
uarray Documentation
Release 0.8.2

Quansight-Labs

Sep 25, 2020

CONTENTS

1 What’s new in uarray? 3

2 Benefits for end-users 5

3 Benefits for library authors 7

4 Relation to the NumPy duck-array ecosystem 9

5 Where to from here? 11
5.1 End-user quickstart . 11

5.1.1 Setting the backend temporarily . 11
5.1.2 Setting the backend permanently . 12

5.2 Documentation for backend providers . 12
5.2.1 __ua_domain__ . 12
5.2.2 __ua_function__ . 12
5.2.3 __ua_convert__ . 12
5.2.4 skip_backend . 13
5.2.5 The process that takes place when the backend is tried . 13
5.2.6 Examples . 13

5.3 Documentation for API authors . 13
5.3.1 Domain . 14
5.3.2 Argument extractor . 14
5.3.3 Argument replacer . 14
5.3.4 Default implementation . 14
5.3.5 Examples . 14

5.4 Glossary . 14
5.4.1 Multimethod . 14
5.4.2 Backend . 15
5.4.3 Domain . 15
5.4.4 Dispatching . 15
5.4.5 Conversion . 15
5.4.6 Marking . 15

5.5 uarray . 15
5.5.1 all_of_type . 18
5.5.2 create_multimethod . 18
5.5.3 generate_multimethod . 18
5.5.4 mark_as . 19
5.5.5 set_backend . 20
5.5.6 set_global_backend . 20
5.5.7 register_backend . 21

i

5.5.8 clear_backends . 21
5.5.9 skip_backend . 21
5.5.10 wrap_single_convertor . 22
5.5.11 get_state . 22
5.5.12 set_state . 22
5.5.13 reset_state . 22
5.5.14 determine_backend . 22
5.5.15 determine_backend_multi . 23
5.5.16 Dispatchable . 25
5.5.17 BackendNotImplementedError . 26
5.5.18 Design Philosophies . 26

5.6 GSoC 2020 project ideas . 27
5.6.1 Introduction . 27
5.6.2 Guidelines & requirements . 28
5.6.3 Contact . 28
5.6.4 uarray project ideas . 28

6 Indices and tables 31

Python Module Index 33

Index 35

ii

uarray Documentation, Release 0.8.2

Warning: uarray is a developer tool, it is not meant to be used directly by end-users.

Warning: This document is meant to elicit discussion from the broader community and to help drive the direction
that uarray goes towards. Examples provided here may not be immediately stable.

Note: This page describes the overall philosophy behind uarray . For usage instructions, see the uarray API
documentation page. If you are interested in augmentation for NEP-22, please see the unumpy page.

uarray is a backend system for Python that allows you to separately define an API, along with backends that contain
separate implementations of that API.

unumpy builds on top of uarray. It is an effort to specify the core NumPy API, and provide backends for the API.

CONTENTS 1

https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy

uarray Documentation, Release 0.8.2

2 CONTENTS

CHAPTER

ONE

WHAT’S NEW IN UARRAY?

uarray is, to our knowledge, the first backend-system for Python that’s generic enough to cater to the use-cases of
many libraries, while at the same time, being library independent.

unumpy is the first approach to leverage uarray in order to build a generic backend system for (what we hope will
be) the core NumPy API. It will be possible to create a backend object and use that to perform operations. In addition,
it will be possible to change the used backend via a context manager.

3

https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy

uarray Documentation, Release 0.8.2

4 Chapter 1. What’s new in uarray?

CHAPTER

TWO

BENEFITS FOR END-USERS

End-users can easily take their code written for one backend and use it on another backend with a simple switch (using
a Python context manager). This can have any number of effects, depending on the functionality of the library. For
example:

• For Matplotlib, changing styles of plots or producing different windows or image formats.

• For Tensorly, providing a different computation backend that can be distributed or target the GPU or sparse
arrays.

• For unumpy, it can do a similar thing: provide users with code they already wrote for numpy and easily switch
to a different backend.

5

https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy

uarray Documentation, Release 0.8.2

6 Chapter 2. Benefits for end-users

CHAPTER

THREE

BENEFITS FOR LIBRARY AUTHORS

To library authors, the benefits come in two forms: First, it allows them to build their libraries to be implementation
independent. In code that builds itself on top of unumpy, it would be very easy to target the GPU, use sparse arrays
or do any kind of distributed computing.

The second is to allow a way to separate the interface from implementation, and easily allow a way to switch an
implementation.

7

https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy

uarray Documentation, Release 0.8.2

8 Chapter 3. Benefits for library authors

CHAPTER

FOUR

RELATION TO THE NUMPY DUCK-ARRAY ECOSYSTEM

uarray is a backend/dispatch mechanism with a focus on array computing and the needs of the wider array commu-
nity, by allowing a clean way to register an implementation for any Python object (functions, classes, class methods,
properties, dtypes, . . .), it also provides an important building block for NEP-22. It is meant to address the shortcom-
ings of NEP-18 and NEP-13; while still holding nothing in uarray itself that’s specific to array computing or the
NumPy API.

9

http://www.numpy.org/neps/nep-0022-ndarray-duck-typing-overview.html
http://www.numpy.org/neps/nep-0018-array-function-protocol.html
https://www.numpy.org/neps/nep-0013-ufunc-overrides.html

uarray Documentation, Release 0.8.2

10 Chapter 4. Relation to the NumPy duck-array ecosystem

CHAPTER

FIVE

WHERE TO FROM HERE?

