tsuru Documentation
Release 0.10.3

timeredbull

March 20, 2015

Contents

Understanding 3
L1 OVerVIEW . . . o o o e e e e e e e e e e e e e e e e 3
L2 CONCEPLS & v v o v e 4
1.3 Architecture e e e e e 5
Installing 7
2.1 Gandalf 7
2.2 APIServer e e e 8
2.3 Hipache Router e e e e e 11
24 Adding Nodes e 11
Managing 13
3.1 Installing platforms L. e 13
32 Creatingaplatform e e e e e e 13
3.3 Backinguptsurudatabase e e e e e e e e e e e 14
3.4 Segregate Scheduler e e e e e 15
3.5 Upgrading Docker L e e e e e e 16
3.6 Managing Git repositories and SSHkeys oL 17
Using 19
4.1 Installing tsuruclients o L. e e e e e e e 19
4.2 Building your app in tSUIU oL e e e e e e e e e e e e e e e e e e 20
4.3 Deploying Python applications in tsurt e 21
4.4 Deploying Ruby applications in tSUIL v v v v i e e e e e e e e e e e e e e 30
4.5 Deploying Go applicationS in tSUIL v v v v it e e e e e e e e e e e e e e 37
4.6 Deploying Java applications On tSUIU v v v v v vt e e e e e e e e e e e e e e e e 40
47 Deploying PHP applications in tSurtt oo i e e e e e e e e 44
4.8 UsingBuildpacks e 50
4.9 Recovering an applicationl e e e e e 51
410 LoggIng v v o e e e e e e e e e e e e e 52
411 Procfile e e e e e e e 53
412 tsuruwyaml ... e e 54
413 UnitStateS v o i i e 55
4.14 Guidetocreate tsurucli plugins L. 56
4.15 Application Deployment L e e e e e e e e e e e e 56
Services 59
5.0 Cran@ usage v v v v v e e e e e e e e e e e e e e 59

10

5.2 APIworkflow e e e e e e
5.3 Building your ServiCe e e e e e e e e e e e e e e e e e
5.4 TSURU_SERVICES environment variable
Advanced topics

6.1 MELICS . . v o o e e e e e e e e e e e e e e e e e e
Contributing

7.1 Development enVIrONMENT« v v v v v v e v e e e e e e e e e e e e e e e e e e e
7.2 Runnin@ the tests ot i e e e e e e e e e e e e e e e
7.3 Writing doCS v v o e e e e e e e e e e e e e e e
7.4 Building docs e e e e e e e e
7.5 CommUNILYo vt e e e e e e e e e e e e
7.6 Release Process e e e e e e
Reference

8.1 tsuruclientusage i e e e e e e e e e e e
8.2 tsuru-admin USAZE . .« . v v v v e
83 Cran@ USAZE . . « . v v v vt e
8.4 tsuru.confreference L e e
8.5 APIreference L e e e e e e e e e e e e
Frequently Asked Questions

9.1 How do environment variables work? oL oL L
9.2 Howdoes the quota system work? oL
9.3 Howdoes routing work? L. e
9.4 How are Git repositories managed? e e e e e e e e e e
9.5 Client installation fails with “undefined: bufio.Scanner”. What does it mean?
Release notes

10.1 tsr(tsuruserver da€mon)t e e e e e e e e e e e e e e
TO2 tSUTU . . . ot e e e e e e e e e e e e e e e e e
103 tsuru-admin L e e e e e e e e e e e e e
104 crane e e e e e e e e e e e e e e e

71
71

73
73
73
73
73
74
74

77
77
77
77
77
90

105
105
105
105
106
106

tsuru Documentation, Release 0.10.3

tsuru is an open source PaaS that makes it easy and fast to deploy and manage applications on your own servers.

To get started, first read understanding tsuru.

Contents 1

tsuru Documentation, Release 0.10.3

2 Contents

CHAPTER 1

Understanding

1.1 Overview

tsuru is an extensible and open source Platform as a Service (PaaS) that makes application deployments faster and
easier. tsuru is an open source polyglot cloud application platform (PaaS). With tsuru, you don’t need to think about
servers at all. As an application developer, you can:

* Write apps in the programming language of your choice,

* Back apps with add-on resources such as SQL and NoSQL databases, including memcached, redis, and many
others.

* Manage apps using the t suru command-line tool

* Deploy apps using the Git revision control system

1.1.1 Why tsuru?

Fast and easy and continuous deployment

Deploying an app is simple and easy. No special tools needed, just a plain git push. The entire process is very simple.
tsuru will also take care of all the applications dependencies in the deployment process.

Easily create testing, staging, and production versions of your app and deploy to them instantly.

Scaling

Scaling applications is completely painless. Just add a unit and tsuru will take care of everything else.

Reliable

tsuru has a set of tools to make sure that the applications will be always available.

Open source

tsuru is free, open source software released under the BSD 3-Clause license.

tsuru Documentation, Release 0.10.3

1.2 Concepts

1.2.1 Docker

Docker is an open source project to pack, ship, and run any application as a lightweight, portable, self-sufficient
container. When you deploy an app with git push or tsuru app-deploy, tsuru builds a Docker image and
then distributes it as units (Docker containers) across your cluster.

1.2.2 Clusters

A cluster is a named group of nodes. tsuru API has a scheduler algorithm that distributes applications intelligently
across a cluster of nodes.

1.2.3 Nodes

A node is a physical or virtual machine with Docker installed.

1.2.4 Applications

An application consists of:
* the program’s source code - e.g.: Python, Ruby, Go, PHP, JavaScript, Java, etc.
* an operating system dependencies list — in a file called requirements.apt
* alanguage-level dependencies list —e.g.: requirements.txt, Gemfile, etc.
* instructions on how to run the program — in a file called Procfile

An application has a name, a unique address, a platform, associated development teams, a repository, and a set of
units.

1.2.5 Units

A unit is a container. A unit has everything an application needs to run; the fetched operational system and language
level dependencies, the application’s source code, the language runtime, and the application’s processes defined in the
Procfile.

1.2.6 Platforms

A platform is a well-defined pack with installed dependencies for a language or framework that a group of applications
will need. A platform might be a container template (docker image).

For instance, tsuru has a container image for python applications, with virtualenv installed and other required things
needed for tsuru to deploy applications on top of that platform. Platforms are easily extendable and managed by tsuru.
Every application runs on top of a platform.

4 Chapter 1. Understanding

https://www.docker.com/

tsuru Documentation, Release 0.10.3

1.2.7 Services

A service is a well-defined API that tsuru communicates with to provide extra functionality for applications. Examples
of services are MySQL, Redis, MongoDB, etc. tsuru has built-in services, but it is easy to create and add new services
to tsuru. Services aren’t managed by tsuru, but by their creators.

1.3 Architecture

1.3.1 API

The API component (also called #s7) is a RESTful API server written with Go. The API is responsible for the deploy
workflow and the lifecycle of applications.

Command-line clients interact with this component.

1.3.2 Database

The database component is a MongoDB server.

1.3.3 Queue/Cache

The queue and cache component uses Redis.

1.3.4 Gandalf

Gandalf is a REST API to manage git repositories and users and provides access to them over SSH.

1.3.5 Registry

The registry component hosts Docker images.

1.3.6 Router

The router component routes traffic to application units (Docker containers).

1.3. Architecture 5

tsuru Documentation, Release 0.10.3

6 Chapter 1. Understanding

CHAPTER 2

Installing

If you want to try tsuru with a minimum amount of effort, we recommend you to use tsuru Now (or tsuru-bootstrap,
which runs tsuru Now in a Vagrant VM).

tsuru Now will install tsuru API, tsuru Client, tsuru Admin, and all of their dependencies on a single machine. It will
also include a docker node which will run deployed applications.

This gives you a very nice environment for trying out tsuru, but this is not the recommended approach for a production
environment. This document will describe how to install each component separately.

We assume that tsuru is being installed on an Ubuntu Server 14.04 LTS 64-bit machine. This is currently the supported
environment for tsuru, you may try running it on other environments, but there’s a chance it won’t be a smooth ride.

2.1 Gandalf

tsuru optionally uses gandalf to manage Git repositories used to push applications to. It’s also responsible for setting
hooks in these repositories which will notify the tsuru API when a new deploy is made. For more details check Gandalf
Documentation

This document will focus on how to setup a Gandalf installation with the necessary hooks to notify the tsuru APIL

2.1.1 Adding repositories

Let’s start adding the repositories for tsuru which contain the Gandalf package.

sudo apt—-get update

sudo apt-get install curl python-software-properties
sudo apt-add-repository ppa:tsuru/ppa -y

sudo apt—-get update

2.1.2 Installing

sudo apt-get install gandalf-server

A deploy is executed in the git push. In order to get it working, you will need to add a pre-receive hook. tsuru
comes with three pre-receive hooks, all of them need further configuration:

¢ s3cmd: uses Amazon S3 to store and server archives

e archive-server: uses tsuru’s archive-server to store and serve archives

https://github.com/tsuru/now
https://github.com/tsuru/tsuru-bootstrap
http://gandalf.readthedocs.org/
http://gandalf.readthedocs.org/
https://s3.amazonaws.com
https://github.com/tsuru/archive-server

tsuru Documentation, Release 0.10.3

* swift: uses Swift to store and server archives (compatible with Rackspace Cloud Files)

In this documentation, we will use archive-server, but you can use anything that can store a git archive and serve it via
HTTP or FTP. You can install archive- server via apt-get too:

sudo apt—-get install archive-server
Then you will need to configure Gandalf, install the pre-receive hook, set the proper environment variables and start

Gandalf and the archive-server, please note that you should replace the value <your-machine-addr> with your
machine public address:

sudo mkdir -p /home/git/bare-template/hooks

sudo curl https://raw.githubusercontent.com/tsuru/tsuru/master/misc/git-hooks/pre-receive.archive-se:
sudo chmod +x /home/git/bare-template/hooks/pre-receive

sudo chown -R git:git /home/git/bare-template

cat | sudo tee -a /home/git/.bash_profile <<EOF

export ARCHIVE_SERVER_READ=http://<your-machine-addr>:3232 ARCHIVE_SERVER_WRITE=http://127.0.0.1:313:
EOF

In the /etc/gandalf.conf file, remove the comment from the line “template: /home/git/bare-template”, so it
looks like that:

git:
bare:

location: /var/lib/gandalf/repositories
template: /home/git/bare-template

Then start gandalf and archive-server:

sudo start gandalf-server
sudo start archive-server

2.1.3 Configuring tsuru to use Gandalf

In order to use Gandalf, you need to change tsuru.conf accordingly, it’s a two steps setup:
1. Define “repo-manager” to use “gandalf™;
2. Define “git:api-server” to point to the API of the Gandalf server (example: “http://localhost:80007);

3. Define “git:unit-repo” to point to the directory where code will live in the application unit (example:
“/home/application/current”).

For more details, please refer to the configuration page.

