

Tunic

A Python library for deploying code on remote servers.

Tunic is designed so that you can make use of as much or as little of
its functionality as you’d like, the choice is yours.

It only requires the Fabric library as a dependency and can be installed
from the Python Package Index (PyPI) using the pip tool like so.

pip install tunic

You could then make use of it in your deploy process like so.

from fabric.api import task
from tunic.api import get_release_id, ReleaseManager, VirtualEnvInstallation

APP_BASE = '/srv/www/myapp'

@task
def deploy():
 stop_my_app()
 release = get_release_id()

 installer = VirtualEnvInstaller(APP_BASE, ['myapp'])
 release_manager = ReleaseManager(APP_BASE)

 installer.install(release)
 release_manager.set_current_release(release)

 start_my_app()

The above snippet is just the start, take a look around the code base
for more methods that can save you work in your deploy process.

Contents

	Design
	Purpose

	Directory structure

	Dependence on Fabric

	Versions

	Usage
	get_releases_path and get_current_path

	get_release_id

	ReleaseManager

	ProjectSetup

	LocalArtifactTransfer

	LocalArtifactInstallation

	HttpArtifactInstallation

	StaticFileInstallation

	VirtualEnvInstallation

	Putting it all together

	API
	tunic.core

	tunic.install

	Change Log
	1.3.0 - 2017-08-31

	1.2.3 - 2017-06-20

	1.2.2 - 2016-05-06

	1.2.1 - 2016-02-25

	1.2.0 - 2016-02-25

	1.1.0 - 2015-06-03

	1.0.1 - 2015-04-04

	0.5.0 - 2014-10-11

	0.4.0 - 2014-10-02

	0.3.0 - 2014-09-28

	0.2.0 - 2014-09-26

	0.1.0 - 2014-09-22

Indices and tables

	Index

	Module Index

	Search Page

Design

This section will go over some assumptions made by the Tunic library,
the general design of the library, and some things to keep in mind when
using it.

Purpose

Tunic is meant to supplement your existing Fabric based deploy process,
not to replace it or the Fabric library / tool. Tunic is not an abstraction
layer for Fabric. It’s merely meant to let you avoid writing the same thing
over and over again.

Directory structure

Tunic doesn’t care about where on your server you deploy to. However, it
expects that deployments are organized in a particular way and that each
deployment of your project is named in a particular way. The following
are required for Tunic functionality to work correctly.

For this example, let’s assume you’re deploying your project to /srv/www/myapp.

	This base directory for your project should be writable as the user or group
that deploys are being performed by.

	The directory structure under /srv/www/myapp must organized as follows.

/
+-- srv
 +-- www
 +-- myapp
 |-- releases
 | +-- 20141105123145-0.2.0
 | +-- 20141002231442-0.1.0
 +-- current -> releases/20141105123145-0.2.0

	The releases directory must be under your project base directory and be
writeable by the user or group that deploys are being performed by.

	Each deploy under the releases directory must be named starting with a
timestamp corresponding to when the deploy was done. The timestamp component
should built with the largest period of time first (the current year), followed
by each smaller component down to the second. The timezone used to generate this
timestamp component doesn’t matter as long as you always use the same one.

The name for each deploy will be generated for you (in UTC) if you use the
tunic.core.get_release_id() function. This is required to ensure that we
can determine the time deploys were done relative to each other.

	current must be a symlink to the active deployment in the releases
directory. This symlink will be created for you automatically if you use the
tunic.core.ReleaseManager.set_current_release() method as part of your
deploy process.

If you’ve used Capistrano, this structure should feel pretty familiar [http://capistranorb.com/documentation/getting-started/structure/] ;)

Dependence on Fabric

Since Tunic is built on Fabric, it inherits the following behavior.

	Output from commands run by methods in tunic.api ends up being displayed
just like output from commands run by Fabric. This can be changed through the
use of Fabric context managers [http://docs.fabfile.org/en/latest/api/core/context_managers.html].

	Since Tunic requires Fabric and Fabric doesn’t support Python 3 (yet), Tunic
won’t work with Python 3 at this time.

	Since Tunic makes heavy use of Fabric and Fabric is not thread safe [http://www.fabfile.org/faq.html#is-fabric-thread-safe], Tunic
is also not thread safe.

Versions

Tunic uses semantic versioning [http://semver.org/] of the form major.minor.patch. All backwards
incompatible changes after version 1.0.0 will increment the major version number.
All backwards incompatible changes prior to version 1.0.0 will increment the minor
version number.

Since this is a Python project, only the subset of the semantic versioning spec that is
compatible with PEP-440 [https://www.python.org/dev/peps/pep-0440/] will be used.

Usage

Tunic tries to reduce the amount of code you need to write for your deploy
process. The major components of Tunic are designed so that they can be used
together – or not. If you find a component doesn’t fit well with your deploy
process, don’t use it!

This guide will go over each of the distinct components of the Tunic library
and how to use them individually. Then we’ll look at how to use them all
together as part of the same deploy process.

Note

All functionality meant to be used by consumers of the Tunic library is
exposed in the tunic.api module. Anything not contained in this
module should be considered private and subject to change.

get_releases_path and get_current_path

These are the most basic parts of the Tunic library. Given a path to the base
directory of your project, they’ll give you paths to components of the directory
structure that the rest of the Tunic library expects. They are code to enforce
assumptions made by the library.