Choose the documentation page relevant to you:

• Documentation for API authors

• Documentation for backend providers

• End-user quickstart

5.1 End-user quickstart

Ideally, the only thing an end-user should have to do is set the backend and its options. Given a backend, you (as the
end-user) can decide to do one of two things:

• Set the backend permanently (use the set_global_backend function).

• Set the backend temporarily (use the set_backend context manager).

Note: API authors may want to wrap these methods and provide their own methods.

Also of a note may be the BackendNotImplementedError, which is raised when none of the selected backends
have an implementation for a multimethod.

5.1.1 Setting the backend temporarily

To set the backend temporarily, use the set_backend context manager.

import uarray as ua

with ua.set_backend(mybackend):
Use multimethods (or code dependent on them) here.

11

uarray Documentation, Release 0.8.2

5.1.2 Setting the backend permanently

To set the backend permanently, use the set_global_backend method. It is a recommendation that the global
backend should not depend on any other backend, as it is not guaranteed that another backend will be available.

You can also register backends other than the global backend for permanent use, but the global backend will be tried
first outside of a set_backend context. This can be done via register_backend.

import uarray as ua

ua.set_global_backend(mybackend)

Use relevant multimethods here.

5.2 Documentation for backend providers

Backend providers can provide a back-end for a defined API within the uarray ecosystem. To find out how to define
your own API with uarray , see Documentation for API authors. To find out how your backend will be provided,
use End-user quickstart.

Backend providers need to be aware of three protocols: __ua_domain__, __ua_function__ and
__ua_convert__. The first two are mandatory and the last is optional.

5.2.1 __ua_domain__

__ua_domain__ is a string containing the domain of the backend. This is, by convention, the name of the module
(or one of its dependencies or parents) that contains the multimethods. For example, scipy and numpy.fft could
both be in the numpy domain or one of its subdomains.

Additionally, __ua_domain__ can be a sequence of domains, such as a tuple or list of strings. This allows a single
backend to implement functions from more than one domain.

5.2.2 __ua_function__

This is the most important protocol, one that defines the implementation of a multimethod. It has the signature
(method, args, kwargs). Note that it is called in this form, so if your backend is an object instead of a
module, you should add self. method is the multimethod being called, and it is guaranteed that it is in the same
domain as the backend. args and kwargs are the arguments to the function, possibly after conversion (explained
below)

Returning NotImplemented signals that the backend does not support this operation.

5.2.3 __ua_convert__

All dispatchable arguments are passed through __ua_convert__ before being passed into __ua_function__.
This protocol has the signature (dispatchables, coerce), where dispatchables is iterable of
Dispatchable and coerce is whether or not to coerce forcefully. dispatch_type is the mark of the ob-
ject to be converted, and coerce specifies whether or not to “force” the conversion. By convention, operations larger
than O(log n) (where n is the size of the object in memory) should only be done if coerce is True. In addition,
there are arguments wrapped as non-coercible via the coercible attribute, if these must be coerced, then one should
return NotImplemented.

12 Chapter 5. Where to from here?

https://docs.python.org/3/library/constants.html#NotImplemented

uarray Documentation, Release 0.8.2

A convenience wrapper for converting a single object, wrap_single_convertor is provided.

Returning NotImplemented signals that the backend does not support the conversion of the given object.

5.2.4 skip_backend

If a backend consumes multimethods from a domain and provides multimethods for that same domain, it may wish
to have the ability to use multimethods while excluding itself from the list of tried backends in order to avoid infinite
recursion. This allows the backend to implement its functions in terms of functions provided by other backends. This
is the purpose of the skip_backend decorator.

5.2.5 The process that takes place when the backend is tried

First of all, the backend’s __ua_convert__ method is tried. If this returns NotImplemented, then the back-
end is skipped, otherwise, its __ua_function__ protocol is tried. If a value other than NotImplemented is
returned, it is assumed to be the final return value. Any exceptions raised are propagated up the call stack, except
a BackendNotImplementedError, which signals a skip of the backend. If all backends are exhausted, or if a
backend with its only flag set to True is encountered, a BackendNotImplementedError is raised.

5.2.6 Examples

Examples for library authors can be found in the source of unumpy.numpy_backend and other *_backend.py files
in this directory.

5.3 Documentation for API authors

Multimethods are the most important part of uarray . They are created via the generate_multimethod func-
tion. Multimethods define the API of a project, and backends have to be written against this API. You should see
Documentation for backend providers for how to define a backend against the multimethods you write, or End-user
quickstart for how to switch backends for a given API.

A multimethod has the following parts:

• Domain

• Argument extractor

• Argument replacer

• Default implementation

We will go through each of these in detail now.

5.3. Documentation for API authors 13

https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/constants.html#NotImplemented
https://github.com/Quansight-Labs/unumpy/blob/master/unumpy/numpy_backend.py
https://github.com/Quansight-Labs/unumpy/tree/master/unumpy

uarray Documentation, Release 0.8.2

5.3.1 Domain

See the glossary for domain.

5.3.2 Argument extractor

An argument extractor extracts arguments marked as a given type from the list of given arguments. Note that the objects
extracted don’t necessarily have to be in the list of arguments, they can be arbitrarily nested within the arguments. For
example, extracting each argument from a list is a possibility. Note that the order is important, as it will come into
play later. This function should return an iterable of Dispatchable.

This function has the same signature as the multimethod itself, and the documentation, name and so on are copied
from the argument extractor via functools.wraps.