2.1.4 Token for authentication with tsuru API

There is one last step in configuring Gandalf. It involves generating an access token so that the hook we created can
access the tsuru API. This must be done after installing the tsuru API and it’s detailed in the next installation step.

2.2 API Server

2.2.1 Dependencies

tsuru API depends on a Mongodb server, Redis server, Hipache router, and Gandalf server. Instructions for installing
Mongodb and Redis are outside the scope of this documentation, but it’s pretty straight-forward following their docs.

8 Chapter 2. Installing

http://swift.openstack.org
http://www.rackspace.com/cloud/files/
http://docs.mongodb.org/
http://redis.io/

tsuru Documentation, Release 0.10.3

Installing Gandalf and installing Hipache were described in other sessions.

2.2.2 Adding repositories

Let’s start adding the repositories for tsuru.

sudo apt-get update

sudo apt-get install python-software-properties
sudo apt-add-repository ppa:tsuru/ppa -y

sudo apt-get update

2.2.3 Installing

sudo apt-get install tsuru-server -qqy

Now you need to customize the configuration in the /etc/tsuru/tsuru.conf. A description of possi-
ble configuration values can be found in the configuration reference. A basic possible configuration is de-
scribed below, please note that you should replace the values your-mongodb-server, your-redis—-server,
your—gandalf-server and your—-hipache-server

listen: "0.0.0.0:8080"
debug: true
host: http://<machine-public-addr>:8080 # This port must be the same as in the "listen" conf
admin-team: admin
auth:
user-registration: true
scheme: native
database:
url: <your-mongodb-server>:27017
name: tsurudb
queue: redis
redis—queue:
host: <your-redis-server>
port: 6379
git:
unit-repo: /home/application/current
api-server: http://<your-gandalf-server>:8000
provisioner: docker
docker:
segregate: false
router: hipache
collection: docker_containers
repository-namespace: tsuru
deploy-cmd: /var/lib/tsuru/deploy
cluster:
storage: mongodb
mongo-url: <your-mongodb-server>:27017
mongo—-database: cluster
run—cmd:
bin: /var/lib/tsuru/start
port: "8888"
ssh:
add-key-cmd: /var/lib/tsuru/add-key
user: ubuntu
servers:
- http://<your-docker-server>:2375

2.2. API Server 9

tsuru Documentation, Release 0.10.3

hipache:
domain: <your-hipache-server—-ip>.xip.io
redis—server: <your-redis—-server-with-port>

In particular, take note that you must set auth.user-registrationto true:

auth:
user-registration: true
scheme: native

Otherwise, tsuru will fail to create an admin user in the next section.
Now you only need to start your tsuru API server:

sudo sed -1 -e ’s/=no/=yes/’ /etc/default/tsuru-server
sudo start tsuru-server-api

2.2.4 Creating admin user

The creation of an admin user is necessary for the next steps, so we’re going to describe how to install the
tsuru-admin and create a new user belonging to the admin team configured in your tsuru.conf file. For a
description of each command shown below please refer to the client documentation.

For a description

sudo apt-get install tsuru-admin

tsuru-admin target—-add default http://<your-tsuru-api-addr>:8080
tsuru-admin target-set default

S tsuru-admin user-create myemail@somewhere.com

type a password and confirmation

vy U

$ tsuru-admin login myemail@somewhere.com
type the chosen password

S tsuru-admin team-create admin

And that’s it, you now have registered a user in your tsuru API server ready to run admin commands.

2.2.5 Generating token for Gandalf authentication

Assuming you have already configured your Gandalf server in the previous installation step, we need to export two
extra environment variables to the git user, which will run our deploy hooks, the URL to our API server and a generated
token.

First step is to generate a token in the machine we’ve just installed the API server:

&

> tsr token
fed1000d6c05019f6550020dbc3c572996e2c044

Now you have to go back to the machine you installed Gandalf, and run this:

cat | sudo tee -a /home/git/.bash_profile <<EOF
export TSURU_HOST=http://<your-tsuru-api-addr>:8080
export TSURU_TOKEN=fedl1000d6c05019f6550b20dbc3c572996e2c044
EOF

10 Chapter 2. Installing

tsuru Documentation, Release 0.10.3

2.3 Hipache Router

Hipache is a distributed HTTP and websocket proxy.

tsuru uses Hipache to route the requests to the containers. Routing information is stored by tsuru in the configured
Redis server, Hipache will read this configuration directly from Redis.

2.3.1 Adding repositories

Let’s start adding the repositories for tsuru which contain the Hipache package.

sudo apt—-get update

sudo apt-get install python-software-properties
sudo apt-add-repository ppa:tsuru/ppa -y

sudo apt-get update

2.3.2 Installing

In order to install Hipache, just use apt-get:

sudo apt—-get install node-hipache

2.3.3 Configuring
In your /etc/hipache.conf file you must set the redisHost and redisPort configuration values. After
this, you only need to start hipache with:

sudo start hipache

2.4 Adding Nodes

Nodes are a physical or virtual machines with a Docker installation.

Nodes can be either created manually, by provisioning a machine and installing Docker on it, in which case they have
to be registered in tsuru. Or they can be automatically managed by tsuru, which will handle machine provisioning and
Docker installation using your /aaS configuration.

The automatically managed option is preferred starting with tsuru 0.6.0. There are advantages like automatically
healing and scaling of Nodes which will be implemented in the future.

The sections below describe how to add managed nodes and manually created nodes respectively.

2.4.1 Managed nodes

First step is configuring your IaaS provider in your tsuru.conf file. Please see the details in /aaS$ configuration

Assuming you’re using EC2, this will be something like:

2.3. Hipache Router 11

https://github.com/hipache/hipache/

tsuru Documentation, Release 0.10.3

iaas:
default: ec2
node—-protocol: http
node-port: 2375
ec2:
key—id: XXXXXXXXXXX
secret-key: yyyyyyyyyyyyy

After you have everything configured, adding a new docker done is done by calling docker-node-add in tsuru-admin
command. This command will receive a map of key=value params which are TaaS dependent. A list of possible key
params can be seen calling:

5 tsuru-admin docker-node-add iaas=ec2
EC2 IaaS required params:
image=<image id> Image AMI ID

type=<instance type> Your template uuid

Optional params:

region=<region> Chosen region, defaults to us—-east-1
securityGroup=<group> Chosen security group
keyName=<key name> Key name for machine

Every key=value pair will be added as a metatada to the Node and you can send After registering your node, you can
list it calling tsuru-admin docker-node-list

S tsuru-admin docker-node-add iaas=ec2 image=ami-dc5387b4 region=us-east-1 type=ml.small securityGro
Node successfully registered.
tsuru-admin docker-node-list

o e +
| Address | TaaS ID | Status |
e o o +
| http://ec2-xxXxXXXXXXXXXX.compute—-1.amazonaws.com:2375 | 1-xxXxXxXxXxXxx | waiting |
| \ | | é
| \ | | keyName=my-key
| | | | region=us—east-1
| | | | securityGroup=my-se
| | | | type=ml.small
e o e o

2.4.2 Manually created nodes

To add a previously provisioned nodes you call the tsuru-admin docker-node-add with the ——register flag and
setting the address key with the URL of the Docker API in the remote node.

The docker API must be responding in the referenced address. To instructions about how to install docker on your
node, please refer to Docker documentation

$ tsuru-admin docker-node-add --register address=http://node.address.com:2375

12 Chapter 2. Installing

http://tsuru-admin.readthedocs.org/en/latest/#docker-node-add
http://tsuru-admin.readthedocs.org/en/latest/#docker-node-list
http://tsuru-admin.readthedocs.org/en/latest/#docker-node-add
https://docs.docker.com/

CHAPTER 3

Managing

3.1 Installing platforms

A platform is a well defined pack with installed dependencies for a language or framework that a group of applications
will need.

Platforms are defined as Dockerfiles and tsuru already have a number of supported ones listed in
https://github.com/tsuru/basebuilder

These platforms don’t come pre-installed in tsuru, you have to add them to your server using the platform-add com-
mand in tsuru-admin.

tsuru-admin platform-add platform-name --dockerfile dockerfile-url

For example, to install the Python platform from tsuru’s basebuilder repository you simply have to call:

tsuru-admin platform-add python --dockerfile https://raw.githubusercontent.com/tsuru/basebuilder/mas

Attention: If you have more than one docker node, you may use docker-registry to add and distribute your
platforms among your docker nodes.

You can use the official docker registry or install it by yourself. To do this you should first have to install docker-
registry in any server you have. It should have a public ip to communicate with your docker nodes.

Then you should add registry address to tsuru.conf.

3.2 Creating a platform

3.2.1 Overview
If you need a platform that’s not already available in our platforms repository it’s pretty easy to create a new one based
on a existing one.
To tsuru to be able to use your platform you only need to have the following scripts available on /var/lib/tsuru:
e /var/lib/tsuru/deploy

¢ /var/lib/tsuru/start

13

https://github.com/tsuru/basebuilder
http://tsuru-admin.readthedocs.org/en/latest/#platform-add
https://github.com/docker/docker-registry
https://registry.hub.docker.com/
https://github.com/docker/docker-registry
https://github.com/docker/docker-registry
http://docs.tsuru.io/en/latest/reference/config.html#docker-registry
https://github.com/tsuru/basebuilder

tsuru Documentation, Release 0.10.3

3.2.2 Using docker

Now we will create a whole new platform with docker, circus and tsuru basebuilder. tsuru basebuilder provides to us
some useful scripts like install, setup and start.

So, using the base platform provided by tsuru we can write a Dockerfile like that:

from ubuntu:14.04

run apt-get install wget -y —--force-yes

run wget http://github.com/tsuru/basebuilder/tarball/master -0 basebuilder.tar.gz —-no-check-certific
run mkdir /var/lib/tsuru

run tar -xvf basebuilder.tar.gz -C /var/lib/tsuru --strip 1

run cp /var/lib/tsuru/base/start /var/lib/tsuru

run cp /home/your-user/deploy /var/lib/tsuru

run /var/lib/tsuru/base/install

run /var/lib/tsuru/base/setup

3.2.3 Adding your platform to tsuru

If you create a platform using docker, you can use the tsuru-admin cmd to add that.

S tsuru-admin platform-add your-platform—-name --dockerfile http://url-to-dockerfile

3.3 Backing up tsuru database

In the tsuru repository, you will find two useful scripts in the directory misc/mongodb: backup.bash and
healer.bash. In this page you will learn the purpose of these scripts and how to use them.

3.3.1 Dependencies
The script backup .bash uses S3 to store archives, and healer.bash downloads archives from S3 buckets. In
order to communicate with S3 API, both scripts use s3cmd.

So, before running those scripts, make sure you have installed s3cmd. You can install it using your preferred package
manager. For more details, refer to its download documentation.