Below is an example of using the tunic.core.get_releases_path() method to find
all releases of a particular project.

from fabric.api import run
from tunic.api import get_releases_path

APP_BASE = '/srv/www/myapp'

def get_myapp_releases():
 """Get all releases of the MyApp project as a list."""
 release_path = get_releases_path(APP_BASE)
 releases = run('ls -1r ' + releases_path)
 return releases.split()

Below is an example of using the tunic.core.get_current_path() method to
find the deployment that is being actively served.

from fabric.api import run
from tunic.api import get_current_path

APP_BASE = '/srv/www/myapp'

def get_myapp_current():
 """Get the active deployment of MyApp."""
 current_path = get_current_path(APP_BASE)
 current = run('readlink ' + current_path)
 return current

get_release_id

The tunic.core.get_release_id() method is responsible for generating a
unique name for each deployment of a project. It generates a timestamp based
name, with an optional version component. The timestamp component is built with
the largest period of time first (the current year), followed by each smaller
component down to the second (similar to ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601] dates).

The purpose of generating a name for a deployment in this manor is to allow us
to keep track of when each deployment was made. Thus we are able to easily figure
out which deployments are the oldest, which particular deployment came before the
‘current’ one, etc.

Below is an example of using the tunic.core.get_release_id() method to set up
a new deployment.

import os.path
from fabric.api import run
from tunic.api import get_release_id

APP_BASE = '/srv/www/myapp'

def create_new_release(version):
 """Create a new release virtualenv and return the path."""
 releases = os.path.join(APP_BASE, 'releases') # '/srv/www/myapp/releases'
 release_id = get_release_id(version) # '20140928223929-1.4.1'
 new_release = os.path.join(releases, release_id) # '/srv/www/myapp/releases/20140928223929-1.4.1'
 run('virtualenv ' + new_release)
 return new_release

ReleaseManager

The tunic.core.ReleaseManager class is responsible for inspecting and
manipulating previous deployments and the current deployment on a remote server.

In order manipulate deployments like this, the ReleaseManager requires that they
are organized as described in Design.

Below is an example of getting all available deployments (current and past) from
a server.

from tunic.api import ReleaseManager

APP_BASE = '/srv/www/myapp'

def get_all_releases():
 release_manager = ReleaseManager(APP_BASE)
 return release_manager.get_releases()

Below is an example of creating a “rollback” task in Fabric for switching to the
previous deployment of your project that uses the tunic.core.ReleaseManager.get_previous_release()
and tunic.core.ReleaseManager.set_current_release() methods.

from fabric.api import task, warn
from tunic.api import ReleaseManager

APP_BASE = '/srv/www/myapp'

@task
def rollback():
 release_manager = ReleaseManager(APP_BASE)
 previous = release_manager.get_previous_release()

 if previous is None:
 warn("No previous release, can't rollback!")
 return

 release_manager.set_current_release(previous)

The ReleaseManager can also remove old deployments. To do this, you must
have named the deployments with a timestamp based prefix. If you’ve used
tunic.core.get_release_id() to name your deployments, this is handled
for you.

from fabric.api import task
from tunic.api import ReleaseManager

APP_BASE = '/srv/www/myapp'

@task
def cleanup(deployments_to_keep=5):
 release_manager = ReleaseManager(APP_BASE)
 release_manager.cleanup(keep=deployments_to_keep)

ProjectSetup

The tunic.core.ProjectSetup class is responsible for creating the
required directory structure for a project and ensuring that permissions
and ownership is consistent before and after a deploy.

The ProjectSetup class will create directories that are organized as described
in Design.

The ProjectSetup class typically uses sudo for creation of the directory
structure and changing of ownership and permissions of the project deploys.
If the user doing the deploy will not have sudo permissions, the methods
can be passed the use_sudo=False keyword argument to instruct them not
to use sudo, but instead use the Fabric run command. When using the run
command, the tunic.core.ProjectSetup.set_permissions() method will not
attempt to change the owner of the project deploys, only the permissions.

As with most parts of the Tunic library, use of this class for project deploy
process is optional. For example, if you use a configuration management system
(such as Puppet, Chef, Ansible, etc.) to ensure the correct directories exist
and have correct permissions on any server you deploy to, using the ProjectSetup
class may not be needed.

An example of creating the required directory structure and ensuring permissions
before and after a deploy, assuming the user doing the deploy has sudo permissions.

from fabric.api import task
from tunic.api import ProjectSetup
from .myapp import install_project

APP_BASE = '/srv/www/myapp'

@task
def deploy():
 setup = ProjectSetup(APP_BASE)
 setup.setup_directories()
 setup.set_permissions('root:www')

 install_project()

 setup.set_permissions('root:www')

LocalArtifactTransfer

The tunic.install.LocalArtifactTransfer class allows you to transfer
locally built artifacts to a remote server and clean them up afterwards in
the scope of a Python context manager [http://effbot.org/zone/python-with-statement.htm]. With more advanced deploy setups
that use a centralized artifact repository, this class isn’t usually needed.
However, if you don’t have a centralized repository, it can save you a bit
of work.

An example of using it to transfer locally built artifacts is below.

from fabric.api import task
from tunic.api import LocalArtifactTransfer
from .myapp import install_project_from_artifacts

LOCAL_BUILD_DIRECTORY = '/tmp/myapp'

REMOTE_ARTIFACT_DIRECTORY = '/tmp/artifacts

@task
def deploy():
 transfer = LocalArtifactTransfer(
 LOCAL_BUILD_DIRECTORY, REMOTE_ARTIFACT_DIRECTORY)

 with transfer as remote_destination:
 install_project_from_artifacts(remote_destination)

In this example, the contents of the local directory /tmp/myapp are
copied to the remote directory /tmp/artifacts/myapp. The value of remote_destination
within the context manager is /tmp/artifacts/myapp. After the scope of
the transfer context manager is exited, the directory /tmp/artifacts/myapp
on the remote machine is removed.

LocalArtifactInstallation

The tunic.install.LocalArtifactInstallation class is used to install
a single local file (Go binary, Java JAR or WAR) on a remote server. Optionally,
the artifact can be renamed when it is installed on the remote server.

