

Turbodbc - Turbocharged database access for data scientists

[image: _images/logo.svg]
 [https://github.com/blue-yonder/turbodbc]Turbodbc is a Python module to access relational databases via the
Open Database Connectivity (ODBC) [https://en.wikipedia.org/wiki/Open_Database_Connectivity]
interface. Its primary target audience are data scientist
that use databases for which no efficient native Python drivers are available.

For maximum compatibility, turbodbc complies with the
Python Database API Specification 2.0 (PEP 249) [https://www.python.org/dev/peps/pep-0249/].
For maximum performance, turbodbc offers built-in NumPy [http://www.numpy.org] and
Apache Arrow [https://arrow.apache.org] support
and internally relies on batched data transfer instead of single-record communication as
other popular ODBC modules do.

Turbodbc is free to use (MIT license [https://github.com/blue-yonder/turbodbc/blob/master/LICENSE]),
open source (GitHub [https://github.com/blue-yonder/turbodbc]),
works with Python 3.6+, and is available for Linux, macOS, and Windows.

Turbodbc is routinely tested with MySQL [https://www.mysql.com],
PostgreSQL [https://www.postgresql.org], EXASOL [http://www.exasol.com],
and MSSQL [http://microsoft.com/sql], but probably also works with your database.

	Introduction

	Getting started

	Advanced usage

	ODBC configuration

	Databases configuration and performance

	Version history / changelog

	Troubleshooting

	Frequently asked questions

	Contributing

	API reference

Indices and tables

	Index

	Module Index

Introduction

Turbodbc is a Python module to access relational databases via the Open Database
Connectivity (ODBC) interface. In addition to complying with the
Python Database API Specification 2.0 [https://www.python.org/dev/peps/pep-0249/],
turbodbc offers built-in NumPy support. Don’t wait minutes for your results, just blink.

Features

	Bulk retrieval of result sets

	Built-in NumPy support

	Built-in Apache Arrow support

	Bulk transfer of query parameters

	Asynchronous I/O for result sets

	Automatic conversion of decimal type to integer, float, and string as
appropriate

	Supported data types for both result sets and parameters:
int, float, str, bool, datetime.date, datetime.datetime

	Also provides a high-level C++11 database driver under the hood

	Tested with Python 3.8, 3.9 and 3.10

	Tested on 64 bit versions of Linux, OSX, and Windows (Python 3.8+).

Why should I use turbodbc instead of other ODBC modules?

Short answer: turbodbc is faster.

Slightly longer answer: turbodbc is faster, much faster if you want to
work with NumPy.

Medium-length answer: I have tested turbodbc and pyodbc (probably the most
popular Python ODBC module) with various databases (Exasol, PostgreSQL, MySQL)
and corresponding ODBC drivers. I found turbodbc to be consistently faster.

For retrieving result sets, I found speedups between 1.5 and 7 retrieving plain
Python objects. For inserting data, I found speedups of up to 100.

Is this completely scientific? Not at all. I have not told you about which
hardware I used, which operating systems, drivers, database versions, network
bandwidth, database layout, SQL queries, what is measured, and how I performed
was measured.

All I can tell you is that if I exchange pyodbc with turbodbc, my benchmarks
took less time, often approaching one (reading) or two (writing) orders of
magnitude. Give it a spin for yourself, and tell me if you liked it.

Smooth. What is the trick?

Turbodbc exploits buffering.

	Turbodbc implements both sending parameters and retrieving result sets using
buffers of multiple rows/parameter sets. This avoids round trips to the ODBC
driver and (depending how well the ODBC driver is written) to the database.

	Multiple buffers are used for asynchronous I/O. This allows to interleave
Python object conversion and direct database interaction (see performance options
below).

	Buffers contain binary representations of data. NumPy arrays contain binary
representations of data. Good thing they are often the same, so instead of
converting we can just copy data.

Supported environments

	64 bit operating systems (32 bit not supported)

	Linux (successfully built on Ubuntu 12, Ubuntu 14, Debian 7, Debian 8)

	OSX (successfully built on Sierra a.k.a. 10.12 and El Capitan a.k.a. 10.11)

	Windows (successfully built on Windows 10)

	Python 3.7, 3.8, 3.9

	More environments probably work as well, but these are the versions that
are regularly tested on Travis or local development machines.

Supported databases

Turbodbc uses suites of unit and integration tests to ensure quality.
Every time turbodbc’s code is updated on GitHub,
turbodbc is automatically built from scratch and tested with the following databases:

	PostgreSQL (Linux, OSX, Windows)

	MySQL (Linux, OSX, Windows)

	MSSQL (Windows, with official MS driver)

During development, turbodbc is tested with the following database:

	Exasol (Linux, OSX)

Releases will not be made if any (implemented) test fails for any of the databases
listed above. The following databases/driver combinations are tested on an irregular
basis:

	MSSQL with FreeTDS (Linux, OSX)

	MSSQL with Microsoft’s official ODBC driver (Linux)

There is a good chance that turbodbc will work with other, totally untested databases
as well. There is, however, an equally good chance that you will encounter compatibility
issues. If you encounter one, please take the time to report it so turbodbc can be improved
to work with more real-world databases. Thanks!

Getting started

Installation

Conda

We generally recommend using conda [https://docs.conda.io/projects/conda/en/latest/index.html] to install turbodbc. This will fetch the
pre-compiled binaries and all dependencies for your platform:

conda install -c conda-forge turbodbc

Pip

Linux and OSX

To install turbodbc on Linux and OSX using pip, use the following command:

pip install turbodbc

This will trigger a source build that requires compiling C++ code. Please make sure
the following prerequisites are met:

	Requirement

	Linux (apt-get install)

	OSX (brew install)

	C++11 compiler

	G++-4.8 or higher

	clang with OSX 10.9+

	Boost library + headers (1)

	libboost-all-dev

	boost

	ODBC library + headers

	unixodbc-dev

	unixodbc

	Python headers

	python-dev

	use pyenv to install

Please pip install numpy before installing turbodbc, because turbodbc will search
for the numpy Python package at installation/compile time. If NumPy is not installed,
turbodbc will not compile the optional NumPy support features.
Similarly, please pip install pyarrow before installing turbodbc if you would like
to use the optional Apache Arrow support.

(1) The minimum viable Boost setup requires the libraries variant, optional,
datetime, and locale.

Windows

To install turbodbc on Windows, please use the following command:

pip install turbodbc

This will download and install a binary wheel, no compilation required. You still need
to meet the following prerequisites, though:

	Requirement

	Windows

	OS Bitness

	64-bit

	Python

	3.5 or 3.6, 64-bit

	Runtime

	MSVS 2015 Update 3 Redistributable, 64 bit [https://www.microsoft.com/en-us/download/details.aspx?id=53840]

If you wish to install turbodbc with a later (64-bit) version of Python, you must
manually install the Boost C++ libraries first:

	The Boost libraries must be compiled, hence if you don’t have a suitable C++
compiler installed already, download the “Build Tools for Visual Studio 2019”
from Microsoft Visual Studio [https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019], and install the “C++ build tools” Workload.

	Download Boost from https://www.boost.org/ (click on the “Current Release”
version link, e.g. “Version 1.72.0”, then download the Windows zip file).

