

 Navigation

 	
 index

 	
 next |

 	Ubuntu CI Engine documentation

Welcome to Ubuntu CI Engine’s documentation!

General purpose and usage reference documentation:

	Introduction
	What is the Ubuntu CI Engine?

	Using the Ubuntu CI Engine
	Prerequisites

	Creating a Ticket

	Monitoring a Ticket

	Collecting Ticket Results

	Exploiting Test Results

	Ticket and general user interaction
	General principles

	Non Functional Stats Service
	Generating Client Keys

	Cleaning the database

	Defining your Graph

Internal documentation:

	Workflow Diagrams
	Introduction

	Delivery system

	Components versus number of instances:

	Component Specification
	Existing Component Pieces

	Launchpad Components

	Planned Component Specification

	Planned Library Utilities

	CI Engine Service APIs
	Branch listener

	Examples

	Style and Technology Guidelines

	Manually setting up launchpad OAuth token

	Automatic creation of launchpad OAuth tokens

	ppa-hooks

	Using Juju LXC For Local Development
	Setting up Juju LXC

	Host Configuration

	Working with the code

	Upgrade

	Upgrading a Deployment
	Examples

	Upgrading adt-run for the test runner

	Setting Up a Cloud Deployment

	Deploying with Nagios

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Introduction

What is the Ubuntu CI Engine?

The Ubuntu CI Engine is the implementation of the CI Airline [http://summit.ubuntu.com/uds-1311/meeting/22092/core-1311-ci-airline/] designed to
perform continuous integration (CI) of source code and binary packages under a
converged workflow. The project is being implemented in multiple phases.

Phase 0

Phase 0 is the implementation of the ‘CI Core’. In the simplest terms, the
Phase 0 system accepts a set of source packages and produces an Ubuntu image
on which tests are executed. The results are then provided to the user via
the web interface.

This is the basis on which later phases will be built. While Phase 0 only
implements a small portion of the total CI Airline system, it does provide a
useful system capable of performing the basic CI operations of building and
testing.

Features

The essiential set of Phase 0 features include:

	CI from Debian source packages.

	Building of binary packages and complete images.

	Tests are executed on the produced image.

	Tests are defined via autopackage testing.

	Results are archived and retrieved via a web interface.

	A micro-service oriented architecture deployed in an OpenStack cloud
environment.

Constraints

The Phase 0 implementation is constrained so that development can focus on
a robust core of functionality that will be the basis for all future work.

	Tickets are processed serially. Pending tickets are queued and executed in
FIFO order.

	The interface is limited to a command line interface (CLI) for creating
tickets and a web interface for monitoring and viewing results.

	Build and test results and logs are provided as raw artifacts.

	Source packages are used as input.

	Binary packages and images are built from a default series and image.

	OpenStack cloud images are produced and used for testing.

	Tests are limited to autopackage tests defined in the source packages.

Future Phases

The plan for future phases is yet to be determined.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Using the Ubuntu CI Engine

As the Ubuntu CI Engine evolves through development, the usage will become
more user friendly and more robust.

Prerequisites

The Ubuntu CI Engine current only processes source packages as input. These
source packages will be uploaded unmodified into a Launchpad PPA. As a result,
the source packages used as input must be signed by a user with permission to
upload to the PPAs used by the Ubuntu CI Engine. These teams will be managed
through Launchpad team membership granted via a CI team member.

Launchpad Setup

Prior to creating a source package to upload and a ticket, a user will need
setup a Launchpad account and OpenPGP key:

	Create an https://launchpad.net/ account.

	Create and upload an OpenPGP key to Launchpad. Instructions are available
at https://help.launchpad.net/YourAccount/ImportingYourPGPKey.

Creating a Source Package

Once the account setup is complete, users can create source packages. A full
tutorial on creating and modifying source packages are beyond the scope of this
document. There are many Ubuntu development and packaging guides available
including:

	http://packaging.ubuntu.com/html/

	https://wiki.ubuntu.com/UbuntuDevelopment

Setting up the system for ticket creation

The following steps are needed to be able to use the command line interface:

sudo add-apt-repository ppa:canonical-ci-engineering/ci-airline-phase-0
sudo apt-get update
sudo apt-get install uci-cli

Creating a Ticket

Ubuntu CI Engine requests, known as tickets, are created through a command line
interface.

ubuntu-ci [-S|--url] create_ticket -t "Ticket name" -d "Ticket description" -b 123 -o user@example.com -s /full/path/to/_source.changes -s /full/path/to/_source.changes

This returns a ticket ID which can later be used to monitor and check for
results. Once the ticket is created, the Ubuntu CI Engine does the rest. The
ticket will be queued by the Ticket System and executed in FIFO (First In
First Out) order. As the system is limited to processing one ticket at a time,
it may take multiple hours for a single ticket to be completed.

Parts of a ticket submission

The general input specification for a ticket is one or more source packages and
a list of binary package names to add to or remove from the image that will be
generated. These are specified with the appropriate create_ticket arguments.
The full set of required and optional create_ticket arguments are:

usage: ubuntu-ci [-h] [-v {1,2,3}] [-u URL] [-S]
 {create_ticket,update_ticket,status,get_image} ...

optional arguments:
 -h, --help show this help message and exit
 -v {1,2,3}, --verbosity {1,2,3}
 Verbosity level; 1=errors only, 2=verbose output,
 3=very verbose output
 -u URL, --url URL Development ticket system url
 -S, --staging
 -t TITLE, --title TITLE
 Ticket title
 -d DESCRIPTION, --description DESCRIPTION
 Ticket description
 -b BUG, --bug BUG Related bug number
 -o OWNER, --owner OWNER
 Email address of the ticket owner
 -s SOURCES, --sources SOURCES
 Path to source.changes files. Source package files
 (e.g. source.dsc, source.orig.tar.gz, etc.) are
 required to be in the same directory as their
 respective source.changes.
 -w, --wait Do not queue the ticket for processing.
actions:
 {create_ticket,status,get_image}
 commands
 create_ticket Create a new ticket
 update_ticket Update an existing ticket.
 status Get ticket status. Use no flags for all tickets
 get_image Retrieve the image produced by a ticket.

Note

The -t and -d arguments can be specified with a quoted text string.

Ticket Defaults

Images are produced from a default source image and series, which is currently
based on Ubuntu 13.10 (saucy).

Specification of a source package

A source package is a standard Debian source package which may optionally
contain dep8 autopackage tests. If autopackage tests are defined, they will
be used to validate the image that is produced. All tests must pass for a
ticket to complete CI successfully.

Every upload of a source package must include a version bump.

Monitoring a Ticket

As a ticket progresses through the Ubuntu CI Engine, the status of the ticket
is updated to reflect it’s current processing step. This status can be checked
via the web interface.

Collecting Ticket Results

Once a ticket is completed, it’s status will be updated appropriately and all
build and test results and logs will be available via the web interface.

Exploiting Test Results

The test runner produces results in the subunit v1 format.

The subunit stream can be downloaded from the web interface and processed
locally in different ways.

Note that the subunit stream contains the dep-8 test results.

The subunit v1 format is text only and as such can be read but it’s not
especially user-friendly:

test: dsc0t-build
successful: dsc0t-build [multipart
Content-Type: text/plain;charset=utf8
stderr
0^M
Content-Type: text/plain;charset=utf8
stdout
12^M
build: OK
run: OK
0^M
]

subunit provide filters to convert a stream into more readable outputs.

Converting to the python unittest format

$ subunit-1to2 <subunit.stream | subunit2pyunit

This filter is appropriate to inspect failures in tests and will produce
(for example):

$ subunit-1to2 <fail.stream | subunit2pyunit
tests.test_pass
tests.test_pass ... ok
tests.test_fail
tests.test_fail ... FAIL
==
FAIL: tests.test_fail
tests.test_fail
--
testtools.testresult.real._StringException: Traceback (most recent call last):
 File "tests.py", line 31, in test_fail
 self.assertTrue(False)
 File "/usr/lib/python2.7/unittest/case.py", line 424, in assertTrue
 raise self.failureException(msg)
AssertionError: False is not true

--
Ran 2 tests in 0.001s

FAILED (failures=1)

Converting to the junitxml format

$ subunit-1to2 <subunit.stream | subunit2junitxml >results.xml

This produces a ‘results.xml’ file in the junitxml format.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Ticket and general user interaction

General principles

Ticket itself

Ticket collects metadata about what components and branches to treat as feature branches. It will contain a description of this feature and an ETA (from the registrant). Other informations like against which image number we want to have our test running (generated from ticket creation time) and a proposed list of integration tests will also be provided. Finally, we select which ones we want to run against (automated ticket will have this pre-selected with a default per component).

We want as well the user to know about the status of their current delivery. This one can be a direct MP or a first-class ticket entered into the system.

The ticket will include evolving metadata with time and reflect dynamically the states related to it.

	what is building right now as per the ticket definition, and the different build status in the isolated environment on all those components.

	driving the build ordering as well if we have dependencies (but not strict bump) to help upstream only taking care of ABI bump at delivery time.

	getting a way to do a non change rebuild upload for one or more components.

	attaching source package instead of branches for features involving more than just projects we handle in bzr branches.

	knowing where we stands on all those feature branches and sources compared to latest in distro (if the source package isn’t the latest version in the development version anymore)

	what MP are pending against this ticket, meaning against all attached feature branches.

	what delta do we have between the various feature branches in this ticket and their corresponding trunks.

	knowing if we are able to merge or not against those trunks. If we can merge at a T time (and tests are all passing), propose a way to merge trunks easily into those branches.

	after getting the progress on their build, attaching latest available specific image (3 images per ticket): feature branch + fixed image number, feature branch + latest available image, trunk + feature branch merged + latest available image.

	knowing what latest image number is available, be able to change with it if test on latest image passed.

	getting tests progress while they are run dynamically. Represents them clearly against those previous 3 image tests

	ensuring that involved parties like core-devs and design team are involved if the ticket needs their review. A packaging change will require core-devs to ack their change. The design team will be in the process if there is a design change involved. Those should work through credentials.

	CI general health and global warnings if needed

	status on the corresponding components health

	gives an easy way once all those criteria are met (third-party acking, everything built and all tests passing) to give a “go” to the engine to deliver those different trunks.

	show the progress on the merging back to trunk, building packages there, tests passing, migration in UNAPPROVED/NEW, -proposed, release pocket and close the ticket completely once the next image is kicked in. Demonstrate explicitly when something is blocking there the whole pipeline for other delivery.

Tickets interactions

We also want to be able to show where their ticket or MP is in the component queue, and what time they can expect (in average) before seeing it delivered.

Global view

Finally, in this global view, we want to show the health of all projects:

	seeing all components (projects/branches) that we have in the CI system with global/general metadata (what test environment is going to be used, what tests are associated with that components, number of tickets opened against them and so on)

	giving a view for the managers to see what ticket their team are working on, and what’s the progress on them as well as global status (build/tests/ability to merge to trunk).

	if a direct commit to trunk blocked the project and that’s the only way to fix it back (another direct commit to trunk), surface that. All other tickets being blocked by that state (as touching that same component) should reflect that info as well.

	when tickets are expected to be delivered (based on the ETA), so that we can identify hot spots (times where a lot of landing will happen simultaneously and will clash) and try to shuffle them around to not having them in one landing (eventually by a global override on all tickets)

	a single point to see across all projects where different teams need to assess/review before the delivery takes place (pending packaging changes triggering a core-dev review, design review needed)

	CI general health

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Non Functional Stats Service

The Non Functional Stats Service (NFSS) is composed of a few different parts:

	A python3 / pyramid app that exposes a RESTful interface to a postgres data store.

	A client-side javascript-based UI that talks to the above.

While the system is generally very simple, there are a few things that sysadmins ought to be aware of:

Generating Client Keys

Test data is submitted to the data store via the RESTful api, and this API call is secured with oauth. Client access keys need to be generated for every external client that wants to be able to post data into the database. This is achieved by changing to the nf-stats-service directory and running:

$ python3 -m nfss keys-add

This is an interactive script that will ask for client details, and finally will write a python script that can be used by the external client to insert data into the data store.

A list of client keys can be generated in a similar fashion:

$ python3 -m nfss keys-list

A specific client id can be revoked by specifying it’s client access key like so:

$ python3 -m nfss keys-del cj2DriLAGxmxinDyJzvDVQVltRSLNI

(obviously the client key will change, this is just an example).

Cleaning the database

Part of the oauth authentication scheme involves storing nonce values in the database. In order to prevent this table from filling up, we install a daily cron job that cleans the database. This can be achieved manually by running:

$ python3 -m nfss database-clean

Although this should never need to be done manually, since the restish charm installs a cron daily job to run this command.

Defining your Graph

Outline

A graph definition consists of two files; a .js and a .html.

The javascript file defines a controller that handlers receiving the ‘newdata’
event and prepares the raw data for display.

The html file presents the massaged data to the user (for instance creating a
table using ng-repeat directives).

The front end also needs to know about the graph definition and needs to be
added to the ‘definitions’ datastructure found in graphing.module.js.

Develop Locally With Ease

Under normal conditions, the Same Origin Policy prevents Javascript-enabled websites such as this one from making AJAX requests to sites on other domains. This is an important security measure on the web, but unfortunately prevents us from being able to develop the graph definition files locally and test them with live data from the production server.

Fortunately, Chromium offers a way to disable the Same Origin Policy for development purposes, allowing you to develop your graph definition files locally while still making AJAX requests to the live production server, so you have live production data to display in your experimental graph.

All you have to do is launch Chromium with this command:

chromium-browser --disable-web-security /path/to/web_static/index.html

Obviously it is extremely important not to surf the wider internet while Chromium is in this mode, but it sure makes it easy to iterate rapidly on the graph definition files. Don’t forget to close Chromium when you’re done!

Naming your Graph Definition File

Graph definition files are stored under /web_static/graphs and when looking to load them, the web page will first attempt to load your-project-name_your-test-name.html, and failing to find that, it will then search for your-test-name.html and finally your-project-name.html before giving up.

When deciding which name to use for your graph definition, you need to consider the data structure output by your tests.

	If you have one project that has a number of different tests which all output the same data structure, you’ll want to define your-project-name.html to render that graph data.

