

 Navigation

 	
 index

 	Readers/Writer Lock for Twisted 1.0 documentation

Readers/Writer Lock for Twisted

Twisted implementation of a Readers/Writer Lock [https://en.wikipedia.org/wiki/Readers–writer_lock].

	License: MIT

	Source: https://github.com/Stibbons/txrwlock

	Overview: http://www.great-a-blog.co/readerswriter-lock-for-twisted/

This synchronization primitive allows to lock
a share depending on two access roles: “reader” which only access to the data without modifying it,
and “writer” which may want to change the data in the share.

RW Lock features:

	Multiple readers can access to the data at the same time. There is no locking at all when only
readers require access to the share

	When a write requires access to the share, it prevents any new reader request to fullfil and put
these requests into a waiting queue. It will wait for all ongoing reads to finish

	Only one writer can act at the same time

	This Lock is well suited for share with more readers than writer. Write requests must be at least
an order of magnitude less often that read requests

This implementation brings this mechanism to the Twisted’s deferred. Please note they are
independent with other multithreading RW locks.

Indices and tables

	Index

	Module Index

	Search Page

Source Documentation

Readers/Writer Deferred Lock

	
class txrwlock.txrwlock.ReadersWriterDeferredLock[source]

	Readers-Writer Lock for Twisted’s Deferred

Many readers can simultaneously access a share at the same time, but a writer has an exclusive
access to this share.

The following constraints should be met:

	no reader should be kept waiting if the share is currently not opened to anyone or to only
other readers.

	only one writer can open the share at the same time, and when multiple writer request access,
they will waiting for the execution of all previous writer access

Reads and Writes are executed from within the main twisted reactor. Do NOT call it from
external threads (e.g., from synchronous method execute in thread with deferToThread).

Description

	“Readers” uses readerAcquire and readerRelease.

	“Writer” uses writerAcquire and writerRelease.

A “reader” is not blocked when one, two or more ‘reads’ are being executed.

A “reader” is blocked while a ‘writer’ is executing.

When a “write” starts, it blocks all new ‘reads’ and wait for the pending ‘reads’ to finish.
If a new ‘write” is requested, it will wait for running writes to finish as well.

Notes:

Please be aware than ReadersWriterDeferredLock.acquire* and
ReadersWriterDeferredLock.release* methods are deferred, which is different from
defer.DeferredLock, where only the defer.DeferredLock.acquire() method is a
deferred.

Usage

Threads that just need “read” access, use the following pattern:

@defer.inlineCallbacks
def aReaderMethod(...):
 try:
 yield rwlocker.readerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.readerRelease()

Threads that just need “read” access, use the following pattern:

@defer.inlineCallbacks
def aWriterMethod(...):
 try:
 yield rwlocker.writerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.writerRelease()

Example

from twisted.internet import defer
from txrwlock.txrwlock import ReadersWriterDeferredLock

class MySharedObject(object):

 def __init__(self):
 self._readWriteLock = DeferredReadersWriterLock()
 self._data = {}

 @defer.inlineCallbacks
 def performHeavyTreatmentOnData(self):
 try:
 yield rwlocker.readerAcquire()
 # self._data is read and need to stay coherent during the whole current method
 yield anyOtherVeryLongDeferredThatReadsData(self._data)
 # self._data is read again
 finally:
 yield rwlocker.readerRelease()

 @defer.inlineCallbacks
 def changeDataValue(self):
 try:
 yield rwlocker.writerAcquire()
 # Change self._data somehow
 finally:
 yield rwlocker.writerRelease()

There could be as many simultanous calls to MySharedObject.performHeavyTreatmentOnData
at the same time (during anyOtherVeryLongDeferredThatReadsData, the reactor might
schedule a new call to MySharedObject.performHeavyTreatmentOnData). Once
MySharedObject.changeDataValue is called, all new call to
performHeavyTreatmentOnData are blocked.

	
isReading

	Is the lock acquired for read? (will return false if only required for writer)

	
isWriting

	Is the lock acquired for write?

	
readerAcquire()[source]

	Deferred to acquire the lock for a Reader.

Inside an inlineCallback, you need to yield this call.

If the lock has been acquire by only reader, this method will not block.
If the lock has been requested by at least one writer, even if this writer is waiting for
all ongoing readers to finish, this call will be blocked.

You need to enclose this call inside try/finally to ensure the lock is always released, even
in case of exception.

Example:

@defer.inlineCallbacks
def aReaderMethod(...):
 try:
 yield rwlocker.readerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.readerRelease()

	
readerRelease()[source]

	Release the lock by a reader.