After installing s3cmd, you will need to configure it, by running the command:

&

5 s3cmd —--configure

3.3.2 Saving data

The script backup . bash runs mongodump, creates a tar archive and send the archive to S3. Here is how you use
it:

$./misc/mongodb/backup.bash s3://mybucket localhost database

The first parameter is the S3 bucket. The second parameter is the database host. You can provide just the hostname,
or the host:port (for example, 127.0.0.1:27018). The third parameter is the name of the database.

14 Chapter 3. Managing

http://www.docker.com/
https://circus.readthedocs.org/en/
http://s3tools.org/s3cmd
http://s3tools.org/download

tsuru Documentation, Release 0.10.3

3.3.3 Automatically restoring on data loss

The other script in the misc/mongodb directory is healer.bash. This script checks a list of collections and if
any of them is gone, download the last three backup archives and fix all gone collections.

This is how you should use it:

&

./misc/mongodb/healer.bash s3://mybucket localhost mongodb repositories users

The first three parameters mean the same as in the backup script. From the fourth parameter onwards, you should list
the collections. In the example above, we provided two collections: “repositories” and “users”.

3.4 Segregate Scheduler

3.4.1 Overview

tsuru uses schedulers to chooses which node an unit should be deployed. There are two schedulers: round robin and
segregate scheduler.

The default one is round robin, this page describes what the segregate scheduler does and how to enable it.

3.4.2 How it works

Segregate scheduler is a scheduler that segregates the units between nodes by team.

First, what you need to do is to define a relation between a pool and teams. After that you need to register nodes with
the pool metadata information, indicating to which pool the node belongs.

When deploying an application, the scheduler will choose among the nodes with the pool metadata information asso-
ciated to the team owning the application being deployed.

Configuration and setup

To use the segregate scheduler you need to enable the segregate mode in t suru.conf:

docker:
segregate: true

Adding a pool

Using tsuru-admin you create a pool:

S tsuru-admin docker-pool-add pooll

Adding teams to a pool

You can add one or more teams at once.

$ tsuru-admin docker-pool-teams-add pooll teaml team?2

S tsuru-admin docker-pool-teams-add pool2 team3

3.4. Segregate Scheduler 15

tsuru Documentation, Release 0.10.3

Listing a pool

To list pools you do:

S tsuru-admin docker-pool-list
Fo———— Fom +

| Pools | Teams |
e o +

| pooll | teaml team2

| pool2 | team3 |
e o +

Registering a node with pool metadata

You can use the t suru-admin with docker—node-add to register or create nodes with the pool metadata:

S tsuru-admin docker—-node-add --register address=http://localhost:2375 pool=pooll

Removing a pool

To remove a pool you do:

S tsuru-admin docker-pool-remove pooll

Removing teams from a pool

You can remove one or more teams at once.
$ tsuru-admin docker-pool-teams-remove pooll teaml

&

5 tsuru-admin docker-pool-teams-remove pooll teaml team2 team3

3.5 Upgrading Docker

A node is a physical or virtual machine with Docker installed. The nodes should contains one or more units (contain-
ers).

Sometimes will be necessary to upgrade the Docker. It is recommended that you use the latest Docker version.
The simple way to do it is just upgrade Docker. You can do it following the official guide.

This operation can raise a downtime in the units deployed in the nodes.

3.5.1 How to upgrade with no downtime

Note: You should use this guide to upgrade the entire host (a new version of the Linux distro, for instance) or Docker
itself.

A way to upgrade with no downtime is to move all containers from the node that you want to upgrade to another node,
upgrade the node and then move the containers back.

You can do it using the tsuru-admin containers-move command:

16 Chapter 3. Managing

https://docs.docker.com/installation/binaries/#upgrades
http://tsuru-admin.readthedocs.org/en/latest/#containers-move

tsuru Documentation, Release 0.10.3

S tsuru-admin containers-move <from host> <to host>

3.6 Managing Git repositories and SSH keys

There are two deployment flavors in tsuru: using git push and tsuru app-deploy. The former is optional,
while the latter will always be available. This document focus on the usage of the Git deployment flavor.

In order to allow tsuru users to use git push for deployments, tsuru administrators need to install and configure
Gandalf .

Gandalf will store and manage all Git repositories and SSH keys, as well as users. When tsuru is configured to use
Gandalf, it will interact with the Gandalf API in the following actions:

* When creating a new user in tsuru, a corresponding user will be created in Gandalf;
* When removing a user from tsuru, the corresponding user will be removed from Gandalf;

e When creating an app in tsuru, a new repository for the app will be created in Gandalf. All users in the team
that owns the app will be authorized to access this repository;

* When removing an app, the corresponding repository will be removed from Gandalf;

* When adding a user to a team in tsuru, the corresponding user in Gandalf will gain access to all repositories
matching the applications that the team has access to;

* When removing a user from a team in tsuru, the corresponding user in Gandalf will lose access to the repositories
that he/she has access to because of the team he/she is leaving;

* When adding a team to an application in tsuru, all users from the team will gain access to the repository matching
the app;

¢ When removing a team from an application in tsuru, all users from the team will lose access to the repository,
unless they’re in another team that also have access to the application.

When user runs a git push, the communication happens directly between the user host and the Gandalf host, and
Gandalf will notify tsuru the new deployment using a git hook.

3.6.1 Managing SSH public keys
In order to be able to send git pushes to the Git server, users need to have their key registered in Gandalf. When
Gandalf is enabled, tsuru will enable the usage of three commands for SSH public keys management:

e tsuru key-add

* tsuru key-remove

e tsuru key-list

Each of these commands have a corresponding API endpoint, so other clients of tsuru can also manage keys through
the API.

tsuru will not store any public key data, all the data related to SSH keys is handled by Gandalf alone, and when Gandalf
is not enabled, those key commands will not work.

3.6.2 Adding Gandalf to an already existing tsuru cluster

In the case of an old tsuru cluster running without Gandalf, users and applications registered in tsuru won’t be available
in the newly created Gandalf server, or both servers may be out-of-sync.

3.6. Managing Git repositories and SSH keys 17

tsuru Documentation, Release 0.10.3

When Gandalf is enabled, administrators of the cloud can run the t sr gandalf-sync command.

Warning: In the previous version of tsr, the daemon handled the migration automatically during start-up, but it
made the start-up process slower, and it didn’t get any better after running for the first time, so now there’s the t sr
gandalf-sync command.

18 Chapter 3. Managing

CHAPTER 4

4.1 Installing tsuru clients

tsuru contains three clients: t suru, t suru—admin and crane.

e tsuru is the command line utility used by application developers, that will allow users to create, list, bind and
manage apps. For more details, check tsuru usage;

* crane is used by service administrators.
¢ tsuru-admin is used by cloud administrators. Whoever is allowed to use it has gotten super powers :-)

This document describes how you can install those clients, using pre-compiled binaries, packages or building them
from source.

* Downloading binaries (Mac OS X and Linux)
* Using homebrew (Mac OS X only)

* Using the PPA (Ubuntu only)

* Using AUR (ArchLinux only)

¢ Build from source (Linux and Mac OS X)

4.1.1 Downloading binaries (Mac OS X and Linux)
We provide pre-built binaries for OS X and Linux, only for the amd64 architecture. You can download these binaries
directly from the releases page of the project:

* crane: https://github.com/tsuru/crane/releases

e tsuru: https://github.com/tsuru/tsuru-client/releases

e tsuru-admin: https://github.com/tsuru/tsuru-admin/releases

4.1.2 Using homebrew (Mac OS X only)

If you use Mac OS X and homebrew, you may use a custom tap to install tsuru, crane and t suru—-admin. First
you need to add the tap:

S brew tap tsuru/homebrew-tsuru

Now you can install tsuru, tsuru-admin and crane:

19

https://github.com/tsuru/crane/releases
https://github.com/tsuru/tsuru-client/releases
https://github.com/tsuru/tsuru-admin/releases
http://mxcl.github.com/homebrew/

tsuru Documentation, Release 0.10.3

S brew install tsuru
S brew install tsuru-admin

&

S brew install crane

Whenever a new version of any of tsuru’s clients is out, you can just run:

$ brew update
S brew upgrade <formula> # tsuru/tsuru-admin/crane

For more details on taps, check homebrew documentation.

NOTE: tsuru requires Go 1.2 or higher. Make sure you have the last version of Go installed in your system.

4.1.3 Using the PPA (Ubuntu only)
Ubuntu users can install tsuru clients using apt —get and the tsuru PPA. You’ll need to add the PPA repository locally
and run an apt—-get update:

S sudo apt-add-repository ppa:tsuru/ppa
$ sudo apt-get update

Now you can install tsuru’s clients:

&

S sudo apt-get install tsuru-client
S sudo apt-get install crane
5 sudo apt-get install tsuru-admin

4.1.4 Using AUR (ArchLinux only)

Archlinux users can build and install tsuru client from AUR repository, Is needed to have installed yaourt program.
You can run:

S yaourt -S tsuru

4.1.5 Build from source (Linux and Mac OS X)

Note: If you're feeling adventurous, you can try it on other systems, like FreeBSD, OpenBSD or even Windows.
Please let us know about your progress!

tsuru’s source is written in Go, so before installing tsuru from source, please make sure you have installed and config-
ured Go.

With Go installed and configured, you can use go get to install any of tsuru’s clients:

S go get github.com/tsuru/tsuru-client/tsuru
S go get github.com/tsuru/tsuru-admin
S go get github.com/tsuru/crane

4.2 Building your app in tsuru

tsuru is an open source polyglot cloud application platform. With tsuru, you don’t need to think about servers at all.
You:

20 Chapter 4. Using

https://github.com/Homebrew/homebrew/wiki/brew-tap
https://launchpad.net/~tsuru/+archive/ppa
http://archlinux.fr/yaourt-en
https://github.com/tsuru/tsuru
http://golang.org
http://golang.org/doc/install
http://golang.org/doc/install

tsuru Documentation, Release 0.10.3

» Write apps in the programming language of your choice

¢ Back it with add-on resources (tsuru calls these services) such as SQL and NoSQL databases, memcached, redis,
and many others.

* Manage your app using the t suru command-line tool
* Deploy code using the Git revision control system

tsuru takes care of where in your cluster to run your apps and the services they use. You can focus on making your
apps awesome.

4.2.1 Install the tsuru client

Install the tsuru client for your development platform.

The tsuru client is a command-line tool for creating and managing apps. Check out the CLI usage guide to learn
more.

4.2.2 Sign up

To create an account, you use the user-create command:

S tsuru user-create youremail@domain.com

user-create will ask for your password twice.

4.2.3 Login

To login in tsuru, you use the login command, you will be asked for your password:

S tsuru login youremail@domain.com

4.2.4 Deploy an application
Choose from the following getting started tutorials to learn how to deploy your first application using a supported
language or framework:

» Deploying Python applications in tsuru

* Deploying Ruby/Rails applications in tsuru

* Deploying PHP applications in tsuru

* Deploying go applications in tsuru

4.3 Deploying Python applications in tsuru

4.3.1 Overview

This document is a hands-on guide to deploying a simple Python application in tsuru. The example application will
be a very simple Django project associated to a MySQL service. It’s applicable to any WSGI application.

