

 Navigation

 	
 index

 	
 next |

 	tsuru 0.1 documentation

Documentation

	Why Tsuru?.

	Overview

	FAQ.

	releases

Install Tsuru

	Tsuru and juju

	Tsuru and docker on ubuntu

	Tsuru and docker on centos

Configure and run Tsuru

	docker provisioner architecture

	configuration reference

	backing up Tsuru

	mysql

Use Tsuru command-line and deploy your applications

	building your application

	python/django

	ruby/rails

	php

	go

	understanding deployment hooks

	recovery and troubleshooting

	Tsuru command-line installation guide

	Tsuru command-line usage guide

	using services

Develop applications and services for Tsuru clouds

	API reference

	building your service

	crane usage guide

	services api workflow

Get Involved

	community

Contribute to Tsuru

	coding style

	how to contribute

	setting up your local environment

	Building a fully functional development environment with Vagrant

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

API reference

1. Endpoints

1.1 Apps

List apps

	Method: GET

	URI: /apps

	Format: json

Returns 200 in case of success, and json in the body of the response containing the app list.

Example:

GET /apps HTTP/1.1
Content-Length: 82
[{"Ip":"10.10.10.10","Name":"app1","Units":[{"Name":"app1/0","State":"started"}]}]

Info about an app

	Method: GET

	URI: /apps/:appname

	Format: json

Returns 200 in case of success, and a json in the body of the response containing the app content.

Example:

GET /apps/myapp HTTP/1.1
Content-Length: 284
{"Name":"app1","Framework":"php","Repository":"git@git.com:php.git","State":"dead", "Units":[{"Ip":"10.10.10 .10","Name":"app1/0","State":"started"}, {"Ip":"9.9.9.9","Name":"app1/1","State":"started"}, {"Ip":"","Name":"app1/2","Stat e":"pending"}],"Teams":["tsuruteam","crane"]}

Remove an app

	Method: DELETE

	URI: /apps/:appname

Returns 200 in case of success.

Example:

DELETE /apps/myapp HTTP/1.1

Create an app

	Method: POST

	URI: /apps

	Format: json

Returns 200 in case of success, and json in the body of the response containing the status and the url for git repository.

Example:

POST /apps HTTP/1.1
{"status":"success", "repository_url":"git@tsuru.plataformas.glb.com:ble.git"}

Restart an app

	Method: GET

	URI: /apps/<appname>/restart

Returns 200 in case of success.

Example:

GET /apps/myapp/restart HTTP/1.1

Get app environment variables

	Method: GET

	URI: /apps/<appname>/env

Returns 200 in case of success, and json in the body returning a dictionary with environment names and values..

Example:

GET /apps/myapp/env HTTP/1.1
{"DATABASE_HOST":"localhost"}

Set an app environment

	Method: POST

	URI: /apps/<appname>/env

Returns 200 in case of success.

Example:

POST /apps/myapp/env HTTP/1.1

Delete an app environment

	Method: DELETE

	URI: /apps/<appname>/env

Returns 200 in case of success.

Example:

DELETE /apps/myapp/env HTTP/1.1

Swapping two apps

	Method: PUT

	URI: /swap?app1=appname&app2=anotherapp

Returns 200 in case of success.

Example:

PUT /swap?app1=myapp&app2=anotherapp

1.2 Services

List services

	Method: GET

	URI: /services

	Format: json

Returns 200 in case of success.

Example:

GET /services HTTP/1.1
Content-Length: 67
{"service": "mongodb", "instances": ["my_nosql", "other-instance"]}

Create a new service

	Method: POST

	URI: /services

	Format: yaml

	Body: a yaml with the service metadata.

Returns 200 in case of success.
Returns 403 if the user is not a member of a team.
Returns 500 if the yaml is invalid.
Returns 500 if the service name already exists.

Example:

POST /services HTTP/1.1
Body:
 `id: some_service
endpoint:
 production: someservice.com`

Remove a service

	Method: DELETE

	URI: /services/<servicename>

Returns 204 in case of success.
Returns 403 if user has not access to the server.
Returns 403 if service has instances.
Returns 404 if service is not found.

Example:

DELETE /services/mongodb HTTP/1.1

Update a service

	Method: PUT

	URI: /services

	Format: yaml

	Body: a yaml with the service metadata.

Returns 200 in case of success.
Returns 403 if the user is not a member of a team.
Returns 500 if the yaml is invalid.
Returns 500 if the service name already exists.

Example:

PUT /services HTTP/1.1
Body:
 `id: some_service
endpoint:
 production: someservice.com`

Get info about a service

	Method: GET

	URI: /services/<servicename>

	Format: json

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

GET /services/mongodb HTTP/1.1
[{"Name": "my-mongo", "Teams": ["myteam"], "Apps": ["myapp"], "ServiceName": "mongodb"}]

Get service documentation

	Method: GET

	URI: /services/<servicename>/doc

	Format: text

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

GET /services/mongodb/doc HTTP/1.1
Mongodb exports the ...

Update service documentation

	Method: PUT

	URI: /services/<servicename>/doc

	Format: text

	Body: text with the documentation

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

PUT /services/mongodb/doc HTTP/1.1
Body: Mongodb exports the ...

Grant access to a service

	Method: PUT

	URI: /services/<servicename>/<teamname>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

PUT /services/mongodb/cobrateam HTTP/1.1

Revoke access from a service

	Method: DELETE

	URI: /services/<servicename>/<teamname>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

DELETE /services/mongodb/cobrateam HTTP/1.1

1.3 Service instances

Add a new service instance

	Method: POST

	URI: /services/instances

	Body: {“name”: “mymysql”: “service_name”: “mysql”}

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

POST /services/instances HTTP/1.1
{"name": "mymysql": "service_name": "mysql"}

Remove a service instance

	Method: DELETE

	URI: /services/instances/<serviceinstancename>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

DELETE /services/instances/mymysql HTTP/1.1

Bind a service instance with an app

	Method: PUT

	URI: /services/instances/<serviceinstancename>/<appname>

	Format: json

Returns 200 in case of success, and json with the environment variables to be exported
in the app environ.
Returns 403 if the user has not access to the app.
Returns 404 if the application does not exists.
Returns 404 if the service instance does not exists.

Example:

PUT /services/instances/mymysql/myapp HTTP/1.1
Content-Length: 29
{"DATABASE_HOST":"localhost"}

Unbind a service instance with an app

	Method: DELETE

	URI: /services/instances/<serviceinstancename>/<appname>

Returns 200 in case of success.
Returns 403 if the user has not access to the app.
Returns 404 if the application does not exists.
Returns 404 if the service instance does not exists.

Example:

DELETE /services/instances/mymysql/myapp HTTP/1.1

List all services and your instances

	Method: GET

	URI: /services/instances

	Format: json

Returns 200 in case of success and a json with the service list.

Example:

GET /services/instances HTTP/1.1
Content-Length: 52
[{"service": "redis", "instances": ["redis-globo"]}]

Get an info about a service instance

	Method: GET

	URI: /services/instances/<serviceinstancename>

	Format: json

Returns 200 in case of success and a json with the service instance data.
Returns 404 if the service instance does not exists.

Example:

GET /services/instances/mymysql HTTP/1.1
Content-Length: 71
{"name": "mongo-1", "servicename": "mongodb", "teams": [], "apps": []}

service instance status

	Method: GET

	URI: /services/instances/<serviceinstancename>/status

Returns 200 in case of success.

Example:

GET /services/instances/mymysql/status HTTP/1.1

1.4 Quotas

Get quota info of an user

	Method: GET

	URI: /quota/<user>

	Format: json

Returns 200 in case of success, and json with the quota info.

Example:

GET /quota/wolverine HTTP/1.1
Content-Length: 29
{"items": 10, "available": 2}

1.5 Healers

List healers

	Method: GET

	URI: /healers

	Format: json

Returns 200 in case of success, and json in the body with a list of healers.

Example:

GET /healers HTTP/1.1
Content-Length: 35
[{"app-heal": "http://healer.com"}]

Execute healer

	Method: GET

	URI: /healers/<healer>

Returns 200 in case of success.

Example:

GET /healers/app-heal HTTP/1.1

1.6 Platforms

List platforms

	Method: GET

	URI: /platforms

	Format: json

Returns 200 in case of success, and json in the body with a list of platforms.

Example:

GET /platforms HTTP/1.1
Content-Length: 67
[{Name: "python"},{Name: "java"},{Name: "ruby20"},{Name: "static"}]

1.7 Users

Create an user

	Method: POST

	URI: /users

	Body: {“email”:”nobody@globo.com”,”password”:”123456”}

Returns 200 in case of success.
Returns 400 if the json is invalid.
Returns 400 if the email is invalid.
Returns 400 if the password characters length is less than 6 and greater than 50.
Returns 409 if the email already exists.

Example:

POST /users HTTP/1.1
Body: `{"email":"nobody@globo.com","password":"123456"}`

Reset password

	Method: POST

	URI: /users/<email>/password?token=token

Returns 200 in case of success.
Returns 404 if the user is not found.

The token parameter is optional.

Example:

POST /users/user@email.com/password?token=1234 HTTP/1.1

Login

	Method: POST

	URI: /users/<email>/tokens

	Body: {“password”:”123456”}

Returns 200 in case of success.
Returns 400 if the json is invalid.
Returns 400 if the password is empty or nil.
Returns 404 if the user is not found.

Example:

POST /users/user@email.com/tokens HTTP/1.1
{"token":"e275317394fb099f62b3993fd09e5f23b258d55f"}

Logout

	Method: DELETE

	URI: /users/tokens

Returns 200 in case of success.

Example:

DELETE /users/tokens HTTP/1.1

Change password

	Method: PUT

	URI: /users/password

	Body: {“old”:”123456”,”new”:”654321”}

Returns 200 in case of success.
Returns 400 if the json is invalid.
Returns 400 if the old or new password is empty or nil.
Returns 400 if the new password characters length is less than 6 and greater than 50.
Returns 403 if the old password does not match with the current password.

Example:

PUT /users/password HTTP/1.1
Body: `{"old":"123456","new":"654321"}`

Remove an user

	Method: DELETE

	URI: /users

Returns 200 in case of success.

Example:

DELETE /users HTTP/1.1

Add public key to user

	Method: POST

	URI: /users/keys

	Body: {“key”:”my-key”}

Returns 200 in case of success.

Example:

POST /users/keys HTTP/1.1
Body: `{"key":"my-key"}`

Remove public key from user

	Method: DELETE

	URI: /users/keys

	Body: {“key”:”my-key”}

Returns 200 in case of success.

Example:

DELETE /users/keys HTTP/1.1
Body: `{"key":"my-key"}`

1.8 Teams

List teams

	Method: GET

	URI: /teams

	Format: json

Returns 200 in case of success, and json in the body with a list of teams.

Example:

GET /teams HTTP/1.1
Content-Length: 22
[{"name": "teamname"}]

Info about a team

	Method: GET

	URI: /teams/<teamname>

	Format: json

Returns 200 in case of success, and json in the body with the info about a team.

Example:

GET /teams/teamname HTTP/1.1
{"name": "teamname", "users": ["user@email.com"]}

Add a team

	Method: POST

	URI: /teams

Returns 200 in case of success.

Example:

POST /teams HTTP/1.1
{"name": "teamname"}

Remove a team

	Method: DELETE

	URI: /teams/<teamname>

Returns 200 in case of success.

Example:

DELELE /teams/myteam HTTP/1.1

Add user to team

	Method: PUT

	URI: /teams/<teanmaname>/<username>

Returns 200 in case of success.

Example:

PUT /teams/myteam/myuser HTTP/1.1

Remove user from team

	Method: DELETE

	URI: /teams/<teanmaname>/<username>

Returns 200 in case of success.

Example:

DELETE /teams/myteam/myuser HTTP/1.1

1.9 Tokens

Generate app token

	Method: POST

	URI: /tokens

	Format: json

Returns 200 in case of success, with the token in the body.

Example:

POST /tokens HTTP/1.1
 {
 "Token": "sometoken",
 "Creation": "2001/01/01",
 "Expires": 1000,
 "AppName": "appname",
 }

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Build your own PaaS

This document describes how to create a private PaaS service using tsuru. It
contains instructions on how to build tsuru and some of its components from
source.

This document assumes that tsuru is being installed on a Ubuntu machine. You
can use equivalent packages for beanstalkd, git, MongoDB and other tsuru
dependencies. Please make sure you satisfy minimal version requirements.

There’s also a contributed Vagrant [http://www.vagrantup.com/] box, that
setups a PaaS using Chef [http://www.opscode.com/chef/]. You can check this
out: https://github.com/hfeeki/vagrant-tsuru.

Overview

The Tsuru PaaS is composed by multiple components:

	tsuru server

	tsuru collector

	gandalf

	charms

And these components have their own dependencies, like:

	mongodb (>=2.2.0)

	beanstalkd (>=1.4.6)

	git-daemon (git>=1.7)

	juju (python version, >=0.5)

	libyaml (>=0.1.4)

Requirements

1. Operating System

The steps below will guide you throught the install process on Ubuntu Server
12.04.

