for a provider to work out which devices are connected, generate Report Descriptors (To populate input lists in front end), and translate between DeviceDescriptor and native handle etc

 <no title>

 Uses HidSharp to allow a provider to get the name of a device from VID/PID

 <no title>

 Libraries for helping process the input coming from devices and decide what to do with it

 <no title>

 Classes to poll a device, and poke a SubscriptionDictionary to fire it’s subscriptions, or notify the provider to fire a BindMode event

 <no title>

 A wrapper for deriving locical N/S/E/W state from POV angle

 <no title>

 Libraries to assist with various aspects of input subscriptions, including:

	Keeping track of who is subscribed to what input

	Firing of callbacks

	Providing a means for polling loops etc to check which inputs have subscriptions, and which to ignore

	Notifying the system that a device has no more subscriptions, so it’s poll thread can shut down

 <no title>

 A wrapper around ConcurrentDictionary that fires an event handler when the dictionary is empty.

 <no title>

 Wrappers around EmptyEventDictionary for use when storing input subscriptions.

SubscriptionHandler creates nested dictionaries to store the subscriptions.SubscriptionProcessor stores the subscriptions, and handles firing of callbacks

 <no title>

 Automated tests for Subscription Handling libraries

 <no title>

 All providers must sup