	If you have many projects all running one test which all output the same data structure, you’ll want to define your-test-name.html

	If for some reason you have a combination of projects and tests which do not output a consistent data structure, then you have the ability to define graphs that are unique to each project+test combination, however this is discouraged because it will likely result in a high degree of code duplication between graph definitions. In this case use your-project-name_your-test-name.html

Data Processing

Alright, so you’ve got your data in the db and now you want to display a pretty graph of it? Great! First, you should read the files in web_static/graphs/ to get some examples of what graph definition files look like. Graph definition files can contain any arbitrary HTML, and can also contain any arbitrary AngularJS directives, such as ng-repeat.

The only hard requirement is that a controller defined in the javascript
listens out for the ‘newdata’ event and handles the raw data in some way
(otherwise it will never receive any data).

For instance the simplest controller + event handler is shown below (taken from
the default graph definition code).

Note. these two examples are the complete code for the default graph definitions (default.html & default.js).

angular.module('NonFunctional.graphing')
.controllerProvider.register("defaultGraphData", ['$scope', '$rootScope',
 function($scope, $rootScope) {
 $scope.graphData = [];
 // Expose a couple of helper methods to the template.
 $scope.dateFormatter = dates.dateFormatter;
 $scope.dateParser = dates.dateParser;

 $rootScope.$on("newdata", function(event, data) {
 $scope.graphData = [{ values: data.data }];
 });
 }
]);

With this data handling in place we can display a simple list of the data like so:

<div ng-controller="defaultGraphData">

 <li ng-repeat="item in graphData[0].values">
 {{dateFormatter()(dateParser(item.date_entered))}}:

 {{item.data}}

</div>

This will result in the following output in the browser:

For a more thorough real-world example for handling data I’ll use the bootspeed data. The JSON blob that you submit to the db looks like this:

{
 "image_release": "utopic",
 "image_build_number": "1:20140428:20140411.3",
 "kernel": 4.42,
 "xorg": 4.77,
 "kernel_init": 0,
 "desktop": 15.15,
 "plumbing": 8.43,
 "image_arch": "mako",
 "image_md5": "n/a",
 "ran_at": "2014-04-28 14:18:17.76909-04",
 "image_variant": "touch",
 "machine_mac": "",
 "machine_name": "mako",
 "boot": 32.77
}

Then the db will return that data wrapped with a little bit of metadata like this:

{
 "data": {
 "image_release": "utopic",
 "image_build_number": "1:20140428:20140411.3",
 "kernel": 4.42,
 "xorg": 4.77,
 "kernel_init": 0,
 "desktop": 15.15,
 "plumbing": 8.43,
 "image_arch": "mako",
 "image_md5": "n/a",
 "ran_at": "2014-04-28 14:18:17.76909-04",
 "image_variant": "touch",
 "machine_mac": "",
 "machine_name": "mako",
 "boot": 32.77
 },
 "date_entered": "2014-04-28 18:18:17.76909+00",
 "id": 21272
}

But, and here’s the big trick, the d3 graphing library we’re using doesn’t like this data structure at all. As you can see, all the numbers we want to graph (kernel, xorg, desktop, plumbing) are all keys in the same object. D3 doesn’t have any provision for having multiple data points within the same object, and instead requires a data structure that looks like this:

[
 {
 key: 'Kernel',
 values: [{ date_entered: "...", value: 1 }, { date_entered: "...", value: 2 }, ...]
 },
 {
 key: 'Plumbing',
 values: [{ date_entered: "...", value: 1 }, { date_entered: "...", value: 2 }, ...]
 },
 {
 key: 'XOrg',
 values: [{ date_entered: "...", value: 1 }, { date_entered: "...", value: 2 }, ...]
 },
 {
 key: 'Desktop',
 values: [{ date_entered: "...", value: 1 }, { date_entered: "...", value: 2 }, ...]
 }
]

So, in order to convert from the original data structure to the expected data structure you must write a function to massage the data into a usable state.
Obviously, the function that converts your data into d3’s graphable data structure is going to depend heavily upon the structure of your data, so there aren’t any hard and fast rules I can give here. The example from bootspeed.html is a good starting point, which I will attempt to explain:

// setup event handling any new data and refreshing the graph.
$rootScope.$on("newdata", function(event, data) {
 // Massage the raw data into something usable by the tables/charts
 // (declared in the html).
 massageGraphData(data);
 // Refresh the graph once the new data is ready.
 $scope.api.refresh();
});

// Helper function used in massaging the data.
function isolator(key) {
 return function(item) {
 return {
 // using the dates service here that provides date manipulation
 // functions.
 date_entered: dates.dateParser(item.date_entered),
 timespan: Math.max(item.data[key], 0) }
 }
}

$scope.massageGraphData = function(blob) {
 $scope.rawData = blob;
 $scope.graphData = [
 {
 key: 'Kernel',
 values: blob.data.map(isolator('kernel'))
 },
 {
 key: 'Plumbing',
 values: blob.data.map(isolator('plumbing'))
 },
 {
 key: 'XOrg',
 values: blob.data.map(isolator('xorg'))
 },
 {
 key: 'Desktop',
 values: blob.data.map(isolator('desktop'))
 }
];
}

In this example, there are two functions, isolator and massageGraphData. The isolator is a meta-function (that is, a function that returns another function). The purpose of this, is that you can call it with the json key you want to extract from the larger blob, and it returns a function that is programmed to take a blob, return just that one key, along with the date_entered key, and nothing else (it strips non-essential data from the json blob). So the inner function inside isolator will return an object that only contains keys date_entered (which we graph on the X axis) and timespan (which we graph on the Y axis).

Note that there’s nothing special about the name timespan. You can use whatever name makes sense for your data. The only important thing is that later on when you define your data accessors, you need to use the same name so that d3 can find your data within the structure.

We setup an event handler that will trigger whenever any new data is provided. The data supplied in this events corresponds to the complete json data blob returned by the REST API endpoint /api/v1/:project_id/:test_id.

Note. By default this is all of your data points from within the last 30 days, but that can be controlled by the start_date and end_date URL query parameters.

Next, there’s the massageGraphData function. This function will take the raw blob data from the event handler and produce a usable subset of the data for graphing.

In particular, blob.data will be a list of objects that look like the second JSON example listed earlier in this document. As you can see I’m calling blob.data.map several times in massageGraphData. The map function iterates over every item in the list (eg, every data point), calls the function returned by isolator, and returns a new list with the successive values returned by the function returned by isolator. The end result of this is that scope.graphData[0].values is a list of objects which contain only date_entered and timespan keys, such that timespan refers to the kernel value from the original data blob. scope.graphData[1].values will be similar, but with the plumbing key instead of the kernel key, and so on.

Note: Assigning your massageGraphData function to the $scope like this
allows you to write unit tests against your controller so that you can prove
that it works as expected.

Choosing your Chart Type

The next part of the graph definition is technically free-form HTML, although most likely you’ll want to define some sort of chart or graph. Technically speaking, you can do absolutely anything you want with AngularJS directives. If you wanted to go totally crazy, you could create a scatter plot by defining your own SVG tag, and then using AngularJS’ ng-repeat in order to create an arbitrary number of circles with your x, y, and radius values dropped in, however I don’t generally recommend fiddling with SVG data directly because then you don’t get nice things like labelled axes.

In general, you’re going to want to use one of the pre-defined nvd3 charts, which you can read more about here:

http://krispo.github.io/angular-nvd3

I’ll continue using the bootspeed graph as my example, which uses a stacked-area-chart, but you can also refer to app_startup_benchmark.html which defines a (non-stacked) line chart.

The setup for the graph in the html is pretty simple. Note the surrounding div that has a ‘ng-controller’, attribute. This tells angular that the bootspeedCtrl controller (defined in the js file) is the contoller backend for this div and will supply the ‘options’ and ‘data’ datastructures.

<div ng-controller="bootspeedCtrl">
 <nvd3 options="options" data="graphData" api="api"></nvd3>
</div>

The actual options for the chart are defined in the controller and is a dictionary containing the key/values for the chart.

$scope.options = {
 chart: {
 type: "stackedAreaChart",
 height: 400,
 margin: {left:100, top:10, bottom:40, right:100},
 x: modifiers.accessor('date_entered'),
 y: modifiers.accessor('timespan'),
 useInteractiveGuideLine: true,
 xAxis: {
 tickFormat: dates.dateFormatter(),
 staggerLabels: true,
 },
 yAxis: {
 tickFormat: modifiers.numberFormatter(',.2f', 's'),
 tickPadding: 10,
 },
 },
};

	type This is the most important option, without it nothing will show. In this example we are using a “stackedAreaChart”. Please see this link for more options: http://krispo.github.io/angular-nvd3/.

	height and margin can be adjusted to your liking. Don’t define a width because it’s defined to be 100% in the CSS, which makes the most efficient use of the screen space.

	x and y tell d3 how to find the x and y values in the data structure you created. There’s nothing special about the values timespan or date_entered, they just need to match what you defined in isolator example.

	xAxisTickFormat and yAxisTickFormat can be adjusted to your liking. If you don’t like the default date format, you can pass in a printf-style date format string to the dateFormatter() function, or you can change it to the numberFormatter() if your X axis isn’t time for whatever reason.

	modifiers.numberFormatter() (available in support.module.js) takes two arguments, the format string, and the units. In this case the numbers we’re graphing are seconds, so ‘s’ is passed in. This can be any arbitrary string and is simply concatenated onto the end of the formatted numbers for display purposes only. You can read more about the format string mini-language here:

	https://github.com/mbostock/d3/wiki/Formatting#d3_format

	https://docs.python.org/release/3.1.3/library/string.html#formatspec

	support.module.js for other date and data modifier methods

So for example I’m using ,.2f here, which means “round the number to two decimal places, and use a comma as the thousands-separator”.

Raw Data Table

If you would like to display a raw data table beneath your graph, you can pretty well copy & paste this exact snippet into your code:

<table>
 <tr ng-repeat="series in graphData | reverse">
 <td>{{series.key}}:</td>
 <td ng-repeat="item in series.values">{{numberFormatter(',.2f', 's')(item.timespan)}}</td>
 </tr>
 <tr>
 <td>Date Entered:</td>
 <td ng-repeat="item in graphData[0].values">{{dateFormatter(ISO_ISH)(item.date_entered)}}</td>
 </tr>
</table>

// You need to expose the helper methods to the scope (within the
// controller):
$scope.ISO_ISH = dates.ISO_ISH;
$scope.dateFormatter = dates.dateFormatter;
$scope.numberFormatter = modifiers.numberFormatter;

This example is using Angular directives to fill out data values into a literal HTML table, and does so in a way that doesn’t hard-code any knowledge about the number of data series (aka lines) on the graph or their names. Notice how similar this snippet is between bootspeed.html and app_startup_benchmark.html (basically the only difference is item.timespan vs item.delta).

And again I’d like to emphasize the true arbitrariness of this HTML here. If you don’t want the data table, don’t include it. If you don’t want the graph, don’t include it! If you want to add some paragraphs explaining how to interpret the data, by all means, throw some p tags in there. Honey badger don’t care.

If the default.js data handler does what you need for the data but you want to
display it differently then you can re-use the default.js file, define your own
html with whatever custom tables etc. you need. The trick to do this is when
you add the graph definition to the definitions dictionary:

this.definitions = {
 // Existing default definition.
 'default': {
 'templateUrl': 'graphs/default.html',
 'deps': 'graphs/default.js'
 },
 // Defining your graph def here.
 'my_test_name': {
 'templateUrl': 'graphs/my-custom-test-display.html',
 'deps': 'graphs/default.js' // <-- Note the use of the default controller here.
 },
};

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Workflow Diagrams

Introduction

	The whole workflow is composed of 3 layers:

	
	One layer is responsible for delivering trunk to distro and handling the transaction to it. The delivery can be one or multiple components in one shot.

	The two other layers are the 2 different workflow to deliver a work. Either a MP to a project (we handle direct commit to trunk as well that way) or a feature branch that matured for a while. In any case, this is created as a ticket entry for the first base layer.

Putting this in images:

[image: _images/sequence-workflows.png]
Components:

	We can achieve all those functionalities with mainly 7 components:

	
	Projects manager

	Landing manager - Ticket manager (they do share most of their code)

	Branch listener

	Branch/Source builder

	ppa assigner

	Image builder

	Test runner

Delivery system

Case 1: delivering a ticket to trunk, (no pre-build package), success

[image: _images/sequence-ticket-to-trunk-success.png]
Note: in case of failure in any step, the Projects manager will comment on the MP and reject it.

If direct push to trunk -> only set an error on the component and don’t enable any other landing to it.

Note 2: while monitoring the ppa or tests, we still can get signal from Projects manager to Landing manager telling “ignore this arch” or “ignore this step”. This impacts the landing manager on its view and can unblock/bypass some steps

Case 2: delivering a ticket to trunk, merge fail

[image: _images/sequence-ticket-to-trunk-merge-fail.png]
Case 3: delivering a ticket to trunk, build fail

[image: _images/sequence-ticket-to-trunk-build-fail.png]
Case 4: delivering a ticket to trunk, tests fail

[image: _images/sequence-ticket-to-trunk-tests-fail.png]
Case 5: delivering a ticket to trunk, blocked in UNAPPROVED/NEW

[image: _images/sequence-ticket-to-trunk-blocked-unapproved.png]
Case 6: delivering a ticket to trunk, blocked in proposed

Note: the package is in the archive at this moment. There is no way to backout the change, so the merge needs to go in one way or another. As the component is blocked in proposed, there is no advantage of unblocking the queue as blocked in proposed means that further unrelated landings will still be blocked in proposed. It will continue blocking potentially other unrelated packages (if a transition happens). The only way then is to unblock the package.

variant a: fix in the same component itself

[image: _images/sequence-ticket-to-trunk-blocked-in-proposed-a.png]
variant b: fix outside the CI system: in another component or by a direct upload to that component

[image: _images/sequence-ticket-to-trunk-blocked-in-proposed-b.png]

Workflow I: direct MP/trivial commit to one component (low-cost ticket)

Reminder: this is the case of a quick bug fix/feature (< 2 commits). The main case is manual ticket landing.

Workflow I A: direct commit to trunk or MP, all infos set

[image: _images/sequence-direct-commit-to-trunk.png]
Workflow I B: direct MP, not following project rules (no commit message/enough approver)

[image: _images/sequence-direct-mp.png]

Workflow II: opening a ticket

Notes: ticket manager and landing manager shares most of their code. Only the order and some interface changes.

Workflow II A: feature branch/transitions/fix involving multiple components (opening a first class ticket)

[image: _images/sequence-ticket-mutiple-components.png]

Components versus number of instances:

Please note that all services are NOT running at the same time. This diagram is just to show what is spawn by what and what takes care of one or multiple components.