If you try to build tsuru server on most Linux systems, you should have few
problems and if there are problems, we are able to help you. Just
ask on #tsuru channel on irc.freenode.net.

	Have you tried tsuru server on other systems? Let us know
and contribute to the project.

2. Hardware

Tsuru server is a lightweight framework and can be run in a single small machine along with all the deps.

3. Software

3.1 MongoDB

Tsuru needs MongoDB stable, distributed by 10gen. It’s pretty easy to
get it running on Ubuntu [http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/]

3.2 Juju

Tsuru uses juju to orchestrates your “apps”. To install juju follow the juju
install guide [https://juju.ubuntu.com/docs/getting-started.html#installation].
Please make sure that you configure Juju [https://juju.ubuntu.com/docs/getting-started.html#configuring-your-environment-using-ec2]
properly. Then run:

$ juju bootstrap

Juju Charms define how platforms will be installed. You may take a look at
juju charms collection [http://jujucharms.com/charms] or use the charms
provided by tsuru [https://github.com/globocom/charms]

Put it somewhere and define the setting juju:charms-path in the configuration
file:

$ git clone git://github.com/globocom/charms.git /home/me/charms
$ cat /etc/tsuru/tsuru.conf
...
juju:
 charms-path: /home/me/charms

3.3 Beanstalkd

Tsuru uses Beanstalkd [http://kr.github.com/beanstalkd/] as a work queue.
Install the latest version, by doing this:

$ sudo apt-get install -y beanstalkd

3.4 Gandalf

Tsuru uses Gandalf [https://github.com/globocom/gandalf] to manage git
repositories, to get it installed follow this steps [https://gandalf.readthedocs.org/en/latest/install.html]

Installing from PPA

You can use apt-get to install Gandalf using Tsuru’s ppa [https://launchpad.net/~tsuru/+archive/ppa]:

$ sudo apt-add-repository ppa:tsuru/lvm2 -y
$ sudo apt-add-repository ppa:tsuru/ppa -y
$ sudo apt-get update
$ sudo apt-get install tsuru-server

Then you will need to edit the file /etc/default/tsuru-server and enable the API and the collector:

TSR_API_ENABLED=yes
TSR_COLLECTOR_ENABLED=yes

Make sure you edit the configuration file (see Configuring tsuru) and then
start API and collector using upstart:

$ sudo start tsuru-server-api
$ sudo start tsuru-server-collector

Installing pre-built binaries

You can download pre-built binaries of tsuru and collector. There are binaries
available only for Linux 64 bits, so make sure that uname -m prints
x86_64:

$ uname -m
x86_64

Then download and install the tsr binary:

$ curl -sL https://s3.amazonaws.com/tsuru/dist-server/tsr-master.tar.gz | sudo tar -xz -C /usr/bin

These commands will install tsr in /usr/bin
(you will need to be a sudoer and provide your password). You may install this
command in your PATH.

Installing from source

	Build dependencies

To build tsuru from source you will need to install the following packages

$ sudo apt-get install -y golang-go git mercurial bzr gcc

	Install the tsuru tsr

Add the following lines to your ~/.bashrc:

$ export GOPATH=/home/ubuntu/.go
$ export PATH=${GOPATH}/bin:${PATH}

Then execute:

$ source ~/.bashrc
$ go get github.com/globocom/tsuru/tsr

Configuring tsuru

Before running tsuru, you must configure it. By default, tsuru will look for
the configuration file in the /etc/tsuru/tsuru.conf path. You can check a
sample configuration file and documentation for each tsuru setting in the
“Configuring tsuru” page.

You can download the sample configuration file from Github:

$ [sudo] mkdir /etc/tsuru
$ [sudo] curl -sL https://raw.github.com/globocom/tsuru/master/etc/tsuru.conf -o /etc/tsuru/tsuru.conf

Make sure you define the required settings (database connection, authentication
configuration, AWS credentials, etc.) before running tsuru.

Running tsuru

Now that you have tsr properly installed, and you
configured tsuru, you’re three steps away from running it.

	Start mongodb

$ sudo service mongodb start

	Start beanstalkd

$ sudo service beanstalkd start

	Start API and collector

$ tsr api &
$ tsr collector &

One can see the logs in:

$ tail -f /var/log/syslog

Using tsuru

Congratulations! At this point you should have a working tsuru server running
on your machine, follow the tsuru client usage guide to start build your apps.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

community

irc channel

#tsuru channel on irc.freenode.net - chat with other tsuru users and developers

ticket system

ticket system [https://github.com/globocom/tsuru/issues] - report bugs and make feature requests

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Configuring tsuru

Tsuru uses a configuration file in YAML [http://www.yaml.org/] format. This
document describes what each option means, and how it should look like.

Notation

Tsuru uses a colon to represent nesting in YAML. So, whenever this document say
something like key1:key2, it refers to the value of the key2 that is
nested in the block that is the value of key1. For example,
database:url means:

database:
 url: <value>

Tsuru configuration

This section describes tsuru’s core configuration. Other sections will include
configuration of optional components, and finally, a full sample file.

HTTP server

Tsuru provides a REST API, that supports HTTP and HTTP/TLS (a.k.a. HTTPS). Here
are the options that affect how tsuru’s API behaves:

listen

listen defines in which address tsuru webserver will listen. It has the
form <host>:<port>. You may omit the host (example: :8080). This setting
has no default value.

use-tls

use-tls indicates whether tsuru should use TLS or not. This setting is
optional, and defaults to “false”.

tls:cert-file

tls:cert-file is the path to the X.509 certificate file configured to serve
the domain. This setting is optional, unless use-tls is true.

tls:key-file

tls:key-file is the path to private key file configured to serve the
domain. This setting is optional, unless use-tls is true.

Database access

Tsuru uses MongoDB as database manager, to store information about users, VM’s,
and its components. Regarding database control, you’re able to define to which
database server tsuru will connect (providing a MongoDB connection string [http://docs.mongodb.org/manual/reference/connection-string/]). The database
related options are listed below:

database:url

database:url is the database connection string. It is a mandatory setting
and has no default value. Examples of strings include the basic “127.0.0.1” and
the more advanced “mongodb://user@password:127.0.0.1:27017/database”. Please
refer to MongoDB documentation [http://docs.mongodb.org/manual/reference/connection-string/] for more
details and examples of connection strings.

database:name

database:name is the name of the database that tsuru uses. It is a
mandatory setting and has no default value. An example of value is “tsuru”.

Collector

Collector is a tsuru agent responsible for collecting information about app units,
interacting with the provisioner. This agent runs a loop in configurable interval.

collector:ticker-time

collector:ticker-time is interval for running the loop, specified in seconds.
Default value: 60 seconds.

Email configuration

Tsuru sends email to users when they request password recovery. In order to
send those emails, Tsuru needs to be configured with some SMTP settings.
Omitting these settings won’t break Tsuru, but users would not be able to reset
their password automatically.

smtp:server

The SMTP server to connect to. It must be in the form <host>:<port>. Example:
“smtp.gmail.com:587”.

smtp:user

The user to authenticate with the SMTP sever. Currently, Tsuru requires
authenticated sessions.

smtp:password

The password for authentication within the SMTP server.

Git configuration

Tsuru uses Gandalf [https://github.com/globocom/gandalf] to manage git
repositories. Gandalf exposes a REST API for repositories management, and tsuru
uses it. So tsuru requires information about the Gandalf HTTP server, and also
its git-daemon and SSH service.

Tsuru also needs to know where the git repository will be cloned and stored in
units storage. Here are all options related to git repositories:

git:unit-repo

git:unit-repo is the path where tsuru will clone and manage the git
repository in all units of an application. This is where the code of the
applications will be stored in their units. Example of value:
/home/application/current.

git:api-server

git:api-server is the address of the Gandalf API. It should define the
entire address, including protocol and port. Examples of value:
http://localhost:9090 and https://gandalf.tsuru.io:9595.

git:rw-host

git:rw-host is the host that will be used to build the push URL. For
example, when the value is “tsuruhost.com”, the push URL will be something like
git@tsuruhost.com:<app-name>.git.

git:ro-host

git:ro-host is the host that units will use to clone code from users
applications. It’s used to build the read only URL of the repository. For
example, when the value is “tsuruhost.com”, the read-only URL will be something
like git://tsuruhost.com/<app-name>.git.

Authentication configuration

Tsuru has its own authentication mechanism, that hashes passwords brcypt.
Tokens are generated during authentication, and are hashed using SHA512.

This mechanism requires two settings to operate: auth:hash-cost and
auth:token-expire-days. Each setting is described below.

The auth section also controls whether user registration is on or off. When
user registration is off, the user creation URL is not registered in the
server.

auth:user-registration

This flag indicates whether user registration is enabled. This setting is
optional, and defaults to false.

auth:hash-cost

This number indicates how many CPU time you’re willing to give to hashing
calculation. It is an absolute number, between 4 and 31, where 4 is faster and
less secure, while 31 is very secure and very slow.

auth:token-expire-days

Whenever a user logs in, tsuru generates a token for him/her, and the user may
store the token. auth:token-expire-days setting defines the amount of days
that the token will be valid. This setting is optional, and defaults to “7”.

auth:max-simultaneous-sessions

Tsuru can limit the number of simultaneous sessions per user. This setting is
optional, and defaults to “unlimited”.

Amazon Web Services (AWS) configuration

Tsuru is able to use Amazon Web Services (AWS) Simple Storage Service (S3) to
provide static storage for apps. Whenever bucket-support is true, Tsuru
will create a S3 bucket and AWS Identity and Access Management (IAM)
credentials to access this bucket during the app creation process. In order to
be able to communicate with AWS API’s, tsuru needs some settings, listed below.

For more details on AWS authentication, AWS AIM and AWS S3, check AWS docs:
https://aws.amazon.com/documentation/.

bucket-support

bucket-support is a boolean flag, that turns on the bucket per app feature.
This field is optional, and defaults to false.

aws:access-key-id

aws:access-key-id is the access key ID used by tsuru to authenticate with
AWS API. Given that bucket-support is true, this setting is required and
has no default value.

aws:secret-access-key

aws:secret-access-key is the secret access key used by tsuru to
authenticate with AWS API. Given that bucket-support is true, this
setting is required and has no default value.

aws:ec2:endpoint

aws:ec2:endpoint is the EC2 endpoint that tsuru will call to communicate
with ec2. It’s only used for juju healers.

aws:iam:endpoint

aws:iam:endpoint is the IAM endpoint that tsuru will call to create
credentials for its applications. This setting is optional, and defaults to
https://iam.amazonaws.com/. You should change this setting only when using
another service that also implements IAM’s API.

aws:s3:region-name

aws:s3:region-name is the name of the region that tsuru will use to create
S3 buckets. Given that bucket-support is true, this setting is required and
has no default value.

aws:s3:endpoint

aws:s3:endpoint is the S3 endpoint that tsuru will call to create buckets
for its applications. Given that bucket-support is true, this setting is
required and has no default value.

aws:s3:location-constraint

aws:s3:location-constraint indicates whether buckets should be stored in
the selected region. Given that bucket-support is true, this setting is
required and has no default value.

For more details, check the documentation for buckets and regions:
http://docs.aws.amazon.com/AmazonS3/latest/dev/LocationSelection.html.

aws:s3:lowercase-bucket

aws:s3:lowercase-bucket will be true if the region requires bucket names to
be lowercase. Given that bucket-support is true, this setting is required
and has no default value.

queue configuration

Tsuru uses a work queue for asynchronous tasks. By default it will use
beanstalkd [http://kr.github.com/beanstalkd]. You can customize the used
queue, and settings related to the queue (like the address where beanstalkd is
listening).

Besides beanstalkd, Tsuru also supports Redis as a working queue. In order to
use Redis, Tsuru administrators must set queue to redis.

Creating a new queue provider is as easy as implementing an interface [http://godoc.org/github.com/globocom/tsuru/queue#Q].

queue

queue is the name of the queue implementation that tsuru will use. This
setting is optional and defaults to “beanstalkd”.

queue-server

queue-server is the TCP address where beanstalkd is listening. This setting
is optional and defaults to “localhost:11300”.

redis-queue:host

redis-queue:host is the host of the Redis server to be used for the working
queue. This settings is optional and defaults to “localhost”.

redis-queue:port

redis-queue:port is the port of the Redis server to be used for the working
queue. This settings is optional and defaults to 6379.

redis-queue:password

redis-queue:password is the password of the Redis server to be used for the
working queue. This settings is optional and defaults to “”, indicating that
the Redis server is not authenticated.

redis-queue:db

redis-queue:password is the database number of the Redis server to be used
for the working queue. This settings is optional and defaults to 3.

Admin users

Tsuru has a very simple way to identify admin users: an admin user is a user
that is the member of the admin team, and the admin team is defined in the
configuration file, using the admin-team setting.

admin-team

admin-team is the name of the administration team for the current tsuru
installation. All members of the administration team is able to use the
tsuru-admin command.

Quota management

Tsuru can, optionally, manage quotas. Currently, there are two available
quotas: apps per user and units per app.