	Unzip the zipfile somewhere on your PC, e.g. the Downloads folder.

	In an “x64 Native Tools Command Prompt for VS 2019” command prompt (or
equivalent), navigate to the unzipped Boost top-level directory.

	Run .\bootstrap.bat (this generates the b2 executable).

	Run .\b2 (this generates the stage directory and contents, takes a
few minutes to run).

At this point, Boost is available but you must set the BOOST_ROOT environment
variable before installing turbodbc. Set BOOST_ROOT to the directory that contains
the bootstrap.bat file referenced above, e.g.:

set BOOST_ROOT=C:\your path to\boost_1_72_0
pip install turbodbc

If you require NumPy support, please

pip install numpy

sometime after installing turbodbc. Apache Arrow support is not yet available
on Windows.

Basic usage

Turbodbc follows the specification of the
Python database API v2 (PEP 249) [https://www.python.org/dev/peps/pep-0249/].
Here is a short summary, including the parts not specified by the PEP.

Establish a connection with your database

All ODBC appications, including turbodbc, use connection strings to establish connections
with a database. If you know how the connection string for your database looks like,
use the following lines to establish a connection:

>>> from turbodbc import connect
>>> connection = connect(connection_string='Driver={PostgreSQL};Server=IP address;Port=5432;Database=myDataBase;Uid=myUsername;Pwd=myPassword;')

If you do not specify the connection_string keyword argument, turbodbc will create
a connection string based on the keyword arguments you pass to connect:

>>> from turbodbc import connect
>>> connection = connect(dsn='My data source name as defined by your ODBC configuration')

The dsn is the data source name of your connection. Data source names uniquely identify
connection settings that shall be used to connect with a database. Data source names
are part of your ODBC configuration and you need to set them up
yourself. Once set up, however, all ODBC applications can use the same data source name
to refer to the same set of connection options, typically including the host, database,
driver settings, and sometimes even credentials. If your ODBC environment is set up properly,
just using the dsn option should be sufficient.

You can add extra options besides the dsn to overwrite or add settings:

>>> from turbodbc import connect
>>> connection = connect(dsn='my dsn', user='my user has precedence')
>>> connection = connect(dsn='my dsn', username='field names depend on the driver')

Last but not least, you can also do without a dsn and just specify all required configuration
options directly:

>>> from turbodbc import connect
>>> connection = connect(driver="PostgreSQL",
... server="hostname",
... port="5432",
... database="myDataBase",
... uid="myUsername",
... pwd="myPassword")

Executing SQL queries and retrieving results

To execute a query, you need to create a cursor object first:

>>> cursor = connection.cursor()

This cursor object lets you execute SQL commands and queries.
Here is how to execute a SELECT query:

>>> cursor.execute('SELECT 42')

You have multiple options to retrieve the generated result set. For example, you can
iterate over the cursor:

>>> for row in cursor:
... print row
[42L]

Alternatively, you can fetch all results as a list of rows:

>>> cursor.fetchall()
[[42L]]

You can also retrieve result sets as NumPy arrays or Apache Arrow tables, see Advanced usage.

Executing manipulating SQL queries

As before, you need to create a cursor object first:

>>> cursor = connection.cursor()

You can now execute a basic INSERT query:

>>> cursor.execute("INSERT INTO TABLE my_integer_table VALUES (42, 17)")

This will insert two values, 42 and 17, in a single row of table my_integer_table.
Inserting values like this is impractical, because it requires putting the values
into the actual SQL string.

To avoid this, you can pass parameters to execute():

>>> cursor.execute("INSERT INTO TABLE my_integer_table VALUES (?, ?)",
... [42, 17])

Please note the question marks ? in the SQL string that marks two parameters.
Adding single rows at a time is not efficient. You can add more than just a single row to a table
efficiently by using executemany():

>>> parameter_sets = [[42, 17],
... [23, 19],
... [314, 271]]
>>> cursor.executemany("INSERT INTO TABLE my_integer_table VALUES (?, ?)",
... parameter_sets)

If you already have parameters stored as NumPy arrays, check the
Using NumPy arrays as query parameters section to use them even more efficiently.

Transactions

By default, turbodbc does not enable automatic commits (autocommit). To commit your changes to the database,
please use the following command:

>>> connection.commit()

If you want to roll back your changes, use the following command:

>>> connection.rollback()

If you prefer autocommit for your workflow or your database does not support
transactions at all, you can use the autocommit
option.

Supported data types

Turbodbc supports the most common data types data scientists are interested in.
The following table shows which database types are converted to which Python types:

	Database type(s)

	Python type

	Integers, DECIMAL(<19,0)

	int

	DOUBLE, DECIMAL(<19, >0)

	float

	DOUBLE, DECIMAL(>18, 0)

	unicode (str) or int *

	DOUBLE, DECIMAL(>18, >0)

	unicode (str) or float *

	BIT, boolean-like

	bool

	TIMESTAMP, DATETIME

	datetime.datetime

	DATE

	datetime.date

	VARCHAR, strings

	unicode (str)

	TIME

	(not supported)

	UUID, GUID

	(not supported)

*) The conversion depends on turbodbc’s large_decimals_as_64_bit_types
option.

When using parameters with execute() and executemany(), the table is
basically reversed. The first type in the “database type(s)” column denotes
the type used to transfer back data. For integers, 64-bit integers are transferred.
For strings, the length of the transferred VARCHAR depends on the length of
the transferred strings.

What to read next

Continue with the advanced usage section.
Besides general tuning parameters it also
discusses how to leverage NumPy or
Apache Arrow for even better performance.

Advanced usage

Performance, compatibility, and behavior options

Turbodbc offers a way to adjust its behavior to tune performance and to
achieve compatibility with your database. The basic usage is this:

>>> from turbodbc import connect, make_options
>>> options = make_options()
>>> connect(dsn="my_dsn", turbodbc_options=options)

This will connect with your database using the default options. To use non-default
options, supply keyword arguments to make_options():

>>> from turbodbc import Megabytes
>>> options = make_options(read_buffer_size=Megabytes(100),
... parameter_sets_to_buffer=1000,
... varchar_max_character_limit=10000,
... use_async_io=True,
... prefer_unicode=True,
... autocommit=True,
... large_decimals_as_64_bit_types=True,
... limit_varchar_results_to_max=True)

Read buffer size

read_buffer_size affects how many result set rows are retrieved per batch
of results. Set the attribute to turbodbc.Megabytes(42) to have turbodbc determine
the optimal number of rows per batch so that the total buffer amounts to
42 MB. This is recommended for most users and databases. You can also set
the attribute to turbodbc.Rows(13) if you would like to fetch results in
batches of 13 rows. By default, turbodbc fetches results in batches of 20 MB.

Please note that sometimes a single row of a result set may exceed the specified
buffer size. This can happen if large fields such as VARCHAR(8000000) or TEXT
are part of the result set. In this case, results are fetched in batches of single rows
that exceed the specified size. Buffer sizes for large text fields can be controlled
with the VARCHAR(max) character limit and XXX options.

Buffered parameter sets

Similarly, parameter_sets_to_buffer changes the number of parameter sets
which are transferred per batch of parameters (e.g., as sent with executemany()).
Please note that it is not (yet) possible to use the Megabytes and Rows classes
here.