Inside an inlineCallback, you need to yield this call.

This call is always non-blocking.

	
writerAcquire()[source]

	Acquire the lock for a Writer.

Inside an inlineCallback, you need to yield this call.

If at least one other reader is ongoing, this call will block any new reader request, and
will wait for all reader to finish. If two writers request access to the lock, each one will
wait so only one write has the lock at the a time.

You need to enclose this call inside try/finally to ensure the lock is always released, even
in case of exception.

Example:

@defer.inlineCallbacks
def aWriterMethod(...):
 try:
 yield rwlocker.writerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.writerRelease()

	
writerRelease()[source]

	Release the lock by a Writer.

Inside an inlineCallback, you need to yield this call.

This call is always non-blocking

Readers/Writer Deferred Lock TestCase

	
class txrwlock.txrwlocktestcase.TxRWLockTestCase(methodName='runTest')[source]

	Unit test helper class for Twisted.

Provides useful methods to test exception cases, such as assertRaisesWithMessage and
assertInlineCallbacksRaisesWithMessage in addition to twisted.trial.unittest.TestCase.

	
assertInlineCbRaises(exceptionClass, inlineCallbacksFunc, *args, **kw)[source]

	Assert a given inlineCallbacks decorated method raises.

This replaces assertRaisesWithMessage for inlineCallbacks.

Note: this method is an inlineCallbacks and need to be yielded.

	
assertInlineCbRaisesWithMsg(exceptionClass, expectedMessage, inlineCallbacksFunc, *args, **kw)[source]

	Assert a given inlineCallbacks decorated method raises with a given message.

This replaces assertRaisesWithMessage for inlineCallbacks.

Note: this method is an inlineCallbacks and need to be yielded.

	
assertRaisesWithMessage(exceptionClass, expectedMessage, func, *args, **kw)[source]

	Check if a given function call (synchronous or deferred) raised with a given message.

Note: You cannot use an inlineCallbacks as func. Please use
assertInlineCallbacksRaisesWithMessage.

 Copyright 2016, Gaetan Semet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Readers/Writer Lock for Twisted 1.0 documentation

Index

 A
 | I
 | R
 | T
 | W

A

 	

 	assertInlineCbRaises() (txrwlock.txrwlocktestcase.TxRWLockTestCase method)

 	assertInlineCbRaisesWithMsg() (txrwlock.txrwlocktestcase.TxRWLockTestCase method)

 	

 	assertRaisesWithMessage() (txrwlock.txrwlocktestcase.TxRWLockTestCase method)

I

 	

 	isReading (txrwlock.txrwlock.ReadersWriterDeferredLock attribute)

 	

 	isWriting (txrwlock.txrwlock.ReadersWriterDeferredLock attribute)

R

 	

 	readerAcquire() (txrwlock.txrwlock.ReadersWriterDeferredLock method)

 	readerRelease() (txrwlock.txrwlock.ReadersWriterDeferredLock method)

 	

 	ReadersWriterDeferredLock (class in txrwlock.txrwlock)

T

 	

 	TxRWLockTestCase (class in txrwlock.txrwlocktestcase)

W

 	

 	writerAcquire() (txrwlock.txrwlock.ReadersWriterDeferredLock method)

 	

 	writerRelease() (txrwlock.txrwlock.ReadersWriterDeferredLock method)

 Copyright 2016, Gaetan Semet.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Readers/Writer Lock for Twisted 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Gaetan Semet.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		Readers/Writer Lock for Twisted 1.0 documentation »

 All modules for which code is available

		txrwlock.txrwlock

		txrwlock.txrwlocktestcase

 © Copyright 2016, Gaetan Semet.
 Created using Sphinx 1.3.5.

_static/comment.png

_modules/txrwlock/txrwlock.html

 Navigation

 		
 index

 		Readers/Writer Lock for Twisted 1.0 documentation »

 		Module code »

 Source code for txrwlock.txrwlock

-*- coding: utf-8 -*-
Twisted implementation of the Readers/Writer Lock
Inspirated by:
http://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/
License:
MIT License
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from twisted.internet import defer

__all__ = ["ReadersWriterDeferredLock"]

class _LightSwitch(object):
 '''
 An auxiliary "light switch"-like object. The first deferred turns on the "switch", the
 last one turns it off.
 '''

 def __init__(self):
 self.__cnt = 0
 self.__m = defer.DeferredLock()

 @defer.inlineCallbacks
 def acquire(self, lock):
 '''
 Acquire the lock and increase the counter
 '''
 yield self.__m.acquire()
 self.__cnt += 1
 if self.__cnt == 1:
 yield lock.acquire()
 self.__m.release()

 @defer.inlineCallbacks
 def release(self, lock):
 '''
 Release the lock and decreaser the counter
 '''
 yield self.__m.acquire()
 self.__cnt -= 1
 if self.__cnt == 0:
 lock.release()
 self.__m.release()

[docs]class ReadersWriterDeferredLock(object):

 '''
 Readers-Writer Lock for Twisted's Deferred

 Many readers can simultaneously access a share at the same time, but a writer has an exclusive
 access to this share.