The LocalArtifactInstallation class assumes that directories for a project
are setup as described in Design.

Below is an example of using the LocalArtifactInstallation class to install
a single Java JAR file to a release directory on a remote server.

from fabric.api import task
from tunic.api import LocalArtifactInstallation

APP_BASE = '/srv/www/app.example.com'

LOCAL_FILE = '/tmp/build/myapp/target/myapp-0.1.0.jar'

@task
def install():
 installation = LocalArtifactInstallation(
 APP_BASE, LOCAL_FILE, remote_name='myapp.jar')
 installation.install('20141002111442')

After running the install task above, the JAR would be installed to
/srv/www/app.example.com/releases/20141002111442/myapp.jar.

HttpArtifactInstallation

The tunic.install.HttpArtifactInstallation class is used to install
a single file (Go binary, Java JAR or WAR) on a remote server after downloading
it from an HTTP or HTTPS URL. Optionally the artifact can be renamed when it is
installed on the remote server.

The HttpArtifactInstallation class assumes that directories for a project
are setup as described in Design.

By default downloads are performed with a wget call on the remote server.

Below is an example of using the HttpArtifactInstallation class to install
a single Java JAR file to a release directory on a remote server.

from fabric.api import task
from tunic.api import HttpArtifactInstallation

APP_BASE = '/srv/www/app.example.com'

ARTIFACT_URL = 'https://www.example.com/builds/myapp-0.1.0.jar'

@task
def install():
 installation = HttpArtifactInstallation(
 APP_BASE, ARTIFACT_URL, remote_name='myapp.jar')
 installation.install('20141002111442')

After running the install task above, the JAR would be installed to
/srv/www/app.example.com/releases/20141002111442/myapp.jar.

Up next is an example of using the HttpArtifactInstallation class with an
alternate downloader. For this example we’ll define a download function with
the following signature (this is the interface required by
tunic.install.HttpArtifactInstallation).

def download(url, destination):
 pass

from fabric.api import run, task
from tunic.api import HttpArtifactInstallation

APP_BASE = '/srv/www/app.example.com'

ARTIFACT_URL = 'https://www.example.com/builds/myapp-0.1.0.jar'

def my_downloader(url, destination):
 return run("curl --output '{path}' '{url}'".format(
 url=url, path=destination))

@task
def install():
 installation = HttpArtifactInstallation(
 APP_BASE, ARTIFACT_URL, remote_name='myapp.jar', downloader=my_downloader)
 installation.install('20141002111442')

After running the install task above, the JAR would be installed to
/srv/www/app.example.com/releases/20141002111442/myapp.jar.

StaticFileInstallation

The tunic.install.StaticFileInstallation class is used to install
static files (maybe HTML and CSS files created by a static site generator,
like Nikola [http://getnikola.com/]).

The StaticFileInstallation class assumes that directories for a project
are setup as described in Design.

Below is an example of using the StaticFileInstallation class to install
a directory of static files to a release directory on a remote server.

from fabric.api import task
from tunic.api import StaticFileInstallation

APP_BASE = '/srv/www/blog.example.com'

LOCAL_FILES = '/home/user/myblog/output'

@task
def install():
 installation = StaticFileInstallation(APP_BASE, LOCAL_FILES)
 installation.install('20141002111442')

After running the install task above, the contents of ~/myblog/output would
be in /srv/www/blog.example.com/releases/20141002111442.

VirtualEnvInstallation

The tunic.install.VirtualEnvInstallation class is used to install one
or multiple packages into a Python virtual environment [http://virtualenv.readthedocs.org/]. The virtual
environment is typically a particular deployment of your project.

The VirtualEnvInstallation class assumes that directories for a project
are setup as described in Design.

Usage of this installer requires that the virtualenv tool is installed
on the remote server and is on the PATH of the user performing the deploy
or the location of the virtualenv tool is provided to the VirtualEnvInstallation
class when instantiated.

Below is an example of using the VirtualEnvInstallation class to install
a project and WSGI server from the default Python Package Index (PyPI).

from fabric.api import task
from tunic.api import VirtualEnvInstallation

APP_BASE = '/srv/www/myapp'

@task
def install():
 installation = VirtualEnvInstallation(APP_BASE, ['myapp', 'gunicorn'])
 installation.install('20141002111442-1.4.1')

The example above is simple, but not ideal. If you want a robust deploy
process you probably don’t want to rely on PyPI being available and you
probably don’t want to install whatever happens to be the latest version
of a dependency. An example that installs only packages from a directory
on the filesystem of the remote server is below. Presumably the packages
in this directory have been created by some part of your build process or
copied there by a different step in your deploy process.

from fabric.api import task
from tunic.api import VirtualEnvInstallation

APP_BASE = '/srv/www/myapp'

LOCAL_PACKAGES = '/tmp/build/myapp'

@task
def install():
 installation = VirtualEnvInstallation(
 APP_BASE, ['myapp', 'gunicorn'], sources=[LOCAL_PACKAGES])
 installation.install('20141002111442-1.4.1')

Better still, you may want to run your own local build artifact repository.
In this case you’d simply include a URLs to index pages on the repository as
sources. An example is below.

from fabric.api import task
from tunic.api import VirtualEnvInstallation

APP_BASE = '/srv/www/myapp'

MY_PACKAGES = 'https://artifacts.example.com/myapp/1.4.1/'

THIRD_PARTY = 'https://artifacts.example.com/3rd-party/1.4.1/'

@task
def install():
 installation = VirtualEnvInstallation(
 APP_BASE, ['myapp', 'gunicorn'], sources=[MY_PACKAGES, THIRD_PARTY])
 installation.install('20141002111442-1.4.1')