VARCHAR(max) character limit

The varchar_max_character_limit specifies the buffer size for result set columns
of types VARCHAR(max), NVARCHAR(max), or similar types your database supports.
Small values increase the chance of truncation, large ones require more memory. Depending
on your setting of read_buffer_size, this may increase the total memory consumption
or reduce the number of rows fetched per batch, thus affecting performance.
The default value is 65535 characters.

Note

This value does not affect fields of type VARCHAR(n) with n > 0, unless
the option Limit VARCHAR results to MAX is set. Also, this
option does not affect parameters that you may pass to the database.

 ODBC configuration

ODBC configuration

ODBC configuration can be a real pain, in particular if you are new to ODBC.
So here is a short primer of what ODBC is about.

	ODBC basics

	ODBC concepts

	Driver manager configuration

 ODBC basics

ODBC basics

ODBC is the abbreviation for open database connectivity [https://en.wikipedia.org/wiki/Open_Database_Connectivity],
a standard for interacting with relational databases that has been considerably
influenced by Microsoft. The aim of the standard is that applications can work
with multiple databases with little to no adjustments in code.

This is made possible by combining three components with each other:

	Database vendors supply ODBC drivers.

	An ODBC driver manager manages ODBC data sources.

	Applications use the ODBC driver manager to connect to data sources.

Turbodbc makes it easy to build applications that use the ODBC driver manager,
but it still requires the driver manager to be configured correctly so that your
databases are found.

 ODBC concepts

ODBC concepts

ODBC drivers

ODBC drivers comply with the ODBC API, meaning that they offer a set of about
80 C functions with well-defined behavior that internally use database-specific
commands to achieve the desired behavior. There is some wiggle room that
allows ODBC drivers to implement certain things differently or even exclude support
for some advanced usage patterns. But in essence, all ODBC drivers are born more or
less equal.

ODBC drivers are easy to come by. Major database vendors offer ODBC drivers as free
downloads (Microsoft SQL Server [https://www.microsoft.com/en-us/download/details.aspx?id=56567],
Exasol [https://www.exasol.com/portal/display/DOWNLOAD/6.0],
Teradata [https://downloads.teradata.com/download/connectivity/odbc-driver/windows], etc).
Open source databases provide ODBC databases as part of their projects
(PostgreSQL [https://odbc.postgresql.org],
Impala [https://www.cloudera.com/downloads/connectors/impala/odbc/2-5-37.html],
MongoDB [https://github.com/NYUITP/sp13_10g]).
Many ODBC drivers are also shipped with Linux distributions or are readily
available via Homebrew [https://github.com/Homebrew/homebrew-core] for OSX.
Last but not least, commercial ODBC drivers are available at
Progress [https://www.progress.com/odbc] or easysoft [http://www.easysoft.com/index.html],
claiming better performance than their freely available counterparts.

ODBC driver manager

The driver manager is a somewhat odd centerpiece. It is a library that can be used
just like any ODBC driver. It provides definitions for various data types, and
actual ODBC drivers often rely on these definitions for compilation. The driver
manager has a built-in configuration of data sources. A data source has
a name (the data source name or DSN), is associated with an ODBC driver, contains
configuration options such as the database host or the connection locale, and sometimes
it also contains credentials for authentication with the database. Finally, the
driver manager typically comes with a tool to edit data sources.

Driver managers are less numerous, but still easily available on all major platforms.
Windows comes with a preinstalled ODBC database manager. On Linux and OSX, there
are competing driver managers in unixodbc [http://www.unixodbc.org] and
iodbc [http://www.iodbc.org/dataspace/doc/iodbc/wiki/iodbcWiki/WelcomeVisitors].

Note

Turbodbc is tested with Windows’s built-in driver manager and unixodbc on
Linux and OSX.

 Driver manager configuration

Driver manager configuration

The driver manager needs to know to which databases to connect with which ODBC drivers.
This configuration needs to be maintained by the user.

Windows

Windows comes with a preinstalled driver manager that can be configured with the
ODBC data source administrator. Please see Microsoft’s
official documentation [https://docs.microsoft.com/en-us/sql/odbc/admin/odbc-data-source-administrator]
for this. Besides adding your data sources, no special measures need to be done
for your configuration to be found.

Unixodbc (Linux and OSX)

Unixodbc is a different beast. For one thing, you need to install it first.
That is usually an easy task involving a simple apt-get install unixodbc (Linux)
or brew install unixodbc (OSX with Homebrew [https://github.com/Homebrew/homebrew-core]).

However, unixodbc can be configured in many ways, both with and without graphical guidance.
The official documentation is not always easy to follow, and finding what you are looking for
may be more difficult than you planned for and may involve looking into unixodbc’s source code.

The following primer assumes that no graphic tools are used (as is often common in server environments).
It is not specific to turbodbc and based on information available at these locations:

	Unixodbc documentation “hub” [http://www.unixodbc.org/doc/]

	Details on using unixodbc without a GUI [http://www.unixodbc.org/odbcinst.html]

	Unixodbc man page [https://www.systutorials.com/docs/linux/man/7-unixODBC/]

ODBC configuration files

Unixodbc’s main configuration file is usually called odbc.ini. odbc.ini defines
data sources that are available for connecting. It is a simple
ini-style [https://en.wikipedia.org/wiki/INI_file] text file with the following layout:

[data source name]
Driver = /path/to/driver_library.so
Option1 = Value
Option2 = Other value

[other data source]
Driver = Identifier specified in odbcinst.ini file
OptionA = Value

The sections define data source names that can be used to connect with the respective
database. Each section requires a Driver key. The value of this key may either
contain the path to the database’s ODBC driver or a key that
identifies the driver in unixodbc’s other configuration file odbcinst.ini. Each section
may contain an arbitrary number of key-value pairs that specify further connection
options. These connection options are driver-specific, so you need to refer to the
ODBC driver’s reference for that.

As mentioned before, unixodbc features a second (and optional) configuration file
usually called odbcinst.ini. This file lists available ODBC drivers and labels
them for convenient reference in odbc.ini. The file also follows the
ini-style [https://en.wikipedia.org/wiki/INI_file] convention:

[driver A]
Driver = /path/to/driver_library.so
Threading = 2
Description = A driver to access ShinyDB databases

[driver B]
Driver = /some/other/driver/library.so

The sections define names that can be used as values for the Driver keys in
odbc.ini. Each section needs to feature Driver keys themselves, where
the values represent paths to the respective ODBC drivers. Some additional
options are available such as the Threading level (see
unixodbc’s source code [https://sourceforge.net/p/unixodbc/code/HEAD/tree/trunk/DriverManager/__handles.c#l260]
for details) or a Description field.

Configuration file placement options

Unixodbc has a few places where it looks for its configuration files:

	Global configuration files are found in /etc/odbc.ini and /etc/odbcinst.ini.
Data sources defined in /etc/odbc.ini are available to all users of your computer.
Drivers defined in /etc/odbcinst.ini can be used by all users of your computer.

	Users can define additional data sources by adding the file ~/.odbc.ini to
their home directory. It seems that a file called ~/.odbcinst.ini has no effect.

	Users can add a folder in which to look for configuration files by setting the
ODBCSYSINI environment variable:

> export ODBCSYSINI=/my/folder

This will override the configuration files found at /etc. Place your configuration
files at /my/folder/odbc.ini and /my/folder/odbcinst.ini.