4.3. Deploying Python applications in tsuru 21

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_a_user
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Authenticate_within_remote_tsuru_server

tsuru Documentation, Release 0.10.3

4.3.2 Creating the app within tsuru

To create an app, you use app-create command:

$ tsuru app-create <app-name> <app-platform>

For Python, the app platform is, guess what, python! Let’s be over creative and develop a never-developed tutorial-
app: a blog, and its name will also be very creative, let’s call it “blog”:

S tsuru app-create blog python
To list all available platforms, use platform-list command.
You can see all your applications using app-list command:

S tsuru app-list

Fom e o e +

| Application | Units State Summary | Address | Ready? |

Fom it o e +

| blog | 0 of 0 units in-service | | No |
o o Fo————— o +
Once your app is ready, you will be able to deploy your code, e.g.:

S tsuru app-list

Fom e o Fo———— +
| Application | Units State Summary | Address | Ready? |
Fom o Fomm Fo————— +
| blog | 0 of 1 units in-service | | Yes |
o . o F————— +

4.3.3 Application code
This document will not focus on how to write a Django blog, you can clone the entire source direct from GitHub:
https://github.com/tsuru/tsuru-django-sample. Here is what we did for the project:
1. Create the project (django—-admin.py startproject)
Enable django-admin
Install South
Create a “posts” app (django—admin.py startapp posts)
Add a “Post” model to the app

Register the model in django-admin

N A » N

Generate the migration using South

4.3.4 Git deployment

When you create a new app, tsuru will display the Git remote that you should use. You can always get it using app-info
command:

S tsuru app-info --app blog
Application: blog

Repository: git@git.tsuru.io:blog.git
Platform: python

22 Chapter 4. Using

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_an_app
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_the_list_of_available_platforms
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-List_apps_that_you_have_access_to
https://github.com/tsuru/tsuru-django-sample
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_information_about_an_app

tsuru Documentation, Release 0.10.3

Teams: tsuruteam
Address:

The git remote will be used to deploy your application using git. You can just push to tsuru remote and your project
will be deployed:

$ git push git@git.tsuru.io:blog.git master
Counting objects: 119, done.

Delta compression using up to 4 threads.
Compressing objects: 100% (53/53), done.

Writing objects: 100% (119/119), 16.24 KiB, done.
Total 119 (delta 55), reused 119 (delta 55)

remote:

remote: ——--> tsuru receiving push

remote:

remote: From git://cloud.tsuru.io/blog.git
remote: * branch master —> FETCH_HEAD
remote:

remote: —---> Installing dependencies
####FAAARAAA AR AR AAFAAARAAFAFAHAAA

OMIT (see below)
#A#AH A ARARA A AHARA A AFAAARAAAAAAEAAA
remote: -—--> Restarting your app

remote:

remote: ——-—-> Deploy done!

remote:

To git@git.tsuru.io:blog.git
azllfba..bbf5b53 master —-> master

If you get a “Permission denied (publickey).”, make sure you’re member of a team and have a public key added to
tsuru. To add a key, use key-add command:

$ tsuru key-add ~/.ssh/id_rsa.pub

You canuse git remote add to avoid typing the entire remote url every time you want to push:

5 git remote add tsuru git@git.tsuru.io:blog.git

Then you can run:

5 git push tsuru master
Everything up-to-date

And you will be also able to omit the ——app flag from now on:

$ tsuru app-info

Application: blog

Repository: git@git.tsuru.io:blog.git
Platform: python

Teams: tsuruteam

Address: blog.cloud.tsuru.io

Units:

fm o +
| Unit | State \
fom fom +
| 9e70748f£4f25 | started |
i fom +

For more details on the ——app flag, see “Guessing app names” section of tsuru command documentation.

4.3. Deploying Python applications in tsuru 23

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Guessing_app_names

tsuru Documentation, Release 0.10.3

4.3.5 Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an application can have two kinds of depen-
dencies:

* Operating system dependencies, represented by packages in the package manager of the underlying operating
system (e.g.: yum and apt—get);

 Platform dependencies, represented by packages in the package manager of the platform/language (in Python,
pip).

All apt —get dependencies must be specified in a requirements . apt file, located in the root of your application,
and pip dependencies must be located in a file called requirements. txt, also in the root of the application. Since
we will use MySQL with Django, we need to install mysgl-python package using pip, and this package depends
on two apt—get packages: python-dev and 1ibmysglclient—-dev, so here is how requirements.apt
looks like:

libmysglclient-dev
python-dev

And here is requirements.txt:

Django==1.4.1
MySQL-python==1.2.3
South==0.7.6

Please notice that we’ve included South too, for database migrations, and D jango, off-course.
You can see the complete output of installing these dependencies below:

% git push tsuru master

#HA#F AR AR A A A H AR AH A A A AR AA A AFAAH

OMIT
#E###AAARAAAAAAHAAAAAAFAAARARAAFARAAA

remote: Reading package lists...

remote: Building dependency tree...

remote: Reading state information...

remote: python-dev is already the newest version.
remote: The following extra packages will be installed:

remote: libmysglclient18 mysgl-common
remote: The following NEW packages will be installed:
remote: libmysglclient—-dev libmysglclientl8 mysgl-common

remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.

remote: Need to get 2360 kB of archives.

remote: After this operation, 9289 kB of additional disk space will be used.

remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysgl-common all 5.5.27-0ubuntu2

remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysglclientl8 amd64 5.5.27-0Oubuntu?2
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main libmysglclient-dev amd64 5.5.27-0ubuntu:

remote: debconf: unable to initialize frontend: Dialog

remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without

remote: debconf: falling back to frontend: Readline

remote: debconf: unable to initialize frontend: Readline

remote: debconf: (This frontend requires a controlling tty.)

remote: debconf: falling back to frontend: Teletype

remote: dpkg-preconfigure: unable to re-open stdin:

remote: Fetched 2360 kB in 1s (1285 kB/s)

remote: Selecting previously unselected package mysgl-common.

remote: (Reading database ... 23143 files and directories currently installed.)
remote: Unpacking mysgl-common (from .../mysgl-common_5.5.27-0ubuntu2_all.deb)
remote: Selecting previously unselected package libmysglclientl8:amd64.

24 Chapter 4. Using

tsuru Documentation, Release 0.10.3

remote: Unpacking libmysglclientl8:amd64 (from .../libmysglclientl18_5.5.27-0ubuntu2_amdé64.deb)
remote: Selecting previously unselected package libmysglclient-dev.
remote: Unpacking libmysglclient-dev (from .../libmysglclient-dev_5.5.27-0ubuntu2_amdé64.deb)

remote: Setting up mysgl-common (5.5.27-0ubuntu2)

remote: Setting up libmysglclientl8:amdé64 (5.5.27-0Oubuntu2)
remote: Setting up libmysglclient-dev (5.5.27-0ubuntu2)
remote: Processing triggers for libc-bin

remote: ldconfig deferred processing now taking place

remote: sudo: Downloading/unpacking Django==1.4.1 (from -r /home/application/current/requirements.txt
remote: Running setup.py egg_info for package Django

remote:

remote: Downloading/unpacking MySQL-python==1.2.3 (from -r /home/application/current/requirements.tx!
remote: Running setup.py egg_info for package MySQL-python

remote:

remote: warning: no files found matching "MANIFEST’

remote: warning: no files found matching ’Changelog’

remote: warning: no files found matching ’"GPL’

remote: Downloading/unpacking South==0.7.6 (from —-r /home/application/current/requirements.txt
remote: Running setup.py egg_info for package South

remote:

remote: Installing collected packages: Django, MySQL-python, South

remote: Running setup.py install for Django

remote: changing mode of build/scripts-2.7/django—-admin.py from 644 to 755

remote:

remote: changing mode of /usr/local/bin/django-admin.py to 755

remote: Running setup.py install for MySQL-python

remote: building ’_mysgl’ extension

remote: gcc -pthread —-fno-strict-aliasing -DNDEBUG -g —-fwrapv -02 -Wall -Wstrict-prototypes —fPI(
remote: In file included from _mysqgl.c:36:0:

remote: /usr/include/mysqgl/my_config.h:422:0: warning: "HAVE_WCSCOLL" redefined [enabled by defar
remote: In file included from /usr/include/python2.7/Python.h:8:0,

remote: from pymemcompat.h:10,

remote: from _mysqgl.c:29:

remote: /usr/include/python2.7/pyconfig.h:890:0: note: this is the location of the previous defii
remote: gcc -pthread -shared -Wl,-01 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl, -z, re:
remote:

remote: warning: no files found matching "MANIFEST’

remote: warning: no files found matching ’ChangelLog’

remote: warning: no files found matching ’"GPL’

remote: Running setup.py install for South

remote:

remote: Successfully installed Django MySQL-python South
remote: Cleaning up...
#HAAHA A AAAFAAA A AHARA A AR R AAAAAH
OMIT
#tHA#FAAHA AR A A A AR H AR A A AR AA AR AAAH
To git@git.tsuru.io:blog.git
azllfba..bbfbb53 master —-> master

4.3.6 Running the application

As you can see, in the deploy output there is a step described as “Restarting your app”. In this step, tsuru will restart
your app if it’s running, or start it if it’s not. But how does tsuru start an application? That’s very simple, it uses a
Procfile (a concept stolen from Foreman). In this Procfile, you describe how your application should be started. We
can use gunicorn, for example, to start our Django application. Here is how the Procfile should look like:

4.3. Deploying Python applications in tsuru 25

http://gunicorn.org/

tsuru Documentation, Release 0.10.3

web: gunicorn -b 0.0.0.0:$PORT blog.wsgi

Now we commiit the file and push the changes to tsuru git server, running another deploy:

$ git add Procfile

git commit -m "Procfile:
S git push tsuru master
Counting objects: 5, done.
Delta compression using up to 4 threads.

added file"

0 to remove and 1 not upgraded.

Django==1.4.1 in /usr/local/lib/py!
MySQL-python==1.2.3 in /usr/local/:
South==0.7.6 in /usr/local/lib/pyt]

command not found

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 326 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

remote:

remote: —---> tsuru receiving push

remote:

remote: —---> Installing dependencies

remote: Reading package lists...

remote: Building dependency tree...

remote: Reading state information...

remote: python-dev is already the newest version.

remote: libmysglclient-dev is already the newest version.

remote: 0 upgraded, 0O newly installed,

remote: Requirement already satisfied (use —--upgrade to upgrade) :
remote: Requirement already satisfied (use —--upgrade to upgrade) :
remote: Requirement already satisfied (use —--upgrade to upgrade) :
remote: Cleaning up...

remote:

remote: -—--> Restarting your app

remote: /var/lib/tsuru/hooks/start: line 13: gunicorn:

remote:

remote: -—---> Deploy done!

remote:

To git@git.tsuru.io:blog.git
81e884e..530c528 master —-> master

Now we get an error: gunicorn:
requirements.txt file:

$ cat >> requirements.txt
n==0.14.6

gunicor
~D

Now we commit the changes and run another deploy:

git add requirements.txt

git commit -m "requirements.txt: added gunicorn"

S git push tsuru master

Counting objects: 5, done.
Delta compression using up to 4 threads.

command not found.

