

Welcome to uca-phantom’s documentation!

This is the documentation for the Vision Research Phantom Camera [https://www.phantomhighspeed.com/products] plugin
for the Libuca camera framework [https://github.com/ufo-kit/libuca]. This plugin interfaces all phantom cameras
using the PH16 [https://confluence.diamond.ac.uk/download/attachments/65899299/v16proto-2.3.pdf?version=1&modificationDate=1500390734000&api=v2]
camera protocol.

Contents:

	Quickstart
	Installation

	The Hardware

	Basic Usage

	Connecting to the Camera
	Using environmental variables

	Alternatively: The “connect” property

	The discovery protocol

	Specifying the interface for 10G connection

	Putting it all together

	Trigger modes
	Setting the trigger mode for the camera

	Full example

	The MEMREAD mode
	The default operating mode

	The fast memread mode

	Complete example program
	C program code

	Python program code

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Installation

Keep in mind, that this is just a plugin interfacing the phantom cameras to the main libuca framework. If this frame
work is not already installed this has to be done before installing the plugin.

Prerequisites

Obviously the Libuca camera framework [https://github.com/ufo-kit/libuca] is required to be installed prior to any
steps involving the installation of the plugin. To install the libuca framework visit its own Documentation here:
Libuca Quickstart [https://libuca.readthedocs.io/en/latest/quickstart.html].

Additionally to the C files of the uca-phantom plugin, the repository contains a Python script for testing if all the
functionality works. The script is executed as a command line tool and requires the command line library
click [https://click.palletsprojects.com/en/7.x/] to be installed. To install click use pip:

pip3 install click

It is also recommended to install the Python Phantom command line tools
phantom-cli [https://github.com/the16thpythonist/phantom-cli]. This python package installs several terminal
commands, which allow direct interaction with a phantom camera and also includes a mock command, which starts a
server on the local machine, which emulates the behaviour of a phantom camera. To read about all the features in
detail, visit the phantom-cli Documentation [https://phantom-cli.readthedocs.io/en/latest/index.html]! Install
phantom-cli using pip:

sudo pip3 install phantom-cli

Note: The sudo might be important, because sometimes the terminal commands are not properly installed without
using super user permissions.

Building on Linux

First, find the folder, into which you have installed libuca previously onto your system. As an example we will
assume the main libuca folder is located at /home/user/libuca. Then navigate to the folder into which you have built
the project, this would usually be a folder with the name build and then navigate to the plugins folder, like
this

cd /home/user/libuca/build/plugins

Every plugin for libuca should have its own folder. It is easiest to obtain the uca-phantom source code by using the
git repository. Simply clone the repo into the plugins folder like this

git clone https://fuzzy.fzk.de/gogs/jonas.teufel/uca-phantom

Now inside the newly created folder uca-phantom create a new folder build

cd uca-phantom
mkdir build

And now it is basically time to build the source code already. To do that, go into the build folder run cmake first
and then install the project:

cd build
cmake ..
make
sudo make install

Note: Here again the sudo is important, because a “normal” user usually lacks the permissions to run a
“make install” command!.

A Note on permissions

The uca-phantom plugin makes use of the packet_mmap linux library. Using the functions from this library requires
special permissions. These permissions can be satisfied to run all executable functions associated with the libuca
framework as the root user. Although using the root user is not recommended.

Alternatively, you can use unix’s capability systems to give the executable files only those permission, that it
really needs. First identify the executable file, which uses the uca-phantom plugin in the background, we’ll call this
file “sample.sh”.
Then use the linux command setcap to assign the required capabilities:

setcap CAP_NET_RAW,CAP_IPC_LOCK+=ep sample.sh

And that should be it for the basic install.

The Hardware

The uca-phantom plugin is build to interface with a phantom camera using a ethernet connection, but
to interface with a phantom camera some additional steps for configuring the network environment are needed.

Note: Usually a camera will support at least a “normal” ethernet connection to manage the control commands as well
as the image data transmission, but some cameras support an additional 10G ethernet interface. Both of them vary in
their capacities and their setup and thus will be explained both separately.