	Users can override the path for the user-specific odbc.ini file by setting the
ODBCINI environment variable:

> export ODBCINI=/full/path/to/odbc.ini

If you set this option, unixodbc will no longer consider ~/.odbc.ini.

Note

Do not expect the ODBCINSTINI environment variable to work just as ODBCINI.
Instead, the ODBCINSTINI specifies the file name of odbcinst.ini relative
to the value of the ODBCSYSINI variable. I suggest not to use this variable
since it is outright confusing.

 Databases configuration and performance

Databases configuration and performance

As already outlined in the more general ODBC configuration
section, connecting with your database via ODBC can be a real pain. Making matters worse,
database performance may significantly depend on the configuration as well.

Well, this section tries to make life just a tad easier by providing recommended
configurations for various databases. For some databases, comparisons with other
database access modules are provided as well so that you know what kind of
performance to expect.

Note

The quality of the ODBC driver for a given database heavily
affects performance of all ODBC applications using this driver. Even though
turbodbc was built to exploit buffering and what else the ODBC API has to offer,
it cannot work wonders when the ODBC driver is not up to the task. In such circumstances,
other, non-ODBC technologies may be available that outperform turbodbc
by a considerable margin.

 Exasol

Exasol

Exasol [http://www.exasol.com] is one of turbodbc’s main development
databases, and also provided the initial motivation for creating turbodbc.
Here are the recommended settings for connecting to an Exasol database via ODBC
using the turbodbc module for Python.

Recommended odbcinst.ini (Linux)

[Exasol driver]
Driver = /path/to/libexaodbc-uo2214lv1.so # only when libodbc.so.2 is not present
Driver = /path/to/libexaodbc-uo2214lv2.so # only when libodbc.so.2 is present
Threading = 2

	Exasol ships drivers for various versions of unixodbc. Any modern system should use the
uo2214 driver variants. Choose the lv1 version if your system contains the file
libodbc.so.1. If it does not, choose lv2 instead.

	Threading = 2 seems to be required to handle some thread issues with the driver.

Recommended odbcinst.ini (OSX)

[Exasol driver]
Driver = /path/to/libexaodbc-io418sys.dylib
Threading = 2

	The driver listed here is built with the iodbc library. All turbodbc tests work
with this driver even though turbodbc uses unixodbc.

	Threading = 2 seems to be required to handle some thread issues with the driver.

Recommended data source configuration

[Exasol]
DRIVER = Exasol driver
EXAHOST = <host>:<port_range>
EXAUID = <user>
EXAPWD = <password>
EXASCHEMA = <default_schema>
CONNECTIONLCALL = en_US.utf-8

	CONNECTIONLCALL is set to a locale with unicode support to avoid problems with
retrieving Unicode characters.

Recommended turbodbc configuration

The default turbodbc connection options work fine for Exasol. You can probably
tune the performance a little by increasing the read buffer size to 100 Megabytes.
Exasol claims that their database works best with this setting.

See the advanced options for details.

>>> from turbodbc import connect, make_options, Megabytes
>>> options = make_options(read_buffer_size=Megabytes(100))
>>> connect(dsn="Exasol", turbodbc_options=options)

 PostgreSQL

PostgreSQL

PostgreSQL [https://www.postgresql.org] is part of turbodbc’s
integration databases. That means that each commit in turbodbc’s repository
is automatically tested against PostgreSQL to ensure compatibility.
Here are the recommended settings for connecting to a PostgreSQL database via ODBC
using the turbodbc module for Python.

Note

PostgreSQL’s free ODBC driver is not optimized for performance. Hence, there
is not too much turbodbc can do to improve speed. You will achieve much better
performance with psycopg2 [https://github.com/psycopg/psycopg2] or
asyncpg [https://github.com/MagicStack/asyncpg].

 MySQL

MySQL

MySQL [https://www.mysql.com] is part of turbodbc’s integration databases.
That means that each commit in turbodbc’s repository
is automatically tested against MySQL to ensure compatibility.
Here are the recommended settings for connecting to a MySQL database via ODBC
using the turbodbc module for Python.

Note

You can use the MySQL ODBC driver to connect with databases that use the
MySQL wire protocol. Examples for such databases are
MariaDB [https://mariadb.org],
Amazon Aurora DB [https://aws.amazon.com/rds/aurora/details/?nc1=h_ls], or
MemSQL [http://www.memsql.com].

 Microsoft SQL Server (MSSQL)

Microsoft SQL Server (MSSQL)

Microsoft SQL Server [https://www.microsoft.com/sql] (MSSQL) is part of turbodbc’s
integration databases. That means that each commit in turbodbc’s repository
is automatically tested against MSSQL to ensure compatibility.
Here are the recommended settings for connecting to a Microsoft SQL database via ODBC
using the turbodbc module for Python.

Recommended odbcinst.ini (Linux)

On Linux, you have the choice between two popular drivers.

Official Microsoft ODBC driver

Microsoft offers an official ODBC driver [https://docs.microsoft.com/en-us/sql/connect/odbc/linux/microsoft-odbc-driver-for-sql-server-on-linux]
for selected modern Linux distributions [https://docs.microsoft.com/en-us/sql/connect/odbc/linux/installing-the-microsoft-odbc-driver-for-sql-server-on-linux].

[MSSQL Driver]
Driver=/opt/microsoft/msodbcsql/lib64/libmsodbcsql-13.1.so.4.0

FreeTDS

FreeTDS [http://www.freetds.org] is an open source [https://github.com/FreeTDS/freetds]
ODBC driver that supports MSSQL. It is stable, has been around for well over decade and is actively
maintained. However, it is not officially supported by Microsoft.

[FreeTDS Driver]
Driver = /usr/local/lib/libtdsodbc.so

Recommended odbcinst.ini (OSX)

FreeTDS [http://www.freetds.org] seems to be the only available driver for OSX
that can connect to MSSQL databases.

[FreeTDS Driver]
Driver = /usr/local/lib/libtdsodbc.so

Recommended data source configuration

Official Microsoft ODBC driver (Windows)

Put these values in your registry under the given key. Be sure to prefer the
latest ODBC driver [https://www.microsoft.com/en-us/download/details.aspx?id=56567]
over any driver that may come bundled with your Windows version.

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\MSSQL]
"Driver"="C:\\Windows\\system32\\msodbcsql17.dll"
"Server"="<host>"
"Database"="<database>"

Official Microsoft ODBC driver (Linux)

[MSSQL]
Driver = MSSQL Driver
Server = <host>,<port>
Database = <database>

Note

You cannot specify credentials for MSSQL databases in odbc.ini.

 Netezza

Netezza

Although IBM Netezza [https://www.ibm.com/analytics/netezza] is not an integration tested
database for turbodbc, some features have been added to support working with Netezza.
Here are the recommended settings for connecting to a Netezza database via ODBC
using the turbodbc module for Python.

Note

Probably due to the prefetch buffering, turbodbc seems to be about as fast as using pyodbc,
however, fetching using NumPy or Arrow calls (cursor.fetchallnumpy() or cursor.fetchallarrow())
is approximately 3 times faster due to avoiding the conversion from SQL types to Python
types to NumPy/Arrow types and just converting directly to NumPy/Arrow types.