5.3.3 Argument replacer

The argument replacer takes in the arguments and dispatchable arguments, and its job is to replace the arguments
previously extracted by the argument extractor by other arguments provided in the list. Therefore, the signature of
this function is (args, kwargs, dispatchable_args), and it returns an args/kwargs pair. We realise
this is a hard problem in general, so we have provided a few simplifications, such as that the default-valued keyword
arguments will be removed from the list.

We recommend following the pattern in here for optimal operation: passing the args/kwargs into a function with a
similar signature and then return the modified args/kwargs.

5.3.4 Default implementation

This is a default implementation for the multimethod, ideally with the same signature as the original multimethod. It
can also be used to provide one multimethod in terms of others, even if the default implementation for the. downstream
multimethods is not defined.

5.3.5 Examples

Examples of writing multimethods are found in this file. It also teaches some advanced techniques, such as overriding
instance methods, including __call__. The same philosophy may be used to override properties, static methods,
and class methods.

5.4 Glossary

5.4.1 Multimethod

A method, possibly with a default/reference implementation, that can have other implementations provided by different
backends.

If a multimethod does not have an implementation, a BackendNotImplementedError is raised.

14 Chapter 5. Where to from here?

https://docs.python.org/3/library/functools.html#functools.wraps
https://github.com/Quansight-Labs/uarray/blob/master/unumpy/_multimethods.py
https://github.com/Quansight-Labs/unumpy/blob/master/unumpy/_multimethods.py

uarray Documentation, Release 0.8.2

5.4.2 Backend

A backend is an entity that can provide implementations for different functions. It can also (optionally) receive some
options from the user about how to process the implementations. A backend can be set permanently or temporarily.

5.4.3 Domain

A domain defines the hierarchical grouping of multimethods. The domain string is, by convention, the name of the
module that provides the multimethods.

Sub-domains are denoted with a separating .. For example, a multimethod in "numpy.fft" is also considered to
be in the domain "numpy". When calling a multimethod, the backends for the most specific sub-domain are always
tried first, followed by the next domain up the hierarchy.

5.4.4 Dispatching

Dispatching is the process of forwarding a function call to an implementation in a backend.

5.4.5 Conversion

A backend might have different object types compared to the reference implementation, or it might require some other
conversions of objects. Conversion is the process of converting any given object into a library’s native form.

Coercion

Coercions are conversions that may take a long time, usually those involving copying or moving of data. As a rule
of thumb, conversions longer than O(log n) (where n is the size of the object in memory) should be made into
coercions.

5.4.6 Marking

Marking is the process of telling the backend what convertor to use for a given argument.

5.5 uarray

uarray is built around a back-end protocol, and overridable multimethods. It is necessary to define multimethods
for back-ends to be able to override them. See the documentation of generate_multimethod on how to write
multimethods.

Let’s start with the simplest:

__ua_domain__ defines the back-end domain. The domain consists of period- separated string consisting of the
modules you extend plus the submodule. For example, if a submodule module2.submodule extends module1
(i.e., it exposes dispatchables marked as types available in module1), then the domain string should be "module1.
module2.submodule".

For the purpose of this demonstration, we’ll be creating an object and setting its attributes directly. However, note that
you can use a module or your own type as a backend as well.

5.5. uarray 15

uarray Documentation, Release 0.8.2

>>> class Backend: pass
>>> be = Backend()
>>> be.__ua_domain__ = "ua_examples"

It might be useful at this point to sidetrack to the documentation of generate_multimethod to find out how
to generate a multimethod overridable by uarray . Needless to say, writing a backend and creating multimethods
are mostly orthogonal activities, and knowing one doesn’t necessarily require knowledge of the other, although it is
certainly helpful. We expect core API designers/specifiers to write the multimethods, and implementors to override
them. But, as is often the case, similar people write both.

Without further ado, here’s an example multimethod:

>>> import uarray as ua
>>> from uarray import Dispatchable
>>> def override_me(a, b):
... return Dispatchable(a, int),
>>> def override_replacer(args, kwargs, dispatchables):
... return (dispatchables[0], args[1]), {}
>>> overridden_me = ua.generate_multimethod(
... override_me, override_replacer, "ua_examples"
...)

Next comes the part about overriding the multimethod. This requires the __ua_function__ protocol, and the
__ua_convert__ protocol. The __ua_function__ protocol has the signature (method, args, kwargs)
where method is the passed multimethod, args/kwargs specify the arguments and dispatchables is the list
of converted dispatchables passed in.

>>> def __ua_function__(method, args, kwargs):
... return method.__name__, args, kwargs
>>> be.__ua_function__ = __ua_function__

The other protocol of interest is the __ua_convert__ protocol. It has the signature (dispatchables,
coerce). When coerce is False, conversion between the formats should ideally be an O(1) operation, but
it means that no memory copying should be involved, only views of the existing data.

>>> def __ua_convert__(dispatchables, coerce):
... for d in dispatchables:
... if d.type is int:
... if coerce and d.coercible:
... yield str(d.value)
... else:
... yield d.value
>>> be.__ua_convert__ = __ua_convert__

Now that we have defined the backend, the next thing to do is to call the multimethod.

>>> with ua.set_backend(be):
... overridden_me(1, "2")
('override_me', (1, '2'), {})

Note that the marked type has no effect on the actual type of the passed object. We can also coerce the type of the
input.

>>> with ua.set_backend(be, coerce=True):
... overridden_me(1, "2")
... overridden_me(1.0, "2")

(continues on next page)

16 Chapter 5. Where to from here?

uarray Documentation, Release 0.8.2

(continued from previous page)

('override_me', ('1', '2'), {})
('override_me', ('1.0', '2'), {})

Another feature is that if you remove __ua_convert__, the arguments are not converted at all and it’s up to the
backend to handle that.