Normal ethernet connection

1. Most phantom cameras have a fix IP address of the format 100.100.xxx.xxx where the x’s are substituted by a
different IP for every camera. To communicate with them, the machine attached must have a static IP address in the same
IP range. It is recommended to use the IP 100.100.100.1. Additionally the netmask of the connection PC has to be set
to 255.255.0.0.

To make these configurations on ubuntu for example, you need to modify the file /etc/network/interfaces like this

iface eth0 inet static
address 100.100.100.1
netmask 255.255.0.0

(Check the identifier of your ethernet interface to which you want to connect the phantom physically by using the
ifconfig command, when it is not called “eth0”)

2. Connect the phantom camera with your chosen network interface and turn on the camera. After the cameras boot time
(indicated by heavy cooler noise) the camera is ready to communicate.

10G ethernet connection

1. Most phantom cameras have a fix IP address of the format 172.16.xxx.xxx where the x’s are substituted by a
different IP for every camera. To communicate with them, the machine attached must have a static IP address in the same
IP range. It is recommended to use the IP 172.16.1.1. Additionally the netmask of the connection PC has to be set
to 255.255.0.0.

To make these configurations on ubuntu for example, you need to modify the file /etc/network/interfaces like this

iface eth0 inet static
address 172.16.1.1
netmask 255.255.0.0

(Check the identifier of your ethernet interface to which you want to connect the phantom physically by using the
ifconfig command, when it is not called “eth0”)

2. Connect the phantom camera’s 10G ethernet port with your chosen network interface of your machine and turn on the
camera. After the cameras boot time (indicated by heavy cooler noise) the camera is ready to communicate.

OPTIONAL: Testing the connection

If you have installed the phantom-cli python package, you can use the ph-test command to verify a successful
connection with the camera. Simply run the following in the terminal

ph-test --log=DEBUG <PHANTOM IP>

If the connection is successful the output of the script will say so.

Basic Usage

The libuca framework is a C framework and thus the main use case for the phantom plugin is also from within a C program.
But libuca also exposes its API to several other programming languages, most prominently Python, from where a
access to the functionality is also possible.

Basic C program

The first thing to do when writing a C program to utilize the libuca framework is to include the necessary headers.

#include <glib-object.h>
#include <uca/uca-plugin-manager.h>
#include <uca/uca-camera.h>

Then inside the main function, you first have to setup the plugin manager object and then use this object to create a
new camera object of the type “phantom”. For further details on the basic setup consult the
Libuca Quickstart [https://libuca.readthedocs.io/en/latest/quickstart.html].
To connect to the camera, set the connect property of the object to True.
Call the start_recording command to start the threads that will accept the incoming data connections.
And only after the camera is connected the grab command can be used to get individual imaged from the camera.

int main (int argc, char *argv[]) {
 // Declaring the variables to be used
 UcaPluginManager *manager;
 UcaCamera *camera;
 GError *error;
 gchar *c = "";

 // Creating the camera object
 manager = uca_plugin_manager_new();
 camera = uca_plugin_manager_get_camera(manager, "phantom", &error, c);

 // Connecting to the camera and starting the readout threads
 g_object_set(G_OBJECT(camera), "connect", TRUE, NULL);
 uca_camera_start_recording(camera, &error);

 // Reading out the x and y size of the region of interest (roi)
 // the NULL marks the end.
 guint16 roi_width;
 guint16 roi_height;
 g_object_get(G_OBJECT(camera), "roi-width", &roi_width, "roi-height", &roi_height, NULL);

 // Grabbing a single frame from the camera
 gpointer buffer = g_malloc0((int) roi_width * roi_height * 2);
 uca_camera_grab(camera, buffer, &error);

 // Cleaning up!
 uca_camera_stop_recording(camera, &error);
 g_object_unref(camera);
 g_free(buffer);
}

Basic Python program

Note: For libuca to work with Python you first need to make sure to have the library PyGObject installed. To
install it visit the Documentation [https://pygobject.readthedocs.io/en/latest/getting_started.html#ubuntu-logo-ubuntu-debian-logo-debian].