 Version history / changelog

Version history / changelog

From version 2.0.0, turbodbc adapts semantic versioning.

Version 4.4.0

	Bump pybind11 version to 2.9.1

	Bump dependency requirements to pyarrow>=1.0 and numpy>=1.19

	Bump the used google test versions to 1.11.0

Version 4.3.1

	Update package requirements so that pyarrow>0.17.1,<7.1 can be used.

Version 4.3.0

	Add Python 3.10 build

	Update package requirements so that pyarrow>0.17.1,<6.1 can be used.

	Bump pybind11 version to 2.8.1

Version 4.2.1

	Update package requirements so that pyarrow>0.17.1,<5.1 can be used.

Version 4.2.0

	Update package requirements so that pyarrow>0.17.1,<4.1 can be used.

	Set minimal Python version to 3.7 following NEP 29.

Version 4.1.2

	Update package requirements so pyarrow>0.17.1,<3.1 can be used.

Version 4.1.1

	Version bump as package version was not adapted.

Version 4.1.0

	Adjust unit tests to Apache Arrow master changes.

	Bump bundled pybind11 to 2.5.0

Version 4.0.0

	Minimal supported python version is 3.6.X now

Version 3.4.0

	Support Arrow 0.16.x and 0.17.x, require at least 0.15.x

	Minimal NumPy version was bumped to 1.16

Version 3.3.0

	Don’t override but amend CMAKE_CXX_FLAGS

	Support Arrow 0.15.X

Version 3.2.0

	Release GIL while fetching batches using Apache Arrow engine

	Support Arrow 0.14.X

Version 3.1.1

	Correctly report odbc errors when freeing the statement handle as exceptions;
see Github issue 153 [https://github.com/blue-yonder/turbodbc/issues/153]
(thanks @byjott)

	Support user-provided gmock/gtest, e.g. in conda environments via
conda install -c conda-forge gtest gmock.

	Make source code compatible with Apache Arrow 0.13.0

Version 3.1.0

	Update to Apache Arrow 0.12

	Support the unicode datatype in the Arrow support. This primarily enables
MS SQL support for the Arrow adapter.

	Windows support for the Arrow adapter.

	Add a new entry to the build matrix that tests Python 3.7 with conda and
MS SQL on Linux.

	Big hands to @xhochy for making all these changes!

Version 3.0.0

	Adjust generators to conform to PEP-479

	Build wheels for Python 3.7 on Windows

	Drop support for Python 3.4

	Update to Apache Arrow 0.11

Version 2.7.0

	Added new keyword argument fetch_wchar_as_char to make_options().
If set to True, wide character types (NVARCHAR) are fetched and
decoded as narrow character types for compatibility with certain
databases/drivers (thanks @yaxxie).

	Added batched fetch support for Arrow as fetcharrowbatches()
(thanks @mariusvniekerk).

	Support (u)int8, (u)int16, (u)int32 Arrow columns on
executemanycolumns() (thanks @xhochy).

Version 2.6.0

	Added support for with blocks for Cursor and Connection
objects. This makes turbodbc conform with
PEP 343 [https://www.python.org/dev/peps/pep-0343/]
(thanks @AtomBaf)

	Added new keyword argument force_extra_capacity_for_unicode to
make_options(). If set to True, memory allocation is modified
to operate under the assumption that the database driver reports field
lengths in characters, rather than code units (thanks @yaxxie).

	Updated Apache Arrow support to work with both versions 0.8.0 and 0.9.0
(thanks @pacman82)

	Fixed a bug that led to handle limit exceeded error messages when
Cursor objects were not closed manually. With this fix, cursors
are garbage collected as expected.

Version 2.5.0

	Added an option to fetchallarrow() that fetches integer columns in the
smallest possible integer type the retrieved values fit in. While this
reduces the memory footprint of the resulting table, the schema of the
table is now dependent on the data it contains.

	Updated Apache Arrow support to work with version 0.8.x

Version 2.4.1

	Fixed a memory leak on fetchallarrow() that increased the reference
count of the returned table by one too much.

Version 2.4.0

	Added support for Apache Arrow pyarrow.Table objects as the input for
executemanycolumns(). In addition to direct Arrow support, this
should also help with more graceful handling of Pandas DataFrames
as pa.Table.from_pandas(...) handles additional corner cases of
Pandas data structures. Big thanks to @xhochy!

Version 2.3.0

	Added an option to fetchallarrow() that enables the fetching of string
columns as dictionary-encoded string columns. In most cases, this increases
performance and reduces RAM usage. Arrow columns of type dictionary[string]
will result in pandas.Categorical columns on conversion.

	Updated pybind11 dependency to version 2.2+

	Fixed a symbol visibility issue when building Arrow unit tests on systems
that hide symbols by default.

Version 2.2.0

	Added new keyword argument large_decimals_as_64_bit_types to
make_options(). If set to True, decimals with more than 18
digits will be retrieved as 64 bit integers or floats as appropriate.
The default retains the previous behavior of returning strings.

	Added support for datetime64[ns] data type for executemanycolumns().
This is particularly helpful when dealing with pandas [https://pandas.pydata.org]
DataFrame objects, since this is the type that contains time stamps.

	Added the keyword argument limit_varchar_results_to_max to make_options(). This
allows to truncate VARCHAR(n) fields to varchar_max_character_limit
characters, see the next item.

	Added possibility to enforce NumPy and Apache Arrow requirements using extra requirements
during installation: pip install turbodbc[arrow,numpy]

	Updated Apache Arrow support to work with version 0.6.x

	Fixed an issue with retrieving result sets with VARCHAR(max) fields and
similar types. The size of the buffer allocated for such fields can be controlled
with the varchar_max_character_limit option to make_options().

	Fixed an issue with some versions of Boost [https://svn.boost.org/trac10/ticket/3471]
that lead to problems with datetime64[us] columns with executemanycolumns().
An overflow when converting microseconds since 1970 to a database-readable timestamp
could happen, badly garbling the timestamps in the process. The issue was
surfaced with Debian 7’s Boost version (1.49), although the Boost
issue was allegedly fixed with version 1.43.

	Fixed an issue that lead to undefined behavior when character sequences
could not be decoded into Unicode code points. The new (and defined) behavior
is to ignore the offending character sequences completely.

Version 2.1.0

	Added new method cursor.executemanycolumns() that accepts parameters
in columnar fashion as a list of NumPy (masked) arrays.

	CMake build now supports conda environments

	CMake build offers DISABLE_CXX11_ABI option to fix linking issues
with pyarrow on systems with the new C++11 compliant ABI enabled

Version 2.0.0

	Initial support for the arrow data format with the Cursor.fetchallarrow()
method. Still in alpha stage, mileage may vary (Windows not yet supported,
UTF-16 unicode not yet supported). Big thanks to @xhochy!

	prefer_unicode option now also affects column name rendering
when gathering results from the database. This effectively enables
support for Unicode column names for some databases.

	Added module version number turbodbc.__version__

	Removed deprecated performance options for connect(). Use
connect(..., turbodbc_options=make_options(...)) instead.