>>> del be.__ua_convert__
>>> with ua.set_backend(be):
... overridden_me(1, "2")
('override_me', (1, '2'), {})

You also have the option to return NotImplemented, in which case processing moves on to the next back-end,
which in this case, doesn’t exist. The same applies to __ua_convert__.

>>> be.__ua_function__ = lambda *a, **kw: NotImplemented
>>> with ua.set_backend(be):
... overridden_me(1, "2")
Traceback (most recent call last):

...
uarray.BackendNotImplementedError: ...

The last possibility is if we don’t have __ua_convert__, in which case the job is left up to __ua_function__,
but putting things back into arrays after conversion will not be possible.

Functions

all_of_type(arg_type) Marks all unmarked arguments as a given type.
create_multimethod(*args, **kwargs) Creates a decorator for generating multimethods.
generate_multimethod(argument_extractor, . . .) Generates a multimethod.
mark_as(dispatch_type) Creates a utility function to mark something as a specific

type.
set_backend(backend[, coerce, only]) A context manager that sets the preferred backend.
set_global_backend(backend[, coerce, only,
. . .])

This utility method replaces the default backend for per-
manent use.

register_backend(backend) This utility method sets registers backend for permanent
use.

clear_backends(domain[, registered, globals]) This utility method clears registered backends.
skip_backend(backend) A context manager that allows one to skip a given back-

end from processing entirely.
wrap_single_convertor(convert_single) Wraps a __ua_convert__ defined for a single ele-

ment to all elements.
get_state() Returns an opaque object containing the current state of

all the backends.
set_state(state) A context manager that sets the state of the backends to

one returned by get_state.
reset_state() Returns a context manager that resets all state once ex-

ited.
determine_backend(value, dispatch_type, *, . . .) Set the backend to the first active backend that supports

value
determine_backend_multi(dispatchables, *,
domain)

Set a backend supporting all dispatchables

5.5. uarray 17

uarray Documentation, Release 0.8.2

5.5.1 all_of_type

uarray.all_of_type(arg_type)
Marks all unmarked arguments as a given type.

Examples

>>> @all_of_type(str)
... def f(a, b):
... return a, Dispatchable(b, int)
>>> f('a', 1)
(<Dispatchable: type=<class 'str'>, value='a'>, <Dispatchable: type=<class 'int'>,
→˓ value=1>)

5.5.2 create_multimethod

uarray.create_multimethod(*args, **kwargs)
Creates a decorator for generating multimethods.

This function creates a decorator that can be used with an argument extractor in order to generate a multimethod.
Other than for the argument extractor, all arguments are passed on to generate_multimethod.

See also:

generate_multimethod() Generates a multimethod.

5.5.3 generate_multimethod

uarray.generate_multimethod(argument_extractor: Callable[[. . .], Tuple[Dispatchable, . . .]], ar-
gument_replacer: Callable[[Tuple, Dict, Tuple], Tuple[Tuple, Dict]],
domain: str, default: Optional[Callable] = None)

Generates a multimethod.

Parameters

• argument_extractor (ArgumentExtractorType) – A callable which extracts the
dispatchable arguments. Extracted arguments should be marked by the Dispatchable
class. It has the same signature as the desired multimethod.

• argument_replacer (ArgumentReplacerType) – A callable with the signature
(args, kwargs, dispatchables), which should also return an (args, kwargs) pair with the dis-
patchables replaced inside the args/kwargs.

• domain (str) – A string value indicating the domain of this multimethod.

• default (Optional[Callable], optional) – The default implementation of this
multimethod, where None (the default) specifies there is no default implementation.

18 Chapter 5. Where to from here?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

uarray Documentation, Release 0.8.2

Examples

In this example, a is to be dispatched over, so we return it, while marking it as an int. The trailing comma is
needed because the args have to be returned as an iterable.

>>> def override_me(a, b):
... return Dispatchable(a, int),

Next, we define the argument replacer that replaces the dispatchables inside args/kwargs with the supplied ones.

>>> def override_replacer(args, kwargs, dispatchables):
... return (dispatchables[0], args[1]), {}

Next, we define the multimethod.

>>> overridden_me = generate_multimethod(
... override_me, override_replacer, "ua_examples"
...)

Notice that there’s no default implementation, unless you supply one.

>>> overridden_me(1, "a")
Traceback (most recent call last):

...
uarray.BackendNotImplementedError: ...

>>> overridden_me2 = generate_multimethod(
... override_me, override_replacer, "ua_examples", default=lambda x, y: (x, y)
...)
>>> overridden_me2(1, "a")
(1, 'a')

See also:

uarray() See the module documentation for how to override the method by creating backends.

5.5.4 mark_as

uarray.mark_as(dispatch_type)
Creates a utility function to mark something as a specific type.

Examples

>>> mark_int = mark_as(int)
>>> mark_int(1)
<Dispatchable: type=<class 'int'>, value=1>

5.5. uarray 19

uarray Documentation, Release 0.8.2

5.5.5 set_backend

uarray.set_backend(backend, coerce=False, only=False)
A context manager that sets the preferred backend.

Parameters

• backend – The backend to set.

• coerce – Whether or not to coerce to a specific backend’s types. Implies only.

• only – Whether or not this should be the last backend to try.

See also:

skip_backend() A context manager that allows skipping of backends.

set_global_backend() Set a single, global backend for a domain.