First you need to setup the PyGObject environment and import the Uca repository from it

This is a workaround for the beginning, to avoid having to create a new environmental variable permanently.
The actual path might vary on your system
import os
os.environ['GI_TYPELIB_PATH'] = '/usr/local/lib/girepository-1.0'

import gi
gi.require_version('Uca', '2.0')
from gi.repository import Uca

As with the C code, you first have to create the plugin manager object and from that you can request the camera object.
Then you can use the function create_array_from to grab a frame from the camera

Just copy the function
def create_array_from(camera):
 """Create a suitably sized Numpy array and return it together with the
 arrays data pointer"""
 bits = camera.props.sensor_bitdepth
 dtype = np.uint16 if bits > 8 else np.uint8
 a = np.zeros((camera.props.roi_height, camera.props.roi_width), dtype=dtype)
 return a, a.__array_interface__['data'][0]

if __name__ == '__main__':
 # Creating the plugin manager object and the camera object
 plugin_manager = Uca.PluginManager()
 camera = plugin_manager.get_camerav('phantom', [])

 # Connecting the camera and starting the readout threads
 camera.props.connect = True
 camera.start_recording()

 # Grabbing a frame
 a, buf = create_array_from(camera)
 camera.grab(buf)
 # >> a will now contain the numpy array with the image

 # Clean up
 camera.stop_recording()

Connecting to the Camera

The phantom camera will be connected to the operating computer by an ethernet cable using one of the cameras ethernet
ports: Ether the “normal” 1G interface or the 10G interface. The most important thing to make sure of is to correctly
set the IP address and netmask for the ethernet interface of the operating computer, which is connected to the
machine.

Using environmental variables

The best way to define the network configuration for the camera is by using the operating system’s environmental
variables. There are two variables, which can be defined:

1) PH_NETWORK_ADDRESS: Set this veriable to the string of IP address of the phantom camera you want to connect to.
If this environmental variable is set, the phantom plugin will automatically call the connect routine during the
creation of the camera object. So there will be no need to set a value for the “connect” flag of the object if this
method is used! This is especially useful since this will create compatibility with UCA tools such as the command line
utilities uca-grab and uca-info.

2) PH_NETWORK_INTERFACE: Set this variable to the string interface identifier of the ethernet interface of the
operating machine to which to which the phantom 10G port is connected. This variable will only be needed for using the
10G mode! If this variable is set to any value, this will implicitly also enable the 10G mode for the phantom plugin by
setting the “enable-10g” flag of the camera object to TRUE.

Example usage for uca-info (Assuming correct installation of libuca and plugins)

$ export PH_NETWORK_ADDRESS=172.16.31.157
$ export PH_NETWORK_INTERFACE=eth0
$ uca-info "phantom"
// OUTPUT...

Alternatively: The “connect” property

To connect the camera from within the program, in such a way, that subsequent calls to the grab command will
succeed to deliver image frames, essentially two steps are required.

1) Establish control connection: To create a socket connection to send control commands over, the connect porperty
of the camera object has to be set to TRUE. This will implicitly trigger the internal connect function to be executed

2) Starting the readout threads: To properly receive image data from the camera, additional threads, which accept the
incoming data connections from the camera have to be started. This is done by calling the start_recording
method

C example:

// complete program shortened ...
manager = uca_plugin_manager_new();
camera = uca_plugin_manager_get_camera(manager, "phantom", &error, c);

// Connecting to the camera and starting the readout threads
g_object_set(G_OBJECT(camera), "connect", TRUE, NULL);
uca_camera_start_recording(camera, &error);

Python example:

complete program shortened ...
plugin_manager = Uca.PluginManager()
camera = plugin_manager.get_camerav('phantom', [])

Connecting the camera and starting the readout threads
camera.props.connect = True
camera.start_recording()

The discovery protocol

To establish a connection to the camera, it offers a UDP discovery protocol, where the phantom plugin will send a UDP
broadcast to the IP range, on which the phantom cameras operate and then waits for a response from a camera. This
response will then expose the IP address to the phantom plugin, without the need to manually specify the IP address of
the specific camera model used.

Although it is adviced to specify the IP address explicitly, as the discovery protocol is not yet reliably implemented
and may cause issues from time to time.

Using the discovery protocol

When using the discovery protocol no additional steps are required.

Explicitly providing the IP address

To explicitly provide the camera with an IP address, just set the network-address property of the camera object to
the string of the IP address

NOTE: When using the python bindings for libuca, properties that contain a dash “-” in their name for C will have
an underscore “_” instead in python!