It means that we need to add gunicorn to

Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 325 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)

remote:

remote: —-—-—-> tsuru receiving push

remote:

[...]

remote: ——--> Restarting your app

remote:

remote: -—--> Deploy done!

26 Chapter 4. Using

tsuru Documentation, Release 0.10.3

remote:
To git@git.tsuru.io:blog.git
530c528..542403a master —-> master

Now that the app is deployed, you can access it from your browser, getting the IP or host listed in app-1ist and
opening it. For example, in the list below:

S tsuru app-list

Fom i o dom— +
| Application | Units State Summary | Address | Ready? |
Fom o o e +
| blog | 1 of 1 units in-service | blog.cloud.tsuru.io | Yes |
fom o o Fo————— +

We can access the admin of the app in the URL http://blog.cloud.tsuru.io/admin/.

4.3.7 Using services

Now that gunicorn is running, we can accesss the application in the browser, but we get a Django error: “Can’t connect
to local MySQL server through socket ‘/var/run/mysqld/mysqld.sock’ (2)”. This error means that we can’t connect to
MySQL on localhost. That’s because we should not connect to MySQL on localhost, we must use a service. The
service workflow can be resumed to two steps:

1. Create a service instance
2. Bind the service instance to the app
But how can I see what services are available? Easy! Use service-list command:

S tsuru service-list

o o +
| Services | Instances |
- - +
| elastic—-search | |
| mysql | |
- - +

The output from service-11ist above says that there are two available services: “elastic-search” and “mysql”, and
no instances. To create our MySQL instance, we should run the service-add command:

S tsuru service-—add mysgl blogsgl
Service successfully added.

Now, if we run service—11ist again, we will see our new service instance in the list:

S tsuru service-list

o B +
| Services | Instances |
Fom Fomm +
| elastic—-search | |
| mysqgl | blogsqgl |
Fom fomm +

To bind the service instance to the application, we use the bind command:

$ tsuru service-bind blogsqgl
Instance blogsgl is now bound to the app blog.

The following environment variables are now available for use in your app:

4.3. Deploying Python applications in tsuru 27

http://blog.cloud.tsuru.io/admin/
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-List_available_services_and_instances
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_a_new_service_instance
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Bind_an_application_to_a_service_instance

tsuru Documentation, Release 0.10.3

- MYSQL_PORT
- MYSQL_PASSWORD

- MYSQL_USER

- MYSQIL_HOST

- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the MySQL server. Next step is update
settings.py to use these variables to connect in the database:

import os

DATABASES = {
"default’: {

"ENGINE’ : 'django.db.backends.mysqgl’,
"NAME’ : os.environ.get (' MYSQL_DATABASE_NAME’, ’'blog’),
"USER’ : os.environ.get ('MYSQL_USER’, ’'root’),
"PASSWORD’ : os.environ.get ('MYSQL_PASSWORD’, '),
"HOST’ : os.environ.get ('MYSQL_HOST’", "'"),
"PORT’ : os.environ.get ('MYSQL_PORT’, "),

Now let’s commit it and run another deploy:

&

S git add blog/settings.py

$ git commit -m "settings: using environment variables to connect to MySQL"
S git push tsuru master

Counting objects: 7, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 535 bytes, done.

Total 4 (delta 3), reused 0 (delta 0)

remote:

remote: —-—-—-> tsuru receiving push
remote:

remote: —---> Installing dependencies
####HAAARAAA A AAARA A AFAAA A A AAAEAAS
OMIT
#HAAAHAAAAH AR AR A AHA R A AR AAAAAS
remote:

remote: —--> Restarting your app
remote:

remote: ——-—-> Deploy done!

remote:

To git@git.tsuru.io:blog.git
ab4e706..a780de9 master —-> master

Now if we try to access the admin again, we will get another error: “Table ‘blogsql.django_session’ doesn’t exist”.
Well, that means that we have access to the database, so bind worked, but we did not set up the database yet. We
need to run syncdb and migrate (if we’re using South) in the remote server. We can use run command to execute
commands in the machine, so for running syncdb we could write:

S tsuru app-run -- python manage.py syncdb --noinput
Syncing. ..

Creating tables

Creating table auth_permission

28 Chapter 4. Using

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Run_an_arbitrary_command_in_the_app_machine

tsuru Documentation, Release 0.10.3

Creating table auth_group_permissions
Creating table auth_group

Creating table auth_user_user_permissions
Creating table auth_user_groups
Creating table auth_user

Creating table django_content_type
Creating table django_session

Creating table django_site

Creating table django_admin_log
Creating table south_migrationhistory
Installing custom SQL

Installing indexes

Installed 0 object(s) from 0 fixture(s)

Synced:

> django.contrib.auth
django.contrib.contenttypes
django.contrib.sessions
django.contrib.sites
django.contrib.messages
django.contrib.staticfiles
django.contrib.admin

south

V V. V V V V V

Not synced (use migrations):
- blog.posts
(use ./manage.py migrate to migrate these)

The same applies for migrate.

4.3.8 Deployment hooks

It would be boring to manually run syncdb and/or migrate after every deployment. So we can configure an
automatic hook to always run before or after the app restarts.

tsuru parses a file called t suru.yaml and runs restart hooks. As the extension suggests, this is a YAML file, that
contains a list of commands that should run before and after the restart. Here is our example of tsuru.yaml:

hooks:
build:
- python manage.py syncdb —--noinput
- python manage.py migrate

For more details, check the hooks documentation.
tsuru will look for the file in the root of the project. Let’s commit and deploy it:

$ git add tsuru.yaml

git commit -m "tsuru.yaml: added file"
git push tsuru master

Counting objects: 4, done.

Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 338 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:

remote: ——--> tsuru receiving push
remote:

S
&
o

4.3. Deploying Python applications in tsuru 29

tsuru Documentation, Release 0.10.3

remote: -—--> Installing dependencies
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: python-dev is already the newest version.

remote: libmysglclient-dev is already the newest version.

remote: 0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
remote: Requirement already satisfied

remote: Requirement already satisfied (use —--upgrade to upgrade

use —-upgrade to upgrade): Dijango==1.4.1 in /usr/local/lib/py!
MySQL-python==1.2.3 in /usr/local/.

(
() :

remote: Requirement already satisfied (use —--upgrade to upgrade): South==0.7.6 in /usr/local/lib/pytl
() :

remote: Requirement already satisfied

remote: Cleaning up...

remote:

remote: -——--> Restarting your app

remote:

remote: -—--> Running restart:after

remote:

remote: ——-—-> Deploy done!

remote:

To git@git.tsuru.io:blog.git
a780de9..1b675b8 master —-> master

use —-upgrade to upgrade

It’s done! Now we have a Django project deployed on tsuru, using a MySQL service.

4.3.9 Going further

For more information, you can dig into tsuru docs, or read complete instructions of use for the tsuru command.

4.4 Deploying Ruby applications in tsuru

4.4.1 Overview

This document is a hands-on guide to deploying a simple Ruby application in tsuru. The example application will be
a very simple Rails project associated to a MySQL service.

4.4.2 Creating the app within tsuru

To create an app, you use app-create command:

S tsuru app-create <app-name> <app-platform>

For Ruby, the app platform is, guess what, ruby! Let’s be over creative and develop a never-developed tutorial-app:
a blog, and its name will also be very creative, let’s call it “blog”:

&

S tsuru app-create blog ruby

To list all available platforms, use platform-list command.

You can see all your applications using app-list command:

&

S tsuru app-list

fom it Fo— e +
| Application | Units State Summary | Address | Ready? |
o Fo—————————— Fo———— Fo———— +

30 Chapter 4. Using

gunicorn==0.14.6 in /usr/local/lib,

http://docs.tsuru.io
http://godoc.org/github.com/tsuru/tsuru-client/tsuru
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_an_app
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_the_list_of_available_platforms
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-List_apps_that_you_have_access_to

tsuru Documentation, Release 0.10.3

| blog | 0 of 0 units in-service | | No |

Once your app is ready, you will be able to deploy your code, e.g.:

&

S tsuru app-list

fom e o o +
| Application | Units State Summary | Address | Ready? |
fom o e —— o +
| blog | 0 of 0 units in-service | | Yes |
fom o o ——— o ——— +

4.4.3 Application code

This document will not focus on how to write a blog with Rails, you can clone the entire source direct from GitHub:
https://github.com/tsuru/tsuru-ruby-sample. Here is what we did for the project:

1. Create the project (rails new blog)

2. Generate the scaffold for Post (rails generate scaffold Post title:string body:text)

4.4.4 Git deployment

When you create a new app, tsuru will display the Git remote that you should use. You can always get it using app-info
command:

S tsuru app-info --app blog
Application: blog

Repository: git@cloud.tsuru.io:blog.git
Platform: ruby

Teams: tsuruteam

Address:

The git remote will be used to deploy your application using git. You can just push to tsuru remote and your project
will be deployed:

S git push git@cloud.tsuru.io:blog.git master
Counting objects: 86, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (75/75), done.
Writing objects: 100% (86/86), 29.75 KiB, done.
Total 86 (delta 2), reused 0 (delta 0)
remote: Cloning into ’/home/application/current’ ...
remote: requirements.apt not found.
remote: Skipping...
remote: /home/application/current /
remote: Fetching gem metadata from https://rubygems.org/.........
remote: Fetching gem metadata from https://rubygems.org/..
AHHFHAF AR AR AR F AR F AR FAARAFAAEAH
OMIT (see below)
ldddatdddazdddadaddadaddadaddadaddiidsd
remote: -——--> App will be restarted, please check its log for more details...
remote:
To git@cloud.tsuru.io:blog.git
* [new branch] master -> master

4.4. Deploying Ruby applications in tsuru 31

https://github.com/tsuru/tsuru-ruby-sample
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_information_about_an_app

tsuru Documentation, Release 0.10.3

If you get a “Permission denied (publickey).”, make sure you’re member of a team and have a public key added to
tsuru. To add a key, use key-add command:

S tsuru key-add ~/.ssh/id_rsa.pub

You canuse git remote add to avoid typing the entire remote url every time you want to push:

S git remote add tsuru git@cloud.tsuru.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the ——app flag from now on:

S tsuru app-info

Application: blog

Repository: git@cloud.tsuru.io:blog.git
Platform: ruby

Teams: tsuruteam

Address: blog.cloud.tsuru.io

Units:

R Fom +
| Unit | State \
Fommmm fommmm———— +
| 9e70748f4f25 | started |
Fom e fom +

For more details on the ——app flag, see “Guessing app names” section of tsuru command documentation.