5.5.6 set_global_backend

uarray.set_global_backend(backend, coerce=False, only=False, *, try_last=False)
This utility method replaces the default backend for permanent use. It will be tried in the list of backends
automatically, unless the only flag is set on a backend. This will be the first tried backend outside the
set_backend context manager.

Note that this method is not thread-safe.

Warning: We caution library authors against using this function in their code. We do not support this
use-case. This function is meant to be used only by users themselves, or by a reference implementation, if
one exists.

Parameters

• backend – The backend to register.

• coerce (bool) – Whether to coerce input types when trying this backend.

• only (bool) – If True, no more backends will be tried if this fails. Implied by
coerce=True.

• try_last (bool) – If True, the global backend is tried after registered backends.

See also:

set_backend() A context manager that allows setting of backends.

skip_backend() A context manager that allows skipping of backends.

20 Chapter 5. Where to from here?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

uarray Documentation, Release 0.8.2

5.5.7 register_backend

uarray.register_backend(backend)
This utility method sets registers backend for permanent use. It will be tried in the list of backends automatically,
unless the only flag is set on a backend.

Note that this method is not thread-safe.

Parameters backend – The backend to register.

5.5.8 clear_backends

uarray.clear_backends(domain, registered=True, globals=False)
This utility method clears registered backends.

Warning: We caution library authors against using this function in their code. We do not support this
use-case. This function is meant to be used only by users themselves.

Warning: Do NOT use this method inside a multimethod call, or the program is likely to crash.

Parameters

• domain (Optional[str]) – The domain for which to de-register backends. None
means de-register for all domains.

• registered (bool) – Whether or not to clear registered backends. See
register_backend.

• globals (bool) – Whether or not to clear global backends. See
set_global_backend.

See also:

register_backend() Register a backend globally.

set_global_backend() Set a global backend.

5.5.9 skip_backend

uarray.skip_backend(backend)
A context manager that allows one to skip a given backend from processing entirely. This allows one to use
another backend’s code in a library that is also a consumer of the same backend.

Parameters backend – The backend to skip.

See also:

set_backend() A context manager that allows setting of backends.

set_global_backend() Set a single, global backend for a domain.

5.5. uarray 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

uarray Documentation, Release 0.8.2

5.5.10 wrap_single_convertor

uarray.wrap_single_convertor(convert_single)
Wraps a __ua_convert__ defined for a single element to all elements. If any of them return
NotImplemented, the operation is assumed to be undefined.

Accepts a signature of (value, type, coerce).

5.5.11 get_state

uarray.get_state()
Returns an opaque object containing the current state of all the backends.

Can be used for synchronization between threads/processes.

See also:

set_state() Sets the state returned by this function.

5.5.12 set_state

uarray.set_state(state)
A context manager that sets the state of the backends to one returned by get_state.

See also:

get_state() Gets a state to be set by this context manager.

5.5.13 reset_state

uarray.reset_state()
Returns a context manager that resets all state once exited.

See also:

set_state() Context manager that sets the backend state.

get_state() Gets a state to be set by this context manager.

5.5.14 determine_backend

uarray.determine_backend(value, dispatch_type, *, domain, only=True, coerce=False)
Set the backend to the first active backend that supports value

This is useful for functions that call multimethods without any dispatchable arguments. You can use
determine_backend() to ensure the same backend is used everywhere in a block of multimethod calls.

Parameters

• value – The value being tested

• dispatch_type – The dispatch type associated with value, aka “marking”.

• domain (string) – The domain to query for backends and set.

• coerce (bool) – Whether or not to allow coercion to the backend’s types. Implies only.

22 Chapter 5. Where to from here?

https://docs.python.org/3/library/functions.html#bool

uarray Documentation, Release 0.8.2

• only (bool) – Whether or not this should be the last backend to try.

See also:

set_backend() For when you know which backend to set

Notes

Support is determined by the __ua_convert__ protocol. Backends not supporting the type must return
NotImplemented from their __ua_convert__ if they don’t support input of that type.

Examples

Suppose we have two backends BackendA and BackendB each supporting different types, TypeA and
TypeB. Neither supporting the other type:

>>> with ua.set_backend(ex.BackendA):
... ex.call_multimethod(ex.TypeB(), ex.TypeB())
Traceback (most recent call last):

...
uarray.BackendNotImplementedError: ...

Now consider a multimethod that creates a new object of TypeA, or TypeB depending on the active backend.

>>> with ua.set_backend(ex.BackendA), ua.set_backend(ex.BackendB):
... res = ex.creation_multimethod()
... ex.call_multimethod(res, ex.TypeA())
Traceback (most recent call last):

...
uarray.BackendNotImplementedError: ...

res is an object of TypeB because BackendB is set in the innermost with statement. So,
call_multimethod fails since the types don’t match.

Instead, we need to first find a backend suitable for all of our objects.

>>> with ua.set_backend(ex.BackendA), ua.set_backend(ex.BackendB):
... x = ex.TypeA()
... with ua.determine_backend(x, "mark", domain="ua_examples"):
... res = ex.creation_multimethod()
... ex.call_multimethod(res, x)
TypeA

5.5.15 determine_backend_multi

uarray.determine_backend_multi(dispatchables, *, domain, only=True, coerce=False, **kwargs)
Set a backend supporting all dispatchables

This is useful for functions that call multimethods without any dispatchable arguments. You can use
determine_backend_multi() to ensure the same backend is used everywhere in a block of multimethod
calls involving multiple arrays.

Parameters

• dispatchables (Sequence[Union[uarray.Dispatchable, Any]]) – The
dispatchables that must be supported

5.5. uarray 23

https://docs.python.org/3/library/functions.html#bool

uarray Documentation, Release 0.8.2

• domain (string) – The domain to query for backends and set.

