
tyrian Documentation
Release 0.1-alpha

Dominic May

January 12, 2014

Contents

1 Contents 3
1.1 Theory . 3
1.2 User Documentation . 10
1.3 Developer Documentation . 12

Python Module Index 19

i

ii

tyrian Documentation, Release 0.1-alpha

Tyrian is a simplistic LISP to python bytecode implementation.

Basic usage is as follows;

$ python tyrian.py <options> <input_filename> <output_filename>

Contents 1

http://en.wikipedia.org/wiki/Common_Lisp

tyrian Documentation, Release 0.1-alpha

2 Contents

CHAPTER 1

Contents

1.1 Theory

Subsection contains the theory portion of the project, the parts that do not fit in developer documentation or user
documentation.

1.1.1 Documentation

10. Create developer documentation. Annotate your methods in your source code and include this in your developer
docs. List each library which is used and why. For external libraries include the website it is available from and
the version which you used. If there are any non-standard methods for using or installing the library make sure
you document these as well. [3 marks for method doc strings, 3 marks for library usage]

• Methods annotated

• see README.md for access instructions

peak.util.assembler/BytecodeAssembler: this module is used because it removes the need to fully understand the
semantics of the python bytecode implementation

• available from http://peak.telecommunity.com/

• docs: http://peak.telecommunity.com/DevCenter/BytecodeAssembler

BytecodeAssembler had been originally written for py2k, and as such, i ported it to py3k.

11. Create user documentation. Describe how to use your product, list your features and what they do, describe
known bugs/issues and outline I/O formats. Remember you are communicating with users not developers so use
appropriate terminology. [3 marks]

Right here: User Documentation

12. As you progress through this project, keep a developer diary on what you have achieved. This does not need to
be a period-by-period account, but when you have complete a milestone, run into (or conquered) a particularly
nasty bug or had to redesign a facet of your project because reality didn’t mesh with how you envisioned it,
write it down. The diary itself is only [2 marks] but will form the basis for your presentation. Don’t overlook it!

This is in the form of Milestones

3

http://peak.telecommunity.com/
http://peak.telecommunity.com/DevCenter/BytecodeAssembler

tyrian Documentation, Release 0.1-alpha

1.1.2 Milestones

Finished milestones

Unknown:

• basic lexer implementation done

• ported BytecodeAssembler from py2k to py3k

Known:

• 02/08 - Got the parser spitting out parse tree’s

• 03/08 - Started fleshing out the compiler - disappointingly, this might be easier than I first expected

• 06/08 : 11:01AM - Got code object written to file and executing

• 06/08 : 07:20PM - Got runtime function injection working... :D

• 08/08 - Got basic function definitions working :D

• 11/08 : 11:12PM - Got lisp function arguments working, as far as I can tell

• 14/08 : 07:30PM - Got a basic command line interface implemented

• 21/08 - Documentation now hosted on ReadTheDocs :D

• 22/08 - added entry point for tyrian

Future milestones

• proper scope, needs more testing

• proper lambda’s!

• importing?

1.1.3 Project Definition

What is the purpose of your project?

To create a small language, with custom parser and lexer, that compiles into Python Bytecode

What software already exists that either partly solves this problem or can assist you in supporting
it?

A few other projects do essentially the same thing as what I am doing.

Ideally, I would:

• Use a third party parser and lexer instead of writing my own.

4 Chapter 1. Contents

tyrian Documentation, Release 0.1-alpha

What are the inputs and outputs of the system?