	Case delivering to trunk:

	
	one ticket A with mir, libunity-mir, platform-api

	one ticket B with libunity-mir only

	one ticket C with mir

	one ticket D with unity8

	one ticket E with unity-scope-home

First landing: Ticket A, D and E:

[image: _images/sequence-processes-first-landing.png]
Second landing: Ticket B (starts as soon as A is treated) and D (starts as soon as D is treated)
“Treated” corresponds to “ticket removed from the queue in the different “Delivery system” cases.

[image: _images/sequence-processes-second-landing.png]
Workflow I

Note that all those processes are always running (and they only files ticket)

[image: _images/sequence-processes-workflow1.png]
Workflow II

Feature involving mir, libunity-mir, and platform-api

[image: _images/sequence-processes-workflow2.png]

Sources

Below are the sources processed at http://bramp.github.io/js-sequence-diagrams/ to produce the sequence diagrams above.

Case 1

Title: Trunk delivery

participant Projects manager

participant Landing manager

participant Branch/Source builder

participant ppa assigner

participant ppa

participant Test runner

participant archive

Note over Projects manager: new ticket in the queue

Projects manager->Landing manager: Assign branch responsability get metadata (like integration tests to run)

Landing manager->ppa assigner:ask for a clean available ppa

ppa assigner->Landing manager: give ppa infos

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package

Branch/Source builder->ppa:push source

Branch/Source builder->Landing manager: give prepared branch and version infos

Landing manager->Projects manager:update status

Projects manager->Landing manager:get possible overrides

Landing manager–>ppa: monitoring build state

Note over Landing manager:report of successful build

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager->Test runner: test against latest proposed image

Test runner->Landing manager: results

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager–>archive: copy source from ppa to archive and monitor the transition

Note over Landing manager: Push merged branch

Note right of Landing manager: MP is going to be closed

Landing manager->ppa assigner: deprovision that ppa

Landing manager->Projects manager: update final status

Note over Projects manager: ticket closed and removed from queue

Case 2

Title: Trunk delivery

participant Projects manager

participant Landing manager

participant Branch/Source builder

participant ppa assigner

participant ppa

participant Test runner

participant archive

Note over Projects manager: new ticket in the queue

Projects manager->Landing manager: Assign branch responsability get metadata (like integration tests to run)

Landing manager->ppa assigner:ask for a clean available ppa

ppa assigner->Landing manager: give ppa infos

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package can’t merge to trunk

Branch/Source builder->Landing manager: report failure

Landing manager->ppa assigner: deprovision that ppa

Landing manager->Projects manager:update failure

Note over Projects manager: ticket removed from the queue

Case 3

Title: Trunk delivery

participant Projects manager

participant Landing manager

participant Branch/Source builder

participant ppa assigner

participant ppa

participant Test runner

participant archive

Note over Projects manager: new ticket in the queue

Projects manager->Landing manager: Assign branch responsability get metadata (like integration tests to run)

Landing manager->ppa assigner:ask for a clean available ppa

ppa assigner->Landing manager: give ppa infos

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package

Branch/Source builder->ppa:push source

Branch/Source builder->Landing manager: give prepared branch and version infos

Landing manager->Projects manager:update status

Projects manager->Landing manager:get possible overrides

Landing manager–>ppa: monitoring build state and FAILED

Landing manager->ppa assigner: deprovision that ppa

Landing manager->Projects manager: update failure

Note over Projects manager: ticket removed from the queue

Case 4

Title: Trunk delivery

participant Projects manager

participant Landing manager

participant Branch/Source builder

participant ppa assigner

participant ppa

participant Test runner

participant archive

Note over Projects manager: new ticket in the queue

Projects manager->Landing manager: Assign branch responsability get metadata (like integration tests to run)

Landing manager->ppa assigner:ask for a clean available ppa

ppa assigner->Landing manager: give ppa infos

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package

Branch/Source builder->ppa:push source

Branch/Source builder->Landing manager: give prepared branch and version infos

Landing manager->Projects manager:update status

Projects manager->Landing manager:get possible overrides

Landing manager–>ppa: monitoring build state

Note over Landing manager:report of successful build

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager->Test runner: test against latest proposed image and FAILED

Test runner->Landing manager: failure results

Landing manager->ppa assigner: deprovision that ppa

Landing manager->Projects manager: update failure

Note over Projects manager: ticket removed from the queue

Case 5

Title: Trunk delivery

participant Projects manager

participant Landing manager

participant Branch/Source builder

participant ppa assigner

participant ppa

participant Test runner

participant archive

Note over Projects manager: new ticket in the queue

Projects manager->Landing manager: Assign branch responsability get metadata (like integration tests to run)

Landing manager->ppa assigner:ask for a clean available ppa

ppa assigner->Landing manager: give ppa infos

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package

Branch/Source builder->ppa:push source

Branch/Source builder->Landing manager: give prepared branch and version infos

Landing manager->Projects manager:update status

Projects manager->Landing manager:get possible overrides

Landing manager–>ppa: monitoring build state

Note over Landing manager:report of successful build

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager->Test runner: test against latest proposed image

Test runner->Landing manager: results

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager–>archive: copy source from ppa to archive and monitor the transition

Landing manager->archive: seeing it’s in NEW/UNAPPROVED

Landing manager->Projects manager: update status

Note left of Landing manager: no-one looking at the NEW/UNAPPROVED package

Note over Landing manager: warning for anormal wait

Landing manager->Projects manager: update arnomal wait

Note left of Landing manager: if package rejected -> reject ticket

Landing manager->ppa assigner: deprovision that ppa

Landing manager->Projects manager: update failure to land

Note over Projects manager: ticket removed from the queue

Case 6

variant a

Title: Trunk delivery

participant Projects manager

participant Landing manager

participant Branch/Source builder

participant ppa assigner

participant ppa

participant Test runner

participant archive

Note over Projects manager: new ticket in the queue

Projects manager->Landing manager: Assign branch responsability get metadata (like integration tests to run)

Landing manager->ppa assigner:ask for a clean available ppa

ppa assigner->Landing manager: give ppa infos

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package

Branch/Source builder->ppa:push source

Branch/Source builder->Landing manager: give prepared branch and version infos

Landing manager->Projects manager:update status

Projects manager->Landing manager:get possible overrides

Landing manager–>ppa: monitoring build state

Note over Landing manager:report of successful build

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager->Test runner: test against latest proposed image

Test runner->Landing manager: results

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager–>archive: copy source from ppa to archive and monitor the transition

Landing manager->Projects manager: update status

Note over Landing manager: warning for anormal wait

Landing manager->Projects manager: update arnomal wait

Note right of Projects manager: ticket updated with a new commit in a MP or direct push to trunk

Projects manager->Landing manager: new req. for component X

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package

Branch/Source builder->ppa:push source

Branch/Source builder->Landing manager: give prepared branch and version infos

Landing manager->Projects manager:update status

Projects manager->Landing manager:get possible overrides

Landing manager–>ppa: monitoring build state

Note over Landing manager:report of successful build

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager->Test runner: test against latest proposed image

Test runner->Landing manager: results

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager–>archive: copy source from ppa to archive and monitor the transition

Note over Landing manager: Push merged branch

Note right of Landing manager: MP is going to be closed

Landing manager->ppa assigner: deprovision that ppa

Landing manager->Projects manager: update final status

Note over Projects manager: ticket closed and removed from queue

variant b

Title: Trunk delivery

participant Projects manager

participant Landing manager

participant Branch/Source builder

participant ppa assigner

participant ppa

participant Test runner

participant archive

Note over Projects manager: new ticket in the queue

Projects manager->Landing manager: Assign branch responsability get metadata (like integration tests to run)

Landing manager->ppa assigner:ask for a clean available ppa

ppa assigner->Landing manager: give ppa infos

Landing manager->Branch/Source builder: send branch and ppa infos

Note over Branch/Source builder: prepare source package

Branch/Source builder->ppa:push source

Branch/Source builder->Landing manager: give prepared branch and version infos

Landing manager->Projects manager:update status

Projects manager->Landing manager:get possible overrides

Landing manager–>ppa: monitoring build state

Note over Landing manager:report of successful build

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager->Test runner: test against latest proposed image

Test runner->Landing manager: results

Landing manager->Projects manager: update status

Projects manager->Landing manager:get possible overrides

Landing manager–>archive: copy source from ppa to archive and monitor the transition

Landing manager->Projects manager: update status

Note over Landing manager: warning for anormal wait

Landing manager->Projects manager: update arnomal wait

Note over Landing manager: migration finally happened or newer | version in the archive (direct upload)

Note over Landing manager: Push merged branch

Note right of Landing manager: MP is going to be closed

Landing manager->ppa assigner: deprovision that ppa

Landing manager->Projects manager: update final status

Note over Projects manager: ticket closed and removed from queue

Workflow I A

Title: Direct MP or commit to trunk

participant Projects manager

participant Branch listener

participant launchpad MP API

participant launchpad bugs API

Projects manager->Branch listener: Assign branch responsability and rules (like 2 approvers)

Note left of Branch listener:CASE OF DIRECT PUSH TO TRUNK

Branch listener->Branch listener: get infos from unreleased commit message, and eventual bug reports mentioned/attached

Note left of Branch listener:CASE OF MP

Branch listener->launchpad MP API: pool for existing top approved MP

launchpad MP API->Branch listener: grab MP infos and possible attached bugs

Note left of Branch listener:END CASES

Branch listener->launchpad bugs API: grab bugs infos (like title)

launchpad bugs API->Branch listener: get those infos

Branch listener->Projects manager: open a new low-cost ticket on the component associated

Workflow I B

Title: Direct failing MP to trunk

participant Projects manager

participant Branch listener

participant launchpad MP API

Projects manager->Branch listener: Assign branch responsability and rules (like 2 approvers)

Branch listener->launchpad MP API: pool for existing top approved MP

launchpad MP API->Branch listener: grab MP infos and possible attached bugs

Note left of Branch listener: check that MP didn’t follow the rules

Branch listener->launchpad MP API:comment and set back to needs review

Workflow II A

Title: Ticket handling

participant Projects manager

participant Branch listener

participant ppa assigner

participant Ticket manager

participant Branch/Source builder (branch)

participant Branch/Source builder (trunk + branch)

participant ppa (branch)

participant ppa (trunk + branch)

participant Test runner

Note over Projects manager: new ticket opened, specifying components

Projects manager->Ticket manager: Assign branch responsibility get metadata (like integration tests to run)

Note over Ticket manager: create branches (if not existing)

Ticket manager->ppa assigner:ask for two clean available ppas

ppa assigner->Ticket manager: give ppas infos

Ticket manager->Branch listener: Set up branches to watch

Ticket manager->Projects manager:update status

Note left of Ticket manager: REPEAT ON ALL REQUESTS

Note over Branch listener: See workflow I A: see other diagram same apply but on diverged branch

Branch listener->Ticket manager: send incoming request

Ticket manager->Branch/Source builder (branch): send branch info

Note over Branch/Source builder (branch): prepare source package

Branch/Source builder (branch)->ppa (branch):push source

Branch/Source builder (branch)->Ticket manager: give ack back

Ticket manager->Projects manager:update status

Projects manager->Ticket manager:get possible overrides

Ticket manager–>ppa (branch): monitoring build state

Note over Ticket manager:report of successful build

Ticket manager->Projects manager: update status

Projects manager->Ticket manager:get possible overrides

Note over Ticket manager: Push merged branch

Note right of Ticket manager: MP is going to be closed

Note left of Ticket manager: END REPEAT

Note left of Ticket manager: (in parallel for all requests)

Ticket manager->Branch/Source builder (trunk + branch): send branch info

Note over Branch/Source builder (trunk + branch): prepare source package (merged with trunk)

Branch/Source builder (trunk + branch)->ppa (trunk + branch):push source

Branch/Source builder (trunk + branch)->Ticket manager: give ack back

Ticket manager->Projects manager:update status

Ticket manager–>ppa (trunk + branch): monitoring build state

Note over Ticket manager:report of successful build

Ticket manager->Projects manager: update status

Note left of Ticket manager: END REPEAT

Note over Ticket manager: EVERYTIME NOTHING IS BUILDING AND: * A NEW COMPONENT LANDED * OR A NEW AVAILABLE IMAGE * OR PROJECTS MANAGER CONFIG CHANGED IMAGE#

Ticket manager->Image builder: send request for a new image

Image builder–>ppa (branch): build IMAGE A (branch with fixed image num)

Image builder–>ppa (branch): build IMAGE B (branch with latest image if different num)

Image builder–>ppa (trunk + branch): build IMAGE C (trunk merged with latest image num)

Image builder->Ticket manager: report and publish isos

Ticket manager->Projects manager: push infos

Ticket manager->Test runner: test against available images

Test runner->Ticket manager: results

Ticket manager->Projects manager: update status

Note left of Ticket manager: END TESTING

Ticket manager->Projects manager: request for more additional constraints (design review, packaging changes)

Projects manager->Ticket manager: additional ack by release team or design or core-dev

Note over Ticket manager: LANDING button only available if IMAGE 3 built, req. fulfill and tests pass Then go to landing manager case.

Ticket manager->ppa assigner: deprovision the (branch) ppa

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Component Specification

	Existing Component Pieces

	Launchpad Components
	Merge Proposal

	BZR Repos

	PPAs

	Distro Archive

	Planned Component Specification
	Ticket System

	Web Server

	Branch listener

	Lander

	Branch/Source Builder

	Image Builder

	Test Runner

	Queue Service

	Planned Library Utilities
	Data Store

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

Existing Component Pieces

Here’s a list of what we have available today that might be of use in the CI Airline system.

Branch/Source Builder

	Build to PPA and monitor - lp:cupstream2distro-config already does this for the daily release process.

	Code coverage - lp:pbuilderjenkins has hooks to enable code coverage

	Static code checkers - lp:pbuilderjenkins has hooks to perform license, pep8 and pyflakes checks

Lander

	Copy from PPA to archive - lp:cupstream2distro-config already does this for the daily release process. (? not 100% sure about this, need to ask vila/didrocks)

Project Manager

	Project specific configuration - We are doing this now with lp:cupstream2distro-config but with a very Jenkins focused implementation.

Test Runner

	Test full touch images - lp:ubuntu-test-cases/touch?