• coerce (bool) – Whether or not to allow coercion to the backend’s types. Implies only.

• only (bool) – Whether or not this should be the last backend to try.

• dispatch_type (Optional[Any]) – The default dispatch type associated with
dispatchables, aka “marking”.

See also:

determine_backend() For a single dispatch value

set_backend() For when you know which backend to set

Notes

Support is determined by the __ua_convert__ protocol. Backends not supporting the type must return
NotImplemented from their __ua_convert__ if they don’t support input of that type.

Examples

determine_backend() allows the backend to be set from a single object.
determine_backend_multi() allows multiple objects to be checked simultaneously for support
in the backend. Suppose we have a BackendAB which supports TypeA and TypeB in the same call, and a
BackendBC that doesn’t support TypeA.

>>> with ua.set_backend(ex.BackendAB), ua.set_backend(ex.BackendBC):
... a, b = ex.TypeA(), ex.TypeB()
... with ua.determine_backend_multi(
... [ua.Dispatchable(a, "mark"), ua.Dispatchable(b, "mark")],
... domain="ua_examples"
...):
... res = ex.creation_multimethod()
... ex.call_multimethod(res, a, b)
TypeA

This won’t call BackendBC because it doesn’t support TypeA.

We can also use leave out the ua.Dispatchable if we specify the default dispatch_type for the
dispatchables argument.

>>> with ua.set_backend(ex.BackendAB), ua.set_backend(ex.BackendBC):
... a, b = ex.TypeA(), ex.TypeB()
... with ua.determine_backend_multi(
... [a, b], dispatch_type="mark", domain="ua_examples"
...):
... res = ex.creation_multimethod()
... ex.call_multimethod(res, a, b)
TypeA

24 Chapter 5. Where to from here?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

uarray Documentation, Release 0.8.2

Classes

Dispatchable(value, dispatch_type[, coercible]) A utility class which marks an argument with a specific
dispatch type.

5.5.16 Dispatchable

class uarray.Dispatchable(value, dispatch_type, coercible=True)
A utility class which marks an argument with a specific dispatch type.

value
The value of the Dispatchable.

type
The type of the Dispatchable.

Examples

>>> x = Dispatchable(1, str)
>>> x
<Dispatchable: type=<class 'str'>, value=1>

See also:

all_of_type Marks all unmarked parameters of a function.

mark_as Allows one to create a utility function to mark as a given type.

Methods

Dispatchable.__init__(value, dis-
patch_type)

Initialize self.

Dispatchable.__init__

Dispatchable.__init__(value, dispatch_type, coercible=True)
Initialize self. See help(type(self)) for accurate signature.

Exceptions

BackendNotImplementedError An exception that is thrown when no compatible back-
end is found for a method.

5.5. uarray 25

uarray Documentation, Release 0.8.2

5.5.17 BackendNotImplementedError

exception uarray.BackendNotImplementedError
An exception that is thrown when no compatible backend is found for a method.

5.5.18 Design Philosophies

The following section discusses the design philosophies of uarray , and the reasoning behind some of these philoso-
phies.

Modularity

uarray (and its sister modules unumpy and others to come) were designed from the ground-up to be modular.
This is part of why uarray itself holds the core backend and dispatch machinery, and unumpy holds the actual
multimethods. Also, unumpy can be developed completely separately to uarray , although the ideal place to have it
would be NumPy itself.

However, the benefit of having it separate is that it could span multiple NumPy versions, even before NEP-18 (or even
NEP-13) was available. Another benefit is that it can have a faster release cycle to help it achieve this.

Separate Imports

Code wishing to use the backend machinery for NumPy (as an example) will use the statement import unumpy
as np instead of the usual import numpy as np. This is deliberate: it makes dispatching opt-in instead of
being forced to use it, and the overhead associated with it. However, a package is free to define its main methods as
the dispatchable versions, thereby allowing dispatch on the default implementation.

Extensibility and Choice

If some effort is put into the dispatch machinery, it’s possible to dispatch over arbitrary objects — including arrays,
dtypes, and so on. A method defines the type of each dispatchable argument, and backends are only passed types they
know how to dispatch over when deciding whether or not to use that backend. For example, if a backend doesn’t know
how to dispatch over dtypes, it won’t be asked to decide based on that front.

Methods can have a default implementation in terms of other methods, but they’re still overridable.

This means that only one framework is needed to, for example, dispatch over ufunc s, arrays, dtypes and all other
primitive objects in NumPy, while keeping the core uarray code independent of NumPy and even unumpy.

Backends can span modules, so SciPy could jump in and define its own methods on NumPy objects and make them
overridable within the NumPy backend.

User Choice

The users of unumpy or uarray can choose which backend they want to prefer with a simple context manager.
They also have the ability to force a backend, and to skip a backend. This is useful for array-like objects that provide
other array-like objects by composing them. For example, Dask could perform all its blockwise function calls with
the following psuedocode (obviously, this is simplified):

26 Chapter 5. Where to from here?

https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy
https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy
https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy
https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy
https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy

uarray Documentation, Release 0.8.2

in_arrays = extract_inner_arrays(input_arrays)
out_arrays = []
for input_arrays_single in in_arrays:

args, kwargs = blockwise_function.replace_args_kwargs(
args, kwargs, input_arrays_single)

with ua.skip_backend(DaskBackend):
out_arrays_single = blockwise_function(*args, **kwargs)

out_arrays.append(out_arrays_single)

return combine_arrays(out_arrays)

A user would simply do the following:

with ua.use_backend(DaskBackend):
Write all your code here
It will prefer the Dask backend

There is no default backend, to unumpy, NumPy is just another backend. One can register backends, which will all
be tried in indeterminate order when no backend is selected.