Tsuru administrators can control the default quota for new users and new apps
in the configuration file, and use tsuru-admin command to change quotas for
users or apps. Quota management is disabled by default, to enable it, just set
the desired quota to a positive integer.

quota:units-per-app

quota:units-per-app is the default value for units per-app quota. All new
apps will have at most the number of units specified by this setting. This
setting is optional, and defaults to “unlimited”.

quota:apps-per-user

quota:apps-per-user is the default value for apps per-user quota. All new
users will have at most the number of apps specified by this setting. This
setting is optional, and defaults to “unlimited”.

Log level

debug

false is the default value, so you won’t see any
noises on logs, to turn it on set it to true, e.g.: debug: true

Defining the provisioner

Tsuru supports multiple provisioners. A provisioner is a Go type that satisfies
an interface. By default, tsuru will use JujuProvisioner (identified by the
string “juju”). To use other provisioner, that has been already registered with
tsuru, one must define the setting provisioner.

provisioner

provisioner is the string the name of the provisioner that will be used by
tsuru. This setting is optional and defaults to “juju”.

You can also configure the provisioner (check the next section for details on
Juju configuration).

Juju provisioner configuration

“juju” is the default provisioner used by Tsuru. It’s named after the tool
used by tsuru [https://juju.ubuntu.com/] to provision and manage instances.
It’s a extended version of Juju, supporting Amazon’s Virtual Private Cloud
(VPC) [https://aws.amazon.com/vpc/] and Elastic Load Balancing (ELB) [https://aws.amazon.com/elasticloadbalancing/].

Charms path

Juju describe services as Charms [http://jujucharms.com/]. Each tsuru
platform is a Juju charm. The tsuru team provides a collection of charms with
customized hooks: https://github.com/globocom/charms. In order (for more
details, refer to build documentation).

juju:charms-path

charms-path is the path where tsuru should look for charms when creating
new apps. If you specify the value “/etc/juju/charms”, your charms tree should
look something like this:

.
├── centos
│ ├── ...
└── precise
 ├── go
 │ ├── config.yaml
 │ ├── hooks
 │ ...
 │ └── metadata.yaml
 ├── nodejs
 │ ├── config.yaml
 │ ├── hooks
 │ ...
 │ └── metadata.yaml
 ├── python
 │ ├── config.yaml
 │ ├── hooks
 │ ...
 │ ├── metadata.yaml
 │ └── utils
 │ ├── circus.ini
 │ └── nginx.conf
 ├── rack
 │ ├── config.yaml
 │ ├── hooks
 │ ...
 │ ├── metadata.yaml
 ├── ruby
 │ ├── config.yaml
 │ ├── hooks
 │ ...
 │ └── metadata.yaml
 └── static
 ├── config.yaml
 ├── hooks
 ...
 └── metadata.yaml

Given that you’re using juju, this setting is mandatory and has no default
value.

Storing units in the database

Juju provisioner uses the database to store information about units. It uses a
MongoDB collection that will be located in the same database used by tsuru. One
can set the name of this collection using the setting described below:

juju:units-collection

juju:units-collection defines the name of the collection that Juju
provisioner should use to store information about units. This setting is
required by the provisioner and has no default value.

Elastic Load Balancing support

Juju provisioner can manage load balancers per app using Elastic Load Balancing
(ELB) API, provided by Amazon. In order to enable Elastic Load Balancing
support, one must set juju:use-elb to true and define other settings
described below:

juju:use-elb

juju:use-elb is a boolean flag that indicates whether Juju provisioner will
use ELB. When enabled, it will create a load balancer per app, registering and
deregistering units as they come and go, and deleting the load balancer when
the app is removed. This setting is optional and defaults to false.

Whenever juju:use-elb is defined to be true, other settings related to load
balancing become mandatory: juju:elb-endpoint, juju:elb-collection,
juju:elb-avail-zones (or juju:elb-vpc-subnets and
juju:elb-vpc-secgroups, see juju:elb-use-vpc for more details).

juju:elb-endpoint

juju:elb-endpoint is the ELB endpoint that tsuru will use to manage load
balancers. This setting has no default value, and is mandatory once
juju:use-elb is true. When juju:use-elb is false, the value of this
setting is irrelevant.

juju:elb-collection

juju:elb-collection is the name of the collection that Juju provisioner
will use to store information about load balancers.

This setting has no default value, and is mandatory once juju:use-elb is
true. When juju:use-elb is false, the value of this setting is irrelevant.

juju:elb-use-vpc

juju:elb-use-vpc is another boolean flag. It indicates whether load
balancers should be created using an Amazon Virtual Private Cloud. When this
setting is true, one must also define juju:elb-vpc-subnets and
juju:elb-vpc-secgroups.

This setting is optional, defaults to false and has no effect when
juju:use-elb is false.

juju:elb-vpc-subnets

juju:elb-vpc-subnets contains a list of subnets that will be attached to
the load balancer. This setting must be defined whenever juju:elb-use-vpc
is true. It has no default value.

juju:elb-vpc-secgroups

juju:elb-vpc-secgroups contains a list of security groups from which the
load balancer will inherit rules. This setting must be defined whenever
juju:elb-use-vpc is true. It has no default value.

juju:elb-avail-zones

juju:elb-avail-zones contains a list of availability zones that the load
balancer will communicate with. This setting has no effect when
juju:elb-use-vpc is true, has no default value and must be defined whenever
juju:elb-use-vpc is false.

Sample file

Here is a complete example, with S3, VPC, HTTP/TLS and load balancing enabled:

listen: ":8080"
use-tls: true
tls:
 cert-file: /etc/tsuru/tls/cert.pem
 key-file: /etc/tsuru/tls/key.pem
host: http://10.19.2.238:8080
database:
 url: 127.0.0.1:27017
 name: tsuru
git:
 unit-repo: /home/application/current
 host: gandalf.tsuru.io
 port: 8000
 protocol: http
auth:
 token-expire-days: 14
bucket-support: true
aws:
 access-key-id: access-key
 secret-access-key: s3cr3t
 iam:
 endpoint: https://iam.amazonaws.com/
 s3:
 region-name: sa-east-1
 endpoint: https://s3.amazonaws.com
 location-constraint: true
 lowercase-bucket: true
provisioner: juju
queue-server: "127.0.0.1:11300"
admin-team: admin
juju:
 charms-path: /etc/juju/charms
 units-collection: j_units
 use-elb: true
 elb-endpoint: https://elasticloadbalancing.amazonaws.com
 elb-collection: j_lbs
 elb-use-vpc: true
 elb-vpc-subnets:
 - subnet-a1a1a1
 elb-vpc-secgroups:
 - sg-a1a1a1

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

contribute

	Source hosted at GitHub [http://github.com/globocom/tsuru]

	Report issues on GitHub Issues [http://github.com/globocom/tsuru/issues]

Pull requests are very welcome! Make sure your patches are well tested and documented :)

development environment

See this guide to setting up you tsuru development environment.

And follow our coding style guide.

running the tests

You can use make to install all tsuru dependencies and run tests. It will also check if everything is ok with your GOPATH setup:

$ make

writing docs

Tsuru documentation is written using Sphinx [http://sphinx.pocoo.org/], which uses RST [http://docutils.sourceforge.net/rst.html]. Check these tools docs to learn how to write docs for Tsuru.

building docs

In order to build the HTML docs, just run on terminal:

$ make doc

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Build your own PaaS with tsuru and Docker

This document describes how to create a private PaaS service using tsuru and docker.

This document assumes that tsuru is being installed on a Ubuntu 12.04 LTS 64-bit
machine.

Before install

Before install, let’s install curl and python-software-properties, that are used to install extra repositories.

apt-get update
apt-get install curl -qqy

apt-get install python-software-properties -qqy

Adding repositories

curl https://get.docker.io/gpg | apt-key add -
echo "deb http://get.docker.io/ubuntu docker main" | sudo tee /etc/apt/sources.list.d/docker.list

apt-add-repository ppa:tsuru/lvm2 -y
apt-add-repository ppa:tsuru/ppa -y

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
echo "deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen" | sudo tee /etc/apt/sources.list.d/mongodb.list

apt-get update

Installing mongo

apt-get install mongodb-10gen -qqy

Installing beanstalk

	::

	apt-get install beanstalkd -qqy
cat > /etc/default/beanstalkd <<EOF
BEANSTALKD_LISTEN_ADDR=127.0.0.1
BEANSTALKD_LISTEN_PORT=11300
DAEMON_OPTS=”-l $BEANSTALKD_LISTEN_ADDR -p $BEANSTALKD_LISTEN_PORT -b /var/lib/beanstalkd”
START=yes
EOF
service beanstalkd start

Installing redis

	::

	apt-get install redis-server -qqy

Installing hipache

	::

	apt-get install node-hipache -qqy
start hipache

Installing docker

	::

	apt-get install lxc-docker -qqy
sed -i.old -e ‘s;-d;-d -H tcp://127.0.0.1:4243;’ /etc/init/docker.conf
rm /etc/init/docker.conf.old
stop docker
start docker

Installing gandalf

	::

	apt-get install gandalf-server -qqy
hook_dir=/home/git/bare-template/hooks
mkdir -p $hook_dir
curl https://raw.github.com/globocom/tsuru/master/misc/git-hooks/post-receive -o ${hook_dir}/post-receive
chmod +x ${hook_dir}/post-receive
chown -R git:git /home/git/bare-template
cp /vagrant/gandalf.conf /etc/gandalf.conf
sed -i.old -e “s/{{{HOST_IP}}}/${host_ip}/” /etc/gandalf.conf

start gandalf-server
start git-daemon

Installing Tsuru api server

	::

	apt-get install tsuru-server -qqy

cp /vagrant/tsuru.conf /etc/tsuru/tsuru.conf
sed -i.old -e “s/{{{HOST_IP}}}/${host_ip}/” /etc/tsuru/tsuru.conf
sed -i.old -e ‘s/=no/=yes/’ /etc/default/tsuru-server
rm /etc/default/tsuru-server.old /etc/tsuru/tsuru.conf.old
start tsuru-ssh-agent
start tsuru-server-api
start tsuru-server-collector

Installing platforms

curl -O https://raw.github.com/globocom/tsuru/master/misc/platforms-setup.js
mongo tsuru platforms-setup.js
#git clone https://github.com/flaviamissi/basebuilder
#(cd basebuilder/python/ && docker -H 127.0.0.1:4243 build -t "tsuru/python" .)

Using tsuru

Congratulations! At this point you should have a working tsuru server running
on your machine, follow the tsuru client usage guide to start build your apps.

Adding Services

Here you will find a complete step-by-step example of how to install a mysql
service with tsuru: http://docs.tsuru.io/en/latest/services/mysql-example.html

DNS server

You can integrate any DNS server with tsuru. Here:
http://docs.tsuru.io/en/latest/misc/dns-forwarders.html you can find a
example of how to install a DNS server integrated with tsuru

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Build your own PaaS with tsuru and Docker on Centos

This document describes how to create a private PaaS service using tsuru and docker on Centos.

This document assumes that tsuru is being installed on a Centos (6.4+) machine. You
can use equivalent packages for beanstalkd, git, MongoDB and other tsuru
dependencies. Please make sure you satisfy minimal version requirements.

Just follow this steps:

DNS server

You can integrate any DNS server with tsuru. Here: http://docs.tsuru.io/en/latest/misc/dns-forwarders.html you can find a example of how to install a DNS server integrated with tsuru

Docker

To make docker working on a RHEL/Centos distro, you will need to use the EPEL repository [http://fedoraproject.org/wiki/EPEL], build a kernel with AUFS [http://aufs.sourceforge.net/] support, and install all dependencies as following:

Installing the EPEL respository
$ rpm -iUvh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
$ yum update -y

Here you can install our own kernel+lxc+docker or compile them
To install our RPM package ready to go:

Installing the EPEL respository
rpm -iUvh http://tsuru.s3.amazonaws.com/centos/docker-0.6.0-1.el6.x86_64.rpm \
http://tsuru.s3.amazonaws.com/centos/lxc-0.8.0-3.el6.x86_64.rpm \
http://tsuru.s3.amazonaws.com/centos/lxc-libs-0.8.0-3.el6.x86_64.rpm \
http://tsuru.s3.amazonaws.com/centos/kernel-ml-aufs-3.10.11-1.el6.x86_64.rpm

To Compile, just follow these steps

Download the kernel + dependencies for docker
$ yum install fedora-packager -y
you will need to perform these steps bellow with a unprivileged user, ex: su - tsuru
$ git clone https://github.com/sciurus/docker-rhel-rpm
$ cd docker-rhel-rpm
Remove auto restart of docker, as it will be managed by circus
$ sed -i 's|^%{_sysconfdir}/init/docker.conf||; s/.*source1.*//i' docker/docker.spec

Now, just follow the steps to build the kernel + lxc + docker from here: https://github.com/sciurus/docker-rhel-rpm/blob/master/README.md

In order to use docker, you will need to allow the ip forward
$ grep ^net.ipv4.ip_forward /etc/sysctl.conf > /dev/null 2>&1 && \
 sed -i 's/^net.ipv4.ip_forward.*/net.ipv4.ip_forward = 1/' /etc/sysctl.conf || \
 echo 'net.ipv4.ip_forward = 1' >> /etc/sysctl.conf
$ sysctl -p
You also need to disable selinux, adding the parameter "selinux=0" in your new kernel 3.10 (/boot/grub/grub.conf)
$ grep selinux=0 /boot/grub/menu.lst
Turn off your default firewall rules for now
$ service iptables stop
$ chkconfig iptables off

After build, install and reboot the server with the new kernel(it will take some time), you will need to install the tsuru’s dependencies

Tsuru’s Dependencies

Tsuru needs MongoDB stable, distributed by 10genr, Beanstalkd [http://kr.github.com/beanstalkd/] as work queue, git-daemon(necessary for Gandalf) and Redis for hipache [https://github.com/dotcloud/hipache/] pt-ge
Install the latest EPEL version, by doing this:

$ yum install mongodb-server beanstalkd git-daemon redis python-pip python-devel gcc gcc-c++ -y
$ service mongod start
$ service beanstalkd start
$ service redis start
$ chkconfig mongod on
$ chkconfig beanstalkd on
$ chkconfig redis on

Tsuru Setup

Tsuru uses Gandalf [https://github.com/globocom/gandalf/] to manage git repositories [https://gandalf.readthedocs.org/en/latest/install.html/], and hipache [https://github.com/dotcloud/hipache/] as router
To setup Tsuru, just follow this steps. Obs: It can be used to upgrade this services as needed

$ curl https://raw.github.com/globocom/tsuru/master/misc/functions-docker-centos.sh -o functions-docker-centos.sh
$ source functions-docker-centos.sh
Install Tsuru Server(tsr), Gandalf, Hipache and Circus for monitoring
$ install_services

Configuring

Before running tsuru, you must configure it. By default, tsuru will look for
the configuration file in the /etc/tsuru/tsuru.conf path. You can check a
sample configuration file and documentation for each tsuru setting in the
“Configuring tsuru” page.