Earlier versions (not conforming to semantic versioning)

The following versions do not conform to semantic versioning. The
meaning of the major.minor.revision versions is:

	Major: psychological ;-)

	Minor: If incremented, this indicates a breaking change

	Revision: If incremented, indicates non-breaking change (either feature or bug fix)

Version 1.1.2

	Added autocommit as a keyword argument to make_options(). As the
name suggests, this allows you to enable automatic COMMIT operations
after each operation. It also improves compatibility with databases
that do not support transactions.

	Added autocommit property to Connection class that allows switching
autocommit mode after the connection was created.

	Fixed bug with cursor.rowcount not being reset to -1 when calls to
execute() or executemany() raised exceptions.

	Fixed bug with cursor.rowcount not showing the correct value when
manipulating queries were used without placeholders, i.e., with
parameters baked into the query.

	Global interpreter lock (GIL) is released during some operations to
facilitate basic multi-threading (thanks @chmp)

	Internal: The return code SQL_SUCCESS_WITH_INFO is now treated as
a success instead of an error when allocating environment, connection,
and statement handles. This may improve compatibility with some databases.

Version 1.1.1

	Windows is now _officially_ supported (64 bit, Python 3.5 and 3.6). From now on,
code is automatically compiled and tested on Linux, OSX, and Windows
(thanks @TWAC for support). Windows binary wheels are uploaded to pypi.

	Added supported for fetching results in batches of NumPy objects with
cursor.fetchnumpybatches() (thanks @yaxxie)

	MSSQL is now part of the Windows test suite (thanks @TWAC)

	connect() now allows to specify a connection_string instead of
individual arguments that are then compiles into a connection string (thanks @TWAC).

Version 1.1.0

	Added support for databases that require Unicode data to be transported
in UCS-2/UCS-16 format rather than UTF-8, e.g., MSSQL.

	Added _experimental_ support for Windows source distribution builds.
Windows builds are not fully (or automatically) tested yet, and still require
significant effort on the user side to compile (thanks @TWAC for this initial version)

	Added new cursor.fetchnumpybatches() method which returns a generator to
iterate over result sets in batch sizes as defined by buffer size or rowcount
(thanks @yaxxie)

	Added make_options() function that take all performance and compatibility
settings as keyword arguments.

	Deprecated all performance options (read_buffer_size, use_async_io, and
parameter_sets_to_buffer) for connect(). Please move these keyword arguments
to make_options(). Then, set connect{}’s new keyword argument turbodbc_options
to the result of make_options(). This effectively separates performance options
from options passed to the ODBC connection string.

	Removed deprecated option rows_to_buffer from turbodbc.connect()
(see version 0.4.1 for details).

	The order of arguments for turbodbc.connect() has changed; this may affect
you if you have not used keyword arguments.

	The behavior of cursor.fetchallnumpy() has changed a little. The
mask attribute of a generated numpy.MaskedArray instance is
shortened to False from the previous [False, ..., False] if the
mask is False for all entries. This can cause problems when you
access individual indices of the mask.

	Updated pybind11 requirement to at least 2.1.0.

	Internal: Some types have changed to accomodate for Linux/OSX/Windows compatibility.
In particular, a few long types were converted to intptr_t and int64_t
where appropriate. In particular, this affects the field type that may be used
by C++ end users (so they exist).

Version 1.0.5

	Internal: Remove some const pointers to resolve some compile issues with
xcode 6.4 (thanks @xhochy)

Version 1.0.4

	Added possibility to set unixodbc include and library directories in
setup.py. Required for conda builds.

Version 1.0.3

	Improved compatibility with ODBC drivers (e.g. FreeTDS) that do not
support ODBC’s SQLDescribeParam() function by using a default
parameter type.

	Used a default parameter type when the ODBC driver cannot determine
a parameter’s type, for example when using column expressions for
INSERT statements.

	Improved compatibility with some ODBC drivers (e.g. Microsoft’s official
MSSQL ODBC driver) for setting timestamps with fractional seconds.

Version 1.0.2

	Added support for chaining operations to Cursor.execute() and
Cursor.executemany(). This allows one-liners such as
cursor.execute("SELECT 42").fetchallnumpy().

	Right before a database connection is closed, any open transactions
are explicitly rolled back. This improves compatibility with ODBC drivers
that do not perform automatic rollbacks such as Microsoft’s official
ODBC driver.

	Improved stability of turbodbc when facing errors while closing connections,
statements, and environments. In earlier versions, connection timeouts etc.
could have lead to the Python process’s termination.

	Source distribution now contains license, readme, and changelog.

Version 1.0.1

	Added support for OSX

Version 1.0.0

	Added support for Python 3. Python 2 is still supported as well.
Tested with Python 2.7, 3.4, 3.5, and 3.6.

	Added six package as dependency

	Turbodbc uses pybind11 instead of Boost.Python to generate its Python
bindings. pybind11 is available as a Python package and automatically
installed when you install turbodbc.
Other boost libraries are still required for other aspects of the code.

	A more modern compiler is required due to the pybind11 dependency.
GCC 4.8 will suffice.

	Internal: Move remaining stuff depending on python to turbodbc_python

	Internal: Now requires CMake 2.8.12+ (get it with pip install cmake)

Version 0.5.1

	Fixed build issue with older numpy versions, e.g., 1.8 (thanks @xhochy)

Version 0.5.0

	Improved performance of parameter-based operations.

	Internal: Major modifications to the way parameters are handled.

Version 0.4.1

	The size of the input buffers for retrieving result sets can now be set
to a certain amount of memory instead of using a fixed number of rows.
Use the optional read_buffer_size parameter of turbodbc.connect() and
set it to instances of the new top-level classes Megabytes and Rows
(thanks @LukasDistel).

	The read buffer size’s default value has changed from 1,000 rows to
20 MB.

	The parameter rows_to_buffer of turbodbc.connect() is _deprecated_.
You can set the read_buffer_size to turbodbc.Rows(1000) for the same
effect, though it is recommended to specify the buffer size in MB.

	Internal: Libraries no longer link libpython.so for local development
(linking is already done by the Python interpreter). This was always
the case for the libraries in the packages uploaded to PyPI, so no
change was necessary here.

	Internal: Some modifications to the structure of the underlying
C++ code.

Version 0.4.0

	NumPy support is introduced to turbodbc for retrieving result sets.
Use cursor.fetchallnumpy to retrieve a result set as an OrderedDict
of column_name: column_data pairs, where column_data is a NumPy MaskedArray
of appropriate type.

	Internal: Single turbodbc_intern library was split up into three libraries
to keep NumPy support optional. A few files were moved because of this.

Version 0.3.0

	turbodbc now supports asynchronous I/O operations for retrieving result sets.
This means that while the main thread is busy converting an already retrieved
batch of results to Python objects, another thread fetches an additional
batch in the background. This may yield substantial performance improvements
in the right circumstances (results are retrieved in roughly the same speed
as they are converted to Python objects).

Ansynchronous I/O support is experimental. Enable it with
turbodbc.connect('My data source name', use_async_io=True)

Version 0.2.5

	C++ backend: turbodbc::column no longer automatically binds on
construction. Call bind() instead.

Version 0.2.4

	Result set rows are returned as native Python lists instead of a not easily
printable custom type.

	Improve performance of Python object conversion while reading result sets.
In tests with an Exasol database, performance got about 15% better.