Addressing past flaws

The progress on NumPy’s side for defining an override mechanism has been slow, with NEP-13 being first introduced
in 2013, and with the wealth of dispatchable objects (including arrays, ufuns, and dtypes), and with the advent of
libraries like Dask, CuPy, Xarray, PyData/Sparse, and XND, it has become clear that the need for alternative array-
like implementations is growing. There are even other libraries like PyTorch, and TensorFlow that’d be possible to
express in NumPy API-like terms. Another example includes the Keras API, for which an overridable ukeras could
be created, similar to unumpy.

uarray is intended to have fast development to fill the need posed by these communities, while keeping itself as
general as possible, and quickly reach maturity, after which backward compatibility will be guaranteed.

Performance considerations will come only after such a state has been reached.

5.6 GSoC 2020 project ideas

5.6.1 Introduction

This is the Google Summer of Code 2020 (GSoC’20) ideas page for uarray, unumpy and udiff. The uarray
library is is a backend mechanism geared towards array computing, but intended for general use. unumpy is an
incomplete stub of the NumPy API that can be dispatched by uarray. udiff is a general-purpose automatic
differentiation library built on top of unumpy and uarray.

This page lists a number of ideas for Google Summer of Code projects for uarray, plus gives some pointers for
potential GSoC students on how to get started with contributing and putting together their application.

5.6. GSoC 2020 project ideas 27

https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy
https://unumpy.uarray.org/en/latest/generated/unumpy.html#module-unumpy

uarray Documentation, Release 0.8.2

5.6.2 Guidelines & requirements

uarray plans to participate in GSoC’20 under the umbrella of Python Software Foundation.

We expect from students that they’re at least comfortable with Python (intermediate level). Some projects may also
require C++ or C skills. Knowing how to use Git is also important; this can be learned before the official start of GSoC
if needed though.

If you have an idea of what you would like to work on (see below for ideas) and are considering participating:

1. Read the PSF page carefully, it contains important advice on the process.

2. Read advice on writing a proposal (written with the Mailman project in mind, but generally applicable)

3. Make a enhancement/bugfix/documentation fix – it does not have to be big, and it does not need to be related
to your proposal. Doing so before applying for the GSoC is a hard requirement for uarray. It helps everyone
you get some idea how things would work during GSoC.

4. Start writing your proposal early, post a draft to the issue tracker and iterate based on the feedback you receive.
This will both improve the quality of your proposal and help you find a suitable mentor.

5.6.3 Contact

If you have a question after checking all guideline pages above, you can open an issue in the issue tracker, but feel
free to chat with us on Gitter if you need clarification regarding any of the projects. Keep in mind that you might not
get a response right away, but we will endeavour to respond as early as possible.

5.6.4 uarray project ideas

uarray: Add querying for state

Adding querying for the uarray._BackendState object will allow users of uarray to see what’s inside the opaque
object. Some parts can be re-used from the pickling machinery.

It can also help downstream users to access the parameters of the currently set backend, which is a planned feature of
uarray. Here is a list of goals for this project:

• Allow downstream projects to query the list of backends.

• Allow downstream projects to query the list of parameters for a backend.

This would enable, for example, the following use-cases:

• Allow a downstream library to detect a backend and run specialised code for it.

• Allow a downstream library to fail-fast on a known-unsupported backend.

This project has a straightforward design and needs some implementation work, and will require interacting with the
mentors to implement and polish. The accepted student will get an outline of the desired API, along with some failing
tests and doctests. The student will make a pull request to implement the desired functionality so that the tests pass.

• Required knowledge: Python C-API and C++

• Difficulty level: medium

• Potential mentors: Peter Bell and Hameer Abbasi

28 Chapter 5. Where to from here?

http://python-gsoc.org/
http://python-gsoc.org/
http://turnbull.sk.tsukuba.ac.jp/Blog/SPAM.txt#how-to-spam-in-detail
https://gitter.im/Plures/uarray
https://github.com/Quansight-Labs/uarray/blob/39c49b6efe6817b46af9c6702e6aa0264b89bcf5/uarray/_uarray_dispatch.cxx#L188
https://github.com/Quansight-Labs/uarray/blob/39c49b6efe6817b46af9c6702e6aa0264b89bcf5/uarray/_uarray_dispatch.cxx#L210

uarray Documentation, Release 0.8.2

uarray: Allow subdomains

This idea would allow a backend to encompass functions from more than one domain.

The primary goal of this project would be:

• Develop a system that allows, via some kind of matching mechanism, to select which domains it supports, while
maintaining backward compatibility.

This would allow a backend targeting NumPy to also target, for example, the numpy.random submodule. Since the
domain for functions in numpy.random will be just that: numpy.random, it won’t match backends defined with
the numpy domain, since it’s an exact string match.

The second objective here would be to allow backends to target submodules of projects rather than the whole project.
For example, targeting just numpy.random or numpy.fft without targeting all of NumPy.

For more detail see this issue.

This project has a somewhat complicated design and needs some involved implementation work, and will require
interacting with the mentors to flesh out and work through.

• Required knowledge: Python C-API and C++

• Difficulty level: hard

• Potential mentors: Peter Bell and Hameer Abbasi

unumpy: Expand overall coverage

This project is split into two parts:

• Adding further coverage of the NumPy API.

• Adding more backends to unumpy.