C example:

// complete program shortened ...
// Setting the IP address before(!) connecting
g_object_set(G_OBJECT(camera), "network-address", "100.100.189.94", NULL);

Python example:

complete program shortened ...
Setting the IP address before(!) connecting
camera.props.network_address = "100.100.189.94"

Specifying the interface for 10G connection

Transmitting data using the 10G interface is partially as fast as it is, because the image data is not transmitted
using TCP packets (a protocol with a lot of overhead), but by raw ethernet frames. This type of transmission has
minimal overhead, because the data is not being transmitted in the likes of a conversation, it is rather all dumped
into the ethernet at the same time.

To receive this type of data, the phantom plugin needs to know at which ethernet interface the camera is connected
to the operating computer, so it knows “where to listen for the data dump”.

Thus, when using the 10G connection, the name of the used interface will have to be supplied as well, by setting the
network-interface property of the camera object to the string name of the interface.

C example:

// complete program shortened ...
// This flag will tell the camera to use the 10G interface
g_object_set(G_OBJECT(camera), "enable-10ge", TRUE, NULL);
// Supplying the interface name
g_object_set(G_OBJECT(camera), "network-interface", "eth0", NULL);

Python example:

complete program shortened ...
This flag will tell the camera to use the 10G interface
camera.props.enable_10ge = True
Supplying the interface name
camera.props.network_interface = "eth0"

Putting it all together

To show a complete example to connect the camera using the 10G interface and explicitly providing the IP address of
the camera:

C example:

#include <glib-object.h>
#include <uca/uca-plugin-manager.h>
#include <uca/uca-camera.h>

int main(int argc, char *argv[]) {
 GError *error = NULL;

 manager = uca_plugin_manager_new();
 camera = uca_plugin_manager_get_camera(manager, "phantom", &error, "");

 // Setting IP address manually &
 // enable 10G network
 g_object_set(G_OBJECT(camera), "network-address", "172.16.31.157", NULL);
 g_object_set(G_OBJECT(camera), "network-interface", "eth0", NULL);
 g_object_set(G_OBJECT(camera), "enable-10ge", TRUE, NULL);

 // Connection the camera
 g_object_set(G_OBJECT(camera), "connect", TRUE, NULL);

 // Starting the readout threads
 uca_camera_start_recording(camera, &error);

 // Grabbing images...
}

Trigger modes

On some occasions it might be more useful to let the camera record a bunch of frames with the maximum frame rate
into its own internal memory and then read out these frames later on.

To have the camera record n image frames, the following steps are necessary:

1) Specify the amount of frames to be recorded: To do this, set the post-trigger-frames property of the camera
object to the desired integer amount of frames

	Actually issue a software trigger by using the trigger function of the libuca framework

3) Wait until the recording is finished. By checking the boolean property trigger-released of the camera object
you can check at any given moment if the camera is done recording.

Note

The readout of the camera can also be started while the trigger is not yet finished. This might affect the data
transmission rate, as frames are not being created “fast enough” as they are being read out.

There are three different modes of triggering the camera: EXTERNAL, SOFTWARE and AUTO

Setting the trigger mode for the camera

To set the trigger mode simply change the value of the trigger-mode property of the camera object to the
according representative string:

C example:

// ...
g_object_set(G_OBJECT(camera), "trigger-mode", "EXTERNAL", NULL);
g_object_set(G_OBJECT(camera), "trigger-mode", "SOFTWARE", NULL);
g_object_set(G_OBJECT(camera), "trigger-mode", "AUTO", NULL);
// ...

Python example:

...
camera.props.trigger_mode = "EXTERNAL"
camera.props.trigger_mode = "SOFTWARE"
camera.props.trigger_mode = "AUTO"
...

the SOFTWARE trigger mode

In the SOFTWARE trigger mode, the camera recording is started by the start_recording function. Then a trigger can
be issued as a software command. To give the camera a software trigger use the trigger command.

C example:

// Setting up the camera class
uca_camera_trigger(camera, &error);

Python example:

Setting up the camera class
camera.trigger()

The AUTO trigger mode

The AUTO trigger mode means, that the camera is *auto*matically triggered, as soon as the start_recording function
has been invoked. This is being done by first sending the camera a command to start the recording and then sending a
software trigger command implicitly afterwards as well.