	C++ backend: turbodbc::cursor no longer allows direct access to the C++
field type. Instead, please use the cursor’s get_query() method,
and construct a turbodbc::result_sets::field_result_set using the
get_results() method.

Version 0.2.3

	Fix issue that only lists were allowed for specifying parameters for queries

	Improve parameter memory consumption when the database reports very large
string parameter sizes

	C++ backend: Provides more low-level ways to access the result set

Version 0.2.2

	Fix issue that dsn parameter was always present in the connection string
even if it was not set by the user’s call to connect()

	Internal: First version to run on Travis.

	Internal: Use pytest instead of unittest for testing

	Internal: Allow for integration tests to run in custom environment

	Internal: Simplify integration test configuration

Version 0.2.1

	Internal: Change C++ test framework to Google Test

Version 0.2.0

	New parameter types supported: bool, datetime.date, datetime.datetime

	cursor.rowcount returns number of affected rows for manipulating queries

	Connection supports rollback()

	Improved handling of string parameters

Version 0.1.0

Initial release

 Troubleshooting

Troubleshooting

This section contains advice on how to troubleshoot ODBC connections.
The advice contained here is not specific to turbodbc, but very related.

Note

This section currently assumes you are on a Linux/OSX machine that uses
unixodbc as a driver manager. Windows users
may find the contained information useful, but should expect some additional
transfer work adjusting the advice to the Windows platform.

 Frequently asked questions

Frequently asked questions

Can I use turbodbc together with SQLAlchemy?

Using Turbodbc in combination with SQLAlchemy is possible for a (currently) limited number of databases:

	EXASOL [http://www.exasol.com]: sqlalchemy_exasol [https://github.com/blue-yonder/sqlalchemy_exasol]

	MSSQL [http://microsoft.com/sql]: sqlalchemy-turbodbc [https://github.com/dirkjonker/sqlalchemy-turbodbc]

All of the above packages are available on PyPI. There are also more experimental implementations
available:

	Vertica [https://www.vertica.com]: Unofficial
fork of sqlalchemy-vertica [https://github.com/startappdev/sqlalchemy-vertica]

Where would I report issues concerning turbodbc?

In this case, please use turbodbc’s issue tracker on GitHub [https://github.com/blue-yonder/turbodbc].

Where can I ask questions regarding turbodbc?

Basically, you can ask them anywhere, chances to get a helpful answer may vary, though.
I suggest asking questions either using turbodbc’s issue tracker on
GitHub [https://github.com/blue-yonder/turbodbc] or by heading over to
stackoverflow [http://stackoverflow.com/search?q=turbodbc].

Is there a guided tour through turbodbc’s entrails?

Yes, there is! Check out these blog posts on the making of turbodbc:

	Part one: Wrestling with the side effects of a C API [https://tech.jda.com/making-of-turbodbc-part-1-wrestling-with-the-side-effects-of-a-c-api/].
This explains the C++ layer that is used to handle all calls to the ODBC API.

	Part two: C++ to Python [https://tech.jda.com/making-of-turbodbc-part-2-c-to-python/]
This explains how concepts of the ODBC API are transformed into an API compliant
with Python’s database API, including making use of pybind11 [https://github.com/pybind/pybind11].

I love Twitter! Is turbodbc on Twitter?

Yes, it is! Just follow @turbodbc [https://twitter.com/turbodbc]
for the latest turbodbc talk and news about related technologies.

How can I find our more about turbodbc’s latest developments?

There are a few options:

	Watch the turbodbc project on GitHub [https://github.com/blue-yonder/turbodbc]. This way, you will get mails for new issues,
updates issues, and the like.

	Periodically read turbodbc’s
change log [https://github.com/blue-yonder/turbodbc/blob/master/CHANGELOG.rst]

	Follow @turbodbc [https://twitter.com/turbodbc] on Twitter. There will be tweets
for new releases.

 Contributing

Contributing

Ways to contribute

Contributions to turbodbc are most welcome! There are many options how you can
contribute, and not all of them require you to be an expert programmer:

	Ask questions and raise issues on GitHub [https://github.com/blue-yonder/turbodbc]. This may influence turbodbc’s roadmap.

	If you like turbodbc, star/fork/watch the project on GitHub [https://github.com/blue-yonder/turbodbc]. This will improve visibility,
and potentially attracts more contributors.

	Report performance comparisons between turbodbc and other means to access a
database.

	Tell others about turbodbc on your blog, Twitter account, or at the coffee
machine at work.

	Improve turbodbc’s documentation by creating pull requests on GitHub [https://github.com/blue-yonder/turbodbc].

	Improve existing features by creating pull requests on GitHub [https://github.com/blue-yonder/turbodbc].

	Add new features by creating pull requests on GitHub [https://github.com/blue-yonder/turbodbc].

	Implement dialects for SQLAlchemy that connect to databases using turbodbc.

Pull requests

Pull requests are appreciated in general, but not all pull requests will be
accepted into turbodbc. Before starting to work on a pull request, please make sure
your pull request is aligned with turbodbc’s vision of creating fast ODBC
database access for data scientists. The safest way is to ask on GitHub [https://github.com/blue-yonder/turbodbc] whether a
certain feature would be appreciated.

After forking the project and making your modifications, you can create a new pull
request on turbodbc’s GitHub [https://github.com/blue-yonder/turbodbc] page. This will trigger an automatic build and,
eventually, a code review. During code reviews, I try to make sure that the added
code complies with clean code principles such as single level of abstraction,
single responsibility principle, principle of least astonishment, etc.

If you do not know what all of this means, just try to keep functions small (up to
five lines) and find meaningful names. If you feel like writing a comment, think
about whether the comment would make a nice variable or function name, and refactor
your code accordingly.

I am well aware that the current code falls short of clean code standards in one
place or another. Please do not take criticism regarding your code personally. Any
comments are purely directed to improve the quality of turbodbc’s code base over its
current state.

Development version

Earthly Setup

You can build turbodbc and run the full test suite with earthly [https://earthly.dev].

See the install instructions on how to get earthly: https://earthly.dev/get-earthly.

Build and test turbodbc with the default arguments:

earthly --allow-privileged +test

You can use the interactive mode to get a shell when tests fail:

earthly -i --allow-privileged +test

Run a specific test setup with an export of the build package:

earthly -P +test-python3.8-arrow3.x.x

The coverage results as well as the build tar.gz for turbodbc can be found in the created result directory.
To run other specific test targets and arguments, like different python or pyarrow versions, please see the Earthfile.

Run the full tests for different Python and package versions:

earthly --allow-privileged +test-all

Build and save a Docker image for development usage:

earthly +docker

It will create and tag a docker image turbodbc:latest which can be used for IDEs or to run builds
with less overhead and with a mounted source code and build directory:

docker run -v $PWD:/src -it turbodbc:latest

This will give you a shell in a running container, there you can execute the different build steps as you wish:

	build setup: cmake -DBOOST_ROOT=$CONDA_PREFIX -DBUILD_COVERAGE=ON -DCMAKE_INSTALL_PREFIX=./dist -DPYTHON_EXECUTABLE=/miniconda/envs/turbodbc-dev/bin/python -GNinja ..

	compile: ninja

	install: cmake –build . –target install

	unit tests: ctest -E turbodbc_integration_test –verbose

To run the integration tests in this setup, it is required that the docker-compose setup is running:

docker-compose -f earthly/docker-compose.yml up

to stop it
docker-compose -f earthly/docker-compose.yml down

Start the container within the host network stack:

docker run -v $PWD:/src --network=host -it turbodbc:latest

There you can run the integration tests:

the mssql database has to be created
/opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P 'StrongPassword1' -Q 'CREATE DATABASE test_db'

ctest --verbose

Manual Host Native Setup

For developing new features or just sampling the latest version of turbodbc directly on your host
do the following:

	Make sure your development environment meets the prerequisites mentioned
in the getting started guide.