We realise this is a large (possibly open-ended) undertaking, and so there will need to be a minimum amount of work
done in order to pass (~150 function stubs, if time allows a JAX backend). You may see the existing methods and
figure out how they are written using a combination of the documentation for writing multimethods and the already
existing multimethods in this file. For writing backends, you can see the documentation for backends in combination
with the already existing backends in this directory.

• Required knowledge: Python (intermediate level)

• Difficulty level: easy

• Potential mentors: Prasun Anand and Hameer Abbasi

udiff: Completion and Packaging

This requires completion and packaging of the udiff library. Potential goals include:

1. Publishing an initial version to PyPI. Here’s a guide on how to do that.

2. Adding matrix/tensor calculus support.

• For this, you can see the matrix cookbook. Don’t be intimidated! There will only be five or so equations
you have to pull out of the matrix cookbook and implement, most prominently, the equation for matrix
multiplication.

• Here is how derivatives are registered.

5.6. GSoC 2020 project ideas 29

https://github.com/Quansight-Labs/uarray/issues/189
https://jax.readthedocs.io/en/latest/
https://uarray.readthedocs.io/en/latest/multimethod_docs.html
https://github.com/Quansight-Labs/unumpy/blob/30c4afde16fbbb231cbc1e20d28cf5f0a8527285/unumpy/_multimethods.py
https://github.com/Quansight-Labs/unumpy/blob/30c4afde16fbbb231cbc1e20d28cf5f0a8527285/unumpy/_multimethods.py
https://uarray.readthedocs.io/en/latest/libauthor_docs.html
https://github.com/Quansight-Labs/unumpy/tree/30c4afde16fbbb231cbc1e20d28cf5f0a8527285/unumpy
https://github.com/Quansight-Labs/udiff
https://realpython.com/pypi-publish-python-package/
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://github.com/Quansight-Labs/udiff/blob/40975788639c2c93ebfb96c44a07d8ab01fbcbad/udiff/_builtin_diffs.py

uarray Documentation, Release 0.8.2

• The second task here will be to add the “separation” between the data dimensions and the differentiation
dimensions. For example, the input could be a vector, or an array of scalars, and this might need to be
taken into account when doing the differentiation. That will require some work in this file, and possibly
this one as well.

3. Adding tests.

• This will require calculating a few derivatives by hand and making sure they match up with what udiff
computes.

• We will use the PyTest framework.

4. Adding documentation on use, which will be fairly minimal. We will learn to set up Sphinx, and add some
documentation.

5. Publishing a final version to PyPI.

This project has a somewhat some minimal design and needs some involved implementation work. It will allow the
accepted student to get an idea of what it’s like to actually publish, test and document a small Python package.

• Required knowledge: Python (intermediate level) and calculus

• Difficulty level: medium

• Potential mentors: Prasun Anand and Hameer Abbasi

30 Chapter 5. Where to from here?

https://github.com/Quansight-Labs/udiff/blob/40975788639c2c93ebfb96c44a07d8ab01fbcbad/udiff/_diff_array.py
https://github.com/Quansight-Labs/udiff/blob/40975788639c2c93ebfb96c44a07d8ab01fbcbad/udiff/_diff_array.py
https://docs.pytest.org/en/latest/
http://www.sphinx-doc.org/en/master/

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

31

uarray Documentation, Release 0.8.2

32 Chapter 6. Indices and tables

PYTHON MODULE INDEX

u
uarray, 15

33

uarray Documentation, Release 0.8.2

34 Python Module Index

INDEX

Symbols
__init__() (uarray.Dispatchable method), 25

A
all_of_type() (in module uarray), 18

B
BackendNotImplementedError, 26

C
clear_backends() (in module uarray), 21
create_multimethod() (in module uarray), 18

D
determine_backend() (in module uarray), 22
determine_backend_multi() (in module uarray),

23
Dispatchable (class in uarray), 25

G
generate_multimethod() (in module uarray), 18
get_state() (in module uarray), 22

M
mark_as() (in module uarray), 19
module

uarray, 15

R
register_backend() (in module uarray), 21
reset_state() (in module uarray), 22

S
set_backend() (in module uarray), 20
set_global_backend() (in module uarray), 20
set_state() (in module uarray), 22
skip_backend() (in module uarray), 21

T
type (uarray.Dispatchable attribute), 25

U
uarray

module, 15

V
value (uarray.Dispatchable attribute), 25

W
wrap_single_convertor() (in module uarray), 22

35

	What’s new in uarray?
	Benefits for end-users
	Benefits for library authors
	Relation to the NumPy duck-array ecosystem
	Where to from here?
	End-user quickstart
	Setting the backend temporarily
	Setting the backend permanently

	Documentation for backend providers
	__ua_domain__
	__ua_function__
	__ua_convert__
	skip_backend
	The process that takes place when the backend is tried
	Examples

	Documentation for API authors
	Domain
	Argument extractor
	Argument replacer
	Default implementation
	Examples

	Glossary
	Multimethod
	Backend
	Domain
	Dispatching
	Conversion
	Marking

	uarray
	all_of_type
	create_multimethod
	generate_multimethod
	mark_as
	set_backend
	set_global_backend
	register_backend
	clear_backends
	skip_backend
	wrap_single_convertor
	get_state
	set_state
	reset_state
	determine_backend
	determine_backend_multi
	Dispatchable
	BackendNotImplementedError
	Design Philosophies

	GSoC 2020 project ideas
	Introduction
	Guidelines & requirements
	Contact
	uarray project ideas

	Indices and tables
	Python Module Index
	Index