Putting it all together

Alright, you’ve seen how each individual component can be used. How
does it all work together in a real deploy process? Take a look at the
example below!

from fabic.api import hide, task, warn
from tunic.api import (
 get_current_path,
 get_releases_path,
 get_release_id,
 ProjectSetup,
 ReleaseManager,
 VirtualEnvInstallation)

APP_BASE = '/srv/www/myapp'

DEPLOY_OWNER = 'root:www'

URLs to download artifacts from. Notice that we don't
include version numbers in these URls. We'll use the
version specified as part of the deploy to build source
URLs below specific to our version.
MY_PACKAGES = 'https://artifacts.example.com/myapp/'
THIRD_PARTY = 'https://artifacts.example.com/3rd-party/'

@task
def deploy(version):
 # Ensure that the correct directory structure exists on
 # the remote server and attempt to set the permissions of
 # it to something reasonable.
 setup = ProjectSetup(APP_BASE)
 setup.setup_directories()
 setup.set_permissions(DEPLOY_OWNER)

 # Come up with a new release ID and build source URLs that
 # include the particular version of our project that we want
 # to deploy.
 release_id = get_release_id(version)
 versioned_package_sources = MY_PACKAGES + version
 versioned_third_party_sources = THIRD_PARTY + version

 # Install the 'myapp' and 'gunicorn' packages into a new
 # virtualenv on a remote server using our own custom internal
 # artifact sources, ignoring the default Python Package Index.
 installation = VirtualEnvInstallation(
 APP_BASE, ['myapp', 'gunicorn'],
 sources=[versioned_package_sources,
 versioned_third_party_sources])

 with hide('stdout'):
 # Installation output can be quite verbose, so we suppress
 # it here.
 installation.install(release_id)

 # Use the release manager to mark the just installed release as
 # the 'current' release and remove all but the N newest releases.
 release_manager = ReleaseManager(APP_BASE)
 release_manager.set_current_release(release_id)
 release_manager.cleanup()

 # Ensure that permissions and ownership of the deploys are
 # correct after the new deploy before exiting.
 setup.set_permissions(DEPLOY_OWNER)

@task
def rollback():
 release_manager = ReleaseManager(APP_BASE)
 previous = release_manager.get_previous_release()

 # If the previous version couldn't be determined for some reason,
 # we can't rollback so we just given up now. This can happen when
 # there's only a single deployment, when the 'current' symlink
 # doesn't exist, when deploys aren't named correctly, etc.
 if previous is None:
 warn("No previous release, can't rollback!")
 return

 # Atomically swap the 'current' symlink to another release.
 release_manager.set_current_release(previous)

API

The public API of the Tunic library is maintained in the tunic.api
module. This is done for the purposes of clearly identifying which parts of
the library are public and which parts are internal.

Functionality in the tunic.core and tunic.install modules is
included in this module under a single, flat namespace. This allows a simple
and consistent way to interact with the library.

tunic.core

Core Tunic functionality.

	
class tunic.core.ProjectSetup(base, runner=None)

	Functionality for performing the initial creation of project
directories and making sure their permissions are reasonable on
a remote server.

Note that by default methods in this class rely on being able to
execute commands with the Fabric sudo function. This can be
disabled by passing the use_sudo=False flag to methods that
accept it.

See Design for more information about the expected directory
structure for deployments.

	
__init__(base, runner=None)

	Set the base path to the project that will be setup and an
optional FabRunner implementation to use for running
commands.

	Parameters

	
	base (str [https://docs.python.org/2/library/functions.html#str]) – Absolute path to the root of the code deploy

	runner (FabRunner) – Optional runner to use for executing
remote commands to set up the deploy.

	Raises

	ValueError – If the base directory isn’t specified

Changed in version 0.3.0: ValueError is now raised for empty base values.

	
set_permissions(owner, file_perms='u+rw, g+rw, o+r', dir_perms='u+rwx, g+rws, o+rx', use_sudo=True)

	Set the owner and permissions of the code deploy.

The owner will be set recursively for the entire code deploy.

The directory permissions will be set on only the base of the
code deploy and the releases directory. The file permissions
will be set recursively for the entire code deploy.

If not specified default values will be used for file or directory
permissions.

By default the Fabric sudo function will be used for changing
the owner and permissions of the code deploy. Optionally, you can
pass the use_sudo=False argument to skip trying to change the
owner of the code deploy and to use the run function to change
permissions.

This method performs between three and four network operations
depending on if use_sudo is false or true, respectively.

	Parameters

	
	owner (str [https://docs.python.org/2/library/functions.html#str]) – User and group in the form ‘owner:group’ to
set for the code deploy.

	file_perms (str [https://docs.python.org/2/library/functions.html#str]) – Permissions to set for all files in the
code deploy in the form ‘u+perms,g+perms,o+perms’. Default
is u+rw,g+rw,o+r.

	dir_perms (str [https://docs.python.org/2/library/functions.html#str]) – Permissions to set for the base and releases
directories in the form ‘u+perms,g+perms,o+perms’. Default
is u+rwx,g+rws,o+rx.

	use_sudo (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, use sudo() to change ownership
and permissions of the code deploy. If False try to change
permissions using the run() command, do not change ownership.

Changed in version 0.2.0: use_sudo=False will no longer attempt to change ownership of
the code deploy since this will just be a no-op or fail.

	
setup_directories(use_sudo=True)

	Create the minimal required directories for deploying multiple
releases of a project.

By default, creation of directories is done with the Fabric
sudo function but can optionally use the run function.

This method performs one network operation.