You can download the sample configuration file from Github [https://raw.github.com/globocom/tsuru/master/etc/tsuru-docker.conf/]

By default, this configuration will use the tsuru image namespace, so if you try to create an application using python platform,
tsuru will search for an image named tsuru/python. You can change this default behavior by changing the docker:repository-namespace config field.

To automatically configure tsuru and all other services, just run the function presented in functions-docker-centos.sh file, as following

It will configure tsuru, gandalf, hipache and circus. If you had already done that before, your previously configuration will be lost
$ source functions-docker-centos.sh #you already did it above
$ configure_services_for_first_time
start circus
$ initctl start circusd

At that time, circus should be running and started all the tsuru services

Running

Now that you have tsr properly installed, and you
configured tsuru
Verify api, collector and docker-ssh-agent

$ ps -ef|grep ts[r]

Creating Docker Images

Now it’s time to install the docker images for your neededs platform. You can build your own docker image, or you can use ours own images as following

Add an alias for docker to make your life easier (add it to your .bash_profile)
$ alias docker='docker -H 127.0.0.1:4243'
Build the wanted platform, here we are adding the static platform(webserver)
$ docker build -t tsuru/static https://raw.github.com/flaviamissi/basebuilder/master/static/Dockerfile
Now you can see if your image is ready - you should see the tsuru/static as an repository
$ docker images
If you want all the other platforms, just run the command bellow
$ for image in nodejs php python ruby; do docker build -t tsuru/$image https://raw.github.com/flaviamissi/basebuilder/master/$image/Dockerfile;done
To see if everything went well - just take a look in the repository column
$ docker images
Now try to create your apps!

Using tsuru

Congratulations! At this point you should have a working tsuru server running
on your machine, follow the tsuru client usage guide to start build your apps.

Adding Services

Here you will find a complete step-by-step example of how to install a mysql service with tsuru: http://docs.tsuru.io/en/latest/services/mysql-example.html

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Download

Client binaries

tsuru clients are also distributed in binary version, so you can just download
an executable and put them somewhere in your PATH.

It’s important to note that all binaries are platform dependent. Currently, we
provide each of them in three flavors:

	darwin_amd64: This is Mac OS X, 64 bits. Make sure the command uname -ms
prints “Darwin x86_64”, otherwise this binary will not work in your system;

	linux_386: This is Linux, 32 bits. Make sure the command uname -ms
prints “Linux x86”, otherwise this binary will not work in your system;

	linux_amd64: This is Linux, 64 bits. Make sure the command uname -ms
prints “Linux x86_64”, otherwise this binary will not work in your system.

Below are the links to the binaries, you can just download, extract the archive
and put the binary somewhere in your PATH:

darwin_amd64

	tsuru: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-darwin-amd64.tar.gz

	tsuru-admin: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-admin-darwin-amd64.tar.gz

	crane: https://s3.amazonaws.com/tsuru/dist-cmd/crane-darwin-amd64.tar.gz

linux_386

	tsuru: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-linux-386.tar.gz

	tsuru-admin: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-admin-linux-386.tar.gz

	crane: https://s3.amazonaws.com/tsuru/dist-cmd/crane-linux-386.tar.gz

linux_amd64

	tsuru: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-linux-amd64.tar.gz

	tsuru-admin: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-admin-linux-amd64.tar.gz

	crane: https://s3.amazonaws.com/tsuru/dist-cmd/crane-linux-amd64.tar.gz

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Tsuru Frequently Asked Questions

	What is Tsuru?

	What is an application?

	What is a unit?

	What is a platform?

	What is a service?

	How does environment variables work?

	How does the quota system works?

	How routing works?

	How are Git repositories managed?

This document is an attempt to explain concepts you’ll face when deploying and
managing applications using Tsuru. To request additional explanations you can
open an issue on our issue tracker, talk to us at #tsuru @ freenode.net or open
a thread on our mailing list.

What is Tsuru?

Tsuru is an open source polyglot cloud application platform (PaaS). With tsuru,
you don’t need to think about servers at all. You can write apps in the
programming language of your choice, back it with add-on resources such as SQL
and NoSQL databases, memcached, redis, and many others. You manage your app
using the tsuru command-line tool and you deploy code using the Git revision
control system, all running on the tsuru infrastructure.

What is an application?

An application, in Tsuru, is a program’s source code, dependencies list - on
operational system and language level - and a Procfile with instructions on how
to run that program. An application has a name, a unique address, a Platform,
associated development teams, a repository and a set of units.

What is a unit?

A unit is an isolated Unix container or a virtual machine - depending on the
configured provisioner. A unit has everything an application needs to run, the
fetched operational system and language level dependencies, the application’s
source code, the language runtime, and the applications processes defined on
the Procfile.

What is a platform?

A platform is a well defined pack with installed dependencies for a language or
framework that a group of applications will need. A platform might be a
container template, or a virtual machine image.

For instance, Tsuru has a container image for python applications, with
virtualenv installed and other required things needed for Tsuru to deploy
applications on top of that platform. Platforms are easily extendable in
Tsuru, but currently not managed by it, all Tsuru does (by now) is to keep
database records for each existent platform. Every application runs on top of
a platform.

What is a service?

A service is a well defined API that Tsuru communicates with to provide extra
functionality for applications. Examples of services are MySQL, Redis, MongoDB,
etc. Tsuru has built-in services, but it is easy to create and add new services
to Tsuru. Services aren’t managed by Tsuru, but by its creators.

Check the service usage documentation for more
on using services and the building your own service tutorial for a quick start on how to extend Tsuru by creating new
services.

How does environment variables work?

All configurations in Tsuru are handled by the use of environment variables. If
you need to connect with a third party service, e.g. twitter’s API,
you are probably going to need some extra configurations, like client_id. In
Tsuru, you can export those as environment variables, visible only
by your application’s processes.

When you bind your application into a service, most likely you’ll need to
communicate with that service in some way. Services can export environment
variables by telling Tsuru what they need, so whenever you bind your
application with a service, its API can return environment variables for Tsuru
to export on your application’s units.

How does the quota system works?

Quotas are handled per application and user. Every user has a quota number for
applications. For example, users may have a default quota of 2 applications, so
whenever a user tries to create more than two applications, he/she will receive
a quota exceeded error. There are also per applications quota. This one limits
the maximum number of units that an application may have.

How routing works?

Tsuru has a router interface, which makes extremely easy to change the way
routing works with any provisioner. There are two ready-to-go routers: one
using hipache [https://github.com/dotcloud/hipache] and another with elb [http://http://aws.amazon.com/elasticloadbalancing/].

How are Git repositories managed?

Tsuru uses Gandalf [https://github.com/globocom/gandalf] to manage git
repositories. Every time you create an application, Tsuru will ask Gandalf to
create a related git bare repository for you to push in.

This is the remote Tsuru gives you when you create a new app. Everytime you
perform a git push, Gandalf intercepts it, check if you have the required
authorization to write into the application’s repository, and then lets the
push proceeds or returns an error message.

Client installation fails with “undefined: bufio.Scanner”. What does it mean?

Tsuru clients require Go 1.1 or later. The message undefined: bufio.Scanner
means that you’re using an old version of Go. You’ll have to install [http://golang.org/doc/install] the last version.

If you’re using Homebrew on Mac OS, just run:

$ brew update
$ brew upgrade go

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Tsuru Overview

This document is in alpha state, to suggest improvements check out the
related github issue [https://github.com/globocom/tsuru/issues/367].

Tsuru is an open source PaaS. If you don’t know what a PaaS is and what it
does, see wikipedia’s description [http://en.wikipedia.org/wiki/PaaS].

It follows the principles described in the The Twelve-Factor App [http://www.12factor.net/] methodology.

Fast and easy deployment

Deploying an app is simple and easy. No special tools needed, just a plain git
push. The entire process is very simple, especially from the second deployment,
whether your app is big or small.

Tsuru uses git as the means of deploying an application. You don’t need master
git in order to deploy an app to Tsuru, although you will need to know the very
basic workflow, add/commit/push and remote managing. Git allows really fast
deploys, and Tsuru makes the best possible use of it by not cloning the whole
repository history of your application, there’s no need to have that
information in the application webserver.

Tsuru will also take care of all the applications dependencies in the
deployment process. You can specify operating system and language specific
dependencies. For example, if you have a Python application, tsuru will search
for the requirements.txt file, but first it will search for OS dependencies (a
list of deb packages in a file named requirements.apt, in the case of Ubuntu).

Tsuru also has hooks that can trigger commands
before and after some events that happen during the deployment process, like
restart (represented by restart:before, restart:before-each,
restart:after and restart:after-each hooks).

Continuous Deployment

Easily create testing, staging, and production versions of your app and deploy
to them instantly.

Add-on Resources

Instantly provision and integrate third party services with one command. Tsuru
provides the basic services your application will need, like searching,
caching, storage and frontend; you can get all of that in a fashionable and
really easy way using Tsuru’s command line.

Per-Environment Config Variables

Configuration for an application should be stored in environment variables -
and we know that. Tsuru lets you define your environment variables using the
command line, so you can have the configuration flexibility your application
need.

Tsuru also makes use of environment variables. When you bind a service with
your application, Tsuru gives the service the ability to inject environment
variables in your application environment. For instance, if you use the default
MySQL service, it will inject variables for you to establish a connection with
your application database.

Custom Services

Tsuru already has services for you to use, but you don’t need to use them at
all if you don’t want to. If you already have, let’s say, a MySQL server
running on your infrastructure, all you need to do in order to use it is simply
configure environment variables and use them in your application config.

You can also create your own services and make them available for you and
others to use it on Tsuru. It’s so easy to do so that you’ll want to sell your
own services. Tsuru talks with services using a well defined API [https://tsuru.readthedocs.org/en/latest/services/api.html], all you have to
do is implement four endpoints that knows how to provision instances of your
services and bind them to tsuru applications (like creating VMs, authorizing
security groups, creating ACLs, etc), and register your service in Tsuru with a
really simple yaml manifest [https://tsuru.readthedocs.org/en/latest/services/usage.html#crane-usage].

Logging and Visibility

Full visibility into your app’s operations with real-time logging, process
status inspection, and an audit trail of all releases. Tsuru will capture
standard streams (output and error) from your application and expose them via
the tsuru log command. You can also filter logs, for example, if you don’t
want to see the logs of developers activity (e.g.: a deploy action), you can
specify the source as “app” and you’ll get only the application webserver logs.

Process Management

Tsuru manages all processes from an application, so you don’t have to worry
about it. But it does not know to start it. You’ll have to teach Tsuru how to
start your application using a Procfile. Tsuru reads the Procfile and uses
Circus [http://circus.readthedocs.org] to start and manage the running process. You can even enable a web
console for Circus to manage your application process and to watch CPU and
memory usage in real-time through a web interface.

Tsuru also allows you to easily restart your application process via command
line. Although Tsuru will do all the hard work of managing and fixing eventual
problems with your process, you might need to restart your application
manually, so we give you an easy way to do it.

Control Surfaces

Tsuru exposes its features through a solid, stable REST API. You can write
clients for this API, or you can use one of the clients maintained by tsuru
developers.

Tsuru ships with two API clients: the command line interface (CLI), which is
pretty stable and ready for day-to-day usage; and the web interface [https://github.com/globocom/abyss], which is under development, but is also
a great tool to manage, check logs and monitor applications and services
resources.