	Create development environment depending on your Python package manager.

	For a pip-based workflow, create a virtual environment, activate it, and install
the necessary packages numpy, pyarrow, pytest, and mock:

pip install numpy pytest pytest-cov mock pyarrow

Make sure you have a recent version of cmake installed. For some operating
systems, binary wheels are available in addition to the package your operating
system offers:

pip install cmake

	If you’re using conda to manage your python packages, you can install the
dependencies from conda-forge:

conda create -y -q -n turbodbc-dev pyarrow numpy pybind11 boost-cpp \
 pytest pytest-cov mock cmake unixodbc gtest gmock -c conda-forge
source activate turbodbc-dev

	Clone turbodbc into the virtual environment somewhere:

git clone https://github.com/blue-yonder/turbodbc.git

	cd into the git repo and get pybind11

wget -q https://github.com/pybind/pybind11/archive/v2.9.1.tar.gz
tar xvf v2.9.1.tar.gz

	Create a build directory somewhere and cd into it.

	Execute the following command:

cmake -DCMAKE_INSTALL_PREFIX=./dist -DPYTHON_EXECUTABLE=`which python` /path/to/turbodbc

where the final path parameter is the directory to the turbodbc git repo,
specifically the directory containing setup.py. This cmake command will
prepare the build directory for the actual build step.

Note

The -DPYTHON_EXECUTABLE flag is not strictly necessary, but
it helps pybind11 to detect the correct Python version, in particular
when using virtual environments.

 API reference

API reference

	
turbodbc.connect(*args, **kwds)

	Create a connection with the database identified by the dsn or the connection_string.

	Parameters:

	
	dsn – Data source name as given in the (unix) odbc.ini file
or (Windows) ODBC Data Source Administrator tool.

	turbodbc_options – Options that control how turbodbc interacts with the database.
Create such a struct with turbodbc.make_options() or leave this blank to take the defaults.

	connection_string – Preformatted ODBC connection string.
Specifying this and dsn or kwargs at the same time raises ParameterError.

	**kwargs – You may specify additional options as you please. These options will go into
the connection string that identifies the database. Valid options depend on the specific database you
would like to connect with (e.g. user and password, or uid and pwd)

	Returns:

	A connection to your database

	
turbodbc.make_options(read_buffer_size=None, parameter_sets_to_buffer=None, varchar_max_character_limit=None, prefer_unicode=None, use_async_io=None, autocommit=None, large_decimals_as_64_bit_types=None, limit_varchar_results_to_max=None, force_extra_capacity_for_unicode=None, fetch_wchar_as_char=None)

	Create options that control how turbodbc interacts with a database. These
options affect performance for the most part, but some options may require adjustment
so that all features work correctly with certain databases.

If a parameter is set to None, this means the default value is used.

	Parameters:

	
	read_buffer_size – Affects performance. Controls the size of batches fetched from the
database when reading result sets. Can be either an instance of turbodbc.Megabytes (recommended)
or turbodbc.Rows.

	parameter_sets_to_buffer – Affects performance. Number of parameter sets (rows) which shall be
transferred to the server in a single batch when executemany() is called. Must be an integer.

	varchar_max_character_limit – Affects behavior/performance. If a result set contains fields
of type VARCHAR(max) or NVARCHAR(max) or the equivalent type of your database, buffers
will be allocated to hold the specified number of characters. This may lead to truncation. The
default value is 65535 characters. Please note that large values reduce the risk of
truncation, but may affect the number of rows in a batch of result sets (see read_buffer_size).
Please note that this option only relates to retrieving results, not sending parameters to the
database.

	use_async_io – Affects performance. Set this option to True if you want to use asynchronous
I/O, i.e., while Python is busy converting database results to Python objects, new result sets are
fetched from the database in the background.

	prefer_unicode – May affect functionality and performance. Some databases do not support
strings encoded with UTF-8, leading to UTF-8 characters being misinterpreted, misrepresented, or
downright rejected. Set this option to True if you want to transfer character data using the
UCS-2/UCS-16 encoding that use (multiple) two-byte instead of (multiple) one-byte characters.

	autocommit – Affects behavior. If set to True, all queries and commands executed
with cursor.execute() or cursor.executemany() will be succeeded by an implicit COMMIT
operation, persisting any changes made to the database. If not set or set to False,
users has to take care of calling cursor.commit() themselves.

	large_decimals_as_64_bit_types – Affects behavior. If set to True, DECIMAL(x, y)
results with x > 18 will be rendered as 64 bit integers (y == 0) or 64 bit floating
point numbers (y > 0), respectively. Use this option if your decimal data types are larger
than the data they actually hold. Using this data type can lead to overflow errors and loss
of precision. If not set or set to False, large decimals are rendered as strings.

	limit_varchar_results_to_max – Affects behavior/performance. If set to True,
any text-like fields such as VARCHAR(n) and NVARCHAR(n) will be limited to a maximum
size of varchar_max_character_limit characters. This may lead to values being truncated,
but reduces the amount of memory required to allocate string buffers, leading to larger, more
efficient batches. If not set or set to False, strings can exceed varchar_max_character_limit
in size if the database reports them this way. For fields such as TEXT, some databases
report a size of 2 billion characters.
Please note that this option only relates to retrieving results, not sending parameters to the
database.

	force_extra_capacity_for_unicode – Affects behavior/performance. Some ODBC drivers report the
length of the VARCHAR/NVARCHAR field rather than the number of code points for which space is required
to be allocated, resulting in string truncations. Set this option to True to increase the memory
allocated for VARCHAR and NVARCHAR fields and prevent string truncations.
Please note that this option only relates to retrieving results, not sending parameters to the
database.

	fetch_wchar_as_char – Affects behavior. Some ODBC drivers retrieve single byte encoded strings
into NVARCHAR fields of result sets, which are decoded incorrectly by turbodbc default settings,
resulting in corrupt strings. Set this option to True to have turbodbc treat NVARCHAR types
as narrow character types when decoding the fields in result sets.
Please note that this option only relates to retrieving results, not sending parameters to the
database.

	Returns:

	An option struct that is suitable to pass to the turbodbc_options parameter of
turbodbc.connect()

	
class turbodbc.connection.Connection(impl)

	
	
autocommit

	This attribute controls whether changes are automatically committed after each
execution or not.

	
close()

	Close the connection and all associated cursors. This will implicitly
roll back any uncommitted operations.

	
commit(**kwds)

	Commits the current transaction

	
cursor(**kwds)

	Create a new Cursor instance associated with this Connection

	Returns:

	A new Cursor instance

	
rollback(**