The inputs are as follows;

• A input filename for a valid lisp program

• An output filename

• Various options

Output:

• A .pyc file

1.1.4 System Development

4. List and describe the minimum features which will need to be implemented for your project to be considered
‘successful’. [3 marks]

• Lex, parse, and compile a simple program successfully

• Have comprehensive documentation

• Have a simple program run with correct behavior in the Python VM

• Have basic syntax error detection and notification - full syntax checking does not seem to be possible with a
recursive decent parser

• have a nice-ish command line interface

5. How will you evaluate performance of your product? Describe three (3) non-trivial (i.e. not ‘program doesn’t
crash’) key performance indicators. [6 marks]

• Does not use excessive amounts of memory

• Runs a simple program within a decent time frame

• compile a program within a decent time frame

6. Create a set of Data Flow Diagrams for your project (at least the Context Diagram and Level 0 DFD - Level 1 if
required). [10 marks]

This is in the form of Charts

7. Using your list of features from Part 4, estimate the time it will take to reach them. Create a Gantt or PERT chart
for your timeline. Make sure you keep an eye on this, as it will be a significant part of your final presentation.
[3 marks]

See Assets

8. Describe at least two areas which could be used to extend your project in future revisions and provide some
discussion on what would be required to pursue them. [4 marks]

• Try and have the output be compatible between py3k revisions

• Optimization of the compiled output (this and the one above may be mutually exclusive)

• have it be a full lisp machine, with support for lisp macros (the horror!)

9. Develop and test your project. You must include:

1.1. Theory 5

tyrian Documentation, Release 0.1-alpha

Pseudocode

Pseudocode and a flow chart for one small module of code (must include loops and conditional branching [if state-
ment]) [4 marks]

See the System Development flow chart on the Charts page for the flow chart

rules <- in rules replace "\n" with " "
rules <- rules split by ";"
rules <- remove excess whitespace from rules
rules <- remove empty rules

while rules do
rule <- pop from rules

if rule starts with "%" then
handle_setting

else if rule starts with "//" then
continue

else then
value <- rule split by "::="
key <- first from value

key <- key uppercased and stripped of excess whitespace

value <- value joined with "::="

value <- value cleaned

loaded_grammars[key] <- value
end if

end while

Test data

Test data for the grammar_parser is available in the tyrian/Grammar folder, test data for the project in general is
available in the examples folder.

Trace table

See Assets for image

for code

rules = rules.replace("\n", " ")
rules = rules.split(";")
rules = map(str.rstrip, rules)
rules = list(filter(bool, rules))

while rules:
rule = rules.pop(0)

if rule.startswith("%"):
handle_setting()

elif rule.startswith("//"):
continue

else:

6 Chapter 1. Contents

tyrian Documentation, Release 0.1-alpha

value = rule.split("::=")
key = value.pop(0)

key = key.upper().strip()

value = "::=".join(value)

value = clean(value)

loaded_grammars[key] = value

Source code

Source code should be included... somewhere.

1.1.5 Hurdles

some problems I had whilst working on this project;

ReadTheDocs;

someone forgot to add a database migration definition file, so I had to contact someone on IRC to fix it

ReadTheDocs uses Python 3.2, and they use by default a version of jinja2 with Unicode literals, which Python 3.2
does not support. As such, I had to build in a virtalenv, and use the requirements.txt file we can provide to force a
version of jinja2 that doesn’t use Unicode literals, and a version of markupsafe that doesn’t either. This was corrected
a few days later on ReadTheDocs’ end.

1.1. Theory 7

tyrian Documentation, Release 0.1-alpha

8 Chapter 1. Contents

tyrian Documentation, Release 0.1-alpha

1.1.6 Charts

Context diagram

program.lisp

Tyrian

Program code

program.pyctokens.json
Token definitions

Grammar

Grammar

Bytecode

Level 0 DFD

program.lisp

Lexer

Program code

program.pyc

Token definitions

GrammarParser

Grammar

Parser

"check tree" tokens

Compiler

AST

Bytecode

lisp_runtime

Level 1 DFD

System Development Flow Chart

exit

entry

replace all newlines in rules with a single space

assign the slot key in the hash loaded_grammars to value

if rules empty

handle line as setting

key <- key upper and stripped of spaces

value <- value joined with "::="

split rules by semicolon

split line by ::= into key and value

remove excess whitespace from rules

value <- value cleaned

remove empty rules

line <- first rule from rules

if line starts with "%"

true

if line starts with //

false

false

true

truefalse

1.1.7 Assets

Gantt chart

1.1. Theory 9

tyrian Documentation, Release 0.1-alpha

source files: ../assets/gantt_chart.xlsx

Trace table

source files: ../assets/trace_table.py and ../assets/trace_table.xlsx

1.2 User Documentation

1.2.1 Quickstart

This article will allow you to get started with Tyrian quickly. Ease is not guaranteed.