 The following constraints should be met:

 #. no reader should be kept waiting if the share is currently not opened to anyone or to only
 other readers.
 #. only one writer can open the share at the same time, and when multiple writer request access,
 they will waiting for the execution of all previous writer access

 Reads and Writes are executed from within the main twisted reactor. Do **NOT** call it from
 external threads (e.g., from synchronous method execute in thread with ``deferToThread``).

 Description

 - "Readers" uses ``readerAcquire`` and ``readerRelease``.
 - "Writer" uses ``writerAcquire`` and ``writerRelease``.

 .. Python version > 3.5 can also use `async with reader`

 A "reader" is not blocked when one, two or more 'reads' are being executed.

 A "reader" is blocked while a 'writer' is executing.

 When a "write" starts, it blocks all new 'reads' and wait for the pending 'reads' to finish.
 If a new 'write" is requested, it will wait for running writes to finish as well.

 Notes:

 Please be aware than ``ReadersWriterDeferredLock.acquire*`` and
 ``ReadersWriterDeferredLock.release*`` methods are deferred, which is different from
 ``defer.DeferredLock``, where only the ``defer.DeferredLock.acquire()`` method is a
 deferred.

 Usage

 Threads that just need "read" access, use the following pattern:

 .. code-block:: python

 @defer.inlineCallbacks
 def aReaderMethod(...):
 try:
 yield rwlocker.readerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.readerRelease()

 Threads that just need "read" access, use the following pattern:

 .. code-block:: python

 @defer.inlineCallbacks
 def aWriterMethod(...):
 try:
 yield rwlocker.writerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.writerRelease()

 Example

 .. code-block:: python

 from twisted.internet import defer
 from txrwlock.txrwlock import ReadersWriterDeferredLock

 class MySharedObject(object):

 def __init__(self):
 self._readWriteLock = DeferredReadersWriterLock()
 self._data = {}

 @defer.inlineCallbacks
 def performHeavyTreatmentOnData(self):
 try:
 yield rwlocker.readerAcquire()
 # self._data is read and need to stay coherent during the whole current method
 yield anyOtherVeryLongDeferredThatReadsData(self._data)
 # self._data is read again
 finally:
 yield rwlocker.readerRelease()

 @defer.inlineCallbacks
 def changeDataValue(self):
 try:
 yield rwlocker.writerAcquire()
 # Change self._data somehow
 finally:
 yield rwlocker.writerRelease()

 There could be as many simultanous calls to ``MySharedObject.performHeavyTreatmentOnData``
 at the same time (during ``anyOtherVeryLongDeferredThatReadsData``, the reactor might
 schedule a new call to ``MySharedObject.performHeavyTreatmentOnData``). Once
 ``MySharedObject.changeDataValue`` is called, all new call to
 ``performHeavyTreatmentOnData`` are blocked.

 '''

 def __init__(self):
 self.__rd_swtch = _LightSwitch()
 self.__wrte_swtch = _LightSwitch()
 self.__no_rdr = defer.DeferredLock()
 self.__no_wrtr = defer.DeferredLock()
 self.__rdrs_q = defer.DeferredLock()

 @property
 def isReading(self):
 '''
 Is the lock acquired for read? (will return false if only required for writer)
 '''
 return self.__no_wrtr.locked and not self.__no_rdr.locked

 @property
 def isWriting(self):
 '''
 Is the lock acquired for write?
 '''
 return self.__no_rdr.locked

 @defer.inlineCallbacks
[docs] def readerAcquire(self):
 """
 Deferred to acquire the lock for a Reader.

 Inside an inlineCallback, you need to yield this call.

 If the lock has been acquire by only reader, this method will not block.
 If the lock has been requested by at least one writer, even if this writer is waiting for
 all ongoing readers to finish, this call will be blocked.

 You need to enclose this call inside try/finally to ensure the lock is always released, even
 in case of exception.