Note

Due to the fact, that this mode is implemented by sending a software trigger over the network, it could be that the
camera will record a few additional frames in the time between starting the recording and receiving the trigger.
This is just an information in case you notice a difference in the amount of actually recorded frames and the
specified amount of post trigger frames.
All the frames read out afterwards will still be just the frames, after the trigger of course.

the HARDWARE trigger mode

With the HARDWARE trigger option, the start_recording function starts the recording within the camera. A trigger
can no longer be issued by a software command, but instead a trigger event is given to the camera by putting an
electrical pulse to the first auxiliary port of the camera.

Full example

Here is a full example of the procedure to acquire a fix amount of frames following a trigger event:

// Setting up the camera...

// 1 - Setting the post trigger frames
g_object_set(G_OBJECT(camera), "post-trigger-frames", 1000, NULL);
// 2 - Actually issuing the trigger command
uca_camera_trigger(camera, &error);
// 3 - Waiting for the recording to finish
gboolean released = FALSE;
while (!released) {
 g_object_get(G_OBJECT(camera), "trigger-released", &released, NULL);
}

// Readout of the recording...

Python example:

Setting up the camera...

1 - Setting the post trigger frames
camera.props.post_trigger_frames = 1000
2 - Actually issuing the trigger command
camera.trigger()
3 - Waiting for the recording to finish
released = False
while not released:
 released = camera.props.trigger_released

Readout of the recording...

The MEMREAD mode

Note

The memread mode will only work, if the camera is configured in 10G at the moment!

The default operating mode

On default the grab method for the camera object will return the current frame of the camera,
as in the image, which it “sees” just at that moment when the grab call is being made.
This default mode however lacks speed, because if multiple frames have to be acquired from the
camera the following pattern will have to be repeated:

	Request for a frame is sent to the camera

	Camera takes the picture first and sends the response

	Client receives the image data

	New request is sent…

The fast memread mode

This default behaviour is slow and might not even be needed. The memread mode offers a fast
way of reading images from the internal memory of the camera, that have been takes previously
(for example using a software trigger).

To switch from the normal mode into the memread mode set the boolean property enable-memread of the camera
object to TRUE. The amount of frames, which are being read out by the memread mode is the same as the previously
defined post-trigger-frames.
Optionally the amount of frames to be read can also be manually adjusted memread-count

C example:

// Setting up & connecting the camera...
int FRAME_COUNT = 1000;

g_object_set(G_OBJECT(camera), "post-trigger-frames", FRAME_COUNT, NULL)
// ...
g_object_set(G_OBJECT(camera), "enable-memread", TRUE, NULL);
// g_object_set(G_OBJECT(camera), "memread-count", FRAME_COUNT, NULL);

for (int i = 0; i < FRAME_COUNT; i++) {
 uca_camera_grab (camera, buffer, &error);
}

Python example:

Setting up & connecting the camera...
FRAME_COUNT = 1000

camera.props.post_trigger_frames = FRAME_COUNT
...
camera.props.enable_memread = 1000
camera.props.memread_count = FRAME_COUNT

for i in range(FRAME_COUNT):
 camera.grab()

Note

When using the memread mode make sure, that the grab method is being called exactly as many times as specified
in the memread-count property. Doing otherwise will result the program crashing!

A note on the Python bindings

The memread mode generally works the same way using Python. The order of things to be done in the
program are:

	Setup the camera object

	Setup the camera network properties for 10G connection

3. Connect to the camera, by setting the connect property to True
3. Start the readout threads by calling start_recording method of the camera object
4. Record frames using the trigger method
5. Set all the according properties to enable and configure the memread mode
6. Call the grab method exactly as many times as specified

Complete example program

The following example program will feature the following steps:
1) Connection to the camera using the 10G interface, manually supplying IP address
2) Getting the height and width configuration of the camera
3) Acquiring frames using the software trigger
4) Readout of the acquired frames using the memread mode