Scaling

The Juju [https://juju.ubuntu.com/] provisioner allows you to easily add and remove units, enabling one
to scale an application painlessly. It will take care of the application code
replication, and services binding. There’s nothing required to the developer to
do in order to scale an application, just add a new unit and Tsuru will do the
trick.

You may also want to scale using the Front end as a Service, powered by Varnish [https://www.varnish-cache.org/]. One single application might have a whole
farm of Varnish VMs in front of it handling all the traffic.

Built-in Database Services

Tsuru already has a variety of database services available for setup on your
cloud. It allows you to easily create a service instance for your application
usage and bind them together. The service setup for your application is
transparent by the use of environment variables, which are exported in all
instances of the application, allowing your configuration to fit several
environments (like development, staging, production, etc.)

Extensible Service and Platform Support

Tsuru allows you to easily add support for new services and new platforms. For
application platforms, it uses Juju Charms [http://jujucharms.com/], for
services, it has an API that it uses to comunicate with
them.

Collaboration

Manage sharing and deployment of your application. Tsuru uses teams to control
access to resources. A developer may create a team, grant/revoke app access
to/from a team or add/remove new users to/from a team. One can be a member of
multiple teams and control which applications each team has access to.

Easy Server Deployment

Tsuru itself is really easy to deploy and manage, you can get it done by
following these simple steps [http://docs.tsuru.io/en/latest/build.html].

Distributed and Extensible

Tsuru server is easily extensible, distributed and customizable. It has the
concept of Provisioner: a provisioner is a component that takes care of the
orchestration (VM/container management) and provisioning. By default, it will
deploy applications using the Juju [https://juju.ubuntu.com/] provisioner, but you can easily implement
your own provisioner and use whatever backend you wish.

When you extend Tsuru, you are able to pratically build a new PaaS in terms of
behavior of provision and orchestration, making use of the great Tsuru
structure. You change the whole Tsuru workflow by implementing a new
provisioner.

Dev/Ops Perspective

Tsuru’s components are distributed, it is composed by many pieces of software,
each one made to be easily deployable and maintenable. #TODO link architecture overview.

Application Developer Perspective

We aim to make developers life easier. #TODO link development workflow.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Why Tsuru?

This document aims to show Tsuru’s most killing features. Additionally, provides a comparison of Tsuru
with others PaaS’s on the market.

Easy Server Installation

It’s really easy to have a running PaaS with Tsuru. We provide a serie of scripts, each one built to install
and configure the required components for each Tsuru provisioner, you can check our scripts on
Tsuru repository [https://github.com/globocom/tsuru/tree/master/misc], there are separeted scripts to install each
component, so it’s easy to create your own script to configure a new provisioner or to change the configuration of
an existing one.

But it’s okay if you want more control and do not want to use our scripts, or want to better understand the interaction
between Tsuru components, we built a guide [http://docs.tsuru.io/en/latest/build.html] only for you.

Platforms Extensibility

One of Tsuru main goals is to be easily extensible. The platform is one great example of accomplishment on that.
Tsuru platforms works slightly different for each provisioner. Juju [https://juju.ubuntu.com/] use charms for platform provisioning you can find the scripts on our charms repository [https://github.com/globocom/charms]. The Docker [http://www.docker.io/] provisioner is a bit different, it has an specific image for each platform, if one wants to create a new platform, just extend tsuru/base image and follow the directory tree structure, the scripts and Dockerfile for our existing platforms images can be found on our images repository [https://github.com/flaviamissi/basebuilder]

Services Creation and Extension

Most applications need a service to work properly, like a database service. Tsuru provides an interface API to communicate
with services APIs, but it doesn’t manage services directly, this provides more control over the service and its management.

In order to create a new service you simply write an API implementing the predefined endpoints. Tsuru will call when
a user performs an action using the client, read more on the building your service tutorial [http://docs.tsuru.io/en/latest/services/build.html].

You can either create a new service or modify an existing one, if its source is open. All services APIs made by Tsuru team are open and
contributions are very welcome.
For example, the mongoDB api shares one database installation with everyone that is using it,
if you don’t like it and want to change it, you can do it and create a new service on Tsuru with your own implementation.

IaaS’s and Provisioners

Tsuru provides an easy way to change the application unit provisioning system and it already has two
working provisioners, Juju, Docker.
But the main advantage is the ease of extending the provisioning system. One can simply implement
the Provision interface Tsuru provides, configure it on your installation and start using it.

Routers

Tsuru also provides an abstraction for routing control and load balancing in application units.
It provides a routing interface, that you can combine on many ways: you can plug any router with any provisioner,
you can also create your own routing backend and plug it with any existing provisioner, this can be done
only changing Tsuru’s configuration file.

Comparing Tsuru With Other PaaS’s

The following table compares Tsuru with OpenShift and Stackato PaaS’s.

If you have anything to consider, or want to ask us to add another PaaS on the list
contact us in #tsuru @ freenode.net or at our mailing list [https://groups.google.com/d/forum/tsuru-users]

	
	Tsuru
	OpenShift
	Stackato

	Built-in Platforms
	Node.js, PHP,
HTML, Python, Ruby,
Go, Java
	Java, PHP,
Ruby, Node.js,
Python
	Java, Node.Js,
Perl, PHP,
Python, Ruby

	End-user web UI
	Yes (Abyss [https://github.com/globocom/abyss])
	Yes
	Yes

	CLI
	Yes
	Yes
	Yes

	Deployment hooks
	Yes
	No
	Yes

	SSH Access
	Yes (management-only)
	Yes
	Yes

	Run Commands Remotely
	Yes
	No
	No

	Application Monitoring
	Yes
	Yes
	Yes

	SQL Databases
	MySQL
	MySQL, PostgreSQL
	MySQL, PostgreSQL

	NoSQL Databases
	MongoDB, Cassandra
Memcached, Redis
	MongoDB
	MongoDB, Redis

	Log Streaming
	Yes
	Yes (not built-in)
	Yes

	Metering/Billing API
	No (issue 466 [https://github.com/globocom/tsuru/issues/466])
	No
	Yes

	Quota System
	Yes
	Yes
	Yes

	Container Based Apps
	Yes
	Yes
	Yes

	VMs Based Apps
	Yes
	No
	No

	Open Source
	Yes
	Yes
	No

	Free
	Yes
	Yes
	Yes

	Paid/Closed Version
	No
	Yes
	Yes

	PaaS Healing
	Yes
	No
	No

	App Healing
	Yes
	No
	No

	App Fault Tolerance
	Yes
	Yes (by cartridge)
	Yes

	Auto Scaling
	No (issue 154 [https://github.com/globocom/tsuru/issues/154])
	Yes
	Yes (for some IaaS’s)

	Manual Scaling
	Yes
	No
	Yes

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Deployment hooks

Tsuru provides some deployment hooks, like restart:before,
restart:after and build. Deployment hooks allow developers to run commands before and
after some commands.

Hooks are listed in a special file located in the root of the application. The
name of the file may be app.yaml or app.yml. Here is an example of the file:

hooks:
 restart:
 before:
 - python manage.py migrate
 before-each:
 - python manage.py generate_local_file
 after-each:
 - python manage.py clear_local_cache
 after:
 - python manage.py clear_redis_cache
 build:
 - python manage.py collectstatic --noinput
 - python manage.py compress

Tsuru supports the following hooks:

	restart:before: this hook lists commands that will run before the app is
restarted. Commands listed in this hook will run once per app.

	restart:before-each: this hook lists commands that will run before the unit is
restarted. Commands listed in this hook will run once per unit. For instance,
imagine there’s an app with two units and the app.yaml file listed above.
The command python manage.py generate_local_file would run two times,
once per unit.

	restart:after-each: this hook is like before-each, but runs after restarting a
unit.

	restart:after: this hook is like before, but runs after restarting an app.

	build: this hook lists commands that will be run during deploy, when the image is
being generated. (only for docker provisioner)

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Application Deployment

This document provides a high-level description on how application deployment works on Tsuru.

Preparing Your Application

If you follow the 12 Factor [http://www.12factor.net/] app principles you shouldn’t have to change
your application in order to deploy it on Tsuru. Here is what an application need to go on a Tsuru cloud:

	Well defined requirements, both, on language level and operational system level

	Configuration of external resources using environment variables

	A Procfile to tell how your process should be run

Let’s go a little deeper through each of those topics.

1. Requirements

Every well writen application nowdays has well defined dependencies. In Python, everything is on a requirements.txt
or like file, in Ruby, they go on Gemfile, Node.js has the package.json, and so on. Some of those dependencies also
have operational system level dependencies, like the Nokogiri Ruby gem or MySQL-Python package, Tsuru bootstraps
units as clean as possible, so you also have to declare those operational system requirements you need on a file called
requirements.apt. This files should have the packages declared one per-line and look like that:

python-dev
libmysqlclient-dev

2. Configuration With Environment Variables

Everything that vary between deploys (on different environments, like development or production) should be managed
by environment variables. Tsuru takes this principle very seriously, so all services available for usage in Tsuru
that requires some sort of configuration does it via environment variables so you have no pain while deploying on
different environments using Tsuru.

For instance, if you are going to use a database service on Tsuru, like MySQL, when you bind your application into
the service, Tsuru will receive from the service API everything you need to connect with MySQL, e.g: user name,
password, url and database name. Having this information, Tsuru will export on every unit your application has the
equivalent environment variables with their values. The names of those variables are defined by the service providing
them, in this case, the MySQL service.

Let’s take a look at the settings of Tsuru hosted application built with Django:

import os

DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": os.environ.get("MYSQLAPI_DB_NAME"),
 "USER": os.environ.get("MYSQLAPI_DB_USER"),
 "PASSWORD": os.environ.get("MYSQLAPI_DB_PASSWORD"),
 "HOST": os.environ.get("MYSQLAPI_HOST"),
 "PORT": "",
 "TEST_NAME": "test",
 }
}

You might be asking yourself “How am I going to know those variables names?”, but don’t fear! When you bind your application
with Tsuru, it’ll return all variables the service asked Tsuru to export on your application’s units (without the values, since
you are not gonna need them), if you lost the environments on your terminal history, again, don’t fear! You can always check
which service made what variables available to your application using the <insert command here>.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Building your app in tsuru

Tsuru is an open source polyglot cloud application platform. With Tsuru, you
don’t need to think about servers at all. You can write apps in the programming
language of your choice, back it with add-on resources such as SQL and NoSQL
databases, memcached, redis, and many others. You manage your app using the
Tsuru command-line tool and you deploy code using the Git revision control
system, all running on the Tsuru infrastructure.

Install the tsuru client

Install the Tsuru client for your development platform.

The the Tsuru client is a command-line tool for creating and managing apps.
Check out the CLI usage guide to learn more.

Sign up

To create an account, you use the user-create [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_a_user]
command:

$ tsuru user-create youremail@domain.com

user-create will ask for your password twice.

Login

To login in tsuru, you use the login [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Authenticate_within_remote_tsuru_server]
command, you will be asked for your password:

$ tsuru login youremail@domain.com

Deploy an application

Choose from the following getting started tutorials to learn how to deploy your
first application using a supported language or framework:

	Deploying Python applications in tsuru

	Deploying Ruby/Rails applications in tsuru

	Deploying PHP applications in tsuru

	Deploying go applications in tsuru

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Recovering an application

Your application may be downtime for a number of reasons.
This page will help you discover why and what you can do to fix the problem.

Check your application logs

The first step is to check the application logs. To view your logs, run:

$ tsuru logs -a appname

Restart your application

Some application issues are solved by restart.
For example, your application may need to be restarted after a
schema change to your database.

$ tsuru restart -a appname

Checking units status

$ tsuru app-info -a appname

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Coding style

Please follow these coding standards when writing code for inclusion in Tsuru.

Formatting

	Follow the go formatting style [http://golang.org/doc/effective_go.html#formatting]

Naming standards

New<Something>

is used by the <Something> constructor:

NewApp(name string) (*App, error)

Add<Something>

is a method of a type that has a collection of <Something>’s. Should receive an instance of <Something>:

func (a *App) AddUnit(u *Unit) error

Add

is a collection method that adds one or more elements:

func (a *AppList) Add(apps ...*App) error

Create<Something>

it’s a function that’s save an instance of <Something>
in the database. Should receives an instance of <Something>.

func CreateApp(a *App) error

Delete<Something>

it’s a function that’s delete an instance of <Something> from database.

Remove<Something>

it’s opposite of Add<Something>.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Setting up you tsuru development environment

To install tsuru from source, you need to have Go installed and configured.
This file will guide you through the necessary steps to get tsuru’s development
environment.

Installing Go

You need to install the last version of Go to compile tsuru. You can download
binaries distribution from Go website [http://golang.org/doc/install] or use
your preferred package installer (like Homebrew on Mac OS and apt-get on
Ubuntu):

$ [sudo] apt-get install golang

$ brew install go

Installing MongoDB

tsuru uses MongoDB (+2.2), so you need to install it. For that, you can follow
instructions on MongoDB website and download binary distributions
(http://www.mongodb.org/downloads). You can also use your preferred package
installer:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10
$ sudo bash -c 'echo "deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen" > /etc/apt/sources.list.d/10gen.list'
$ sudo apt-get update
$ sudo apt-get install mongodb-10gen -y

$ brew install mongodb

Installing Beanstalkd

Tsuru uses Beanstalkd [http://kr.github.com/beanstalkd/] as a work queue.
Install the latest version, by doing this:

$ sudo apt-get install -y beanstalkd

$ brew install beanstalkd

Installing Redis

One of Tsuru routing providers uses Redis [http://redis.io] to store
information about frontends and backends. You will also need to install it:

$ sudo apt-get install -y redis-server

$ brew install redis

Installing git, bzr and mercurial

tsuru depends on go libs that use git, bazaar and mercurial, so you need to install
these two version control systems to get and compile tsuru from source.

