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CHAPTER 1

Synthetic Isotropic Turbulence based on a Specified Energy Spectrum

Author Tony Saad

1.1 Formulation

We start with a generalized Fourier series for a real valued scalar function

𝑢 = 𝑎0 +

𝑀∑︁
𝑚=1

𝑎𝑚 cos(
2𝜋𝑚𝑥

𝐿
) + 𝑏𝑚 sin(

2𝜋𝑚𝑥

𝐿
)

For simplicity, we set 𝑘𝑚 ≡ 2𝜋𝑚
𝐿 as the 𝑚th wave number. Also, if the mean of 𝑓 is known, we have∫︁ 𝐿

0

𝑢 d𝑥 = 𝑎0

Hence, for a turbulent velocity field with zero mean (in space), we can set 𝑎0 = 0. At the outset, we have

𝑢 =

𝑀∑︁
𝑚=1

𝑎𝑚 cos(𝑘𝑚𝑥) + 𝑏𝑚 sin(𝑘𝑚𝑥)

We now introduce the following changes

𝑎𝑚 = �̂�𝑚 cos(𝜓𝑚); 𝑏𝑚 = �̂�𝑚 sin(𝜓𝑚); �̂�2𝑚 = 𝑎2𝑚 + 𝑏2𝑚, 𝜓𝑚 = arctan(
𝑏𝑚
𝑎𝑚

)

then

𝑎𝑚 cos(𝑘𝑚𝑥) + 𝑏𝑚 sin(𝑘𝑚𝑥) = �̂�𝑚 cos(𝜓𝑚) cos(𝑘𝑚𝑥) + �̂�𝑚 sin(𝜓𝑚) sin(𝑘𝑚𝑥)

= �̂�𝑚 cos(𝑘𝑚𝑥− 𝜓𝑚)

so that

𝑢 =

𝑀∑︁
𝑚=1

�̂�𝑚 cos(𝑘𝑚𝑥− 𝜓𝑚)
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The extension to 3D follows

𝑢 =

𝑀∑︁
𝑚=1

�̂�𝑚 cos(k𝑚 · x− 𝜓𝑚)

=

𝑀∑︁
𝑚=1

�̂� cos(k𝑚 · x− 𝜓𝑚)

𝑤 =

𝑀∑︁
𝑚=1

�̂�𝑚 cos(k𝑚 · x− 𝜓𝑚)

where k𝑚 ≡ (𝑘𝑥,𝑚, 𝑘𝑦,𝑚, 𝑘𝑧,𝑚) is the position vector in wave space and x ≡ (𝑥, 𝑦, 𝑧) is the position vector in physical
space. Therefore, k𝑚 · x𝑚 = 𝑘𝑥,𝑚𝑥+ 𝑘𝑦,𝑚𝑦 + 𝑘𝑧,𝑚𝑧. A condensed form is

u =

𝑀∑︁
𝑚=1

û𝑚 cos(k𝑚 · x− 𝜓𝑚)

where û𝑚 ≡ (�̂�𝑚, 𝑣𝑚, �̂�𝑚). Continuity dictates that

𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0

This gives

−
𝑚∑︁

𝑚=1

(𝑘𝑥,𝑚�̂�𝑚 + 𝑘𝑦,𝑚𝑣𝑚 + 𝑘𝑧,𝑚�̂�𝑚) sin(k𝑚 · x− 𝜓𝑚) = 0

or ∑︁
𝑚

k𝑚 · û𝑚 sin(k𝑚 · x− 𝜓𝑚) = 0

This equation can be enforced by setting

k𝑚 · û𝑚 = 0, ∀𝑚 ∈ {0, 1, · · · ,𝑀}
𝑇ℎ𝑖𝑠𝑚𝑒𝑎𝑛𝑠𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝐹𝑜𝑢𝑟𝑖𝑒𝑟𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠ℎ𝑎𝑣𝑒𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑖𝑛

wave space. We therefore write the Fourier coefficients as

û𝑚 ≡ 𝑞𝑚𝜎𝑚 | k𝑚 · 𝜎𝑚 = 0

where 𝜎𝑚 is a unit vector computed such that k𝑚 · 𝜎𝑚 = 0 at any point x. Note that this is the original formulation
presented in :raw-latex:‘\cite{davidson2008hybrid}‘. While is true in the continuous sense, it becomes invalid when
discretized leading to a diverging velocity field. I will show you how to fix this in the next paragraph.