4.4.5 Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an application can have two kinds of depen-
dencies:

* Operating system dependencies, represented by packages in the package manager of the underlying operating
system (e.g.: yum and apt—get);

 Platform dependencies, represented by packages in the package manager of the platform/language (in Ruby,
bundler).

All apt —get dependencies must be specified in a requirements. apt file, located in the root of your application,
and ruby dependencies must be located in a file called Gemfile, also in the root of the application. Since we will
use MySQL with Rails, we need to install mysqgl package using gem, and this package depends on an apt-get
package: 1ibmysglclient—dev, so here is how requirements.apt looks like:

libmysglclient-dev

And here is Gemfile:

source ’'https://rubygems.org’

gem ’'rails’, ’3.2.13'

gem ’'mysqgl’

gem ’sass-rails’, r~> 3.2.3'

gem ’'coffee-rails’, ’'~> 3.2.17

gem ’'therubyracer’, :platforms => :ruby
gem ’'uglifier’, ’>= 1.0.3’

gem ’ jquery-rails’

32 Chapter 4. Using

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Guessing_app_names

tsuru Documentation, Release 0.10.3

You can see the complete output of installing these dependencies below:

S git push tsuru master
####H A AR RA A AFA R A AFAAARA AR FAHAAA

#

OMIT #

FHEAFFRAFFRAFFHAFFAAFEAAFEAAFRARFEAAS

remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:

Reading package lists...
Building dependency tree...
Reading state information...
The following extra packages will be installed:

libmysglclientl18 mysgl-common
The following NEW packages will be installed:

libmysglclient-dev libmysglclientl8 mysgl-common
0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
Need to get 2360 kB of archives.
After this operation, 9289 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysgl-common all 5.5.27-Oubuntu2 [13.7]
Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysglclientl18 amdé4 5.5.27-Oubuntu2
Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main libmysglclient-dev amd64 5.5.27-0ubuntu:
Fetched 2360 kB in 2s (1112 kB/s)
Selecting previously unselected package mysgl-common.
(Reading database ... 41063 files and directories currently installed.)
Unpacking mysgl-common (from .../mysgl-common_5.5.27-0ubuntu2_all.deb)
Selecting previously unselected package libmysglclientl8:amd64.
Unpacking libmysglclientl8:amd64 (from .../libmysglclientl8_5.5.27-0ubuntu2_amdé4.deb)
Selecting previously unselected package libmysglclient-dev.
Unpacking libmysglclient-dev (from .../libmysglclient-dev_5.5.27-0ubuntu2_amdé64.deb)
Setting up mysgl-common (5.5.27-0ubuntu?2)
Setting up libmysglclientl8:amd64 (5.5.27-0ubuntu?2)
Setting up libmysglclient-dev (5.5.27-0ubuntu2)
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place
/home/application/current /
Fetching gem metadata from https://rubygems.org/..........
Fetching gem metadata from https://rubygems.org/..
Using rake (10.1.0)
Using 118n (0.6.1)
Using multi_json (1.7.8)
Using activesupport (3.2.13)
Using builder (3.0.4)
Using activemodel (3.2.13)
Using erubis (2.7.0)
Using journey (1.0.4)
Using rack (1.4.5)
Using rack-cache (1.2)
Using rack-test (0.6.2)
Using hike (1.2.3)
Using tilt (1.4.1)
Using sprockets (2.2.2)
Using actionpack (3.2.13)
Using mime-types (1.23)
Using polyglot (0.3.3)
Using treetop (1.4.14)
Using mail (2.5.4)
Using actionmailer (3.2.13)
Using arel (3.0.2)
Using tzinfo (0.3.37)
Using activerecord (3.2.13)
Using activeresource (3.2.13)

4.4. Deploying Ruby applications in tsuru 33

tsuru Documentation, Release 0.10.3

remote: Using coffee-script-source (1.6.3)

remote: Using execijs (1.4.0)

remote: Using coffee-script (2.2.0)

remote: Using rack-ssl (1.3.3)

remote: Using Jjson (1.8.0)

remote: Using rdoc (3.12.2)

remote: Using thor (0.18.1)

remote: Using railties (3.2.13)

remote: Using coffee-rails (3.2.2)

remote: Using jquery-rails (3.0.4)

remote: Installing libv8 (3.11.8.17)

remote: Installing mysgl (2.9.1)

remote: Using bundler (1.3.5)

remote: Using rails (3.2.13)

remote: Installing ref (1.0.5)

remote: Using sass (3.2.10)

remote: Using sass-rails (3.2.6)

remote: Installing therubyracer (0.11.4)

remote: Installing uglifier (2.1.2)

remote: Your bundle is complete!

remote: Gems in the groups test and development were not installed.

remote: It was installed into ./vendor/bundle

#HAAHAAAAAAFA A A AHA R A AR R EAAAAS

OMIT

#HARFAAEA AR AR HA AR H AR AFAARFAAHAAAAAAH

To git@cloud.tsuru.io:blog.git
9515685..d67c3cd master —-> master

4.4.6 Running the application

As you can see, in the deploy output there is a step described as “Restarting your app”. In this step, tsuru will restart
your app if it’s running, or start it if it’s not. But how does tsuru start an application? That’s very simple, it uses a
Procfile (a concept stolen from Foreman). In this Procfile, you describe how your application should be started. Here
is how the Procfile should look like:

web: bundle exec rails server —-p $PORT -e production

Now we commit the file and push the changes to tsuru git server, running another deploy:

S git add Procfile
S git commit -m "Procfile: added file"
$ git push tsuru master

FHAFAFEAHAFAAFAFEAAAFEAHAFAAHAFAAHAAS

OMIT

A A AR AAEAAHA R A AFAAARA A AAAEAAA

remote: —--—-> App will be restarted, please check its log for more details...
remote:

To git@cloud.tsuru.io:blog.git
dé7c3cd..f2a5d2d master —-> master

Now that the app is deployed, you can access it from your browser, getting the IP or host listed in app-1ist and
opening it. For example, in the list below:

$ tsuru app-list

e o R o +
| Application | Units State Summary | Address | Ready? |
fom e o e fom———— +

34 Chapter 4. Using

tsuru Documentation, Release 0.10.3

| blog | 1 of 1 units in-service | blog.cloud.tsuru.io | Yes |

4.4.7 Using services

Now that your app is not running with success because the rails can’t connect to MySQL. That’s because we add a
relation between your rails app and a mysql instance. To do it we must use a service. The service workflow can be
resumed to two steps:

1. Create a service instance
2. Bind the service instance to the app
But how can I see what services are available? Easy! Use service-list command:

S tsuru service-list

o fom +
| Services | Instances |
o o +
| elastic—-search | |
| mysqgl | |
o fom +

The output from service-11ist above says that there are two available services: “elastic-search” and “mysql”, and
no instances. To create our MySQL instance, we should run the service-add command:

&

5 tsuru service-add mysgl blogsqgl
Service successfully added.

Now, if we run service-1ist again, we will see our new service instance in the list:

S tsuru service-list

Fom fomm +
| Services | Instances |
fom fomm +
| elastic—-search | |
| mysqgl | blogsgl |
fom e fomm e +

To bind the service instance to the application, we use the bind command:

S tsuru service-bind blogsgl
Instance blogsgl is now bound to the app blog.

The following environment variables are now available for use in your app:

- MYSQL_PORT

- MYSQL_PASSWORD

- MYSQL_USER

-~ MYSQL_HOST

- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the MySQL server. Next step is update
conf/database.yml to use these variables to connect in the database:

production:
adapter: mysqgl

4.4. Deploying Ruby applications in tsuru 35

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-List_available_services_and_instances
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_a_new_service_instance
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Bind_an_application_to_a_service_instance

tsuru Documentation, Release 0.10.3

encoding: utf8

database: <%= ENV["MYSQL_DATABASE_NAME"] $>
pool: 5

username: <%= ENV["MYSQL_USER"] %>
password: <%= ENV["MYSQL_PASSWORD"] %>
host: <%= ENV["MYSQL_HOST"] %>

Now let’s commit it and run another deploy:

$ git add conf/database.yml

$ git commit -m "database.yml: using environment variables to connect to MySQL"
S git push tsuru master

Counting objects: 7, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 535 bytes, done.

Total 4 (delta 3), reused 0 (delta 0)

remote:

remote: —---> tsuru receiving push
remote:

remote: -—--> Installing dependencies
tHE#AF A HAA A FAA A FAF A FAF AR A A HAAS
OMIT
#E#HFAFAHAAAAAAHAHA A AFAAAHAAFAHAHAAA
remote:

remote: ——--> Restarting your app
remote:

remote: ——--> Deploy done!

remote:

To git@cloud.tsuru.io:blog.git
ab4e706..a780de9 master —-> master

Now if we try to access the admin again, we will get another error: “Table ‘blogsql.django_session’ doesn’t exist”.
Well, that means that we have access to the database, so bind worked, but we did not set up the database yet. We need
torun rake db:migrate in the remote server. We can use run command to execute commands in the machine, so
for running rake db:migrate we could write:

S tsuru app-run —-- RAILS ENV=production bundle exec rake db:migrate
== C(CreatePosts: migrating ==
—-— create_table (:posts)
-> 0.1126s
== CreatePosts: migrated (0.1128s) ===

4.4.8 Deployment hooks

It would be boring to manually run rake db:migrate after every deployment. So we can configure an automatic
hook to always run before or after the app restarts.

tsuru parses a file called t suru.yaml and runs restart hooks. As the extension suggests, this is a YAML file, that
contains a list of commands that should run before and after the restart. Here is our example of tsuru.yaml:

hooks:
restart:
before-each:
- RAILS_ENV=production bundle exec rake db:migrate

For more details, check the hooks documentation.

36 Chapter 4. Using

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Run_an_arbitrary_command_in_the_app_machine

tsuru Documentation, Release 0.10.3

tsuru will look for the file in the root of the project. Let’s commit and deploy it:

$ git add tsuru.yaml

$ git commit -m "tsuru.yaml: added file"

S git push tsuru master

#HAAHAAAAAAFA A A AR AA AR R EAAAAS

OMIT

#tHA#FA A AR A A HARRHAAAFAARAARAAAAFAAH

To git@cloud.tsuru.io:blog.git
a780de9..1b675b8 master —-> master

It is necessary to compile de assets before the app restart. To do it we can use the rake assets:precompile
command. Then let’s add the command to compile the assets in tsuru.yaml:

hooks:
build:
— RAILS_ENV=production bundle exec rake assets:precompile

S git add tsuru.yaml

S git commit -m "tsuru.yaml: added file"

S git push tsuru master

#HAAHA A A AHA A A AR RA A AR AR EAAAAS

OMIT

#E#HFAFAHAAAAAAHAAARAAFA AR AR HAHAAA

To git@cloud.tsuru.io:blog.git
a780de9..1b675b8 master —> master

It’s done! Now we have a Rails project deployed on tsuru, using a MySQL service.