To install git, you can use your package installer:

$ sudo apt-get install git

$ brew install git

To install bazaar, follow the instructions in bazaar’s website
(http://wiki.bazaar.canonical.com/Download), or use your package installer:

$ sudo apt-get install bzr

$ brew install bzr

To install mercurial, you can also follow instructions on its website
(http://mercurial.selenic.com/downloads/) or use your package installer:

$ sudo apt-get install mercurial

$ brew install mercurial

Setting up GOPATH and cloning the project

Go uses an environment variable called GOPATH to allow users to develop using
the go build tool (http://golang.org/cmd/go). So you need to setup this
variable before cloning and installing tsuru. You can set this variable to your
$HOME directory, or something like $HOME/gocode.

Once you have defined the GOPATH variable, then run the following commands:

$ mkdir -p $GOPATH/src/github.com/globocom
$ cd $GOPATH/src/github.com/globocom
$ git clone git://github.com/globocom/tsuru

If you have already cloned the repository, just move the cloned directory to
$GOPATH/src/github.com/globocom.

For more details on GOPATH, please check this url:
http://golang.org/cmd/go/#GOPATH_environment_variable

Starting Redis, Beanstalkd and MongoDB

Before building the code and running the tests, execute the following commands
to start Redis, Beanstalkd and MongoDB processes.

$ redis-server
$ mongod
$ beanstalkd -l 127.0.0.1

Installing tsuru dependencies and running tests

You can use make to install all tsuru dependencies and run tests. It will
also check if everything is ok with your GOPATH setup:

$ make

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Building a Tsuru development environment with Vagrant

First, make sure that virtualbox, vagrant and git are installed on your machine.

Then clone the tsuru-bootstrap project from github:

git clone https://github.com/dgryski/tsuru-bootstrap.git

Enter the tsuru-bootstrap directory and execute vagrant up. It will take a time:

cd tsuru-bootstrap
vagrant up

After it, configure the tsuru target with the address of the server that’s running by vagrant:

tsuru target-add development http://192.168.50.4:8080 -s

Now you can create your user and deploy your apps.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Installing tsuru clients

tsuru contains three clients: tsuru, tsuru-admin and crane.

	tsuru is the command line utility used by application developers, that
will allow users to create, list, bind and manage apps. For more details,
check tsuru usage;

	crane is used by service administrators. For more detail, check
crane usage;

	tsuru-admin is used by cloud administrators. Whoever is allowed to use
it has gotten super powers :-)

This document describes how you can install those clients, using pre-compiled
binaries or building them from source.

Using homebrew (Mac OS X only)

Using the PPA (Ubuntu only)

Pre-built binaries (Linux and Mac OS X)

Build from source (Linux and Mac OS X)

Using homebrew (Mac OS X only)

If you use Mac OS X and homebrew [http://mxcl.github.com/homebrew/], you may
use a custom tap to install tsuru, crane and tsuru-admin. First you
need to add the tap:

$ brew tap globocom/homebrew-tsuru

Now you can install tsuru, tsuru-admin and crane:

$ brew install tsuru
$ brew install tsuru-admin
$ brew install crane

Whenever a new version of any of tsuru’s clients is out, you can just run:

$ brew update
$ brew upgrade <formula> # tsuru/tsuru-admin/crane

For more details on taps, check homebrew documentation [https://github.com/mxcl/homebrew/wiki].

NOTE: Tsuru requires Go 1.1 or higher. Make sure you have the last version
of Go installed in your system.

Using the PPA (Ubuntu only)

Ubuntu users can install Tsuru clients using apt-get and the Tsuru PPA [https://launchpad.net/~tsuru/+archive/ppa]. You’ll need to add the PPA
repository locally and run an apt-get update:

$ sudo apt-add-repository ppa:tsuru/ppa
$ sudo apt-get update

Now you can install Tsuru’s clients:

$ sudo apt-get install tsuru
$ sudo apt-get install crane
$ sudo apt-get install tsuru-admin

Pre-built binaries (Linux and Mac OS X)

tsuru clients are also distributed in binary version, so you can just download
an executable and put them somewhere in your PATH.

It’s important to note that all binaries are platform dependent. Currently, we
provide each of them in three flavors:

	darwin_amd64: This is Mac OS X, 64 bits. Make sure the command uname -ms
prints “Darwin x86_64”, otherwise this binary will not work in your system;

	linux_386: This is Linux, 32 bits. Make sure the command uname -ms
prints “Linux x86”, otherwise this binary will not work in your system;

	linux_amd64: This is Linux, 64 bits. Make sure the command uname -ms
prints “Linux x86_64”, otherwise this binary will not work in your system.

Below are the links to the binaries, you can just download, extract the archive
and put the binary somewhere in your PATH:

darwin_amd64

	tsuru: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-darwin-amd64.tar.gz

	tsuru-admin: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-admin-darwin-amd64.tar.gz

	crane: https://s3.amazonaws.com/tsuru/dist-cmd/crane-darwin-amd64.tar.gz

linux_386

	tsuru: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-linux-386.tar.gz

	tsuru-admin: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-admin-linux-386.tar.gz

	crane: https://s3.amazonaws.com/tsuru/dist-cmd/crane-linux-386.tar.gz

linux_amd64

	tsuru: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-linux-amd64.tar.gz

	tsuru-admin: https://s3.amazonaws.com/tsuru/dist-cmd/tsuru-admin-linux-amd64.tar.gz

	crane: https://s3.amazonaws.com/tsuru/dist-cmd/crane-linux-amd64.tar.gz

Build from source (Linux and Mac OS X)

Tsuru’s source [https://github.com/globocom/tsuru] is written in Go [http://golang.org], so before installing tsuru from source, please make sure
you have installed and configured Go [http://golang.org/doc/install].

With Go installed and configured, you can use go get to install any of
tsuru’s clients:

$ go get github.com/globocom/tsuru/cmd/tsuru
$ go get github.com/globocom/tsuru/cmd/tsuru-admin
$ go get github.com/globocom/tsuru/cmd/crane

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Howto install a dns forwarder

This document describes how to create a dns forwarder and set a base domain for tsuru.

Overview

The recommended way to use tsuru is integrated with a DNS server.
The easiest way to do that is configuring it as a cache forwarder,
and configuring a DNS zone to be used for tsuru as required.

Installing Bind

Here you will see how easy is to install a DNS server. Bellow you will see a howto for Ubuntu and Centos

Ubuntu

$ apt-get install bind9 bind9utils -y

Centos

$ yum install bind bind-utils -y
$ chkconfig named on
$ service named start

Configuring Bind

Forwarder

First we will show how to configure your DNS as a forwarder.
Into the config file, insert the forwarders directive inside the “options” main directive.
You can use the google’s public DNS(8.8.8.8/8.8.4.4) as forwarder or your company’s DNS. It should look like that:

Ubuntu

$ egrep -v '//|^$' /etc/bind/named.conf.options
options {
 directory "/var/cache/bind";
 forwarders {
 8.8.8.8;
 8.8.4.4;
 };
 dnssec-validation auto;
 auth-nxdomain no; # conform to RFC1035
 listen-on-v6 { any; };
};

Centos

$ egrep -v '//|^$' /etc/named.conf |head
options {
 forwarders { 8.8.8.8; 8.8.4.4; };
 listen-on port 53 { any; };
 listen-on-v6 port 53 { ::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 allow-query { any; }";
 recursion yes;

DNS Zone

Now we will set a DNS Zone to be used by tsuru. In this example we are using the domain cloud.company.com.
Create a entrance for that into /etc/bind/named.conf.local(for ubuntu) or /etc/named.conf(for centos) as following:

Ubuntu

zone "cloud.company.com" {
 type master;
 file "/etc/bind/db.cloud.company.com";
};

Centos

zone "cloud.company.com" {
 type master;
 file "db.cloud.company.com";
};

And create a db.cloud.company.com file(considering the your external IP for tsuru, hipache and git is 192.168.123.131) the way below:

$ cat db.cloud.company.com
;
$TTL 604800
@ IN SOA cloud.company.com. tsuru.cloud.company.com. (
 3 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 604800) ; Negative Cache TTL
;
@ IN NS cloud.company.com.
@ IN A 192.168.123.131
git IN A 192.168.123.131 ; here we can set a better exhibition for the git remote provided by tsuru
* IN A 192.168.123.131

Ps: If you have problems, it could be related with the date of your machine. We recommend you to install a ntpd service.

Now just reload your DNS server, point it to your resolv.conf, and use Tsuru!
To test, just execute the command below, and see if all responses resolv to 192.168.123.131:

$ ping cloud.company.com
$ ping git.cloud.company.com
$ ping zzzzz.cloud.company.com
$ ping anydomain.cloud.company.com

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Release notes

Release notes for the official Tsuru releases. Each release note will
tell you what’s new in each version.

tsr

tsr is the tsuru server daemon.

-.. _development_release_notes:

0.3.1 release

	tsr 0.3.1 release notes - UNDER DEVELOPMENT

0.3.0 release

	tsr 0.3.0 release notes

tsuru

tsuru is the tsuru client.

0.8.6 release

	tsuru 0.8.6 release notes

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

tsr 0.3.1 release notes - UNDER DEVELOPMENT

Welcome to tsr 0.3.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from Tsuru 0.3.0 or older
versions.

What’s new in tsr 0.3.1

Backwards incompatible changes

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

tsr 0.3.0 release notes

Welcome to tsr 0.3.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from Tsuru 0.2.x or older
versions.

What’s new in tsr 0.3.0

Support Docker 0.7.x and other improvements

	Fixed the 42 layers problem.

	Support all Docker storages.

	Pull image on creation if it does not exists.

	BUGFIX: when using segregatedScheduler, the provisioner fails to get
the proper host address.

	BUGFIX: units losing access to services on deploy bug.

Improvements related to Services

	bind is atomic.

	service-add is atomic

	Service instance name is unique.

	Add support to bind an app without units.

Collector ticker time is configurable

Now you can define the collector ticker time. To do it just set on tsuru.conf:

collector:
 ticker-time: 120

The default value is 60 seconds.

Other improvements and bugfixes

	unit-remove does not block util all units are removed.

	BUGFIX: send on closed channel: https://github.com/globocom/tsuru/issues/624.

	Api handler that returns information about all deploys.

	Refactored quota backend.

	New lisp platform. Thanks to Nick Ricketts.

Backwards incompatible changes

Tsuru 0.3.0 handles quota in a brand new way. Users upgrading from 0.2.x need
to run a migration script in the database. There are two scripts available: one
for installations with quota enabled and other for installations without quota.

The easiest script is recommended for environments where quota is disabled,
you’ll need to run just a couple of commands in MongoDB:

% mongo tsuru
MongoDB shell version: x.x.x
connecting to: tsuru
> db.users.update({}, {$set: {quota: {limit: -1}}});
> db.apps.update({}, {$set: {quota: {limit: -1}}});

In environments where quota is enabled, the script is longer, but still simple:

db.quota.find().forEach(function(quota) {
 if(quota.owner.indexOf("@") > -1) {
 db.users.update({email: quota.owner}, {$set: {quota: {limit: quota.limit, inuse: quota.items.length}}});
 } else {
 db.apps.update({name: quota.owner}, {$set: {quota: {limit: quota.limit, inuse: quota.items.length}}});
 }
});

db.apps.update({quota: null}, {$set: {quota: {limit: -1}}});
db.users.update({quota: null}, {$set: {quota: {limit: -1}}});
db.quota.remove()

The best way to run it is saving it to a file and invoke MongoDB with the file
parameter:

% mongo tsuru <filename.js>

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	tsuru 0.1 documentation

tsuru 0.8.6 release notes

Welcome to tsuru 0.8.6!

These release notes cover the new features you’ll want to be aware of when
upgrading from Tsuru 0.8.5 or older versions.

What’s new in tsuru 0.8.6

Improvements related to Services

	Added confirmation on service-remove command.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Backing up tsuru database

In the tsuru repository, you will find two useful scripts in the directory
misc/mongodb: backup.bash and healer.bash. In this page you will
learn the purpose of these scripts and how to use them.

Dependencies

The script backup.bash uses S3 to store archives, and healer.bash
downloads archives from S3 buckets. In order to communicate with S3 API, both
scripts use s3cmd [http://s3tools.org/s3cmd].

So, before running those scripts, make sure you have installed s3cmd. You can
install it using your preferred package manager. For more details, refer to its
download documentation [http://s3tools.org/download].