The velocity vector at point x is now at hand

u(x) =

𝑀∑︁
𝑚=1

𝑞𝑚 cos(k𝑚 · x− 𝜓𝑚)𝜎𝑚

The last step is to link 𝑞𝑚 to the energy spectrum. This can be computed from

𝑞𝑚 = 2
√︀
𝐸(𝑘𝑚)∆𝑘

2 Chapter 1. Synthetic Isotropic Turbulence based on a Specified Energy Spectrum
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1.2 Enforcing Continuity

Given an analytic vector field u such that ∇ · u = 0, we show here that this does not hold for the discrete continuity
equation. Since different codes use different discretization schemes for the dilatation term (staggered vs collocated),
one must first write the divergence formula in the desired discrete form and then infer the condition that enforces
discrete divergence. A classic example is the Taylor-Green vortex initialization. This velocity field is given by

𝑢 = sin𝑥 cos 𝑦

= − cos𝑥 sin 𝑦

It is true that, for this velocity field, ∇ · u = 0 because

∇ · u =
𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
= cos𝑥 cos 𝑦 − cos𝑥 cos 𝑦 = 0

However, when used to initialize a discrete grid, the resulting discrete continuity equation does not always hold true.
Take for instance the Taylor-Green vortex and initialize a staggered grid. Continuity, to second order in space on a
staggered grid implies

𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
≈
𝑢(𝑥+ Δ𝑥

2 , 𝑦) − 𝑢(𝑥− Δ𝑥
2 , 𝑦)

∆𝑥
+

(𝑥, 𝑦 + Δ𝑦
2 ) − (𝑥, 𝑦 − Δ𝑦

2 )

∆𝑦

Then, using the formula for 𝑢 and , e.g. 𝑢(𝑥+ Δ𝑥
2 , 𝑦) = sin(𝑥+ Δ𝑥

2 ) cos 𝑦, etc. . . , one recovers

𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
≈ 2 cos𝑥 cos 𝑦

⎡⎣ sin
(︀
Δ𝑥
2

)︀
∆𝑥

−
sin

(︁
Δ𝑦
2

)︁
∆𝑦

⎤⎦
which is guaranteed to be zero when ∆𝑥 = ∆𝑦. A nonuniform grid spacing will always result in a diverging initial
condition. The overall less that I’d like to convey here is that it is generally preferable to operate with the discrete form
of equations since those usually bring up hidden issues that can be easily missed in the continuous sense.

Back to our isotropic velocity field, recall that

u(x) =

𝑀∑︁
𝑚=1

𝑞𝑚 cos(k𝑚 · x− 𝜓𝑚)𝜎𝑚

𝑁𝑜𝑤,𝑤𝑟𝑖𝑡𝑒𝑡ℎ𝑒𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝑓𝑜𝑟𝑚, 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔𝑎

staggered grid, we have

𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
≈
𝑢(𝑥+ Δ𝑥

2 , 𝑦, 𝑧) − 𝑢(𝑥− Δ𝑥
2 , 𝑦, 𝑧)

∆𝑥
+

(𝑥, 𝑦 + Δ𝑦
2 , 𝑧) − (𝑥, 𝑦 − Δ𝑦

2 , 𝑧)

∆𝑦
+
𝑤(𝑥, 𝑦, 𝑧 + Δ𝑧

2 ) − 𝑤(𝑥, 𝑦, 𝑧 − Δ𝑧
2 )

∆𝑧

Here, for example,

𝑢(𝑥+ Δ𝑥
2 , 𝑦, 𝑧) =

𝑀∑︁
𝑚=1

𝑞𝑚 cos(𝑘𝑚,𝑥(𝑥+ Δ𝑥
2 ) + 𝑘𝑚,𝑦𝑦 + 𝑘𝑚,𝑧𝑧 − 𝜓𝑚)𝜎𝑚,𝑥

𝑈𝑝𝑜𝑛𝑐𝑎𝑟𝑒𝑓𝑢𝑙𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑛𝑑𝑡𝑒𝑑𝑖𝑜𝑢𝑠𝑡𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑤ℎ𝑖𝑐ℎ

are rendered begnin when using mathematica, bless Stephen Wolfram), we recover the following

𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
≈ −

𝑀∑︁
𝑚=1

2

[︂
𝜎𝑚,𝑥

∆𝑥
sin( 1

2𝑘𝑚,𝑥∆𝑥) +
𝜎𝑚,𝑦

∆𝑦
sin( 1

2𝑘𝑚,𝑦∆𝑦) +
𝜎𝑚,𝑧

∆𝑧
sin( 1

2𝑘𝑚,𝑧∆𝑧)

