
txYoga Documentation
Release 0

The txyoga authors

Sep 26, 2017

Contents

1 Tutorial 3
1.1 Serving the tutorial examples . 3
1.2 List of examples . 4

2 Indices and tables 11

i

ii

txYoga Documentation, Release 0

This is the documentation for txyoga, a REST toolkit for Twisted.

Contents:

Contents 1

https://secure.wikimedia.org/wikipedia/en/wiki/Representational_State_Transfer
http://www.twistedmatrix.com/

txYoga Documentation, Release 0

2 Contents

CHAPTER 1

Tutorial

The tutorial consists of a bunch of progressively more complex examples, showcasing more and more features as
you go along. You should have a decent working knowledge of Python and some idea of how REST works. Some
understanding of Twisted, particularly twisted.web and the way it does object publishing probably, wouldn’t
hurt either; but that’s mostly important for more advanced use cases.

The tutorial examples themselves are rpy files. These are basically Python files that expose a resource. This way,
we can run the tutorials with minimal boilerplate. You might want to do something more sophisticated in a real
application, but that’s outside the scope of this tutorial.

Each example starts with a short summary, followed by walking you through the documented example code.
Finally, you can try the example out interactively.

Serving the tutorial examples

In order for the interactive examples to work, Twisted needs to be serving the tutorial. There are two ways of
doing that: using the helper script, or invoking twistd manually. The former neatly daemonizes twistd and
cleans up the log file, but the latter makes it a bit easier to see what’s going on under the hood in terms of HTTP
requests.

The helper script will only work on *nix-like environments. Windows users should run twistd manually.

Using the helper script

From the docs directory:

./serveTutorial start

When you’re done:

./serveTutorial stop

Running twistd manually

Run following command from the txyoga base directory:

3

txYoga Documentation, Release 0

twistd -n web --path doc/tutorial

The -n flag makes twistd stay in the foreground instead of daemonizing. The other arguments should be fairly
self-explanatory. You should see something similar to this:

2011-04-17 21:29:28+0200 [-] Log opened.
2011-04-17 21:29:28+0200 [-] twistd 11.0.0+r31557 (/usr/bin/python 2.7.1) starting
→˓up.
2011-04-17 21:29:28+0200 [-] reactor class: twisted.internet.selectreactor.
→˓SelectReactor.
2011-04-17 21:29:28+0200 [-] twisted.web.server.Site starting on 8080
2011-04-17 21:29:28+0200 [-] Starting factory <twisted.web.server.Site instance at
→˓0x2e7f3b0>

As you can see, Twisted is listening for connections on port 8080.

List of examples

Accessing collections and elements

To introduce txyoga, we’re going to start with a simple example of a bunch of employees who work at a startup
(because blogs with articles are just cliché).

Example code

-*- mode: python; coding: utf-8 -*-
from twisted.web.resource import IResource

from txyoga import Collection, Element

class Company(Collection):
"""
A company.
"""
exposedElementAttributes = "name",

class Employee(Element):
"""
An employee at a company.
"""
exposedAttributes = "name", "title"

def __init__(self, name, title, salary):
self.name = name
self.title = title
self.salary = salary

startup = Company()

startup.add(Employee(u"lvh", u"CEO", 10000))
startup.add(Employee(u"asook", u"Junior intern", 1))

resource = IResource(startup)

4 Chapter 1. Tutorial

txYoga Documentation, Release 0

First, the code defines a collection class called Company. Collections are containers for elements. The collection
class has an attribute called exposedElementAttributes. These are the attribute the collection will expose
about its elements. In this case, we want to show the names of our employees when the collection is queried.
Obviously, the elements should have such a name attribute.

Note the comma at the end: the attribute is an iterable of the collection names (in this case, a tuple with one
element). If you left it out, txyoga would just see a string, which is also an iterable of strings, but it’s quite likely
that you don’t want to expose the attributes 'n', 'a', 'm', 'e'...

Once the collection is defined, the module defines an element class to go in the collection. In this example, that’s
Employee. Its instances go in instances of the previously defined Company collection. The element class has an
attribute called exposedAttributes. These are the attributes returned when the element itself is requested.
Our fictuous employees tell people their names and are quite proud of their titles, but they’re shy when it comes
to their salary.

Two sample employees are created and added to the collection, so there’s some data to play with when you try
this code out.