(print "Hello World")

$ python tyrian.py hello_world.lisp output.pyc
<debug output>
Writing to file...

$ python output.pyc
Hello World

1.2.2 Language Rundown

LISP (LISP Is Syntactically Pure) is what is referred to as a functional language, in that all data manipulation is done
via functions;

(defvar word "word")

(print word (+ 5 5))

(defun add_five (num)

10 Chapter 1. Contents

tyrian Documentation, Release 0.1-alpha

(return (+ num 5))
)

(print (add_five 5))

(let q 5)
(let q (add_five q))

(print q)

functions are called via the Polish notation, er, notation.

As this is not intended to be a complete implementation, for ease of implementation, many features have been left out,
such as macros. However, the truly core features are present;

• variables

• a standard library

• function calling (of course)

• lisp land function definitions

1.2.3 Standard Library

tyrian comes with a number of standard library functions to assist with programming.

LISP runtime

Contains standard library functions

tyrian.lisp_runtime.registry

tyrian.lisp_runtime.registry.lisp_function(**kwargs)
Registers decorated function in the lisp_registry

if the decorator is being used like so;

@lisp_registry
def func():

pass

then we assume the __name__ attribute of the function is to be used

if the decorator is used like so;

@lisp_registry(name="blardy")
def randy():

pass

then we use the supplied name :)

tyrian.lisp_runtime.misc

tyrian.lisp_runtime.misc.call_function(func, *args)
helper for calling function, usually lambda functions

1.2. User Documentation 11

tyrian Documentation, Release 0.1-alpha

tyrian.lisp_runtime.misc.return_func(arg)
when used as the last function call in a function, its output is used as the return value for the function

tyrian.lisp_runtime.simple_math

tyrian.lisp_runtime.simple_math.sqrt(arg)

tyrian.lisp_runtime.simple_math.symbol_simple_add(*args)

tyrian.lisp_runtime.simple_math.symbol_simple_div(*args)

tyrian.lisp_runtime.simple_math.symbol_simple_mul(*args)

tyrian.lisp_runtime.simple_math.symbol_simple_sub(*args)

1.3 Developer Documentation

1.3.1 tyrian.utils

tyrian.utils.flatten(obj, can_return_single: bool=False)
Flattens nested lists, like so;

>>> from tyrian.utils import flatten
>>> flatten([[[[[[[’value’]]]]]]], can_return_single=True)
’value’

>>> flatten([[[[[[[’value’]]]]]]], can_return_single=False)
[’value’]

Parameters
•obj – nested list of lists, depth uncertain
•can_return_single – see above

tyrian.utils.enforce_types(func: function)
checks supplied argument types against the annotations

Parametersfunc – function to enforce argument types for

1.3.2 tyrian.lexer

class tyrian.lexer.Lexer(token_defs: dict)
Code to perform lexing according to token definitions

Parameterstoken_defs – dictionary containing token definitions, see
load_token_definitions for definitions

match_with(left: str)
Convenience function.

returns an object with a match attribute partial’ed operator.eq, configured to match
left with the supplied right

Parametersleft – const for returned function to be configured to compare against
Return typeobject with match attribute

load_token_definitions(defs: dict)
Iterates through the supplied token_defs dictionary, creates wrappers for literals and
compiles regex’s