	Test custom touch images based on PPAs and packages - lp:ubuntu-test-cases/touch (? need to ask doanac/plars)

Image Building

	Didier has done this manually for ISO images, using a squash FS process. Need to automate this and modify to work with touch images (which have an Ubuntu and platform specific component). (takes about 15 minutes)

Ubuntu CD Image & Germinate

	Believe using this process will be too time consuming to be used to generate the test images. Plan is to use the Image Building step above.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

Launchpad Components

Merge Proposal

Purpose:

	A merge proposal in launchpad, contains the changes to be built, tested and eventually merged into trunk.

Deployment:

	This is already provided by Launchpad

Interactions:

	Trunk Delivering System - serializes the build and testing of MPs destined for trunk and performs the actual merge. Sends feedback to the MP on results of build and testing.

	Ticketing Tracker - the tracker monitors MPs that are part of a ticket request.

BZR Repos

Purpose:

	Project branches created for isolation of new features. Created by the ticket system when a new ticket is created for each project involved. Will eventually be merged to trunk

Deployment:

	This is already provided by Launchpad

Interactions:

	Ticket Environment Setup - Creates and removes the bzr repos as they are needed.

PPAs

Purpose:

	A PPA in launchpad, encapsulates the build of a bzr branch. Stores the packages once they are built. Will contain a single source for ‘direct to trunk’ MPs or multiple sources for tickets.

Deployment:

	This is already provided by Launchpad

Interactions:

	Branch/Source Builder - supplies source packages to build

	Trunk Delivering System - copies successful packages from PPAs into distro archive

	Ticket environment Setup - creates a PPA to manage projects and builds under a ticket

	Image Builder and Store - pulls packages from the PPA for image generation

Distro Archive

Purpose:

	This is the package archive. Packages are copied to here from the branch/ticket specific PPAs once they are committed.

Deployment:

	This is already provided by Launchpad

Interactions:

	Trunk Delivering System - Copies packages from the PPAs to archive. Also monitors for successful delivery.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

Planned Component Specification

	Ticket System
	Purpose

	Deployment

	Development Plan

	Interactions

	Design

	REST APIs

	Models

	Web Server

	Branch listener
	Requirements

	Proposed API

	Lander
	Purpose

	Deployment

	Interactions

	Development Plan

	Design

	API

	Branch/Source Builder
	Purpose

	Deployment

	Interactions

	Service Design

	REST APIs

	Worker Design

	Image Builder
	Deployment

	Interactions

	REST API

	Development Plan

	Test Runner
	Purpose

	Future

	API for submitting test run requests

	Deployment

	Interactions

	Development Plan

	Queue Service
	Purpose

	Usage

	Design

	API

Planned Library Utilities

	Data Store
	Requirements

	Proposed API

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Ticket System

Purpose

The Ticket System contains project-centric knowledge such as location of trunk names of integration tests, point of contact, etc. as well as the ticketing management for the CI Engine which includes the status of current MPs being built an

It maintains the following sets of data:

	The history and status of tickets (the ticket tracker).

	The definition and configuration of projects, their branches, source packages and produced binary packages (the project manager).

	The test database. (This will not be part of phase 0)

Deployment

	Can run as a juju service.

	Runs as a persistent service, when it goes down, the engine halts.

	State needs to serialized whenever it is updated, so that status can be regenerated on a restart.

Development Plan

Phase 0

	Define API.

	Define backend ticket storage.

	Define backend project specification storage.

	Handle status updates from the Landing Manager.

	Provide read API for the Web Server.

TODO:

	Bundle the ticket creation API
	For speed, I have left the different APIs to fully create a ticket as separate. If/when there is time, it would be much improved to bundle this together into one single ‘Bundle API’

Future

	Integrate with the Landing Manager, supply metadata to build and test a single project and generate an automatic low-cost ticket (phase 0 will accept only source package uploads directly, the branch polling for new merges and creation of

	Define backend test database storage, and if it should be a separated system component.

Interactions

Ticket System

	Provide API for Web UI

	Provide API for Landing Manager to update tickets and subtickets. Also provide API for any system component that needs information about a ticket or subticket.

Project Manager

	Provide API for any system component that needs information about a project/branch/merge proposal/source package/binary package.

Design

Project Manager

In phase 0 the project manager will store and manage information about:

	Source package upload: component that will be tracked by a subticket. Is a direct source package upload.

	Source package: a source package as found in the archive.

We’ll be provided a list of binary packages that should be monitored and tested, and a script outside project manager will generate the respective sources list.

This data will be updated by submitting a file to project manager, in JSON format, that should contain the binary name, source package name and version per entry.

For next phases, we’ll extend it to store info about:

	Binary package: a binary package as found in the archive, produced by a known source package.

	Upstream project: a launchpad project, that might have branches.

	Bazaar branches: launchpad bazaar branches, might be associated with a source package. A branch can produce only one source package at a time.

	Merge proposal: a launchpad merge proposal, that will be tracked by a subticket.

Ticket System

Tickets and subtickets

A ticket is a way of grouping parts of a bug fix or feature.
In the ticket you’ll describe the objective, add relevant information like
blueprints or other references and the ticket status will reflect the status
of its subtickets. Other system components will rely on the ticket status to take actions.

A subticket refers to a source package upload or a merge proposal.

When a developer submits the package upload request, the ticket system creates a subticket for each uploaded package and/or merge proposal, and a ticket that contains all of them.

In phase 0, it won’t be possible to add more subtickets to a ticket after ticket is created (no editing). To create a ticket with several parts, the developer needs to submit all of them at once.
If a subticket fails, the developer needs to submit another request that will generate another ticket with a subticket.

The ticket and subtickets will keep only the current step of the workflow they are and their status, as defined in ticket and subticket models.

In phase 1, if the subticket processing fails, the subticket is closed as failed, and the developer can submit another source package upload to the same ticket. It’ll also be possible to add merge proposal subtickets.

Ticket System features

Create, monitor and manage ticket related activities

	Define and create a ticket including:

	describe the targeted feature

	Links to any bugs/BPs/other design docs that are related

	People/teams working/owning on the ticket

	Components involved (packages/PPAs/feature branches/infrastructure required to code/test/build/deploy)

	PPA(s) dedicated to the ticket

	Describe the test suites that need to be run (smarts can be added in the long run to assist users in choosing the Right test to run). In phase 0 it consists on the dep8 tests in all source packages that are relevant.

	Knowing what image is supposed to be ‘frozen’ for developing against

	Provides test and status of a ticket:

	Built images in the image store

	Status of the ticket as it progresses through the CI engine

	Clear indication of merge/build/test failures and where the failure occurred, make it obvious to developers what a corrective course of action should be

	Provide a means to execute a landing when all criteria have passed

	Provides ticket management:

	list and status of all tickets

REST APIs

Tickets

List tickets

List all open tickets.

curl --dump-header - http://localhost:8000/api/v1/ticket/

Create ticket

Create a ticket from one or more source package uploads.

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"owner": "owner@example.com", "title": "My first ticket", "description": "This if my first ticket. See what it can do", "bug_id": "12345"}' http://localhost:8000/api/v1/ticket/

Get ticket

Full ticket

Returns ALL information about the given ticket.

curl --dump-header - http://localhost:8000/api/v1/fullticket/1/

Model info

Return the ticket model info only for the given ticket.

curl --dump-header - http://localhost:8000/api/v1/ticket/1/

Get open tickets

Show a list of all open tickets.

curl --dump-header - http://localhost:8000/api/v1/opentickets/

Get ticket status

Get the status of all tickets or tickets for a specific status. (Mostly for the WebUI)

All

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/

Queued

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/?current_workflow_step=100

Package Building

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/?current_workflow_step=200

Image Building

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/?current_workflow_step=300

Image Testing

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/?current_workflow_step=400

Package Publishing

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/?current_workflow_step=500

Failed

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/?current_workflow_step=999

Complete

curl --dump-header - http://localhost:8000/api/v1/ticketstatus/?current_workflow_step=1000

Update ticket status

To be used by the CLI and the lander

curl --dump-header - -H "Content-Type: application/json" -X PATCH --data '{"current_workflow_step": "100", "status": "000"}' http://localhost:8000/api/v1/updateticketstatus/1/

Mark ticket complete

To be used by the lander.

curl --dump-header - -H "Content-Type: application/json" -X PATCH --data '{"current_workflow_step": "1000", "status": "1000"}' http://localhost:8000/api/v1/updateticketstatus/1/

Update subticket status

To be used by the CLI and the lander

curl --dump-header - -H "Content-Type: application/json" -X PATCH --data '{"current_workflow_step": "100", "status": "000"}' http://localhost:8000/api/v1/updatesubticketstatus/1/

Create source package upload

To be used by the CLI

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"sourcepackage": "/api/v1/sourcepackage/X/", "version": "1.0"}' http://localhost:8000/api/v1/spu/

Create artifact

Ticket

Valid types are: “RESULTS”, “LOGS”, “IMAGE”

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"name": "my_artifact", "ticket": "/api/v1/ticket/X/", "reference": "http://path.to/artifact/", "type": "IMAGE"}' http://localhost:8000/api/v1/ticketartifact/

Subticket

Valid types are: “SPU”, “RESULTS”, “LOGS”

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"name": "my_artifact", "subticket": "/api/v1/subticket/X/", "reference": "http://path.to/artifact/", "type": "SPU"}' http://localhost:8000/api/v1/subticketartifact/

Create subticket

To be used by the CLI

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"source_package_upload": "/api/v1/spu/X/, "ticket": "/api/v1/ticket/X/, "assignee": "test@example.com"}' http://localhost:8000/api/v1/subticket/

Project

Get source package

return all source packages

curl --dump-header - http://localhost:8000/api/v1/sourcepackage/

Add source package

This action would be completed by the CLI when it encounters a new source package that the ticket system hasn’t had before.

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"name": "my-package"}' http://localhost:8000/api/v1/sourcepackage/

Get binary package

return all binary packages

curl --dump-header - http://localhost:8000/api/v1/binarypackage/

Models

Ticket System will be django + REST + Postgres. The phase 0 models are defined below with the proposed future models coded out below that.

Phase 0

sourcepackage

A source package is an existing source package in the Ubuntu archives. A source package record is created when a source package has changes submitted to the ticket system for the first time.

sourcepackageupload

A ‘Source Package Upload’ is a file uploaded by the user that is related to the changes being made. It will have a related source package and artifacts.

ticket

A ticket is created to get a change (or set of changes) into the Ubuntu archive. Creating a ticket allows the changes to be tracked through the processes of package building, image building, image testing and publishing as well as the results to be seen by the user.

subticket

Each source package upload that is added to a ticket will have its own subticket. A ticket can contain one of more subtickets. The subticket allows the user to track the progress and results of the package building for each source package upload.

artifact

Artifacts can be multiple things. When a ticket is initially created, it will have artifacts attached to it which are the source package upload files. Artifacts can also be test results and log files. They can be assigned to a relevant ticket or subticket based on the step of the process.

Future Apps/Models

person

class Person(models.Model):
 name = models.CharField(max_length=4096)
 email = models.EmailField(max_length=200)
 is_team = models.BooleanField(default=False)

testsuites

class TestSuites(models.Model):
 pass

project

class Project(models.Model):
 # Class that defines an upstream project.
 name = models.CharField(max_length=4096)
 display_name = models.CharField(max_length=4096)
 maintainer = models.ForeignKey("Person")
 contact = models.ForeignKey("Person")
 description = models.TextField()

branch

class Branch(models.Model):
 unique_name = models.CharField(max_length=4096)
 owner = models.ForeignKey("Person")
 type = models.CharField(choice=["trunk", "development", "maintenance", "regular"])
 project = models.ForeignKey("Project", null=True, blank=True)

binarypackage

class BinaryPackage(models.Model):
 name = models.CharField(max_length=4096)
 sourcepackage = models.ForeignKey("SourcePackage")
 seeded = models.BooleanField(default=False)

mergeproposal

class MergeProposal(models.Model):
 branch = models.ForeignKey("Branch")
 submitter = models.ForeignKey("Person")
 status = models.CharField(choices=["work_in_progress", "needs_review", "approved", "rejected", "merged"])
 lp_weblink = models.CharField(max_length=4096)

Person API’s - TODO

add_person

Add a person (or a team) to the database.

person

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"name": "Chris Johnston", "email": "user@example.com", "is_team": "False"}' http://localhost:8000/api/v1/person/

team

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"name": "Canonical CI Engineering", "email": "team@lists.example", "is_team": "True"}' http://localhost:8000/api/v1/person/

get_person

Return all persons

curl http://localhost:8000/api/v1/person/

search by name

curl --dump-header - http://localhost:8000/api/v1/person/?name__exact=My%20Name
curl --dump-header - http://localhost:8000/api/v1/person/?name__iexact=my%20name
curl --dump-header - http://localhost:8000/api/v1/person/?name__startswith=My
curl --dump-header - http://localhost:8000/api/v1/person/?name__istartswith=my

search by email

curl --dump-header - http://localhost:8000/api/v1/person/?email__exact=user@example.com
curl --dump-header - http://localhost:8000/api/v1/person/?email__iexact=User@example.com
curl --dump-header - http://localhost:8000/api/v1/person/?email__startswith=user
curl --dump-header - http://localhost:8000/api/v1/person/?email__istartswith=User

show/don’t show teams

curl --dump-header - http://localhost:8000/api/v1/person/?is_team=True
curl --dump-header - http://localhost:8000/api/v1/person/?is_team=False

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Web Server

Purpose:

	Provides human interface into the CI system.

	Create/manage/delete tickets

	Status of tickets

	Artifact access?

Deployment:

	Can run as a juju service.

	Needs a relationship to the Project Manager.

	Has no internal state, just provides a view to the data in the Project Manager.

	Provides public access with authorization to view private data.

Interactions:

	Project Manager - provides an interface for working with tickets and providing latest status.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Branch listener

Purpose:

	Track MPs and the trunks for the components involved in a ticket. tarmac-ish.

Requirements

https://bugs.launchpad.net/tarmac/+bug/1253770

	Determine when an MP has been updated and run tests accordingly.

	Given a trunk branch, return a list of all MPs available.

	Given an MP and a revision ID, check and merge.

	Apply tests to non-Approved branches and after any update/commit.

Tarmac meets most of our needs.

Service Requirements (Juju)

	Read access to LP.

	MP comment write access to LP.