Finally, it builds a resource from the collection, which allows it to be served. Resources are the things that Twisted
serves – they’re roughly equivalent to the concept of a web page or a view. Twisted formally specifies what a
resource is in an interface called IResource. Although the collection isn’t a resource itself, it can be turned into
one, in a process called “adaptation”. That wraps the collection with an object (called the adapter) which behaves
like a resource. That allows for a clean separation of concerns: being a collection on one side, and serving that
collection on the other.

Both Collections and Elements are adaptable to resources. This means they’re easy to integrate with existing
Twisted Web object hierarchies.

Trying it out

You can access the entire collection by sending an HTTP GET request to the root resource. txyoga uses JSON as
the default serialization format. The examples use the json and httplib1 modules from the standard library.

In the interest of readability, the examples use some helpers to make requests. These will build the appropriate
URL and make the HTTP request. JSON decoding is done manually, so the response headers can still be verified.
If you want to use these yourself, they are available in doc/tutorial/util.py.

-*- coding: utf-8 -*-
"""
Utilties for making HTTP requests to txyoga tutorial examples.
"""
import functools
import httplib
import urllib

def buildPath(*parts):
return "/" + "/".join(urllib.quote(part) for part in parts)

class Example(object):
"""
A txyoga tutorial example.
"""
def __init__(self, exampleName, host="localhost:8080"):

self._makeConnection = functools.partial(httplib.HTTPConnection, host)
self._buildPath = functools.partial(buildPath, exampleName + ".rpy")

1 The examples use httplib and not urllib or urllib2, because it’s less of an abstraction over HTTP. It supports for HTTP PUT
and DELETE, which are obviously important. Although urllib2 can be hacked at so that it does support those verbs, it’s not very pretty.
urllib itself is still used because it provides quote.

1.2. List of examples 5

txYoga Documentation, Release 0

def _makeRequest(self, method, body, headers, *parts):
"""
Makes an HTTP request to the tutorial example.
"""
path = self._buildPath(*parts)
connection = self._makeConnection()
connection.request(method, path, body, headers)
return connection.getresponse()

def get(self, *parts):
"""
Gets a particular collection or element.
"""
return self._makeRequest("GET", "", {"Accept": "application/json"}, *parts)

def delete(self, *parts):
"""
Deletes a particular element.
"""
return self._makeRequest("DELETE", "", {}, *parts)

def put(self, body, headers, *parts):
"""
Puts a particular element in a collection.
"""
return self._makeRequest("PUT", body, headers, *parts)

Although it has other methods, we’ll only be using get in this example.

The buildPath function creates a URL path, roughly as you’d expect:

>>> buildPath("test.rpy")
'/test.rpy'
>>> buildPath("test.rpy", "lvh", "minions")
'/test.rpy/lvh/minions'

Create an Example object for this tutorial example:

>>> example = Example("accessing")

Accessing the collection

>>> response = example.get()
>>> json.load(response)
{u'prev': None, u'results': [{u'name': u'lvh'}, {u'name': u'asook'}], u'next':
→˓None}

The important key here is results. As you can see, has two entries, one for every employee. Each entry is a
dictionary, containing the name of that employee. This is because Company.exposedElementAttributes
only has name in it.

The two remaining keys, prev and next, are there for supporting pagination. In this case, they’re both None,
indicating that there is neither a previous nor a next page. A later tutorial example will demonstrate how paginating
collections works.

txyoga is being a good HTTP citizen behind the scenes, telling you the date, the web server serving the request,
and content length and type behind the scenes.

6 Chapter 1. Tutorial

txYoga Documentation, Release 0

>>> headers = response.getheaders()
>>> headerKeys = [k for k, v in headers]
>>> expectedKeys = ["date", "content-type", "transfer-encoding", "server"]
>>> assert all(k in headerKeys for k in expectedKeys)

txyoga will never return responses with missing content types. A later tutorial example on content type support in
txyoga will elaborate on this.

>>> next(v for k, v in headers if k == "content-type")
'application/json'

Admittedly, it really is Twisted Web telling you it’s serving the request and the time it served it, not txyoga, but
it’s still nice:

>>> serverName = next(v for k, v in headers if k == "server")
>>> assert "TwistedWeb" in serverName

Accessing an element

Let’s look at this lvh employee from up close next.