]︂
sin(k𝑚 · x− 𝜓𝑚)

1.2. Enforcing Continuity 3
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or, written in a more convenient form

𝜕𝑢

𝜕𝑥
+

𝜕

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
≈ −

𝑀∑︁
𝑚=1

𝜎𝑚 · k̃𝑚 sin(k𝑚 · x− 𝜓𝑚)

where

k̃𝑚 ≡ 2

∆𝑥
sin( 1

2𝑘𝑚,𝑥∆𝑥)i +
2

∆𝑦
sin( 1

2𝑘𝑚,𝑦∆𝑦)j +
2

∆𝑧
sin( 1

2𝑘𝑚,𝑧∆𝑧)k

A sufficient condition for the discrete continuity equation given in to be zero is to make

𝜎𝑚 · k̃𝑚 = 0, ∀𝑚

This means that instead of selecting 𝜎𝑚 such that it is perpendicular to k𝑚(𝜎𝑚 · k𝑚 = 0), we instead choose 𝜎𝑚to
be perpendicular to k̃𝑚. Interestingly, in the limit as the grid spacing approaches zero, k̃𝑚 will approach k𝑚. This is
so cool!

1.3 In Practice

figures/raster/angles.png

Fig. 1: Angles associated with wave number k𝑚.

• Specify the number of modes 𝑀 . This will determine the Fourier representation of the velocity field at every
point in the spatial domain

• Compute or set a minimum wave number 𝑘0

• Compute a maximum wave number 𝑘max = 𝜋
Δ𝑥 . For multiple dimensions, use 𝑘max = max( 𝜋

Δ𝑥 ,
𝜋
Δ𝑦 ,

𝜋
Δ𝑧 )

• Generate a list of 𝑀 modes: 𝑘𝑚 ≡ 𝑘(𝑚) = 𝑘0 + 𝑘max−𝑘0
𝑀 (𝑚 − 1). Those will correspond to the magnitude of

the vector k𝑚. In other words, 𝑘𝑚 is the radius of a sphere.

• Generate four arrays of random numbers, each of which is of size M (those will be needed next). Those will
correspond to the angles: 𝜃𝑚, 𝜙𝑚, 𝜓𝑚, and 𝛼𝑚.

• Compute the wave vectors. To generate as much randomness as possible, we write the wave vector as a
function of two angles in 3D space. This means

𝑘𝑥,𝑚 = sin(𝜃𝑚) cos(𝜙𝑚)𝑘𝑚

𝑘𝑦,𝑚 = sin(𝜃𝑚) sin(𝜙𝑚)𝑘𝑚

𝑘𝑥,𝑚 = cos(𝜃𝑚)𝑘𝑚

• Compute the unit vector 𝜎𝑚. Note that 𝜎𝑚 lies in a plane perpendicular to the vector k𝑚. We choose the
following

4 Chapter 1. Synthetic Isotropic Turbulence based on a Specified Energy Spectrum
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𝜎𝑥,𝑚 = cos(𝜃𝑚) cos(𝜙𝑚) cos(𝛼𝑚) − sin(𝜙𝑚) sin(𝛼𝑚)

𝜎𝑦,𝑚 = cos(𝜃𝑚) sin(𝜙𝑚) cos(𝛼𝑚) + cos(𝜙𝑚) sin(𝛼𝑚)

𝜎𝑧,𝑚 = − sin(𝜃𝑚) cos(𝛼𝑚)

• To enforce continuity, compute vector k̃𝑚 and make 𝜎𝑚 perpendicular to k̃𝑚.

• Once those quantities are computed, loop over the mesh. For every point on the mesh, loop over all M modes.
For every mode, compute 𝑞𝑚 = 2

√︀
𝐸(𝑘𝑚)∆𝑘 and 𝛽𝑚 = k𝑚 · x − 𝜓𝑚. Finally, construct the following

summations (at every point (𝑥, 𝑦, 𝑧) you will have a summation of 𝑀 -modes)

𝑢(𝑥, 𝑦, 𝑧) =

𝑀∑︁
𝑛=1

𝑞𝑚 cos(𝛽𝑚)𝜎𝑥,𝑚

(𝑥, 𝑦, 𝑧) =

𝑀∑︁
𝑛=1

𝑞𝑚 cos(𝛽𝑚)𝜎𝑦,𝑚

𝑤(𝑥, 𝑦, 𝑧) =

𝑀∑︁
𝑛=1

𝑞𝑚 cos(𝛽𝑚)𝜎𝑧,𝑚

1.3. In Practice 5
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