	Tarmac installed (currently the stable release is being investigated but a fork might be in order)

Proposed API

Inbound

	check_branch/?branch=<branch>[&revision=<revision>]

	merge_branch/?branch=<branch>[&revision=<revision>]

Outbound

Currently all outbound APIs will be those tarmac already uses.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Lander

Purpose

Phase 0

Coordinates building of source packages into a full image, testing and
publication of those packages and image upon successful completion of the
tests.

Future

Expands upon Phase 0 by adding MPs as a build source and adds the ability to
test packages without building a full image. It then coordinates the building
and testing of MPs or source packages and publication into the archive. The
Lander merges the MP after a successful publication while ensuring that MP’s
target branch has remained unchanged.

Deployment

Phase 0

	Can run as a Juju service.

	Needs relationship to Ticket System, PPA Assigner, Branch/Source Builder,
Image Builder and Test Runner.

	No public access needed.

Future

	Incoming requests are queued and played back in the event of a restart. On restart, checks are made to determine the state of each request.

Interactions

Phase 0

	Ticket System - Provides build requests.

	Branch/Source Builder - Source packages are dispatched to the builder.

	PPA - Location where the package build will take place and published.

	PPA Assigner - Provides a single PPA to perform package builds.

	Image Builder - Builds a complete image from the PPAs and packages.

	Test Runner - Runs the specified test (if any) on the produced image.

	Data Store - The logs and artifacts are archived to the data store.

Future

	Ticket System - Provides meta information regarding the project owning a
branch (i.e. what trunks to process, which tests to run, etc.). Status
updates are sent to the project manager.

	LP Merge Proposal - MPs are the unit of work managed by the trunk delivering
system, if the necessary criteria is in place, the MP will be merged to
trunk.

	Branch/Source Builder - MP branches are dispatched to the builder.

	PPA - Location where the package build will take place.

	PPA Assigner - Provides a single PPA to perform package builds.

	Test Runner - Runs the specified test (if any) on the packages from the PPA.

	Image Builder - Builds a complete image from the PPAs and packages.

	Data Store - The packages are copied to the archive from the PPA on
successful completion of testing.

Development Plan

Phase 0

	Define APIs.

	Deploy an instance.

	Allocate a PPA (interact with PPA Assigner).

	Build a source package in the PPA.

	Monitor a PPA for build status.

	Report status (interact with Ticket System).

	Build an image (interact with Image Builder).

	Initiate integration tests (interact with Test Runner).

	Publish packages from one PPA to another PPA.

	Handle binary build failures.

	Handle image build failures.

	Handle integration test failures.

Future

	Spawn an MP build (interact with Branch/Source Builder).

	Ensure that trunk has not changed during execution.

	Merge an MP to trunk.

	Binary copy a package from PPA to the archive.

	Monitor archive for status of package.

	Full end-to-end “Direct merge proposal to trunk” success case.

	Handle source build failures.

	Handle trunk changing during execution failures.

	Handle failure to merge.

	Handle push to archive failures.

	Handle component failure recovery/restart.

Design

Phase 0

A Lander service handles the workflow by using Jenkins to schedule individual
tasks. When a request is received to the Lander from the Ticket System, it
triggers the master Jenkins job with the request parameters. The master job
then triggers a series of child jobs to execute the workflow.

The child jobs themselves execute a service handler. The service handler is
responsible for setting up the progress queue and triggering the service
via its REST API. As the service handler runs, it outputs the progress updates
it receives to the console (to be viewed via Jenkins) and pushes the progress
update to the Ticket System.

When the service completes, the service handler closes with a return code
matching the status of the service itself. The result data from the service is
archived as a Jenkins artifact. That data is combined with the existing set of
job parameters to be used as input to the next Jenkins child job.

Only one master job may execute at a time. If additional build requests are
received, they will be queued by Jenkins.

The Lander supplies regular notification events to the Ticket System while a
job is executing. There are no notifications sent when the service is idle.

The Lander archives the Jenkins console logs and the archived results of each
job to the data store.

Future

The Lander will support concurrent build requests as long as they don’t have
conflicting sources. Execution priority is given to first class ticket
requests.

API

Phase 0

execute_request

Schedules a new request for building source packages and creation and test of
an image.

URL Pattern

http://lander-url:8080/api/v1/execute_request (HTTP POST)

Parameters

	ticket: The identification handle for a ticket request.

	source_packages: an array of data-store URLs to the source package files.

	binary_packages: an array of binary package names to use when constructing
the image.

	series: the Ubuntu series to base the image (i.e. ‘trusty’)

	base_image: the image to use as source for the new image

	progress_trigger: the amqp exchange to use for sending progress events.

Example

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"ticket": "1234", "source_packages": ["http://data_store-url/autopilot.tar.gz", "http://data_store_url/ubuntu-ui-toolkit.tar.gz"], "binary_packages": ["python-autopilot", "ubuntu-ui-toolkit-autopilot", "libunity8"], "series": "trusty", "base_image": "trusty-desktop-amd64.iso", "progress_trigger": "lander-1234"}' http://lander-url:8080/api/v1/execute_request

status

Returns the current status of the lander service and state of the currently
running jobs for debugging purposes.

Url Pattern

http://lander-url:8080/api/v1/status (HTTP GET)

Example

curl --dump-header - http://lander-url:8080/api/v1/status

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Branch/Source Builder

Purpose

Accepts one or more source package(s) and dispatches it to the provided PPA for
building It then monitors the PPA for completion of the build and collection of
results.

Deployment

	Standard Juju service with a juju-deployer config

	A service providing the REST interface

	A rabbitmq system where the service will send messages to a work queue. A
configurable set of workers will then be able to process the messages. The
queue should provide fault-tolerance so that requests will always be handled.

	No public access needed.

Interactions

	Lander sends a “build_source” request to the service (this includes swift
URLs from the data-store on what to build)

	A request is placed in the queue (at each step below, the progress_trigger
will be called to notify of status changes).
* The source packages are dput to the PPA
* The PPA is monitored for the completion of the build

	The Branch Source Builder sends progress updates back to the Lander. When
the build is complete, the progress message will indicate completion and
provide links to the build logs.

Service Design

The main web-service will be a stripped down REST-ful server providing:

REST APIs

build_source

Request a PPA build of the provided sources.

URL Pattern

http://bsbuilder-url:8080/api/v1/build_source (HTTP POST)

	Parameters

	
	ticket_id

	cancel_url(can be null): a link to json url return {‘building’: true|false}

	source_packages: An array of data-store URLs containing all of the
source package files.

	series

	ppa: The PPA allocated by the ppa-creator for this operation.

	archive

	progress_trigger: A string used to create a dedicated message queue
between the Branch/Source builder and the build_source caller.

Example

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"ticket_id": 1, "cancel_url": null, "source_packages": ["https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.diff.gz", "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.dsc", "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1_source.changes"], "series": "saucy", "ppa": "ppa_build_1", "progress_trigger": "lander_master-1-bsbuilder"}' http://bsbuilder-url:8080/api/v1/build_source

Progress is communicated at regular intervals using the following messages:

Waiting

The build has not yet started.

message = {
 "state": "WAITING",
 "source_packages": source_packages,
 "ppa": ppa,
 "progress_trigger": progress_trigger
}

In progress

The source package(s) has been accepted by the PPA and are building.

message = {
 "state": "STATUS",
 "source_packages": source_packages,
 "ppa": ppa,
 "progress_trigger": progress_trigger
}

Completed

The build completed successfully.

message = {
 "state": "COMPLETED",
 "exit": True
 "source_packages": source_packages,
 "ppa": ppa,
 "progress_trigger": progress_trigger,
 "logs": ["https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.build.log"]
}

Failed

The build failed.

message = {
 "state": "FAILED",
 "exit": True
 "source_packages": source_packages,
 "ppa": ppa,
 "progress_trigger": progress_trigger,
 "logs": ["https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.build.log"]
}

status

Useful for debug and monitoring. This method will return information like
the number of worker queues and if they are busy or not.

URL Pattern

http://bsbuilder-url:8080/api/v1/status (HTTP GET)

Example

curl --dump-header - http://bsbuilder-url:8080/api/v1/status

Worker Design

Steal logic from the daisy charm [http://bazaar.launchpad.net/~daisy-pluckers/charms/precise/daisy-retracer/trunk/view/head:/hooks/amqp] to set up a worker node. Then create a
small python service using py-amqplib to pull messages off the queue. The
service needs to respond to the caller’s progress_trigger so it can track
the state. The messages we should send are:

	STARTED - the message was pulled off the queue

	INPROGRESS - the source packages were dput to the PPA and its now building

	COMPLETE - the package has been built

	FAILURE - an error occurred at any step in the process

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Image Builder

Purpose:

	Create a new image by:

	Downloading and mounting the base image

	Adding the requested PPAs and packages

	Repacking the image

Deployment

	Can run as a Juju service.

	Needs relationship to the Lander and the Data Store.

	Operations are transient, no need to save state.

	Will need to have some configuration data though, in particular, for
Glance credentials

	No public access needed.

Interactions

	Lander - Get the PPA to use, list of packages, and URL to the
base image. Send back the location of the rebuilt image.

	PPA - Pull previously built packages to add to the image.

	Data Store - Push rebuilt image. For cloud images, this will go to
Glance rather than Swift.

REST API

status

Return the current status of the image builder and the state of
currently running jobs.

Example

curl --dump-header - http://localhost:8000/api/v1/imagebuilder/status

build_image

Build an image including the requested PPAs and packages.

	parameters:

	
	ticket_id : STRING
	Ticket ID from the ticket system

	cancel_url(can be null): a link to json url return {‘building’: true|false}

	base_image : {“image_type”: IMAGE_TYPE, “url_list”: [...], “series”: SERIES}
	A json object containing the image_type (cloud for now), list of
URLs pointing to the image artifact(s), and the Ubuntu series
name.

	ppa_list : [...]
	A list of PPAs to add to the image.

	package_list : [...]
	A list of additional packages to install in the image.

	progress_trigger : STRING
	The amqp exchange to use for sending progress events.

Example

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"base_image": {"image_type": "cloud", "url_list": ["http://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img"], "series": "trusty"}, "ppa_list": ["ppa:project/ppaname"], "package_list": ["libfoo", "baz-utils"], "progress_trigger": "testbuild-1-imagebuilder", "ticket_id": "1", "cancel_url": null}' http://localhost:8000/api/v1/build_image/

Development Plan

	Define APIs.

	Prototype the process.

	Rebuild cloud images.

	Push to glance.

	Support monitoring and progress requests.

	Juju deployment support.

	Rebuild touch images.

	Rebuild cd images.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Test Runner

Purpose

	Performs package testing on a given image.

Future

Expands upon phase 0 by allowing a set of PPAs and additional packages to be
added before running the tests, support using autopilot on a touch device,
perform a custom test (TBD), support executing tests on bare metal.

API for submitting test run requests

The ‘Test Runner’ exchanges requests/responses with the ‘Lander’.

test_package

This run the DEP8 tests for each package in ‘package_list’ on ‘image_id’ and
is sent by the ‘Lander’.

test_image(ticket_id, image_id, package_list, progress_trigger)

The caller is responsible for providing a unique ‘progress_trigger’
identifier. This unique identifier is used to define the rabbit queue and
the data store container.

	This is composed of:

	
	boots the image from ‘image_id’,

	install each package from ‘package_list’ monitoring its execution
and emitting progress messages (see below),

	collect the test results,

	send a ‘done’ message.

The ‘progress’ and ‘done’ messages are sent to a rabbit queue to communicate
with the ‘Lander’.

done

This ends the processing request and is sent to the ‘Lander’.

done(progress_trigger, status=[FAIL, SUCCESS], test_result_urls)

‘test_result_urls’ is a list of subunit streams uploaded to the data store.

progress

This is sent to the ‘Lander’ to provide feedback during the test run.

progress(progress_trigger, message='% or ETA', current, total)

Based on test execution feedback, a progress message is sent at regular
intervals until completion. ‘total’ is the number of tests to execute,
‘current’ is the rank of the test currently running. Both can be empty if
this info is not available.

Deployment

	This can be deployed as a juju service, but the actual test runners may be on
bare metal (vms only for phase 0).

	Needs relationship to the Lander and the Data Store.

	Operations are transient, no need to save state.

Interactions

	Lander - Supplies test requests and waits for results.

Development Plan

Phase 0

	Setup an instance from the image builder id

	Run the dep8 tests for a list of packages

	Collect the test results

	Send test results to the lander (via the data store).

Future

	Collect a set of artifacts (defined by the ‘Lander’)

	Execute test on bare metal (including touch device)

	Execute autopilot (requires an emulator or a graphic card)

	Execute arbitrary test (may require additional packages)

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Queue Service

Purpose

Provides a generic queue service for the entire CI Engine. Common uses are:

	Task queues to manage work between a service accepting requests and a pool
of workers to actually execute the request.

	Progress queues to provide progress updates between services.

Usage

Task Queues

The service and its pool of workers share a named queue defined in the service
charm configuration files.

Progress Queues

The queue is created by the calling service and the details are passed to the
callee. For example, if the Lander needs to receive progress from the Image
Builder, the Lander creates the queue and passes it to the Image Builder as
part of the Image Builder API.

Updates are sent every 60 seconds until the task being tracked is complete, at
which point it can stop sending updates.

If no progress is received by the caller with the span of 10 updates, the
caller can declare the callee unresponsive and can take action to retry or fail
the original request.

Design

The RabbitMQ service is used.

A library API is provided to facilitate access.

API

TBD

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	Component Specification

 	Planned Component Specification

Data Store

Purpose:

	Store artifacts and other file-based data.

Requirements

	Accept both private and public files.

	Give access via HTTP to public files.

	Provide a library based API for other components to use.

Proposed API

	DataStore(component, identifier=None)

	Creates a data store object which is used to communicate with the swift service.
The component and identifier are used internally to select the correct container
in which to store the data.

	list_files()

	List the files in the container

	put_file(filename, contents)

	Add a file to the data store.

	get_file(filename)

	Get a file from the data store.

	change_visibility(filename, private=False)

	Used to make public files private and private files public.

	delete_file(filename)

	Remove a file from the data store.

	delete(recursive=False)

	Remove the container.

	file_path(filename)

	Get the public url for a file.

	clear()

	Remove all files from the container.

	change_visibility(public=False)

	Make the container public/private.

Internal Methods

_create_container(container_name)

_get_container(component, identifier=None)

_get_container_url()

_get_file_name(filename)

_has_file(filename)

_setup_auth()

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

CI Engine Service APIs

	Branch listener

	Examples
	Initial Successful Request

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	CI Engine Service APIs

Branch listener

To Be Determined.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	CI Engine Service APIs

Examples

The section provides some examples of how the APIs would be used in various use cases.