12 Chapter 1. Contents

tyrian Documentation, Release 0.1-alpha

Parameterstoken_defs – contains token definitions; see
GrammarParser.load_token_definitions for format

lex(content: str, filename: str)→ list
Takes a string to lex according to token definition loaded via load_token_definitions

Parameters
•content – content of file being lexed
•filename – name of file being lexed

_lex(line: str, line_no: int, filename: str)→ dict
used internally by lex, does actual lexing

Parameters
•line – line from source file
•line_no – line number of provided line
•filename – name of file from which the line originates

yields tokens of format

{
"name": str,
"token": str,
"line_no": int,
’filename’: str

}

1.3.3 tyrian.nodes

class tyrian.nodes.AST(content)
Is the overruling object returned from the Parser

class tyrian.nodes.Node
Base object for Node’s

class tyrian.nodes.ListNode(content, strip=True)
Represents a () in LISP

class tyrian.nodes.ContainerNode(content, strip=True)
Aside from being functionally identical to ListNode, this Node does not represent any-
thing in the AST, it simply serves as a container; hence the name

class tyrian.nodes.IDNode(content)
Represents an ID

class tyrian.nodes.NumberNode(content)
Represents a number

class tyrian.nodes.StringNode(content)
Represents a string, per se

class tyrian.nodes.SymbolNode(content)
Represents a mathematical symbol

class tyrian.nodes.QuotedNode(*args, **kwargs)
Represents a quoted token

1.3. Developer Documentation 13

tyrian Documentation, Release 0.1-alpha

1.3.4 tyrian.tyrian

class tyrian.tyrian.Tyrian(settings:dict=None)
Primary interface to tyrian

Parameterssettings – dictionary containing settings
compile(input_filename: str)→ Code

Compile a file into python bytecode
Parametersinput_filename – path to file containing lisp code
Return typeCode

1.3.5 tyrian.compiler

class tyrian.compiler.Compiler
Handles compilation of AST‘s

compile_parse_tree(filename: str, parse_tree)→ Code
Takes a filename and a parse_tree and returns a BytecodeAssembler Code object

Parameters
•filename – filename of file to compile
•parse_tree – parse_tree to compile

Return typeCode

write_code_to_file(codeobject: code, filehandler=None, filename:
str=None)

Write a code object to the specified filehandler

1.3.6 tyrian.exceptions

exception tyrian.exceptions.TyrianException
Base exception to allow for easy catching of all exceptions raised by tyrian

exception tyrian.exceptions.TyrianSyntaxError
Raised when a syntax is found

exception tyrian.exceptions.InvalidToken
Raised when an invalid token is found

exception tyrian.exceptions.GrammarDefinitionError
Raised when the grammar definition file is found to have an error

exception tyrian.exceptions.NoSuchGrammar
Raised when a reference grammar does not exist

1.3.7 tyrian.typarser

Contains code for parsing and for building the AST

class tyrian.typarser.Parser(**kwargs)
Simplifies parsing

parse(lexer:list)→ AST
given a list of tokens, returns a AST

Parameterslexed – list of tokens to parse

14 Chapter 1. Contents

tyrian Documentation, Release 0.1-alpha

1.3.8 tyrian.typarser.grammar_parser

Contains code for parsing the Grammar, and for using it to parse a stream of tokens

grammar_parser.GrammarParser

class tyrian.typarser.grammar_parser.GrammarParser(raw_grammar:
dict=None,
to-
ken_defs:
dict=None,
gram-
mar_mapping:
dict=None,
set-
tings:
dict=None)

Does the grunt work of parsing the Grammar into a usable object; see
grammar_nodes for more

Parameters
•raw_grammar – single string containing raw grammar definitions, see
load_grammar

•token_defs – dictionary of token definitions, see
load_token_definitions

load_grammar_mapping(nodes)
Load in a mapping between grammars and Nodes

Supply a dictionary with a mapping between subgrammar names and Node
objects

Parametersgrammar_mapping – dictionary mapping subgrammars to
appropriate Nodes

load_grammar(content:str)
Load grammars from a string. All grammars need not be necessarily be loaded
at once, but all must be loaded before parse_grammars() is called.