After installing s3cmd, you will need to configure it, by running the command:

$ s3cmd --configure

Saving data

The script backup.bash runs mongodump, creates a tar archive and send
the archive to S3. Here is how you use it:

$./misc/mongodb/backup.bash s3://mybucket localhost database

The first parameter is the S3 bucket. The second parameter is the database
host. You can provide just the hostname, or the host:port (for example,
127.0.0.1:27018). The third parameter is the name of the database.

Automatically restoring on data loss

The other script in the misc/mongodb directory is healer.bash. This
script checks a list of collections and if any of them is gone, download the
last three backup archives and fix all gone collections.

This is how you should use it:

$./misc/mongodb/healer.bash s3://mybucket localhost mongodb repositories users

The first three parameters mean the same as in the backup script. From the
fourth parameter onwards, you should list the collections. In the example
above, we provided two collections: “repositories” and “users”.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Server installation guide

Dependencies

Tsuru depends on Go [http://golang.org] and libyaml [http://pyyaml.org/wiki/LibYAML].

To install Go, follow the official instructions in the language website:
http://golang.org/doc/install.

To install libyaml, you can use one package manager, or download it and install
it from source. To install from source, follow the instructions on PyYAML wiki:
http://pyyaml.org/wiki/LibYAML.

The following instructions are system specific:

FreeBSD

$ cd /usr/ports/textproc/libyaml
$ make install clean

Mac OS X (homebrew)

$ brew install libyaml

Ubuntu

$ [sudo] apt-get install libyaml-dev

CentOS

$ [sudo] yum install libyaml-devel

Installation

After installing and configuring go, and installing libyaml, just run in your terminal:

$ go get github.com/globocom/tsuru/...

Server configuration

TODO!

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

api workflow

Tsuru sends requests to your service to:

	create a new instance of your service

	bind an app with your service

	unbind an app

	destroy an instance

Creating a new instance

This process begins when a Tsuru customer creates an instance of your service
via command line tool:

$ tsuru service-add mysql mysql_instance

Tsuru calls your service to create a new instance of your service via POST on
/resources (please notice that tsuru does not include a trailing slash)
with the “name” that represents the app name in the request body. Example of
request:

POST /resources HTTP/1.0
Content-Length: 19

name=mysql_instance

Your API should return the following HTTP response code with the respective response body:

	201: when the instance is successfully created. You don’t need to include any content in the response body.

	500: in case of any failure in the creation process. Make sure you include an explanation for the failure in the response body.

Binding an app to a service instance

This process begins when a Tsuru customer binds an app to an instance of your service via command line tool:

$ tsuru bind mysql_instance --app my_app

Tsuru calls your service to bind an app with a service instance via POST on /resources/<service-name> (please notice that tsuru does not include a trailing slash) with the “hostname” that represents the app hostname in the request body. Example of request:

POST /resources/mysql_instance HTTP/1.0
Content-Length: 25

hostname=myapp.myhost.com

Your API should return the following HTTP response code with the respective response body:

	201: if the app is successfully binded to the instance. The response body must be a JSON containing the environment variables from this instance that should be exported in the app in order to connect to the instance. If your service does not export any environment variable, write null or {} in the response body. Example of response:

HTTP/1.1 201 CREATED
Content-Type: application/json; charset=UTF-8

{"MYSQL_HOST":"10.10.10.10","MYSQL_PORT":3306,"MYSQL_USER":"ROOT","MYSQL_PASSWORD":"s3cr3t","MYSQL_DATABASE_NAME":"myapp"}

Status codes for errors in the process:

	404: if the service instance does not exist. You don’t need to include any content in the response body.

	412: if the service instance is still being provisioned, and not ready for binding yet. You can optionally include an explanation in the response body.

	500: in case of any failure in the bind process. Make sure you include an explanation for the failure in the response body.

Unbind an app from a service instance

This process begins when a Tsuru customer unbinds an app from an instance of your service via command line tool:

$ tsuru unbind mysql_instance --app my_app

Tsuru calls your service to unbind an app with a service instance via DELETE on /resources/<service-name>/hostname/<app-hostname> (please notice that tsuru does not include a trailing slash). Example of request:

DELETE /resources/mysql_instance/hostname/myapp.myhost.com HTTP/1.0
Content-Length: 0

Your API should return the following HTTP response code with the respective response body:

	200: if the app is successfully unbinded from the instance. You don’t need to include any content in the response body.

	404: if the service instance does not exist. You don’t need to include any content in the response body.

	500: in case of any failure in the unbind process. Make sure you include an explanation for the failure in the response body.

Destroying an instance

This process begins when a Tsuru customer removes an instance of your service via command line tool:

$ tsuru service-remove mysql_instance

Tsuru calls your service to remove an instance of your service via DELETE on /resources/<service-name> (please notice that tsuru does not include a trailing slash). Example of request:

DELETE /resources/mysql_instance HTTP/1.0
Content-Length: 0

Your API should return the following HTTP response code with the respective response body:

	200: if the service is successfully destroyed. You don’t need to include any content in the response body.

	404: if the service instance does not exist. You don’t need to include any content in the response body.

	500: in case of any failure in the destroy process. Make sure you include an explanation for the failure in the response body.

Checking the status of an instance

This process begins when a Tsuru customer wants to check the status of an instance via command line tool:

$ tsuru service-status mysql_instance

Tsuru calls your service to check the status of the instance via GET on /resources/mysql_instance/status (please notice that tsuru does not include a trailing slash). Example of request:

GET /resources/mysql_instance/status HTTP/1.0

Your API should return the following HTTP response code, with the respective response body:

	202: the instance is still being provisioned (pending). You don’t need to include any content in the response body.

	204: the instance is running and ready for connections (running). You don’t need to include any content in the response body.

	500: the instance is not running, nor ready for connections. Make sure you include the reason why the instance is not running.

Additional info about an instance

You can add additional info about instances of your service. To do it it’s needed to implement the resource below:

GET /resources/mysql_instance HTTP/1.0

Your API should return the following HTTP response code, with the respective body:

	404: when your api doesn’t have extra info about the service instance. You don’t need to include any content in the response body.

	200: when your app has an extra info about the service instance. The response body must be a JSON containing a list of fields. A field is composed by two key/value’s label and value:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

[{"label": "my label", "value": "my value"}, {"label": "myLabel2.0", "value": "my value 2.0"}]

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Building your service

Overview

This document is a hands-on guide to turning your existing cloud service into a Tsuru service.

In order to create a service you need to implement a provisioning API for your service, which Tsuru will call using HTTP protocol [http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods] when a customer creates a new instance or binds a service instance with an app.

You will also need to create a YAML document that will serve as the service manifest. We provide a command-line tool to help you to create this manifest and manage your service.

Creating your service api

To create your service api you can use any programming language or framework. In this tutorial we will use flask [http://flask.pocoo.org].

Prerequisites

First, let’s be sure that Python and pip are already installed:

$ python --version
Python 2.7.2

$ pip
Usage: pip COMMAND [OPTIONS]

pip: error: You must give a command (use "pip help" to see a list of commands)

For more information about how to install python you can see the Python download documentation [http://python.org/download/] and about how to install pip you can see the pip installation instructions [http://www.pip-installer.org/en/latest/installing.html].

Now, with python and pip installed, you can use pip to install flask:

$ pip install flask

With flask installed let’s create a file called api.py and add the code to create a minimal flask app:

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

For run this app you can do:

$ python api.py
 * Running on http://127.0.0.1:5000/

If you open your web browser and access the url “http://127.0.0.1:5000/” you will see the “Hello World!”.

Then, you need to implement the resources expected by the Tsuru api workflow.

Provisioning the resource for new instances

For new instances tsuru sends a POST to /resources with the “name” that represents the service instance name in the request body. If the service instance is successfully created, your API should return 201 in status code.

Let’s create a method for this action:

@app.route("/resources", methods=["POST"])
def add_instance():
 return "", 201

Implementing the bind

In the bind action, tsuru calls your service via POST on /resources/<service_name>/ with the “app-hostname” that represents the app hostname and the “unit-hostname” that represents the unit hostname on body.

If the app is successfully binded to the instance, you should return 201 as status code with the variables to be exported in the app environment on body with the json format.

As an example, let’s create a method that returns a json with a fake variable called “SOMEVAR” to be injected in the app environment. To do it in flask you need to import the jsonify method.

from flask import jsonify

@app.route("/resources/<name>", methods=["POST"])
def bind(name):
 out = jsonify(SOMEVAR="somevalue")
 return out, 201

Implementing the unbinding

In the unbind action, tsuru calls your service via DELETE on
/resources/<service_name>/hostname/<unit_hostname>/.

If the app is successfully unbinded from the instance you should return 200 as status code.

Let’s create a method for this action:

@app.route("/resources/<name>/hostname/<host>", methods=["DELETE"])
def unbind(name, host):
 return "", 200

Implementing the destroy service instance

In the destroy action, tsuru calls your service via DELETE on /resources/<service_name>/.

If the service instance is successfully removed you should return 200 as status code.

Let’s create a method for this action:

@app.route("/resources/<name>", methods=["DELETE"])
def remove_instance(name):
 return "", 200

Implementing the url for status checking

To check the status of an instance, tsuru uses the url /resources/<service_name>/status. If the instance is ok, this URL should return 204.

Let’s create a function for this action:

@app.route("/resources/<name>/status", methods=["GET"])
def status(name):
 return "", 204

The final code for our “fake api” developed in flask is:

from flask import Flask
from flask import jsonify

app = Flask(__name__)

@app.route("/resources/<name>", methods=["POST"])
def bind(name):
 out = jsonify(SOMEVAR="somevalue")
 return out, 201

@app.route("/resources/<name>/hostname/<host>", methods=["DELETE"])
def unbind(name, host):
 return "", 200

@app.route("/resources", methods=["POST"])
def add_instance():
 return "", 201

@app.route("/resources/<name>", methods=["DELETE"])
def remove_instance(name, host):
 return "", 200

@app.route("/resources/<name>/status", methods=["GET"])
def status(name):
 return "", 204

if __name__ == "__main__":
 app.run()

Creating a service manifest

Using crane you can create a manifest template:

$ crane template

This will create a manifest.yaml in your current path with this content:

id: servicename
endpoint:
 production: production-endpoint.com
 test: test-endpoint.com:8080

The manifest.yaml is used by crane to defined an id and an endpoint to your service.

Change the id and the endpoint values with the information of your service:

id: fakeserviceid1
endpoint:
 production: fakeserviceid1.com

Submiting your service

To submit your service, you can run:

$ crane create manifest.yaml

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

HOWTO Install a MySQL service

First, you must have a MariaDB server [https://downloads.mariadb.org/mariadb/repositories/], the best “mysql” server in the market. You can also use the standard mysql-server.

Ubuntu 13.04
$ sudo apt-get install software-properties-common
$ sudo gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys CBCB082A1BB943DB
$ sudo gpg -a --export CBCB082A1BB943DB | sudo apt-key add -
$ sudo add-apt-repository 'deb http://mirror.aarnet.edu.au/pub/MariaDB/repo/10.0/ubuntu raring main'
$ sudo apt-get update
$ sudo apt-get install mariadb-server

Centos - creating the mariadb repository
$ cat > /etc/yum.repos.d/MariaDB.repo <<END
MariaDB 10.0 CentOS repository list - created 2013-09-13 13:25 UTC
http://mariadb.org/mariadb/repositories/
[mariadb]
name = MariaDB
baseurl = http://yum.mariadb.org/10.0/centos6-amd64
gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDB
gpgcheck=1
END
$ rpm --import https://yum.mariadb.org/RPM-GPG-KEY-MariaDB
$ yum install MariaDB-server MariaDB-client
$ service mysql start
$ chkconfig mysql on

After that, all you need is to create a database admin user for this service, with all necessary grants

Creating a database user(log into the database with the root user)
> GRANT ALL PRIVILEGES ON *.* TO 'tsuru'@'%' IDENTIFIED BY 'password' with GRANT OPTION;
> FLUSH PRIVILEGES;

Now, you will install our mysql-api service example. Just create an application that will be responsible for this service

Create a database for this service (change the 192.168.123.131 for your mysql server host)
$ echo "CREATE DATABASE mysqlapi" | mysql -h 192.168.123.131 -u tsuru -ppassword
In a machine with tsuru client and crane installed
$ git clone https://github.com/globocom/mysqlapi
Create the mysqlapi application using python as its platform.
$ tsuru app-create mysql-api python

In order to have mysql API ready to receive requests, we need some bootstrap stuff.