	Parameters

	use_sudo (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, use sudo() to create required
directories. If False try to create directories using the
run() command.

	
class tunic.core.ReleaseManager(base, runner=None)

	Functionality for manipulation of multiple releases of a project
deployed on a remote server.

Note that functionality for managing releases relies on them being
named with a timestamp based prefix that allows them to be naturally
sorted – such as with the get_release_id() function.

See Design for more information about the expected directory
structure for deployments.

	
__init__(base, runner=None)

	Set the base path to the project that we will be managing
releases of and an optional FabRunner implementation
to use for running commands.

	Parameters

	
	base (str [https://docs.python.org/2/library/functions.html#str]) – Absolute path to the root of the code deploy

	runner (FabRunner) – Optional runner to use for executing
remote commands to manage releases.

	Raises

	ValueError – If the base directory isn’t specified

Changed in version 0.3.0: ValueError is now raised for empty base values.

	
cleanup(keep=5)

	Remove all but the keep most recent releases.

If any of the candidates for deletion are pointed to by the
‘current’ symlink, they will not be deleted.

This method performs N + 2 network operations where N is the
number of old releases that are cleaned up.

	Parameters

	keep (int [https://docs.python.org/2/library/functions.html#int]) – Number of old releases to keep around

	
get_current_release()

	Get the release ID of the “current” deployment, None if
there is no current deployment.

This method performs one network operation.

	Returns

	Get the current release ID

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
get_previous_release()

	Get the release ID of the deployment immediately
before the “current” deployment, None if no previous
release could be determined.

This method performs two network operations.

	Returns

	The release ID of the release previous to the
“current” release.

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
get_releases()

	Get a list of all previous deployments, newest first.

This method performs one network operation.

	Returns

	Get an ordered list of all previous deployments

	Return type

	list

	
set_current_release(release_id)

	Change the ‘current’ symlink to point to the given
release ID.

The ‘current’ symlink will be updated in a way that ensures
the switch is done atomically.

This method performs two network operations.

	Parameters

	release_id (str [https://docs.python.org/2/library/functions.html#str]) – Release ID to mark as the current
release

	
tunic.core.get_current_path(base)

	Construct the path to the ‘current release’ symlink based on
the given project base path.

Note that this function does not ensure that the ‘current’ symlink
exists or points to a valid release, it only returns the full path
that it should be at based on the given project base directory.

See Design for more information about the expected directory
structure for deployments.

Changed in version 1.1.0: ValueError is now raised for empty base values.

	Parameters

	base (str [https://docs.python.org/2/library/functions.html#str]) – Project base directory (absolute path)

	Raises

	ValueError – If the base directory isn’t specified

	Returns

	Path to the ‘current’ symlink

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
tunic.core.get_release_id(version=None)

	Get a unique, time-based identifier for a deployment
that optionally, also includes some sort of version number
or release.

If a version is supplied, the release ID will be of the form
‘$timestamp-$version’. For example:

>>> get_release_id(version='1.4.1')
'20140214231159-1.4.1'

If the version is not supplied the release ID will be of the
form ‘$timestamp’. For example:

>>> get_release_id()
'20140214231159'

The timestamp component of this release ID will be generated
using the current time in UTC.

	Parameters

	version (str [https://docs.python.org/2/library/functions.html#str]) – Version to include in the release ID

	Returns

	Unique name for this particular deployment

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
tunic.core.get_releases_path(base)

	Construct the path to the directory that contains all releases
based on the given project base path.

Note that this function does not ensure that the releases directory
exists, it only returns the full path that it should be at based on
the given project base directory.

See Design for more information about the expected directory
structure for deployments.

Changed in version 1.1.0: ValueError is now raised for empty base values.

	Parameters

	base (str [https://docs.python.org/2/library/functions.html#str]) – Project base directory (absolute path)

	Raises

	ValueError – If the base directory isn’t specified

	Returns

	Path to the releases directory

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

tunic.install

Perform installations on remote machines.

	
class tunic.install.HttpArtifactInstallation(base, artifact_url, remote_name=None, retries=None, retry_delay=None, downloader=None, runner=None)

	Download and install a single file into a remote release directory.

This is useful for installing an application that is typically bundled as a
single file, e.g. Go binaries or Java JAR files, after downloading it from
some sort of artifact repository (such as a company-wide file server or artifact
store like Artifactory).

Downloads are performed over HTTP or HTTPS using a call to wget on the remote
machine by default. An alternate download method may be specified when creating a
new instance of this installer by providing an alternate implementation. The
download method is expected to conform to the following interface.

>>> def download(url, destination, retries=None, retry_delay=None):
... pass

Where url is a URL to the artifact that should be downloaded, destination
is the absolute path on the remote machine that the artifact should be downloaded
to, retries is the number of download attempts made after a failure, and
retry_delay is the number of seconds between retries. The function should return
the result of the Fabric command run(e.g. calling ‘curl’ or ‘wget’ with
fabric.api.run()).

If the remote release directory does not already exist, it will be
created during the install process.

See Design for more information about the expected directory
structure for deployments.

New in version 1.2.0.

	
__init__(base, artifact_url, remote_name=None, retries=None, retry_delay=None, downloader=None, runner=None)

	Set the project base directory on the remote server, URL to the artifact
that should be installed remotely, and optional file name to rename the artifact
to on the remote server.