>>> response = example.get("lvh")
>>> json.load(response)
{u'name': u'lvh', u'title': u'CEO'}

As expected, you get a dictionary back with the name and title attributes of the employee, because those are
the keys in Employee.exposedAttributes.

Although exposedElementAttributes and exposedAttributes are typically defined on the class they
are looked up on the instance for each object. You could have a particular company that does expose the titles of
its employees when you query it, or a particular employee that will divulge his salary.

As before, txyoga will serve the content type correctly:

>>> next(v for k, v in response.getheaders() if k == "content-type")
'application/json'

Review

In this example, we’ve:

1. shown what basic txyoga code looks like

2. shown how the tutorial example helpers work

3. accessed collections and their elements over HTTP

Creating and deleting elements

In computing, there is a common term called CRUD: creating, reading (accessing), updating and deleting. In the
previous example, you learned how to retrieve collections and elements over HTTP. In this example, we’ll show
how creating and deleting elements in collections works.

Example code

1.2. List of examples 7

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

txYoga Documentation, Release 0

-*- mode: python; coding: utf-8 -*-
cache()

from twisted.web.resource import IResource

from txyoga import Collection, Element

class Employee(Element):
"""
An employee at a company.
"""
exposedAttributes = "name", "title"
updatableAttributes = "salary", "title"

def __init__(self, name, title, salary):
self.name = name
self.title = title
self.salary = salary

class Company(Collection):
"""
A company.
"""
defaultElementClass = Employee
exposedElementAttributes = "name",

startup = Company()

startup.add(Employee(u"lvh", u"CEO", 10000))
startup.add(Employee(u"asook", u"Junior intern", 1))

resource = IResource(startup)

The example code is very similar, but not identical to that in the previous example.

First of all, there is the updatableAttributes attribute on the element class. This is an iterable of the
attribute names for which updates are allowed. In this case, it’s salary and title – we can give people new
positions and give them raises, but not change their names.

Then there is the elementClass attribute on the collection class. By default, this class will be instantiated
when new elements are added. In this case, new elements will be instances of the Employee class.

Trying it out

Like before, start by creating the helper object for this example:

>>> example = Example("crud")

Creating an element

First, we’ll hire a new employee in the company. In REST, there are two usual ways of creating elements:

1. If you just want to add an element to a Collection and you don’t care what URL it will be available
under, POST to the collection. 2. If you want to make an element accessible at a particular path, PUT
it there.

8 Chapter 1. Tutorial

txYoga Documentation, Release 0

Just like everywhere else, when faced with doubt, txyoga refuses the temptation to guess. In this case, when you
provide data through POST or PUT, specifying the encoding is mandatory.

>>> data = {"name": u"alice", "salary": 100, "title": "engineer"}
>>> headers = {"content-type": "application/json"}
>>> response = example.put(json.dumps(data), headers, "alice")

As usual, we get the appropriate response:

>>> response.status, response.reason
(201, 'Created')

If accepted but not yet created, a txyoga server may optionally return 202 (Accepted).

Updating an element

The company’s success has really gotten to lvh’s head. He’s not happy unless we give him a ridiculous new title.

To do that, we update his record. In REST, updates are typically done using a PUT request.

>>> def getTitle(employee="lvh"):
... response = example.get(employee)
... return json.load(response)["title"]
>>> assert getTitle() == u'CEO'
>>> headers = {"content-type": "application/json"}
>>> data = {"title": u"Supreme Commander"}
>>> response = example.put(json.dumps(data), headers, "lvh")
>>> response.status, response.reason
(200, 'OK')
>>> assert getTitle() == u'Supreme Commander'

Deleting an element

Next, we’ll remove poor Asook from the workforce. As you might expect from a REST toolkit, you do that with
the DELETE verb, or, with our helper abstraction layer, the delete method.

>>> response = example.delete("asook")

The server will respond with the appropriate response code:

>>> response.status, response.reason
(204, 'No Content')

When you access the collection again, Asook is missing, as expected:

>>> employees = json.load(example.get())["results"]
>>> assert u"asook" not in employees

1.2. List of examples 9

txYoga Documentation, Release 0

10 Chapter 1. Tutorial

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

	Tutorial
	Serving the tutorial examples
	List of examples

	Indices and tables