 Example:

 .. code-block:: python

 @defer.inlineCallbacks
 def aReaderMethod(...):
 try:
 yield rwlocker.readerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.readerRelease()
 """

 yield self.__rdrs_q.acquire()
 yield self.__no_rdr.acquire()
 yield self.__rd_swtch.acquire(self.__no_wrtr)
 self.__no_rdr.release()
 self.__rdrs_q.release()

 @defer.inlineCallbacks
[docs] def readerRelease(self):
 """
 Release the lock by a reader.

 Inside an inlineCallback, you need to yield this call.

 This call is always non-blocking.
 """
 yield self.__rd_swtch.release(self.__no_wrtr)

 @defer.inlineCallbacks
[docs] def writerAcquire(self):
 """
 Acquire the lock for a Writer.

 Inside an inlineCallback, you need to yield this call.

 If at least one other reader is ongoing, this call will block any new reader request, and
 will wait for all reader to finish. If two writers request access to the lock, each one will
 wait so only one write has the lock at the a time.

 You need to enclose this call inside try/finally to ensure the lock is always released, even
 in case of exception.

 Example:

 .. code-block:: python

 @defer.inlineCallbacks
 def aWriterMethod(...):
 try:
 yield rwlocker.writerAcquire()
 # ... any treatment ...
 finally:
 yield rwlocker.writerRelease()
 """

 yield self.__wrte_swtch.acquire(self.__no_rdr)
 yield self.__no_wrtr.acquire()

 @defer.inlineCallbacks
[docs] def writerRelease(self):
 """
 Release the lock by a Writer.

 Inside an inlineCallback, you need to yield this call.

 This call is always non-blocking
 """
 self.__no_wrtr.release()
 yield self.__wrte_swtch.release(self.__no_rdr)

 © Copyright 2016, Gaetan Semet.
 Created using Sphinx 1.3.5.

_modules/txrwlock/txrwlocktestcase.html

 Navigation

 		
 index

 		Readers/Writer Lock for Twisted 1.0 documentation »

 		Module code »

 Source code for txrwlock.txrwlocktestcase

-*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from twisted.internet import defer
from twisted.trial.unittest import TestCase

__all__ = ['TxRWLockTestCase']

[docs]class TxRWLockTestCase(TestCase):

 '''
 Unit test helper class for Twisted.

 Provides useful methods to test exception cases, such as `assertRaisesWithMessage` and
 `assertInlineCallbacksRaisesWithMessage` in addition to `twisted.trial.unittest.TestCase`.
 '''

 def __assertExceptionMessageIs(self, err, expectedMessage):
 if hasattr(err, "message"):
 self.assertSubstring(expectedMessage, err.message)
 else:
 self.assertSubstring(expectedMessage, str(err))

[docs] def assertRaisesWithMessage(self, exceptionClass, expectedMessage, func, *args, **kw):
 '''
 Check if a given function call (synchronous or deferred) raised with a given message.

 Note: You cannot use an inlineCallbacks as func. Please use
 assertInlineCallbacksRaisesWithMessage.
 '''
 try:
 defer.maybeDeferred(func(*args, **kw))
 except exceptionClass as err:
 self.__assertExceptionMessageIs(err, expectedMessage)
 return
 raise Exception("{0} not raised".format(exceptionClass,))

 @defer.inlineCallbacks
[docs] def assertInlineCbRaisesWithMsg(self, exceptionClass, expectedMessage,
 inlineCallbacksFunc, *args, **kw):
 '''
 Assert a given inlineCallbacks decorated method raises with a given message.

 This replaces assertRaisesWithMessage for inlineCallbacks.

 Note: this method is an inlineCallbacks and need to be yielded.
 '''
 try:
 yield inlineCallbacksFunc(*args, **kw)
 except exceptionClass as err:
 self.__assertExceptionMessageIs(err, expectedMessage)
 return
 raise Exception("{0} not raised".format(exceptionClass,))

 @defer.inlineCallbacks
[docs] def assertInlineCbRaises(self, exceptionClass, inlineCallbacksFunc, *args, **kw):
 '''
 Assert a given inlineCallbacks decorated method raises.

 This replaces assertRaisesWithMessage for inlineCallbacks.

 Note: this method is an inlineCallbacks and need to be yielded.
 '''
 try:
 yield inlineCallbacksFunc(*args, **kw)
 except exceptionClass:
 return
 raise Exception("{0} not raised".format(exceptionClass))

 © Copyright 2016, Gaetan Semet.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