	Parameters

	
	base (str [https://docs.python.org/2/library/functions.html#str]) – Absolute path to the root of the code deploy on
the remote server

	artifact_url (str [https://docs.python.org/2/library/functions.html#str]) – URL to the artifact to be downloaded and installed on
the remote server.

	remote_name (str [https://docs.python.org/2/library/functions.html#str]) – Optional file name for the artifact after it has
been installed on the remote server. For example, if the artifact should
always be called ‘application.jar’ on the remote server but might
be named differently (‘application-1.2.3.jar’) locally, you would
specify remote_name='application.jar' for this parameter.

	retries (int [https://docs.python.org/2/library/functions.html#int]) – Max number of times to retry downloads after a failure. Default
is to retry once after a failure.

	retry_delay (float [https://docs.python.org/2/library/functions.html#float]) – Number of seconds between download retries. Default is not
to wait between a failure and subsequent retry.

	downloader (callable [https://docs.python.org/2/library/functions.html#callable]) – Function to download the artifact with the
interface specified above. This is primarily for unit testing but
may be useful for users that need to be able to customize how the
artifact HTTP store is accessed.

	runner (FabRunner) – Optional runner to use for executing
remote and local commands to perform the installation.

	Raises

	ValueError – If the base directory or artifact URL isn’t
specified.

Changed in version 1.3.0: Added the retries and retry_delay parameters

	
install(release_id)

	Download and install an artifact into the remote release directory,
optionally with a different name the the artifact had.

If the directory for the given release ID does not exist on the remote
system, it will be created. The directory will be created according to
the standard Tunic directory structure (see Design).

	Parameters

	release_id (str [https://docs.python.org/2/library/functions.html#str]) – Timestamp-based identifier for this deployment.

	Returns

	The results of the download function being run. This return value
should be the result of running a command with Fabric. By default
this will be the result of running wget.

	
class tunic.install.LocalArtifactInstallation(base, local_file, remote_name=None, runner=None)

	Install a single local file into a remote release directory.

This can be useful for installing applications that are typically bundled
as a single file, e.g. Go binaries or Java JAR files, etc.. The artifact
can optionally be renamed as part of the installation process.

If the remote release directory does not already exist, it will be
created during the install process.

See Design for more information about the expected directory
structure for deployments.

New in version 1.1.0.

	
__init__(base, local_file, remote_name=None, runner=None)

	Set the project base directory on the remote server, local artifact (a
single file) that should be installed remotely, and optional file name
to rename the artifact to on the remote server.

	Parameters

	
	base (str [https://docs.python.org/2/library/functions.html#str]) – Absolute path to the root of the code deploy on
the remote server

	local_file (str [https://docs.python.org/2/library/functions.html#str]) – Relative or absolute path to the local artifact
to be installed on the remote server.

	remote_name (str [https://docs.python.org/2/library/functions.html#str]) – Optional file name for the artifact after it has
been installed on the remote server. For example, if the artifact should
always be called ‘application.jar’ on the remote server but might
be named differently (‘application-1.2.3.jar’) locally, you would
specify remote_name='application.jar' for this parameter.

	runner (FabRunner) – Optional runner to use for executing
remote and local commands to perform the installation.

	Raises

	ValueError – If the base directory or local file isn’t
specified.

	
install(release_id)

	Install the local artifact into the remote release directory, optionally
with a different name than the artifact had locally.

If the directory for the given release ID does not exist on the remote
system, it will be created. The directory will be created according to
the standard Tunic directory structure (see Design).

	Parameters

	
	release_id (str [https://docs.python.org/2/library/functions.html#str]) – Timestamp-based identifier for this deployment.

	retries (int [https://docs.python.org/2/library/functions.html#int]) – Max number of times to retry downloads after a failure

	retry_delay (float [https://docs.python.org/2/library/functions.html#float]) – Number of seconds between download retries

	Returns

	The results of the put command using Fabric. This return
value is an iterable of the paths of all files uploaded on the remote
server.

	
class tunic.install.LocalArtifactTransfer(local_path, remote_path, runner=None)

	Transfer a local artifact or directory of artifacts to a remote
server when entering a context manager and clean the transferred files
up on the remote server after leaving the block.

The value yielded when entering the context manager will be the
full path to the transferred file or directory on the remote
server. The value yielded will be made up of remote_path
combined with the right most component of local_path.

For example, if /tmp/myapp is a local directory that contains
several files, the example below will have the following effect.

>>> transfer = LocalArtifactTransfer('/tmp/myapp', '/tmp/artifacts')
>>> with transfer as remote_dest:
... pass

The directory myapp and its contents would be copied to /tmp/artifacts/myapp
on the remote machine within the scope of the context manager and
the value of remote_dest would be /tmp/artifacts/myapp. After
the context manager exits /tmp/artifacts/myapp on the remote machine
will be removed.

If /tmp/myartifact.zip is a single local file, the example below
will have the following effect.

>>> transfer = LocalArtifactTransfer('/tmp/myartifact.zip', '/tmp/artifacts')
>>> with transfer as remote_dest:
... pass

The file myartifact.zip would be copied to /tmp/artifacts/myartifact.zip
on the remote machine within the scope of the context manager and the
value of remote_dest would be /tmp/artifacts/myartifact.zip. After
the context manager exits /tmp/artifacts/myartifact.zip on the remote
machine will be removed.

The destination of the artifacts must be a directory that is writable
by the user running the deploy or that the user has permission to create.

The path yielded by the context will be removed when the context
manager exits. The local artifacts are not modified or removed on
exit.

New in version 0.4.0.

	
__enter__()

	Transfer the local artifacts to the appropriate place on
the remote server (ensuring the path exists first) and return
the remote destination path.

The remote destination path is the remote path joined with the
right-most component of the local path.

	Returns

	The path artifacts were transferred to on the remote
server

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
__exit__(exc_type, exc_val, exc_tb)

	Remove the directory containing the build artifacts on the
remote server.

	
__init__(local_path, remote_path, runner=None)

	Set the local directory that contains the artifacts and
the remote directory that they should be transferred to.

Both the local and remote paths should not contain trailing
slashes. Any trailing slashes will be removed.