Now we can access your blog app in the URL http://blog.cloud.tsuru.io/posts/.

4.4.9 Going further

For more information, you can dig into tsuru docs, or read complete instructions of use for the tsuru command.

4.5 Deploying Go applications in tsuru

4.5.1 Overview

This document is a hands-on guide to deploying a simple Go web application in tsuru.

4.5.2 Creating the app within tsuru

To create an app, you use app-create command:

S tsuru app-create <app-name> <app-platform>

For go, the app platform is, guess what, go! Let’s be over creative and develop a hello world tutorial-app, let’s call it
“helloworld”:

&

S tsuru app-create helloworld go

To list all available platforms, use platform-list command.

You can see all your applications using app-list command:

4.5. Deploying Go applications in tsuru 37

http://blog.cloud.tsuru.io/posts/
http://docs.tsuru.io
http://godoc.org/github.com/tsuru/tsuru-client/tsuru
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_an_app
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_the_list_of_available_platforms
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-List_apps_that_you_have_access_to

tsuru Documentation, Release 0.10.3

&

> tsuru app-list

fom it fom——————— fom +
| Application | Units State Summary | Address | Ready? |
o f———————— - +———— +
| helloworld | O of 0 units in-service | | No |
Fom et Fom e +
Once your app is ready, you will be able to deploy your code, e.g.:
S tsuru app-list
Fom e e o e +
| Application | Units State Summary | Address | Ready? |
Fom o o ——— o +
| helloworld | O of 0 units in-service | | Yes
o o Fo————— R +
4.5.3 Application code
A simple web application in go main.go:
package main
import (

n fmt n

"net/http"

nw os "
)
func main () {

http.HandleFunc("/", hello)

fmt.Println("listening...")

err := http.ListenAndServe (":" + os.Getenv ("PORT"), nil)

if err != nil {
panic(err)

func hello(res http.ResponseWriter, req xhttp.Request) {
fmt .Fprintln (res, "hello, world")

4.5.4 Git deployment

When you create a new app, tsuru will display the Git remote that you should use. You can always get it using app-info
command:

S tsuru app-info --app blog
Application: go

Repository: git@cloud.tsuru.io:blog.git
Platform: go

Teams: myteam

Address:

The git remote will be used to deploy your application using git. You can just push to tsuru remote and your project
will be deployed:

38 Chapter 4. Using

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_information_about_an_app

tsuru Documentation, Release 0.10.3

&

git push git@cloud.tsuru.io:helloworld.git master
Counting objects: 86, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (75/75), done.

Writing objects: 100% (86/86), 29.75 KiB, done.
Total 86 (delta 2), reused 0 (delta 0)

remote: Cloning into ’/home/application/current’ ...
remote: requirements.apt not found.

remote: Skipping...

remote: /home/application/current /
#EFHFAFAHAAARAAHAHA A AFAAAHAAFAHAHAAA

OMIT (see below)

AHHFHAF AR AR AR F AR F AR FA AR FAAHAH

remote: -—--> App will be restarted, please check its log for more details...
remote:

To git@cloud.tsuru.io:helloworld.git

* [new branch] master —-> master

If you get a “Permission denied (publickey).”, make sure you’re member of a team and have a public key added to
tsuru. To add a key, use key-add command:

$ tsuru key-add ~/.ssh/id_rsa.pub

You canuse git remote add to avoid typing the entire remote url every time you want to push:

$ git remote add tsuru git@cloud.tsuru.io:helloworld.git

Then you can run:

S git push tsuru master
Everything up-to-date

And you will be also able to omit the ——app flag from now on:

S tsuru app-info

Application: helloworld

Repository: git@cloud.tsuru.io:blog.git
Platform: go

Teams: myteam

Address: helloworld.cloud.tsuru.io

Units:

Fom Fom——————— +
| Unit | State |
fom fomm +
| 9e70748f£4f25 | started |
o fom————— +

For more details on the ——app flag, see “Guessing app names’ section of tsuru command documentation.

4.5.5 Running the application

As you can see, in the deploy output there is a step described as “Restarting your app”. In this step, tsuru will restart
your app if it’s running, or start it if it’s not. But how does tsuru start an application? That’s very simple, it uses a
Procfile (a concept stolen from Foreman). In this Procfile, you describe how your application should be started. Here
is how the Procfile should look like:

web: ./main

4.5. Deploying Go applications in tsuru 39

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Guessing_app_names

tsuru Documentation, Release 0.10.3

Now we commiit the file and push the changes to tsuru git server, running another deploy:

$ git add Procfile
S git commit -m "Procfile: added file"
$ git push tsuru master

FHEAFFRAFFRAFFHAFFAAFEAAFEAAFRARFEAAS

OMIT

#HERFAAFAAAHAAAAHAHARA A AR AR A

remote: -——--> App will be restarted, please check its log for more details...
remote:

To git@cloud.tsuru.io:helloworld.git
d67c3cd..f2a5d2d master -> master

Now that the app is deployed, you can access it from your browser, getting the IP or host listed in app-1ist and
opening it. For example, in the list below:

S tsuru app-list

fom o e Fom——— +
| Application | Units State Summary | Address | Ready? |
e o o e +
| helloworld | 1 of 1 units in-service | blog.cloud.tsuru.io | Yes |
fom o e fom———— +

It’s done! Now we have a simple go project deployed on tsuru.

Now we can access your app in the URL http://helloworld.cloud.tsuru.io/.

4.5.6 Going further

For more information, you can dig into tsuru docs, or read complete instructions of use for the tsuru command.

4.6 Deploying Java applications on tsuru

4.6.1 Overview

This document is a hands-on guide to deploying a simple Java application on tsuru. The example application is a
simple mvn generated archetype, in order to generate it, just run:

$ mvn archetype:generate -Dgroupld=io.tsuru.javasample -DartifactId=helloweb -DarchetypeArtifactId=m:
You can also deploy any other Java application you have on a tsuru server. Another alternative is to just download the

code available at GitHub: https://github.com/tsuru/tsuru-java-sample.

4.6.2 Creating the app within tsuru

To create an app, you use app-create command:

S tsuru app-create <app-name> <app-platform>

For Java, the app platform is, guess what, java! Let’s call our application “helloweb”:

S tsuru app-create helloweb java

40 Chapter 4. Using

http://helloworld.cloud.tsuru.io/
http://docs.tsuru.io
http://godoc.org/github.com/tsuru/tsuru-client/tsuru
https://github.com/tsuru/tsuru-java-sample
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_an_app

tsuru Documentation, Release 0.10.3

To list all available platforms, use platform-list command.
You can see all your applications using app-list command:

S tsuru app-list

o o o o +
| Application | Units State Summary | Address | Ready?
fm——————— o f——————— F————— 4
| helloweb | 0 of O units in-service | http://helloweb.tsuru.mycompany.com | No

Fom e e o Fo—— +
Once your app is ready, you will be able to deploy your code, e.g.:

S tsuru app-list

Fo— et e Fo—— +
| Application | Units State Summary | Address | Ready?
o o o o +
| helloweb | 0 of 0 units in-service | http://helloweb.tsuru.mycompany.com | Yes
Fom—————— R o Fo———— +

4.6.3 Deploying the code

Using the Java platform, there are two deployment strategies: users can either upload WAR files to tsuru or send the
code using the regular git push approach. This guide will cover both approaches:

WAR deployment

Using the mvn archetype, generating the WAR is as easy as running mvn package, then the user can deploy the
code using t suru app-deploy:

$ mvn package

S cd target

S tsuru app-deploy —a helloweb helloweb.war
Uploading files...... ok

———- Building application image ----—
-——> Sending image to repository (0.00MB)
———> Cleaning up

—-——— Starting 1 new unit ---—-
—-——> Started unit d2811c0801...

———— Adding routes to 1 new units —--—-—-
———> Added route to unit d2811c0801

OK

Done! Now you can access your project in the address given by tsuru. Remeber to add /helloweb/. Something
like http://helloweb.tsuru.mycompany.com/helloweb/.

You can also deploy you application to the / address, renaming the WAR to ROOT.war and redeploying it:

S mv helloweb.war ROOT.war
S tsuru app-deploy —-a helloweb ROOT.war
Uploading files... ok

———— Building application image —--——-
—-——> Sending image to repository (0.00MB)

4.6. Deploying Java applications on tsuru 41

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_the_list_of_available_platforms
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-List_apps_that_you_have_access_to
http://helloweb.tsuru.mycompany.com/helloweb/

tsuru Documentation, Release 0.10.3

—-——-> Cleaning up

—-——- Starting 1 new unit —--—-—-
—-——> Started unit 4d155e805f...

———— Adding routes to 1 new units —--——-
———> Added route to unit 4d155e805f

———— Removing routes from 1 old units —--——-
—-——> Removed route from unit d2811c0801

—-——- Removing 1 old unit —--—-—-
---> Removed old unit 1/1

OK

And now you can access your hello world in the root of the application address!

Git deployment

For Git deployment, we will send the code to tsuru, and compile the classes there. For that, we’re going to use mvn
with the Jetty plugin. For doing that, we will need to create a Procfile with the command for starting the application:

$ cat Procfile
helloweb: mvn jetty:run

In order to compile the application classes during deployment, we need also to add a deployment hook. tsuru parses a
file called t suru.yaml and runs some build hooks in the deployment phase.

Here is how the file for the hel1loweb application looks like:

cat tsuru.yaml
hooks:
build:
- mvn package

After adding these files, we’re ready for deploying the application. The app-info command will display a Git remote
that we can use to push the application code to production:

S tsuru app-info -a helloweb

Application: helloweb

Repository: git@tsuru.mycompany.com:helloweb.git
Platform: java

Teams: supercompany

Address: helloweb.tsuru.mycompany.com

Owner: user@company.com

Team owner: supercompany

Deploys: 2

Units: 1

o o +
| Unit | State |
o o +
| d8a2dl14948 | started |
fom fomm— +

The “Repository” line contains what we need: the remote repository. Now we can simply push the application code,
using git push:

42 Chapter 4. Using

https://www.eclipse.org/jetty/documentation/current/jetty-maven-plugin.html
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_information_about_an_app

tsuru Documentation, Release 0.10.3

$ git push git@tsuru.mycompany.com:helloweb.git master

Counting objects: 25, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (19/19), done.

Writing objects: 100% (25/25), 2.59 KiB | 0 bytes/s, done.