	Initial Successful Request

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

 	CI Engine Service APIs

 	Examples

Initial Successful Request

The developer is making the first request. The starting point is the base image and two empty PPAs.

User -> CLI

The user creates a request, providing a source package and binary packages to add.

python ubuntu-ci create_ticket -t "Ticket name" -d "Ticket description" -b 123 -o user@example.com -s /full/path/to/_source.changes -s /full/path/to/_source.changes

CLI -> Ticket System

The CLI creates a ticket through the ticket system, then pushes the source package files into the data store.

Create the ticket:

create_ticket {
 "owner": "default-user@example.com",
 "title": "Default title",
 "description": "Default description",
 "bug_id": "https://bugs.launchpad.net/bugs/1234567",
}

Returns:

"http://ticket-system-url:8000/api/v1/ticket/1/"

Create the source package upload:

create_source_package_upload {
 "sourcepackage": "/api/v1/sourcepackage/X/",
 "version": "1.5~dev.1"
}

Returns:

"http://ticket-system-url:8000/api/v1/spu/1/"

Create the sub-ticket for the source package:

create_subticket {
 "source_package_upload": "/api/v1/spu/1/",
 "ticket": "/api/v1/ticket/1",
 "assignee": "default-user@example.com"
}

Returns:

"http://ticket-system-url:8000/api/v1/subticket/1/"

For each source package file, upload to the data store:

data_store = DataStore("ticket.1", "sources", public=True)
while open("autopilot_1.5~dev.1_source.changes") as f:
 url = data_store.put_file("autopilot_1.5~dev.1_source.changes", f.read())

Returns (as ‘url’):

https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1.sources/autopilot_1.5~dev.1_source.changes"

then create the artifact:

create_artifact {
 "name": "autopilot_1.5~dev.1_source.changes",
 "subticket": "/api/v1/subticket/1/",
 "reference": "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1.sources/autopilot_1.5~dev.1_source.changes"],
 "type": "SPU"
}

Returns:

"http://ticket-system-url:8000/api/v1/artifact/1/"

Ticket System -> Lander

The ticket system requests a build of the source packages and image through
the lander:

execute_request {
 "ticket_id": "1",
 "source_packages": [
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.diff.gz",
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.dsc",
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1_source.changes"
],
 "binary_packages": ["python-autopilot", "python3-autopilot"],
 "series": saucy,
 "base_image": "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/images/saucy-desktop-amd64.iso",
 "progress_queue": "ticket-1-exchange"
}

Returns TBD result.

Lander -> PPA Assigner

The lander requests a PPA to perform the build:

get_ppa {
 "ticket_id": 1
}

Returns:

"ppa:ci-team/ppa_build_1"

Lander -> Branch/Source Builder

The lander sends the source files to the ppa:

build_source {
 "source_packages": [
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.diff.gz",
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1.dsc",
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/autopilot_1.5~dev.1_source.changes"
],
 "ppa": "ppa:ci-team/ppa_build_1",
 "progress_queue": "bsbuilder-1-exchange"
}

Returns:

Nothing (just a successful status code).

Branch/Source Builder -> Lander

Build progress messages are passed back via the progress queue:

TBD

Completion is signaled on the progress queue:

message {
 "state": "COMPLETED",
}

Lander -> Image Builder

The lander requests a new image from the image builder:

build_image {
 "base_image": {
 "image_type": "CLOUD",
 "url_list": [
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/images/saucy-desktop-amd64.iso"
],
 "series": "saucy",
 "ppa_list": ["ppa:ci-team/ppa_build_1", "ppa:ci-team/ppa_archive"],
 "package_list": ["python-autopilot", "python3-autopilot"],
 "progress_queue": "image-builder-1-exchange"
}

Image Builder -> Lander

Build progress messages are passed back via the progress queue:

TBD

Completion and location of image is sent via a message on the progress queue:

message {
 "state": "COMPLETED",
 "url_list": [
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1/ticket.1.iso"
]
}

Lander -> Test Runner

The image and list of binary packages is sent to the test runner:

test_image {
 "test_request_id": "1",
 "image_url": "http://glance_url/image-1.iso",
 "package_name": "unity8"
}

Test Runner -> Lander

Returns status through progress messages:

message {
 "test_request_id": "1",
 "message": "10%",
 "current": "1",
 "total": "10",
}

Test completion is signaled by a final progress message:

message {
 "state": "COMPLETED",
 "test_request_id": "1",
 "status": "SUCCESS",
 "test_result": "PASSED",
 "artifacts": [
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1.test-runner/autopilot-run.log",
 "https://swift.canonistack.canonical.com/v1/AUTH_bucket_id/ticket.1.test-runner/autopilot.xml"]
}

Lander -> Ticket System

The lander provides progress to the ticket system through the ticket
system’s progress API:

TBD

Completion of a build is provided to the ticket system through the ticket
system’s progress API:

TBD

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Style and Technology Guidelines

This is intended to keep us on the same page about choices we make. Rules
we have agreed on:

	Python is the language of choice when possible. We should try and use
Python3 where possible, but in cases where we need Python2 libraries we’ll
try and keep the code Python3 friendly.
	Code should pass pep8 [http://www.python.org/dev/peps/pep-0008] rules and pyflakes [https://launchpad.net/pyflakes] tests. All editors have plugins
that flag violations.

	Django 1.5 is the web framework of choice.

	New services need a REST interface and “tastypie [http://django-tastypie.readthedocs.org/en/latest]” is the recommended
tool for implementing the interface.
	TODO: what’s the recommendation for authentication/authorization?

	New services should include unit testing.
	TODO: should we add guidelines about how much to test? ie just the
model or also test REST interface?

	TODO: recommended REST client? tastypie-queryset-client [https://github.com/ikeikeikeike/tastypie-queryset-client] looks promising
and will feel transparent to people familiar with Django.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Manually setting up launchpad OAuth token

There is a great how-to for doing this:

https://help.launchpad.net/API/SigningRequests

This document just shows the actual curl commands required to do everything.

step 1: Get a request token

Run the following command command to obtain a request token:

curl --dump-header - -H "Content-Type: application/x-www-form-urlencoded" -X POST --data 'oauth_consumer_key=ci+airline+testing&oauth_signature_method=PLAINTEXT&oauth_signature=%26' https://launchpad.net/+request-token

This will return something like:

oauth_token=token_value&oauth_token_secret=secret_value

step 2: Authenticate

Authentication of the above token is required via your browser by visiting:

https://launchpad.net/+authorize-token?oauth_token={oauth_token}
eg:
https://launchpad.net/+authorize-token?oauth_token=token_value

step 3: Get the access token

Run the following command to exchange the request token for an access token:

curl --dump-header - -H "Content-Type: application/x-www-form-urlencoded" -X POST --data 'oauth_signature=%26{oauth_token_secret}&oauth_consumer_key={oauth_key}&oauth_token={oauth_token}&oauth_signature_method=PLAINTEXT' https://launchpad.net/+access-token

which returns something like:

oauth_token=token&oauth_token_secret=token_secret&lp.context=None

The oauth_token and oath_token_secret returned here plus the oauth_consumer_key
will then be required by our API’s to use Launchpad.

Automatic creation of launchpad OAuth tokens

The following steps will enable the automatic creation of launchpad OAuth tokens. Running
bin/create_lp_creds.py present in lp:uci-engine [https://code.launchpad.net/~canonical-ci-engineering/uci-engine/trunk] and following the on-screen
instructions will produce the credentials file, lp_creds.txt. Sourcing this
file will allow the engine to interact with launchpad on your behalf.

bzr branch lp:uci-engine
cd uci-engine
./bin/create_lp_creds.py # Follow the instructions to choose 'Change anything'
 on the web page that has been just created.
. lp_creds.txt # Source the credentials file

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

ppa-hooks

[12:03] <ev> infinity, cjwatson, pitti, others: do we have a means of extracting coverity data, code coverage, and test results inside packages built in a PPA (from dep8 tests)? Could we (ab)use binarypkgmangler for such a task?

[12:04] <ev> we’re trying to be good citizens of Launchpad in the new CI Airline architecture, but this is one area where we’ve seemingly needed pbuilder hooks

[12:59] <pitti> ev: not pkgbinarymangler, as that runs too late; AFAIK you need to change the ./configure/CFLAG arguments, don’t you?

[13:00] <pitti> ev: so it might be a modified dpkg which supplies these extra CFLAGS by default, or something like that

[13:01] <pitti> ev: I don’t know whether it’s just CFLAGS or whether the build system needs to support gcov/lcov in other ways; so far I’ve just used the gnome-common macros

[13:49] <ev> pitti: sorry, I’m not sure I follow. How can we provide a modified dpkg to a PPA? If you upload dpkg to a PPA does it automatically pick up and use that version (if so, very clever). Does pkgbinarymangler really run too late for extracting out the coverage, coverity, and test case artifacts?

[13:50] <cjwatson> It does

[13:50] <cjwatson> Since the PPA itself is in sources.list for any builds to that PPA, and the builder upgrades its chroot at the start of each build

[13:51] <cjwatson> pkgbinarymangler could certainly be hacked to extract artifacts, provided that something has arranged to generate them in the first place ...

[13:51] <cjwatson> (dpkg seems a bit low-level for this though, and that would be an utter pain to maintain)

[13:52] <cjwatson> You could divert dpkg-buildflags, as long as you only care about packages that use it (we could reasonably mandate that for things we own)

[13:52] <cjwatson> Most of our stuff probably uses it already by way of dh9

[13:57] <pitti> ev: right, I actually meant dpkg-buildflags (I thought that was in dpkg)

[14:00] <cjwatson> pitti: It’s in dpkg-dev, yes, but it would be quite a bit of ongoing cost to do that by uploading a modified dpkg - would have to keep merging

[14:00] <cjwatson> Should be easy enough to divert if that’s what’s needed - call the underlying one and tweak

[14:00] <pitti> right

[14:12] <ev> well the problem then becomes how do you make the package doing the diverting of dpkg-buildflags a requirement for all the packages in the PPA without explicitly asking for it in their control files

[14:12] <ev> at least as I see it

[14:15] <cjwatson> ev: That’s not a problem if it’s one of the things that’s already preinstalled in the chroot; pkgbinarymangler would qualify

[14:19] <ev> cjwatson: I thought while pkgbinarymangler was determined to be a good target for extracting the artifacts, it ran too late to divert dpkg-buildflags? Or did I misunderstand what you said above?

[14:25] <pitti> ev: it currently only diverts dpkg-deb, but it could additionally divert dpkg-buildflags

[14:29] <ev> pitti: ohh. So if I understand correctly: given a PPA that we want to extract gcov data from, we upload a fork of pkgbinarymangler that diverts dpkg-buildflags to include the gcov flags and also splits out the coverage data into a “-coverage” package?

[14:33] <pitti> ev: or upload that mangler to ubuntu, and make it check something in the PPA to see whether you want cov enabled

[14:36] <pitti> ev: of course the first tests should actually happen with a forked pacakge in a PPA, yes

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Using Juju LXC For Local Development

Development efforts can be sped up using local juju deployments with lxc.

Setting up Juju LXC

You’ll need a .juju/environments.yaml file with a “local” entry like:

default: local
environments:
 local:
 type: local
 default-series: precise
 lxc-clone: true
 lxc-clone-aufs: true
 admin-secret: secret
 apt-http-proxy: http://10.0.3.1:8000

Install squid-deb-proxy. Then create /etc/squid-deb-proxy/mirror-dstdomain.acl.d/20-juju-local with the following contents:

ppa.launchpad.net
private-ppa.launchpad.net

Restart the squid-deb-proxy service. All apt downloads will now be cached by the proxy server running on your local machine.

Next, you will need swift credentials set up. This ensures the services still have access to object storage (Swift), virtual machine image storage (Glance), and virtual machine instantiation (Nova). An example .hpcloud-rc file should look like:

FOR SWIFT
export JUJU_ENV=local
export OS_USERNAME="<your email address>"
export OS_TENANT_NAME="<your tenent name from horizon>"
export OS_PASSWORD=<something special>
export OS_AUTH_URL="https://region-a.geo-1.identity.hpcloudsvc.com:35357/v2.0"
export OS_REGION_NAME=region-a.geo-1

FOR GLANCE (same credentials as above by default)
export GLANCE_OS_USERNAME="$OS_USERNAME"
export GLANCE_OS_AUTH_URL="$OS_AUTH_URL"
export GLANCE_OS_REGION_NAME="$OS_REGION_NAME"
export GLANCE_OS_TENANT_NAME="$OS_TENANT_NAME"
export GLANCE_OS_PASSWORD="$OS_PASSWORD"

FOR OAUTH TOKENS
export CI_LAUNCHPAD_PPA_OWNER=<lp login-id>
export CI_LAUNCHPAD_USER=<lp login-id>
export CI_OAUTH_CONSUMER_KEY="ci-airline"
export CI_OAUTH_TOKEN=<Please see Note below+++>
export CI_OAUTH_TOKEN_SECRET=<Please see Note below+++>

Note

+++ Use the OAuth values generated in OAuth setup to fill these

If your swift server only supports the 1.0 auth protocol (TempAuth does not
support 2.0), you additionally need to set some $ST_* variables for
python-swiftclient, and include the tenant/project name into the user name:

export OS_USERNAME="<project:username>"
export OS_TENANT_NAME="<project>"
export OS_PASSWORD="<password"
export OS_AUTH_URL="http://your.swift.server:8080/auth/v1.0"
export OS_REGION_NAME=

env for python-swiftclient
export ST_AUTH=$OS_AUTH_URL
export ST_USER=$OS_USERNAME
export ST_KEY=$OS_PASSWORD

GLANCE_*, CI_* as above

If you use the Python virtualenv produced by testing/venv.py, you must
additionally set export EPHEMERAL_CLOUD_NET_ID=.. in that rc file, as
neutron is broken in the venv, and thus it cannot determine the net ID by
itself.