	Parameters

	
	local_path (str [https://docs.python.org/2/library/functions.html#str]) – Directory path on the local machine that
contains the build artifacts to be transferred (without a
trailing slash) or the path on the local machine of a single
file.

	remote_path (str [https://docs.python.org/2/library/functions.html#str]) – Directory on the remote machine that
the build artifacts should be transferred to (without a
tailing slash).

	runner (FabRunner) – Optional runner to use for executing
commands to transfer artifacts.

Changed in version 0.5.0: Trailing slashes are now removed from local_path and
remote_path.

	
class tunic.install.StaticFileInstallation(base, local_path, runner=None)

	Install the contents of a local directory into a remote release
directory.

If the remote release directory does not already exist, it will be
created during the install process.

See Design for more information about the expected directory
structure for deployments.

New in version 0.5.0.

	
__init__(base, local_path, runner=None)

	Set the project base directory on the remote server and path to a
directory of static content to be installed into a remote release
directory.

	Parameters

	
	base (str [https://docs.python.org/2/library/functions.html#str]) – Absolute path to the root of the code deploy on
the remote server

	local_path (str [https://docs.python.org/2/library/functions.html#str]) – Absolute or relative path to a local directory
whose contents will be copied to a remote release directory.

	runner (FabRunner) – Optional runner to use for executing
remote and local commands to perform the installation.

	Raises

	ValueError – If the base directory or local path isn’t
specified.

	
install(release_id)

	Install the contents of the local directory into a release directory.

If the directory for the given release ID does not exist on the remote
system, it will be created. The directory will be created according to
the standard Tunic directory structure (see Design).

Note that the name and path of the local directory is irrelevant, only
the contents of the specified directory will be transferred to the remote
server. The contents will end up as children of the release directory on
the remote server.

	Parameters

	release_id (str [https://docs.python.org/2/library/functions.html#str]) – Timestamp-based identifier for this
deployment. If this ID corresponds to a directory that already
exists, contents of the local directory will be copied into
this directory.

	Returns

	The results of the put command using Fabric. This return
value is an iterable of the paths of all files uploaded on the remote
server.

	
class tunic.install.VirtualEnvInstallation(base, packages, sources=None, venv_path=None, runner=None)

	Install one or multiple packages into a remote Python virtual environment.

If the remote virtual environment does not already exist, it will be
created during the install process.

The installation can use the standard package index (PyPI) to download
dependencies, or it can use one or multiple alternative installation
sources (such as a local PyPI instance, Artifactory, the local file system,
etc.) and ignore the default index. These two modes are mutually exclusive.

See Design for more information about the expected directory
structure for deployments.

New in version 0.3.0.

	
__init__(base, packages, sources=None, venv_path=None, runner=None)

	Set the project base directory, packages to install, and optionally
alternative sources from which to download dependencies and path to the
virtualenv tool.

	Parameters

	
	base (str [https://docs.python.org/2/library/functions.html#str]) – Absolute path to the root of the code deploy on
the remote server

	packages (list) – A collection of package names to install into
a remote virtual environment.

	sources (list) – A collection of alternative sources from which
to install dependencies. These sources should be strings that are
either URLs or file paths. E.g. ‘http://pypi.example.com/simple/’
or ‘/tmp/build/mypackages’. Paths and URLs may be mixed in the same
list of sources.

	venv_path (str [https://docs.python.org/2/library/functions.html#str]) – Optional absolute path to the virtualenv tool on
the remote server. Required if the virtualenv tool is not in the
PATH on the remote server.

	runner (FabRunner) – Optional runner to use for executing
remote and local commands to perform the installation.

	Raises

	ValueError – If the base directory isn’t specified, if no packages
are given, packages is not an iterable collection of some kind, or if
sources is specified but not an iterable collection of some kind.

Changed in version 0.4.0: Allow the path to the virtualenv script on the remote server to be
specified.

	
install(release_id, upgrade=False)

	Install target packages into a virtual environment.

If the virtual environment for the given release ID does not
exist on the remote system, it will be created. The virtual
environment will be created according to the standard Tunic
directory structure (see Design).

If upgrade=True is passed, packages will be updated to the
most recent version if they are already installed in the virtual
environment.

	Parameters

	
	release_id (str [https://docs.python.org/2/library/functions.html#str]) – Timestamp-based identifier for this
deployment. If this ID corresponds to a virtual environment
that already exists, packages will be installed into this
environment.

	upgrade (bool [https://docs.python.org/2/library/functions.html#bool]) – Should packages be updated if they are
already installed in the virtual environment.

	Returns

	The results of running the installation command using
Fabric. Note that this return value is a decorated version
of a string that contains additional meta data about the
result of the command, in addition to the output generated.

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

Change Log

1.3.0 - 2017-08-31

	Add retry settings to tunic.install.HttpArtifactInstallation to allow more
robust deploys over unreliable networks. Fixes #8 [https://github.com/tshlabs/tunic/issues/8].

1.2.3 - 2017-06-20

	Bug - Fix bug where local permissions were not mirrored on the remote side when
using LocalArtifactInstallation.

1.2.2 - 2016-05-06

	Bug - Fix bug where newer version of cryptography module being pulled in than
supported by the version of Fabric we depended on. Fixed by updating to Fabric 1.11.1.
Fixes #5 [https://github.com/tshlabs/tunic/issues/5].

1.2.1 - 2016-02-25

	Bug - Fix bug when running with older versions of Fabric that didn’t define
a warn_only context manager. Fixes #4 [https://github.com/tshlabs/tunic/issues/4].

1.2.0 - 2016-02-25

	Add tunic.install.HttpArtifactInstallation for installation of a single
artifact downloaded from an HTTP or HTTPS URL. Useful when installation artifacts
are stored in some central file store or repository (like Artifactory).