Total 25 (delta 5), reused 0 (delta 0)

remote: tar: Removing leading ‘/’ from member names

remote: [INFO] Scanning for projects...

remote: [INFO]

remote: [INFO] ——————
remote: [INFO] Building helloweb Maven Webapp 1.0-SNAPSHOT

remote: [INFO] """ ——
remote: Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-resources-pli
remote: Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-resources—pluc
remote: Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-plugins/12/m:
remote: Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-plugins/12/mas
remote: [INFO] Packaging webapp

remote: [INFO] Assembling webapp [helloweb] in [/home/application/current/target/helloweb]
remote: [INFO] Processing war project

remote: [INFO] Copying webapp resources [/home/application/current/src/main/webapp]
remote: [INFO] Webapp assembled in [27 msecs]

remote: [INFO] Building war: /home/application/current/target/helloweb.war

remote: [INFO] WEB-INF/web.xml already added, skipping

remote: [INFO] ——f————"""""""""""""""
remote: [INFO] BUILD SUCCESS

remote: [INFO] ——————————————
remote: [INFO] Total time: 51.729s

remote: [INFO] Finished at: Tue Nov 11 17:04:05 UTC 2014

remote: [INFO] Final Memory: 8M/19M

remote: [INFO] - -
remote:

remote: —---- Building application image —--——-

remote: —---> Sending image to repository (2.96MB)

remote: -—--> Cleaning up

remote:

remote: —-—--- Starting 1 new unit ----

remote: -—--> Started unit e71d176232...

remote:

remote: —-—--- Adding routes to 1 new units —--——-

remote: —--> Added route to unit e71d176232

remote:

remote: —-—-—-- Removing routes from 1 old units —---—-

remote: ——--> Removed route from unit d8a2d14948

remote:

remote: —--—- Removing 1 old unit ———-—

remote: ——--> Removed old unit 1/1

remote:

remote: OK

To git@tsuru.mycompany.com:helloweb.git

* [new branch] master —-> master

As you can see, the final part of the output is the same, and the application is running in the address given by tsuru as

well.

4.6. Deploying Java applications on tsuru

43

tsuru Documentation, Release 0.10.3

4.6.4 Switching between Java versions

In the Java platform provided by tsuru, users can use two version of Java: 7 and 8, both provided by Oracle. There’s
an environment variable for defining the Java version you wanna use: JAVA_VERSION. The default behavior of the
platform is to use Java 7, but you can change to Java 8 by running:

S tsuru env-set —-a helloweb JAVA_VERSION=8
———— Setting 1 new environment variables —--——-—

—-——— Starting 1 new unit ---—-
—-——> Started unit d8a2dl14948...

———— Adding routes to 1 new units —--—-—-
———> Added route to unit d8az2dl4948

—-——— Removing routes from 1 old units ----
—-——> Removed route from unit 4d155e805f

—-——— Removing 1 old unit ----
—-——> Removed old unit 1/1

And... done! No need to run another deployment, your application is now running with Java 8.

4.6.5 Going further

For more information, you can dig into tsuru docs, or read complete instructions of use for the tsuru command.

4.7 Deploying PHP applications in tsuru

4.7.1 Overview

This document is a hands-on guide to deploying a simple PHP application in tsuru. The example application will be a
very simple Wordpress project associated to a MySQL service. It’s applicable to any php over apache application.

4.7.2 Creating the app within tsuru

To create an app, you use app-create command:

S tsuru app-create <app-name> <app-platform>

For PHP, the app platform is, guess what, php! Let’s be over creative and develop a never-developed tutorial-app: a
blog, and its name will also be very creative, let’s call it “blog™:

S tsuru app-create blog php

To list all available platforms, use platform-list command.
You can see all your applications using app-list command:

$ tsuru app-list

Fom e o fom e fom +
| Application | Units State Summary | Address | Ready? |
fom o o fom———— +

44 Chapter 4. Using

http://docs.tsuru.io
http://godoc.org/github.com/tsuru/tsuru-client/tsuru
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Create_an_app
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_the_list_of_available_platforms
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-List_apps_that_you_have_access_to

tsuru Documentation, Release 0.10.3

| blog | 0 of 0 units in-service | | No |

Once your app is ready, you will be able to deploy your code, e.g.:

$ tsuru app-list

fom e o o +
| Application | Units State Summary | Address | Ready? |
fom o e —— o +
| blog | 0 of 1 units in-service | | Yes |
fom o o ——— o ——— +

4.7.3 Application code

This document will not focus on how to write a php blog, you can download the entire source direct from wordpress:
http://wordpress.org/latest.zip. Here is all you need to do with your project:

Download and unpack wordpress

wget http://wordpress.org/latest.zip

unzip latest.zip

Preparing wordpress for tsuru

cd wordpress

Notify tsuru about the necessary packages

echo php5-mysgl > requirements.apt

Preparing the application to receive the tsuru environment related to the mysqgl service

$ sed "s/’database_name_here’ /getenv (' MYSQL_DATABASE_NAME’) /; \
s/’ username_here’ /getenv (' MYSQL_USER’) /; \
s/’ localhost’ /getenv (' MYSQL_HOST’) /; \
s/’ password_here’ /getenv (' MYSQL_PASSWORD’) /" \
wp-config-sample.php > wp-config.php

Creating a local git repository

git init

git add

git commit -m ’“initial project version’

0 AN %

s %

H 0

w0 %

4.7.4 Git deployment

When you create a new app, tsuru will display the Git remote that you should use. You can always get it using app-info
command:

S tsuru app-info --app blog
Application: blog

Repository: git@git.tsuru.io:blog.git
Platform: php

Teams: tsuruteam

Address:

The git remote will be used to deploy your application using git. You can just push to tsuru remote and your project
will be deployed:

S git push git@git.tsuru.io:blog.git master
Counting objects: 119, done.

Delta compression using up to 4 threads.
Compressing objects: 100% (53/53), done.

Writing objects: 100% (119/119), 16.24 KiB, done.
Total 119 (delta 55), reused 119 (delta 55)

4.7. Deploying PHP applications in tsuru 45

http://wordpress.org/latest.zip
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Display_information_about_an_app

tsuru Documentation, Release 0.10.3

remote:

remote: —---> tsuru receiving push

remote:

remote: From git://cloud.tsuru.io/blog.git
remote: * branch master —> FETCH_HEAD
remote:

remote: -—--> Installing dependencies
#tHE#AF A H AR FA AR HAF AR AR A HAH S

OMIT (see below)
#E#HHAHARAEARAAHAAA A AFA AR AHAEA A
remote: -——--> Restarting your app

remote:

remote: -—--> Deploy done!

remote:

To git@git.tsuru.io:blog.git
a2llfba..bbf5b53 master —-> master

If you get a “Permission denied (publickey).”, make sure you’re member of a team and have a public key added to
tsuru. To add a key, use key-add command:

S tsuru key-add ~/.ssh/id_dsa.pub

You canuse git remote add to avoid typing the entire remote url every time you want to push:

S git remote add tsuru git@git.tsuru.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the ——app flag from now on:

S tsuru app-info

Application: blog

Repository: git@git.tsuru.io:blog.git
Platform: php

Teams: tsuruteam

Address: blog.cloud.tsuru.io

Units:

R Fom +
| Unit | State |
fom fomm +
| 9e70748f4f25 | started |
fomm fomm +

For more details on the ——app flag, see “Guessing app names” section of tsuru command documentation.

4.7.5 Listing dependencies
In the last section we omitted the dependencies step of deploy. In tsuru, an application can have two kinds of depen-
dencies:

¢ Operating system dependencies, represented by packages in the package manager of the underlying operating
system (e.g.: yum and apt—get);

* Platform dependencies, represented by packages in the package manager of the platform/language (e.g. in
Python, pip).

46 Chapter 4. Using

http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server
http://godoc.org/github.com/tsuru/tsuru-client/tsuru#hdr-Guessing_app_names

tsuru Documentation, Release 0.10.3

All apt —get dependencies must be specified in a requirements. apt file, located in the root of your application,
and pip dependencies must be located in a file called requirements. txt, also in the root of the application. Since
we will use MySQL with PHP, we need to install the package depends on just one apt —get package: php5-mysql,
so here is how requirements.apt looks like:

php5-mysqgl

You can see the complete output of installing these dependencies below:

% git push tsuru master
####HAAARAAA A AHARA A AFAAA A A AR

OMIT
#HAAEAAAAAAFA A A AFARARA AR A AAAHAS

Counting objects: 1155, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (1124/1124), done.

Writing objects: 100% (1155/1155), 4.01 MiB | 327 KiB/s, done.
Total 1155 (delta 65), reused 0 (delta 0)

remote: Cloning into ’/home/application/current’...
remote: Reading package lists...

remote: Building dependency tree...

remote: Reading state information...

remote: The following extra packages will be installed:

remote: libmysglclient18 mysgl-common
remote: The following NEW packages will be installed:
remote: libmysglclientl18 mysgl-common php5-mysqgl

remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
remote: Need to get 1042 kB of archives.
remote: After this operation, 3928 kB of additional disk space will be used.

remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysgl-common all 5.5.27-Oubuntu2 [13.7]
remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqglclientl8 amdé64 5.5.27-0ubuntu?2
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main php5-mysgql amd64 5.4.6-1lubuntul [79.0 ki

remote: Fetched 1042 kB in 1s (739 kB/s)
remote: Selecting previously unselected package mysgl-common.

remote: (Reading database ... 23874 files and directories currently installed.)

remote: Unpacking mysgl-common (from .../mysgl-common_5.5.27-0ubuntu2_all.deb)

remote: Selecting previously unselected package libmysglclientl8:amd64.

remote: Unpacking libmysglclientl8:amd64 (from .../libmysglclientl18_5.5.27-0ubuntu2_amdé64.deb)
remote: Selecting previously unselected package php5-mysqgl.

remote: Unpacking php5-mysgl (from .../php5-mysql_5.4.6-1ubuntul_amd64.deb)

remote: Processing triggers for libapache2-mod-phpb5

remote: * Reloading web server config

remote: ...done.

remote: Setting up mysgl-common (5.5.27-0ubuntu2)

remote: Setting up libmysqglclientl8:amd64 (5.5.27-0ubuntu2)

remote: Setting up phpS5-mysgl (5.4.6-1ubuntul)

remote: Processing triggers for libc-bin

remote: ldconfig deferred processing now taking place

remote: Processing triggers for libapacheZ2-mod-phpb5

remote: *x Reloading web server config

remote: . ..done.

remote: sudo: unable to resolve host 8cf20£4da877

remote: sudo: unable to resolve host 8cf20£4da877

remote: debconf: unable to initialize frontend: Dialog

remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer,
remote: debconf: falling back to frontend: Readline

remote: debconf: unable to initialize frontend: Dialog

remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer,
remote: debconf: falling back to frontend: Readline

4.7. Deploying PHP applications in tsuru 47

or withou

or withou

tsuru Documentation, Release 0.10.3

remote:

remote: Creating config file /etc/php5/mods-available/mysql.ini with new version

remote: debconf: unable to initialize frontend: Dialog

remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or withou
remote: debconf: falling back to frontend: Readl