Parameterscontent – single string containing raw grammar definitions

a grammar can be defined like so:
name: <content>;

whereby within the following constructs are permissible;

OR, which can be nested, is denoted by a pipe character:
<token> | <token>

many of a particular token:
<token>+

a subgrammar or token is simply specified by name;
NAME

load_token_definitions(defs: dict)
Loads token definitions.

expected to be formatted as follows;
Parametersdefs – dictionary containing token definitions

1.3. Developer Documentation 15

tyrian Documentation, Release 0.1-alpha

{
’literal’: {

’<content>’: ’<name>’,
...

},
’regex’: {

’<regex_expr>’: ’<name>’,
...

}
}

parse_grammars()
Parses loaded grammars into “check trees”.

These “check trees” consist of a root ContainerNode, where a list of tokens
can be passed into the root GrammarNode‘s check() function and validated
according to the loaded grammars.

parse_grammar(grammar: str, grammar_key: str, settings: dict)
See parse_grammars()

Parameters
•grammar – single string containing a single raw grammar defini-
tion, see parse_grammars

•grammar_key – key for grammar, aka name of grammar
•settings – dictionary of settings for Nodes

grammar_parser.grammar_nodes

class tyrian.typarser.grammar_parser.grammar_nodes.GrammarNode
Base GrammarNode

class tyrian.typarser.grammar_parser.grammar_nodes.SubGrammarWrapper(settings:
dict,
key:
str,
gram-
mar_parser_inst)
→
None

Acts as proxy for subgrammar, ensuring that we need not copy the subgrammar, nor
that we need parse the grammars in any particular order.

Parametersgrammar_parser_inst – an instance of the GrammarParser, used
to access subgrammars

class tyrian.typarser.grammar_parser.grammar_nodes.MultiNode(settings:
dict,
sub)

Checks for multiple instances of a set of subnode
Parameterssub – node to checks for multiple instances of

class tyrian.typarser.grammar_parser.grammar_nodes.LiteralNode(settings:
dict,
con-
tent)

Compares a token directly against a string
Parameterscontent – content against which to test

16 Chapter 1. Contents

tyrian Documentation, Release 0.1-alpha

class LiteralNode
LiteralNode(content, line_no)

content
Alias for field number 0

line_no
Alias for field number 1

class tyrian.typarser.grammar_parser.grammar_nodes.ContainerNode(settings:
dict,
subs:
list)
→
None

Serves as a container for one or more sub Nodes
Parameterssubs – subnodes to contain

class tyrian.typarser.grammar_parser.grammar_nodes.RENode(settings:
dict,
regex,
name)

Matches a token against a regular expression
Parameters

•regex – regular expression to match against
•name – name of what the regular expression tests for

class RENode
RENode(content, name, line_no)

content
Alias for field number 0

line_no
Alias for field number 2

name
Alias for field number 1

class tyrian.typarser.grammar_parser.grammar_nodes.ORNode(settings:
dict,
left,
right)

checks between two possible sets of subnodes
Parameters

•left – node on left side of OR symbol
•right – node on right side of OR symbol

1.3. Developer Documentation 17

tyrian Documentation, Release 0.1-alpha

18 Chapter 1. Contents

Python Module Index

t
tyrian.exceptions, 14
tyrian.lisp_runtime, 11
tyrian.lisp_runtime.misc, 11
tyrian.lisp_runtime.registry, 11
tyrian.lisp_runtime.simple_math, 12
tyrian.nodes, 13
tyrian.typarser, 14
tyrian.typarser.grammar_parser, 15
tyrian.typarser.grammar_parser.grammar_nodes,

16
tyrian.utils, 12

19

	Contents
	Theory
	User Documentation
	Developer Documentation

	Python Module Index