C program code

#include <stdio.h>
#include <string.h>
#inlcude <glib-object.h>
#include <uca/uca-plugin-manager.h>
#include <uca/uca-camera.h>

int main(int argc, char *argv[]) {
 // Declaring the plugin manager and the camera object. The plugin manager will be needed to get the "phantom"
 // version of the camera from the phantom plugin
 UcaPluginManager *manager;
 UcaCamera *camera;

 GError *error = NULL;
 gchar *c = "";

 manager = uca_plugin_manager_new();
 camera = uca_plugin_manager_get_camera(manager, "phantom", &error, c);

 // 1)
 // Now the IP address of the phantom has to be set, as well as the interface name of the ethernet interface of
 // this machine, with which the camera is connected. The flag "enable-10g" tells the plugin to use special
 // sockets for data transmission
 g_object_set(G_OBJECT(camera), "network-interface", "eth0", NULL);
 g_object_set(G_OBJECT(camera), "network-address", "172.16.33.157", NULL);
 g_object_set(G_OBJECT(camera), "enable-10g", TRUE, NULL);

 // Setting the "connect" flag to true, will internally call the connect method which established the control
 // connection. The "start_recording" function starts the threads which handle the incoming data
 g_object_set(G_OBJECT(camera), "connect", TRUE, NULL);
 uca_camera_start_recording(camera, &error);

 // 2)
 // "region of interest"-heigh/width of the camera are internally mapped as guint16 values
 guint16 width;
 guint16 height;
 // Both values can be acquired with one operation, the NULL passed at the end signals when the parameters end,
 // not a fix amount of parameters. Obviously the references to these variables have to be passed, to that the
 // method can modify them
 g_object_get(G_OBJECT(camera), "roi-width", &width, "roi-height", &height, NULL);

 // 3)
 // Before actually triggering the camera, the amount of frames we actually want to be recorded as to
 // be specified. This we do, by setting the "post-trigger-frames" property
 int FRAME_COUNT = 10000;
 g_object_set(G_OBJECT(camera), "post-trigger-frames", FRAME_COUNT);
 uca_camera_trigger(camera, &error);

 // The "trigger-released" property is a boolean property of the camera, which is FALSE, when a triggered
 // process is currently active on the camera and TRUE, when the process is finished.
 // Note: every call to the property will internally send a network request to the camera basically asking it
 // if it is done yet
 gboolean released = FALSE;
 while (!released) {
 g_object_get(G_OBJECT(camera), "trigger-released", &released, NULL);
 }

 // 4)
 // To readout the frames, we first need a buffer, into which we can put the data. The size of this buffer needs
 // to be 16 bit (2 bytes) per pixel of the frames, which will be returned.
 gpointer buffer = g_malloc0((int) (height * width * 2))

 // To setup the memread mode, we first need to set the boolean flag to tell the program to switch modes,
 // and then specify the amount of frames to be read
 g_object_set(G_OBJECT(camera), "enable-memread", TRUE, NULL);
 g_object_set(G_OBJECT(camera), "memread-count", IMAGE_COUNT, NULL);

 for (int i = 0; i < IMAGE_COUNT; i++) {
 // The actual command to the camera will only be sent after the first grab call
 uca_camera_grab(camera, buffer, &error);

 // Some custom code to save the images into files...
 }
}

Python program code

pass

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to uca-phantom’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Prerequisites

 		
 Building on Linux

 		
 A Note on permissions

 		
 The Hardware

 		
 Normal ethernet connection

 		
 10G ethernet connection

 		
 OPTIONAL: Testing the connection

 		
 Basic Usage

 		
 Basic C program

 		
 Basic Python program

 		
 Connecting to the Camera

 		
 Using environmental variables

 		
 Alternatively: The “connect” property

 		
 The discovery protocol

 		
 Using the discovery protocol

 		
 Explicitly providing the IP address

 		
 Specifying the interface for 10G connection

 		
 Putting it all together

 		
 Trigger modes

 		
 Setting the trigger mode for the camera

 		
 the SOFTWARE trigger mode

 		
 The AUTO trigger mode

 		
 the HARDWARE trigger mode

 		
 Full example

 		
 The MEMREAD mode

 		
 The default operating mode

 		
 The fast memread mode

 		
 A note on the Python bindings

 		
 Complete example program

 		
 C program code

 		
 Python program code

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