You’ll now have the settings in-place. In order to iterate rapidly, It would
be advisable to ensure juju’s template image has all the dependencies pre-installed
so you don’t wait for that every time you re-deploy. You can do that with the following
simple manual hack:

juju bootstrap
juju deploy cs:ubuntu # Wait for juju status to show it deployed
juju destroy-environment --force -y local

You'll now have an lxc container named juju-trusty-template.
Modify it with these commands:
sudo lxc-start -d --name juju-trusty-template
sudo lxc-attach --name juju-trusty-template -- add-apt-repository -y ppa:canonical-ci-engineering/ci-airline-phase-0
sudo lxc-attach --name juju-trusty-template -- apt-get update
sudo lxc-attach --name juju-trusty-template -- apt-get install -y rabbitmq-server python-amqplib python-pip python-jinja2 mercurial git-core subversion bzr gettext python-django-south python-lazr.enum python-tastypie python-swiftclient postgresql-9.3 postgresql-contrib-9.3 python-psutil dput python-dput lazr.enum python-tz python-gnupg qemu-utils python-glanceclient python-requests python-novaclient python-psycopg2 pwgen postgresql-client gunicorn python-support pgtune postgresql-9.3-debversion postgresql-plpython-9.3 python-dnspython python3-pyramid

sudo lxc-stop --name juju-trusty-template

Alternatively for a precise deployment you want:

You'll now have an lxc container named juju-precise-template.
Modify it with these commands:
sudo lxc-start -d --name juju-precise-template
sudo lxc-attach --name juju-precise-template -- add-apt-repository -y ppa:canonical-ci-engineering/ci-airline-phase-0
sudo lxc-attach --name juju-precise-template -- add-apt-repository -y cloud-archive:icehouse
sudo lxc-attach --name juju-precise-template -- apt-get update
sudo lxc-attach --name juju-precise-template -- apt-get install -y rabbitmq-server python-amqplib python-pip python-jinja2 mercurial git-core subversion bzr gettext python-django-south python-lazr.enum python-tastypie python-swiftclient postgresql-9.1 postgresql-contrib-9.1 python-psutil dput python-dput lazr.enum python-tz python-gnupg qemu-utils python-glanceclient python-requests python-novaclient python-psycopg2 pwgen postgresql-client gunicorn python-support pgtune postgresql-9.1-debversion postgresql-plpython-9.1 python-dnspython

sudo lxc-stop --name juju-precise-template

Host Configuration

Some additional changes will be necessary on the LXC host system for the
imagebuilder to work properly. With some of the changes we have
planned, many of these should not be needed soon. Be aware that making
these changes may have an effect on other LXC containers you run on your
host system.

First, ensure that nbd is loaded on the host. Module loading will not
work in LXC, but the module will be available under lxc if it is loaded
on the host.

Add the following lines to /var/lib/lxc/juju-precise-template/config:

Allow mounting filesystems under LXC
aa_profile = lxc-container-default-with-mounting
Allow full access to the block device with major number 43, which
should be nbd (see /proc/devices)
lxc.cgroup.devices.allow = b 43:* rwm

Modify the LXC default apparmor rules to allow bind mounting filesystems under LXC. In /etc/apparmor.d/lxc/lxc-default, add the following line before
the “}”:

mount options=(rw, bind, ro),

Then run:

sudo /etc/init.d/apparmor reload

Working with the code

Code modifications can be done using the following iterations:

1) bzr branch lp:uci-engine
2) cd uci-engine
3) <do changes>
4) juju destroy-environment --force -y local; juju bootstrap
5) rm -rf tmp/
6) ./juju-deployer/deploy.py # Or './juju-deployer/deploy.py branch-source-builder' to only deploy Branch Source Builder service
7) <check the services>
8) Repeat from step 3-7 for iterative development

Upgrade

The development effort can be further sped up using the --upgrade option
in deploy.py. The generic steps of upgrading are given in the
Upgrade section. The following steps are specific to the local development:

1) bzr branch lp:uci-engine
2) cd uci-engine
3) <do changes>
4) juju destroy-environment --force -y local; juju bootstrap
5) rm -rf tmp/
6) ./juju-deployer/deploy.py --build-only --working-dir ./tmp
7) ./juju-deployer/deploy.py # use ./juju-deployer/deploy.py branch-source-builder for deploying only bsb serivce.
8) <do changes in charms for the deployed services locally>
9) ./juju-deployer/deploy.py --upgrade all # this will upgrade the modified charms and config
10) Repeat the steps 8-9 for fixing and testing the charms that were already deployed

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Upgrading a Deployment

Upgrading charms can be sped up using the --upgrade option given in
deploy.py. The upgrade option is deployment aware and only attempts to
upgrade services that are deployed. Likewise, it will not modify any services
that are not described in the deployer configuration files.

The --upgrade option is described as:

--upgrade {charms,code,config,all}
 Upgrade an existing deployment. This argument allows
 you to choose the order and number of upgrade
 operations. ie - you could just update the charms,
 update the configs, or update the code.

The upgrade choices allow for fine grain control over specific aspects of
a deployment.

	charms - This upgrades the charms themselves, performing
juju upgrade-charm --force for each deployed service.

	config - Updates the options for the deployed services via juju set.
This includes an update of the application code (as that is part of the
deployment configuration).

	code - This is a special case of the config option tht only updates the
deployed application code. This is to provide an efficient path for the
common development case of iterating on application code.

	all - This is a synonym for --upgrade charms --upgrade config.

These options are particularly useful when combined with the lxc deployment
method described under “Upgrade” under
Using Juju LXC For Local Development

Examples

Assuming the initial setup of Using Juju LXC For Local Development or
Setting Up a Cloud Deployment has been performed, the generic steps
where upgrade becomes useful are:

Note

In all of the below examples, if only a few services were deployed, the
--upgrade option will only upgrade the services that were already
deployed. No new services will be deployed as part of the upgrade.

–upgrade all

1) bzr branch lp:uci-engine
2) juju bootstrap
3) cd uci-engine
4) ./juju-deployer/deploy.py
 or
4) ./juju-deployer/deploy.py test-runner # for deploying only test-runner service
5) <do changes in charms and code for the deployed services>
6) ./juju-deployer/deploy.py --upgrade all

–upgrade charms

1-4) <same as --upgrade all example above>
5) <do changes to charms for the deployed services>
6) ./juju-deployer/deploy.py --upgrade charms

–upgrade config

1-4) <same as --upgrade all example above>
5) <do changes to charm config and/or code for the deployed services>
6) ./juju-deployer/deploy.py --upgrade config

–upgrade code

1-4) <same as --upgrade all example above>
5) <do changes to code for the deployed services>
6) ./juju-deployer/deploy.py --upgrade code

Upgrading adt-run for the test runner

The test runner depends on adt-run to run the tests.

When needed (new upstream version, bug fix) the CI gated branch needs to be updated.

Gating these updates guarantees that they can be tested before being
deployed and that hot fixes can also be deployed without requiring upstream
intervention (those fixes should be rare and upstreamed in any case).

Then, there is a recipe [https://code.launchpad.net/~canonical-ci-engineering/+recipe/autopkgtest-phase-0]
to build autopkgtest into the phase-0 PPA [https://launchpad.net/~canonical-ci-engineering/+archive/ci-airline-phase-0].

Trigerring that recipe will build autopkgtest for the series that
are used in the CI engine.

The last step is to update the deployed test runner workers themselves:

juju run --service ci-airline-tr-rabbit-worker 'apt-get update; apt-get install autopkgtest'

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ubuntu CI Engine documentation

Setting Up a Cloud Deployment

In order to allow the engine to access launchpad on your behalf,
the following lines need to be added to your respective novarc files.

export CI_OAUTH_CONSUMER_KEY=ci-airline
export CI_OAUTH_TOKEN=<Please see Note below+++>
export CI_OAUTH_TOKEN_SECRET=<Please see Note below+++>
export CI_LAUNCHPAD_USER=<lp login-id>
export CI_LAUNCHPAD_PPA_OWNER=<lp login-id>

Note

+++ Use the OAuth values generated here to fill these

In addition, for HPcloud deployments, the following line should
also be added to the novarc file.

export CI_TEMPURL_SIGNING_KEY=<the same as HP_SECRET_KEY>

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Ubuntu CI Engine documentation

Deploying with Nagios

The nagios and nrpe charms from the charm store can be added to a deployment
to test the actual nagios checks. After deploying the two charms, add the
relationships between nrpe and the desired component(s) to monitor and then
between nrpe and nagios. First add the extra charms:

juju deploy nagios
juju deploy nrpe

The nagios charm is known to fail the install hook due to a missing
‘apt-get update’. To resolve this:

juju run --service nagios "apt-get update"
juju resolved --retry nagios/0

Use ‘juju status’ to monitor for a successful nagios deployment. Then
add the relationships:

juju add-relation nrpe ci-airline-bsb-worker
juju add-relation nrpe nagios

Now find the nagios password:

juju ssh nagios/0 sudo cat /var/lib/juju/nagios.passwd

Use ‘juju status’ to find the public-address of the nagios instance, then
navigate to ‘http://<public-address>/nagios3’ with a username of ‘nagiosadmin’
and the password from above.

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Ubuntu CI Engine documentation

Index

 Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

 _images/sequence-processes-first-landing.png
Project manager

e g G
. [P ushon!
et e
o souce | B0 e | [e o e e o
ranch [ource | | puider (ibunity- uilder builder (unity me)
er | Pt || bt L e
= =
o == e
==

_images/sequence-ticket-to-trunk-tests-fail.png
m e o] [[[P | [coe]

Asx. n branch, rezponzabil

el m.+.a.+‘ (like infegration tests fo n)
P §

sk Lor « clean available ppe

—

ive infe
- greppeinfer |

sendd brancls andl ppa infos

Pﬁp.:tﬁ- ouree package

push soured
| peshzovred

ive prepared branch and version infos
Update status

et possible overrides

build state

report of suecessful build

update status

et possible overrides

test against latest proposed image and FAILED

|
Cleprovision thet ppe

update Failure

ficket removed From the queve|

Branch/Sovrce wla..—] LP‘ *S‘a“*-l PF‘I [h*—gn*‘an est Funner r«LW|

_images/sequence-workflows.png
Workflow Il: feature
branch/transitions/fix involving
multiple components

Workflow I: direct MP/trivial
commit to one component

Delivery system

_static/minus.png

_static/comment.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Ubuntu CI Engine documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

risks.html

 Navigation

 		
 index

 		Ubuntu CI Engine documentation »

Risks

Coming soon!

 © Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

components/ticket-manager.html

 Navigation

 		
 index

 		Ubuntu CI Engine documentation »

Ticket Manager

		Ticket Environment Setup (sub-function of Ticket Manager)

Purpose:

		Coordinates building, testing and ultimately landing of project feature branches that make up a ticket.

		Coordinates the landing of multiple components:

		Ensures that a feature landing is an atomic event

		Communicates status as this is done

		Provides feedback when something goes wrong and a course of action

		Back-out the landing on failure

Deployment:

		Can run as a juju service.

		Needs relationship to Project Manager, Branch Listener, Branch/Source Builder, Image Builder, Test Runner and the Landing Manager.

		Shouldn’t need to save state, should be able to recreate state upon restart.

		No public access needed.

Interactions:

		Project Manager - Provides meta data regarding the projects and tests to execute for a specific ticket.

		Branch Listener - Assigned the task of monitoring the feature branches assigned to an MP. New content results in a new build/test cycle.

		PPA Assigner - Provides two PPAs to perform package builds, one for MPs themselves, another for MPs + trunk.

		Branch/Source Builder - MP branches are dispatched to the builder.

		PPAs - Two PPAs are used for performing package builds.

		Image Builder - Generates up to 3 images to be used for testing: feature branches + base image, feature branches + latest image, feature branches + trunk + latest image.

		Test Runner - Runs the specified tests on up to 3 images.

Development Plan:

		Define APIs.

		Deploy an instance.

		Spawn an MP build (interact with Branch/Source Builder).

		Allocate PPAs (interact with PPA Assigner).

		Generate feature branches.

		Submit feature branches to watch (interact with Branch Listener).

		Report status (interact with Project Manager).

		Return PPAs.

		Build an image (interact with Image Builder).

		Initiate integration tests (interact with Test Runner).

		Implement the “Land Now” button. Dispatch individual trunk merge requests (interact with Landing Manager).

		Full end-to-end “Workflow II A: feature branch/transitions/fix involving multiple components” success case.

		Handle source build failures.

		Handle binary build failures.

		Handle image build failures.

		Handle integration test failures.

		Handle landing failures.

		Handle component failure recovery/restart.

 © Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

components/ppa-assigner.html

 Navigation

 		
 index

 		Ubuntu CI Engine documentation »

PPA Assigner

Purpose:

		Workaround LP limitations:

		we need 2 empty PPAs for each ticket (the isolated one for the ticket’s feature and one for the merge to trunk attempt for the feature)

		since LP cannot fully remove a PPA (it will be in the database forever), we’ll manage a pool of PPAs that can be reused and will be cleaned when a ticket is closed.

Design

The Launchpad API provides the ability to list all the PPAs owned by a user.
We can create a user that owns the “ppa pool”. We can start with an initial
group of PPAs and them grow that if needed.

The service itself will be a django + REST. It will have a simple data model:

class PPA(models.Model):
 name = models.CharField(max_length=4096)

 state = models.CharField(choice=['reserved', 'dirty', 'cleaning', 'free'])
 ticket_id = models.PositiveIntegerField()

REST APIs

list

List all PPAs and their locked status. Just a standard REST get call:

curl --dump-header - http://localhost:8000/api/v1/ppa/

populate

Find all PPAs owned by the Launchpad user and ensure they are defined
in the model. The following naming pattern will be used:

pattern
ci_pool-XXX

so the first two PPAs
ci_pool-001
ci_pool-002

The REST call will be a PATCH request with:

{"populate": true}

get_ppa

Find an unlocked ppa, lock it, and return it.

Curl Usage for Getting a ppa:

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"ticket_id": 3}' http://localhost:8000/api/v1/ppa/

If no free PPAs exist an HttpNotFound error will be returned with a message
explaining there are no free PPAs.

release_ppa

Takes the ppa returned from the get_ppa call and releases it:

curl --dump-header - -H "Content-Type: application/json" -X PATCH --data '{"state": "dirty"}' http://localhost:8000/api/v1/ppa/<X>/

We’ll then have a daemon running that polls for “dirty” PPAs. It will ask
launchpad to clean each PPA using LP’s “requestDeletion” API. At this point
the PPA will move to the “cleaning” state. The daemon will also periodically
poll LP to check the “date_removed” attribute of each item in the publication
history. Once they are all non-null, it will transition that PPA into the
“clean” state so that its available to the pool again.

 © Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

_static/down-pressed.png

timeline.html

 Navigation

 		
 index

 		Ubuntu CI Engine documentation »

Delivery Timeline

Imagine this page as a board with post-it notes, broken into sections by month. Try to look through the sequence diagram and other documents and break the work down into manageable and testable chunks. Make a best guess on when we could reasonably expect something to be done, erring on the side of earlier.

Feel free to completely rework what already exists here. If you need to refactor the responsibilities of the components, go for it.

Standalone components to sort

spec: https://docs.google.com/a/canonical.com/document/d/1GUuASKaXVoWpVi4WG54meW5bMibEzXLVeRCnxjhmtQg/edit#

		Test runner (unify upstream merger and cu2d and smoke?)

		launchpad monitor (health check, track merge proposals, package builds)

		device manager (flashing, upgrading, setting up)

		Lander (formerly “Trunk delivery system”)

		PPA Assigner

		Branch/Source builder

		Project Manager

		Ticketing tracker (?) (now part of the Project Manager)

		Test Database (part of the Project Manager)

		Image builder and store

Timeline

November 14

		Planning is finished.

		This document is complete (but will be updated as the plan evolves).

		Project and blueprints are created in Launchpad.

November 21

		Primary use cases and major components are defined.

		Development community is made aware of CI Airline via UDS with a mechanism to provide input.

		Clouded CI (Delivery -12 weeks)

		Requirements and project details set

		Initial System Architecture complete

November 28

		Ticket system

		Backend database chosen

		Database model set

		Initial APIs for ticket creation, deletion, listing and status reporting.

		Project Manager

		Backend storage sorted

		Initial API for Lander

		Lander

		Initial API defined

		Can deploy a prototype

		Can spawn a build.

		Branch/Source Builder

		Can deploy a prototype

		Build a package in PPA

		Test Runner

		Initial API defined for making test requests

		Can deploy a prototype service

		Can schedule a primitive test

		Website

		Can list all of the tickets based on criteria {owner, open/closed, etc}

December 5

		Program Manager/Ticket Service

		Can deploy a prototype

		Branch/Source Builder

		Can perform a non-build task on a source branch (i.e. pep8/pyflakes/license checker)

		Lander

		Monitor a PPA and report pass/fail

		Can initiate integration test

		Can block trunk

		Test Runner

		Can perform an autopilot test to a touch device.

		Test Database

		Initial API defined

		Can be deployed

December 12

		Lander

		Can monitor archive for status of building package.

		Can binary-copy a package from a PPA to the archive.

		Clouded CI (Delivery -8 weeks)

		Can deploy manager and build components via charms

		Can execute a build from an MP

December 19

		Lander

		Can do full end-to-end “Direct merge proposal to trunk” success case.

		Project Manager

		Stubbed version is complete.

		Branch/Source Builder

		Initial service written, including common failure cases.

December 26

		Standalone image building done for Clouded CI.

		Can stand up an instance of cdimage/live-builder using Juju.

		Image building can take PPAs as additional sources.

		Pilot program begins with Mir. Some pieces may require manual operation.

		Clouded CI (Delivery -6 weeks)

		Can create and test an image

January 2

		Nothing - holidays

January 9

		Tests database

		Common sanity tests in place

		Adding tests relevant to the MP

		Tests compliance checker (?)

January 16

		Clouded CI System (Delivery -4 weeks)

		All components are charmed and integrated

		Can execute a success landing case

		Some common error cases are handled

January 23

		Test Runner (some or all of them are already being discussed in email by vila if i understand it correctly)

		Test selection criteria

		Ticketing tracker interface

		Ideal Scenario: support using a custom image built with all required components

		Backup plan: Test on a default image + PPA(s) + list of additional packages to install

January 31

February 6

		(TBD date) Delivery of Clouded CI

		Full support for direct-to-trunk process (most common error cases are handled)

 © Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

_static/down.png

_static/up.png

components/ticket-environment-setup.html

 Navigation

 		
 index

 		Ubuntu CI Engine documentation »

Ticket Environment Setup (sub-function of Ticket Manager)

Purpose:

		Creates bzr feature branches and PPAs to service a ticket.

Deployment:

		Executed on demand to satisfy the environment setup needed when a ticket is created or updated.

		A child process spawned on the Ticket System (does it need to run in its own instance?)

Interactions:

		Ticket Tracker - Takes a set of environment instructions from the ticket tracker and creates the necessary LP branches and PPAs

 © Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

components/test-database.html

 Navigation

 		
 index

 		Ubuntu CI Engine documentation »

Tests Database (sub-function of Project Manager)

Purpose:

		Repository of tests per project. (What else?)

Deployment:

		Built into the Project Manager

Interactions:

		Ticket System - Supplies available and default test suites.

		Integration Test Service - Supplies test provisioning and execution details.

 © Copyright 2013-2014, Canonical Ltd..
 Created using Sphinx 1.2.2.

_images/sequence-ticket-mutiple-components.png
me,.as ,m—g._r_l lEm(L f.,-ﬁwy \—PP- wssigner J l Ticket manager fsrmuswm boilder (rancl) Mﬂf_ﬂﬁ—vnk . smﬂ L,,,,‘ Corencb) | ‘ e Ghrnk « branel) ' ’—:ﬁav—-\%m fest Wm.:l [irwge bt J
—’l"] -

Assign branch, responsibil
ot metadata (like integration tests +o ~um)
|

—

create branches (iF not ex.r‘ma)

sk For fwo clean available ppas

Sive ppes infos

Set up branches o watcl,

Update status

See workflow | A: see other Jiagram
same apply but on diverged brancl:

send incoming request
— . Y o7 .

_ o
prepare zource package

give ack back

-
REPEAT ON ALL REQUESTS
IKEFEAT OV A BB |

push source

Update status
-]
et possible overrides

onitoring build sta:

report of sueces=ful build

Update status

et possble overrides

END REPEAT

(in parallel for all requests)

;Fa brancl info —
prepare source pack.
(merged with, +runk)
push source
— .
ive ack back
- 7
Update status
—
~eport of successful build
. Update status
EVERYTIME NOTHING 1S BUILDING AND:
* A NEw COMPONENT LANDED
* OR A NEW AVAILABLE IMAGE
* OR PROJECTS MANAGER CONAG CHANGED IMAGE
send request For o new imaze
build IMAGE A
(orancl, with Fixed imaze num)
. | — 1
S build IMAGE B
(branch with, Iutest inmage i€ dilerent aum)
_L —
—
L infe
- push infos
| —tost aseiost availeble imeges
PE— results T
Update status
- 1 | —
END TESTING
request For more additional constraints
(Jezign review, packaging changes)
additional ack by release team or desi
LANDING button only available
i€ IMAGE 3 built, req. FUIEIl and +ests pass
Tlien go #0 landing mmanager case.
deprovision the (brancl)

Projects »«mg;e:’ l—Bm‘L l.s-h-—\e:' , PP ‘“g"vf] Ticket mangger Brancl/Source builder (brancl) | | Branch/Source builder (hrunk « bv‘-ncL\)J pp= (brancl) J I ppa rumk « bmgﬂ Integration fest runner

_images/sequence-processes-second-landing.png
Projsct manager

Landing manager (unity8)
‘Landing manager (mir)
i aN
2 Branch [source
e TEEE
‘builder (mir) /
/ ==

tests runner

_images/sequence-processes-workflow2.png
Project manager

}

Ticket manager (mi, iburit
mir, plator-api)

PPA assigner

Branch listener (p: Branch listener (ip: || Branch listener (pplatform. <t wsel
=R TR N

e [ey ot
sranensauce || ST ke o ||| eranen s |\ Besoues || Brancn sauce
et + L Datom. bulder (5 oy o
e it | | aoomns [| mitomat) | | e | | o
oy oy
13 Ry
age uider mgo bider oge uldr
gy ety o)
i st i
Bt L Eaat

(image A) (image B) (image C)

_images/sequence-processes-workflow1.png
Project manager

L\

Branch istoner | | Branch istener | | Brancn stenr | [Branch istener | [Branch istener
lpimir) punity8). (ipbunity-mir) pnux) (lpmirisaucy)

_images/sequence-ticket-to-trunk-build-fail.png
Trunk ée'-mﬁ,

new ticket in tle queve

Assign Branch responsabil

get metadata (like infegration tests fo n)

F i

update status

et possible overrides
. omeemmmemmm

FiekeF removed From the queve,

Projects manager Landing mmansger

sk Lor o clean availeble ppe

=
Sive ppe infos
send brancl, and ppe infos

give prepared branchs and version infos
<

prepare source

deprovision #hat pp

r Brencle Sooen b a,,l l ope -\xsa-\ar——' e | [imbagration #est NWZI l_‘”‘ -

Brancl/Source bv.:aer_l '_);P— assigner

)] [

_images/sequence-ticket-to-trunk-blocked-in-proposed-b.png
Projects manager

Azzign brancl responzabil

et metadata (like infegration tests fo n)

LBPWL/SWm builder | |—PP— ‘“a""l |_PP|;] tn*gm‘«w fest rvw:] | .«L.v.]
T

sk Lor « clean available ppe

- 1
— [

send brancls andl ppa infos

prepare source package

push source
——pumhose

give prepared branch and version infox

Update status

«—

et possible overides
-_— 7

monitorin bm_l_&;—t‘ e

report of successbul buld

Update status

et possible overrides

st latest proposed image

results

Update status

et possible overides

:e-ircm pp= fo archive and monifor fhe transition

pdate stetus T T

Update amomal wait

nigration Finally Loppened

or newer version in Hhe archive (direct upload)
Pzl merged brancl:

MP iz qoing to be clozed

aeymmcn Lot ppe

—

Update Final status

’a
fickot cloed od remaved From quee]
lBrWL/swm bu.ta.q IPP“ ‘SS‘JWJ l??‘l ['"*'af-*@" “"“N"""] arclive

_images/sequence-ticket-to-trunk-blocked-in-proposed-a.png
Bz branch rezponzability
get metadata (like infegration tests fo ~un)

Brancl/Source bwu.fl [PP‘ assigner J PP I'm‘gm‘-an Fest Nmef_(l_.«L.v.‘

ask For a clean available

Update status

ot possible overri

pdate status

ot possible overrides

et possible overrides

Update status

pdate armomal wait

FickeF Updated with « new commit in o MP

or direct push fo Hrunk

new req. For component X

Update status

et possible overrides

et possible overcides

Update status

et possible overrides

Update fnal status
-

1
ficket closed and removed From queve|

report of suecessful build

warning for anormal wait

give prepared branchs and version infos
e

report of successful build

o [. L

Posl. merged branc,

Landing manager

Sive ppa infos

send branch andl ppa infor

 give prepared branchs and version infos

____,____......__':‘""'4"""9 build st

#est against latest proposed image

send branchs and ppa infos

monitoring build st

st against latest proposed image

<opy ouree brom ppe o 2

deprovision Hhat p

L

X

|

Branch/Source bwl&e:J l—PP‘ "“a"""“ IPP‘ J ‘—'ﬂﬁaf—*m test Nﬂw‘ |..-<LW-‘

_images/sequence-ticket-to-trunk-merge-fail.png
Projects manager

new ticket in tle queve
ssign branch responsabilify

get metadata (like infegration tests fo n)

'—Lméq; aneger Lsmgusw«. bwu:\ l Pp= assgner l PP

{Tgmc..,n pest rmer | , arelive ‘

update Fuilure

sk for « clean svailable ppe

Sive ppa infos

send branch and ppa infos

eport Fuilure

deprovision that pp

[L«amg mmgej "amzusmm. swva.rJ]PP‘ assigner _l IPP‘I l'n*-ar—f-oj-ﬂ rvwr-l l.,-(Lw.,

_images/sequence-ticket-to-trunk-success.png
Landing manager B/ Source bul a,,] ‘—PF‘ .xsa._,-J e | [imtagration test rommer | [ametive
Assgr branch: responsabil

el
get metadata (like infegration tests fo ru.

sk Lor « clean available ppe

Sive ppe infos

sendd branchs andl ppa infos

prepare source package

sk sov

| push e
ive prepared branch and version infox

PR b S

et possible overrides
-

report of successbul buld

Update status

et possible overrides

4/\1.@44;

#est against latest proposed ma_.\t /r_v

py source from ppa fo archive and monttor +he +ransition

MP is going +o be closed
deprovision that ppa

.r—- —

Update finel stabos

Hicket closed and removed From 7“.1:1

]) P

[P][]

_images/sequence-direct-mp.png
Direct L‘.J.rg MP +o +runk|

Assign brancl, responsability

and rulez (ke 2 approvers)

pool For existing +op pproved MP

MP infos and possible attached bugs

clbeck Hat MP Jidn't Lollow He ~ules

comment and set back fa

_images/sequence-direct-commit-to-trunk.png
Direct MP or commit to trunk
Projects mansger

Assign brancl, rezponsabilify
and rvles (ike 2 approvers)

"I.WL?.a e Aﬂ] E.—WLP.a [AP!J

[EASE oF DrECT PUSH TO TRUNK

et infos From unreleazed commit message,
and eventual buy reports mentioned/ <Hecled

proved MP
greb MP infos and possible atfached buys

pool For existing +op «p

END CASES
__é"" bygs infos (like +itle)

et those infox

open « new lowscost Heket
on Hhe component associated

|

el lisbener lecmeloped MP A@i] lemelopad bugs AP!J

Projects maneger

_images/sequence-ticket-to-trunk-blocked-unapproved.png
new ticket in tle queve

Landing manager

ancl/Source Ma.rl LPP“ —“-a"-f' PP L'nﬁgf-hw test fm-r‘ L.,—‘L.w.

-

Bzzign branch responsabil

get metadata (ke integration tests fo ~n) L

ask For a clean available

_give ppe infos

sendl brancls and ppa inox

prepare source pr

give prepared brenchs and version infos

ot possible overrides
4~ 2 —

eport of successbul build -[

Update status

et possible overcides

test against latest proposed .M.j_._/L\’

Update status

et possible overrides

- ¢ -
to archive and monitor the transition

secing it's in NEW/UNAPPROVED

no-one looking of +he NEW/UNAPPROVED p.‘k.ée

warni

For anormal wei

update armomal wait

i€ package rejected -> reject ficket
| eprovision #ef ppe
] .,
update £Fuilure to land

Tl remoed From the queve
[_Bf.«L /Source bulder , l,,,,,\ ‘;ssm—‘ ‘ ope l Fﬂﬁar-*-on test Nwr] ' ‘“L‘"J