	Minor documentation fixes.

1.1.0 - 2015-06-03

	Bug - Fix bug in tunic.core.get_current_path() and
tunic.core.get_releases_path() where input was not being checked to ensure
it was a valid base directory. ValueError will now be raised for invalid
(blank or None) values.

	Added fuzz testing to some parts of the Tunic unit test suite.

	Added tunic.install.LocalArtifactInstallation for installation of single
local artifact onto a remote server. Useful for Go binaries or Java JARs and WARs.

1.0.1 - 2015-04-04

	This is the first stable release of Tunic. From this point on, all breaking
changes will only be made in major version releases.

This release is almost functionally equivalent to the 0.5.0 release. There
are only minor changes to the build process and project documentation.

	Packaging fixes (use twine for uploads to PyPI, stop using the setup.py
register command).

	Assorted documentation updates.

0.5.0 - 2014-10-11

	Breaking change - Change behavior of tunic.install.LocalArtifactTransfer
to yield the final destination path on the remote server (a combination of the
remote path and right-most component of the local path). This new value will
be the only path removed on the remote server when the context manager exits.

	Breaking change - Trailing slashes on local_path and remote_path
constructor arguments to tunic.install.LocalArtifactTransfer are now removed
before being used.

	Add tunic.install.StaticFileInstallation class for installation of static
files into a release on a remote server.

0.4.0 - 2014-10-02

	Allow override of the virtualenv script location on the remote
server when using the tunic.install.VirtualEnvInstallation class.

	Add Usage section to the documentation that explains how to use
each part of the library at a higher level than just the API section.

	Add tunic.install.LocalArtifactTransfer class for transferring locally
built artifacts to a remote server and cleaning them up after deployment
has completed.

0.3.0 - 2014-09-28

	Test coverage improvements

	tunic.core.ReleaseManager and tunic.core.ProjectSetup
now throw ValueError for invalid base values in their
__init__ methods.

	Fix bug where we attempted to split command output by \n\r instead
of \r\n.

	Add tunic.install.VirtualEnvInstallation class for performing remote
virtualenv installations.

0.2.0 - 2014-09-26

	Add initial documentation for Tunic API

	Add design decision documentation for library

	Change behavior of tunic.core.ProjectSetup.set_permissions() to not
attempt to change the ownership of the code deploy unless it is using the
sudo function

0.1.0 - 2014-09-22

	Initial release

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tunic	

 	
 	
 tunic.core	

 	
 	
 tunic.install	

Index

 _
 | C
 | G
 | H
 | I
 | L
 | P
 | R
 | S
 | T
 | V

_

 	
 	__enter__() (tunic.install.LocalArtifactTransfer method)

 	__exit__() (tunic.install.LocalArtifactTransfer method)

 	__init__() (tunic.core.ProjectSetup method)

 	(tunic.core.ReleaseManager method)

 	(tunic.install.HttpArtifactInstallation method)

 	(tunic.install.LocalArtifactInstallation method)

 	(tunic.install.LocalArtifactTransfer method)

 	(tunic.install.StaticFileInstallation method)

 	(tunic.install.VirtualEnvInstallation method)

C

 	
 	cleanup() (tunic.core.ReleaseManager method)

G

 	
 	get_current_path() (in module tunic.core)

 	get_current_release() (tunic.core.ReleaseManager method)

 	get_previous_release() (tunic.core.ReleaseManager method)

 	
 	get_release_id() (in module tunic.core)

 	get_releases() (tunic.core.ReleaseManager method)

 	get_releases_path() (in module tunic.core)

H

 	
 	HttpArtifactInstallation (class in tunic.install)

I

 	
 	install() (tunic.install.HttpArtifactInstallation method)

 	(tunic.install.LocalArtifactInstallation method)

 	(tunic.install.StaticFileInstallation method)

 	(tunic.install.VirtualEnvInstallation method)

L

 	
 	LocalArtifactInstallation (class in tunic.install)

 	
 	LocalArtifactTransfer (class in tunic.install)

P

 	
 	ProjectSetup (class in tunic.core)

R

 	
 	ReleaseManager (class in tunic.core)

S

 	
 	set_current_release() (tunic.core.ReleaseManager method)

 	set_permissions() (tunic.core.ProjectSetup method)

 	
 	setup_directories() (tunic.core.ProjectSetup method)

 	StaticFileInstallation (class in tunic.install)

T

 	
 	tunic.core (module)

 	
 	tunic.install (module)

V

 	
 	VirtualEnvInstallation (class in tunic.install)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Tunic

 		
 Design

 		
 Purpose

 		
 Directory structure

 		
 Dependence on Fabric

 		
 Versions

 		
 Usage

 		
 get_releases_path and get_current_path

 		
 get_release_id

 		
 ReleaseManager

 		
 ProjectSetup

 		
 LocalArtifactTransfer

 		
 LocalArtifactInstallation

 		
 HttpArtifactInstallation

 		
 StaticFileInstallation

 		
 VirtualEnvInstallation

 		
 Putting it all together

 		
 API

 		
 tunic.core

 		
 tunic.install

 		
 Change Log

 		
 1.3.0 - 2017-08-31

 		
 1.2.3 - 2017-06-20

 		
 1.2.2 - 2016-05-06

 		
 1.2.1 - 2016-02-25

 		
 1.2.0 - 2016-02-25

 		
 1.1.0 - 2015-06-03

 		
 1.0.1 - 2015-04-04

 		
 0.5.0 - 2014-10-11

 		
 0.4.0 - 2014-10-02

 		
 0.3.0 - 2014-09-28

 		
 0.2.0 - 2014-09-26

 		
 0.1.0 - 2014-09-22

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/comment-bright.png