#First export the django settings variable:
$ tsuru env-set --app mysql-api DJANGO_SETTINGS_MODULE=mysqlapi.settings
Inject the right environment for that service
$ tsuru env-set -a mysql-api MYSQLAPI_DB_NAME=mysqlapi
$ tsuru env-set -a mysql-api MYSQLAPI_DB_USER=tsuru
$ tsuru env-set -a mysql-api MYSQLAPI_DB_PASSWORD=password
$ tsuru env-set -a mysql-api MYSQLAPI_DB_HOST=192.168.123.131
To show the application's repository
$ tsuru app-info -a mysql-api|grep Repository
Repository: git@192.168.123.131:mysql-api.git
$ git push git@192.168.123.131:mysql-api.git master
#Now gunicorn is able to run with our wsgi.py configuration. After that, we need to run syncdb:
$ tsuru run --app mysql-api -- python manage.py syncdb --noinput

To run the API in shared mode, follow this steps

First export the needed variables:
If the shared mysql database is installed in the same vm that the app is, you can use localhost for MYSQLAPI_SHARED_SERVER
$ tsuru env-set --app mysql-api MYSQLAPI_SHARED_SERVER=192.168.123.131
Here you'll also need to set up a externally accessible endpoint to be used by the apps that are using the service
$ tsuru env-set --app mysql-api MYSQLAPI_SHARED_SERVER_PUBLIC_HOST=192.168.123.131
Here the mysql user to manage the shared databases
$ tsuru env-set -a mysql-api MYSQLAPI_SHARED_USER=tsuru
$ tsuru env-set -a mysql-api MYSQLAPI_SHARED_PASSWORD=password

More information about the ways you can work with that api you can found here [https://github.com/globocom/mysqlapi#choose-your-configuration-mode].

Now you should have your application working. You just need to submit the mysqlapi service via crane.
The manifest.yaml is used by crane to define an id and an endpoint to your service.
For more details, see the text “Services API Workflow”: http://docs.tsuru.io/en/latest/services/api.html
To submit your new service, you can run:

Configure the service template and point it to the application service (considering that your domain is cloud.company.com)
$ cat manifest.yaml
id: mysqlapi
 endpoint:
 production: mysql-api.cloud.company.com
$ crane create manifest.yaml

To list your services:

$ crane list
#OR
$ tsuru service-list

This will return something like:

+----------+-----------+
| Services | Instances |
+----------+-----------+
| mysqlapi | |
+----------+-----------+

It would be nice if your service had some documentation. To add a documentation to you service you can use:

$ crane doc-add mysqlapi doc.txt

Crane will read the content of the file and save it.

To show the current documentation of your service:

$ crane doc-get mysqlapi

doc-get will retrieve the current documentation of the service.

Further instructions

Now you can add this service for your applications using the bind [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Bind_an_application_to_a_service_instance] command

For a complete reference, check the documentation for crane [http://docs.tsuru.io/en/latest/services/usage.html] command:
http://godoc.org/github.com/globocom/tsuru/cmd/crane.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Crane usage

First, you must set the target with your server url, like:

$ crane target tsuru.myhost.com

After that, all you need is to create a user and authenticate:

$ crane user-create youremail@gmail.com
$ crane login youremail@gmail.com

To generate a service template:

$ crane template

This will create a manifest.yaml in your current path with this content:

id: servicename
endpoint:
 production: production-endpoint.com
 test: test-endpoint.com:8080

The manifest.yaml is used by crane to define an id and an endpoint to your service.

To submit your new service, you can run:

$ crane create path/to/your/manifest.yaml

To list your services:

$ crane list

This will return something like:

+----------+-----------+
| Services | Instances |
+----------+-----------+
| mysql | my_db |
+----------+-----------+

To update a service manifest:

$ crane create path/to/your/manifest.yaml

To remove a service:

$ crane remove service_name

It would be nice if your service had some documentation. To add a documentation to you service you can use:

$ crane doc-add service_name path/to/your/docfile

Crane will read the content of the file and save it.

To show the current documentation of your service:

$ crane doc-get service_name

Further instructions

For a complete reference, check the documentation for crane command:
http://godoc.org/github.com/globocom/tsuru/cmd/crane.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Services

You can manage your services using the tsuru command-line interface.

To list all services avaliable you can use, you can use the service-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_available_services_and_instances]
command:

$ tsuru service-list

To add a new instance of a service, use the service-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_a_new_service_instance]
command:

$ tsuru service-add <service_name> <service_instance_name>

To remove an instance of a service, use the service-remove [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Remove_a_service_instance]
command:

$ tsuru service-remove <service_instance_name>

To bind a service instance with an app you can use the bind [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Bind_an_application_to_a_service_instance]
command. If this service has any variable to be used by your app, tsuru will
inject this variables in the app’s environment.

$ tsuru bind <service_instance_name> [--app appname]

And to unbind, use unbind [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Unbind_an_application_from_a_service_instance]
command:

$ tsuru unbind <service_instance_name> [--app appname]

For more details on the --app flag, see “Guessing app names” [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Guessing_app_names]
section of tsuru command documentation.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Client usage

After installing the server, build the cmd/main.go file with the name you wish,
and add it to your $PATH. Here we’ll call it tsuru. Then you must set the
target with your server url, like:

Setting a target

$ tsuru target-add default tsuru.myhost.com:8080
$ tsuru target-set default

Authentication

After that, all you need is to create a user and authenticate to start creating
apps and pushing code to them. Use create-user [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_a_user] and
login [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Authenticate_within_remote_tsuru_server]:

$ tsuru user-create youremail@gmail.com
$ tsuru login youremail@gmail.com

Apps

Associating your user to a team

You need to be member of a team to create an app. To create a new team, use
create-team [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_a_new_team_for_the_user]:

$ tsuru team-create teamname

Creating an app

To create an app, use app-create [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_an_app]:

$ tsuru app-create myblog <platform>

This will return your app’s remote url, you should add it to your git
repository:

$ git remote add tsuru git@tsuru.myhost.com:myblog.git

Listing your apps

When your app is ready, you can push to it. To check whether it is ready or
not, you can use app-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_apps_that_you_have_access_to]:

$ tsuru app-list

This will return something like:

+-------------+-------------------------+---+
| Application | Units State Summary | Ip |
+-------------+-------------------------+---+
| myblog | 1 of 1 units in-service | myblog-838381.us-east-1-elb.amazonaws.com |
+-------------+-------------------------+---+

Showing app info

You can also use the app-info [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_information_about_an_app]
command to view information of an app. Including the status of the app:

$ tsuru app-info

This will return something like:

Application: myblog
Platform: gunicorn
Repository: git@githost.com:myblog.git
Teams: team1, team2
Units:
+----------+---------+
| Unit | State |
+----------+---------+
| myblog/0 | started |
| myblog/1 | started |
+----------+---------+

Tsuru uses information from git configuration to guess the name of the app, for
more details, see “Guessing app names” [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Guessing_app_names]
section of tsuru command documentation.

Public Keys

You can try to push now, but you’ll get a permission error, because you haven’t
pushed your key yet.

$ tsuru key-add

This will search for a id_rsa.pub file in ~/.ssh/, if you don’t have a
generated key yet, you should generate one before running this command.

If you have a public key in other format (for example, DSA), you can also give
the public key file to key-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server]:

$ tsuru key-add $HOME/.ssh/id_dsa.pub

After your key is added, you can push your application to your cloud:

$ git push tsuru master

Running commands

After that, you can check your app’s url in the browser and see your app there.
You’ll probably need to run migrations or other deploy related commands. To run
a single command, you should use the command run [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Run_an_arbitrary_command_in_the_app_machine]:

$ tsuru run "python manage.py syncdb && python manage.py migrate"

Further instructions

For a complete reference, check the documentation for tsuru command:
http://godoc.org/github.com/globocom/tsuru/cmd/tsuru.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Deploying Go applications in tsuru

Overview

This document is a hands-on guide to deploying a simple Go web application in
Tsuru.

Creating the app within tsuru

To create an app, you use app-create [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_an_app]
command:

$ tsuru app-create <app-name> <app-platform>

For go, the app platform is, guess what, go! Let’s be over creative
and develop a hello world tutorial-app, let’s call it “helloworld”:

$ tsuru app-create helloworld go

To list all available platforms, use platform-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_the_list_of_available_platforms]
command.

You can see all your applications using app-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_apps_that_you_have_access_to]
command:

$ tsuru app-list
+-------------+-------------------------+---------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------+--------+
| helloworld | 0 of 0 units in-service | | No |
+-------------+-------------------------+---------+--------+

Once your app is ready, you will be able to deploy your code, e.g.:

$ tsuru app-list
+-------------+-------------------------+-------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+-------------+--------+
| helloworld | 0 of 0 units in-service | | Yes |
+-------------+-------------------------+-------------+--------+

Application code

A simple web application in go main.go:

package main

import (
 "fmt"
 "net/http"
)

func main() {
 http.HandleFunc("/", hello)
 fmt.Println("listening...")
 err := http.ListenAndServe(":8888", nil)
 if err != nil {
 panic(err)
 }
}

func hello(res http.ResponseWriter, req *http.Request) {
 fmt.Fprintln(res, "hello, world")
}

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using app-info [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_information_about_an_app]
command:

$ tsuru app-info --app blog
Application: go
Repository: git@cloud.tsuru.io:blog.git
Platform: go
Teams: myteam
Address:

The git remote will be used to deploy your application using git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@cloud.tsuru.io:helloworld.git master
Counting objects: 86, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (75/75), done.
Writing objects: 100% (86/86), 29.75 KiB, done.
Total 86 (delta 2), reused 0 (delta 0)
remote: Cloning into '/home/application/current'...
remote: requirements.apt not found.
remote: Skipping...
remote: /home/application/current /
#####################################
OMIT (see below)
#####################################
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@cloud.tsuru.io:helloworld.git
* [new branch] master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use key-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server]
command:

$ tsuru key-add ~/.ssh/id_rsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@cloud.tsuru.io:helloworld.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: helloworld
Repository: git@cloud.tsuru.io:blog.git
Platform: go
Teams: myteam
Address: helloworld.cloud.tsuru.io
Units:
+--------------+---------+
| Unit | State |
+--------------+---------+
| 9e70748f4f25 | started |
+--------------+---------+

For more details on the --app flag, see “Guessing app names” [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Guessing_app_names]
section of tsuru command documentation.

Running the application

As you can see, in the deploy output there is a step described as “Restarting
your app”. In this step, tsuru will restart your app if it’s running, or start
it if it’s not. But how does tsuru start an application? That’s very simple, it
uses a Procfile (a concept stolen from Foreman). In this Procfile, you describe
how your application should be started. Here is how the Procfile should look like:

web: ./main

Now we commit the file and push the changes to tsuru git server, running
another deploy:

$ git add Procfile
$ git commit -m "Procfile: added file"
$ git push tsuru master
#####################################
OMIT
#####################################
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@cloud.tsuru.io:helloworld.git
d67c3cd..f2a5d2d master -> master

Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+---------------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------------------+--------+
| helloworld | 1 of 1 units in-service | blog.cloud.tsuru.io | Yes |
+-------------+-------------------------+---------------------+--------+

It’s done! Now we have a simple go project deployed on tsuru.

Now we can access your app in the URL http://helloworld.cloud.tsuru.io/.

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru].

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Deploying PHP applications in tsuru

Overview

This document is a hands-on guide to deploying a simple PHP application in
Tsuru. The example application will be a very simple Wordpress project associated
to a MySQL service. It’s applicable to any php over apache application.

Creating the app within tsuru

To create an app, you use app-create [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_an_app]
command:

$ tsuru app-create <app-name> <app-platform>

For PHP, the app platform is, guess what, php! Let’s be over creative
and develop a never-developed tutorial-app: a blog, and its name will also be
very creative, let’s call it “blog”:

$ tsuru app-create blog php

To list all available platforms, use platform-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_the_list_of_available_platforms]
command.

You can see all your applications using app-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_apps_that_you_have_access_to]
command:

$ tsuru app-list
+-------------+-------------------------+---------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------+--------+
| blog | 0 of 0 units in-service | | No |
+-------------+-------------------------+---------+--------+

Once your app is ready, you will be able to deploy your code, e.g.:

$ tsuru app-list
+-------------+-------------------------+-------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+-------------+--------+
| blog | 0 of 1 units in-service | | Yes |
+-------------+-------------------------+-------------+--------+

Application code

This document will not focus on how to write a php blog, you can download the
entire source direct from wordpress:
http://wordpress.org/latest.zip. Here is all you need to do with your
project:

Download and unpack wordpress
$ wget http://wordpress.org/latest.zip
$ unzip latest.zip
Preparing wordpress for tsuru
$ cd wordpress
Notify tsuru about the necessary packages
$ echo php5-mysql > requirements.apt
Preparing the application to receive the tsuru environment related to the mysql service
$ sed "s/'database_name_here'/getenv('MYSQL_DATABASE_NAME')/; \
 s/'username_here'/getenv('MYSQL_USER')/; \
 s/'localhost'/getenv('MYSQL_HOST')/; \
 s/'password_here'/getenv('MYSQL_PASSWORD')/" \
 wp-config-sample.php > wp-config.php
Creating a local git repository
$ git init
$ git add .
$ git commit -m 'initial project version'

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using app-info [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_information_about_an_app]
command:

$ tsuru app-info --app blog
Application: blog
Repository: git@git.tsuru.io:blog.git
Platform: php
Teams: tsuruteam
Address:

The git remote will be used to deploy your application using git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@git.tsuru.io:blog.git master
Counting objects: 119, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (53/53), done.
Writing objects: 100% (119/119), 16.24 KiB, done.
Total 119 (delta 55), reused 119 (delta 55)
remote:
remote: ---> Tsuru receiving push
remote:
remote: From git://cloud.tsuru.io/blog.git
remote: * branch master -> FETCH_HEAD
remote:
remote: ---> Installing dependencies
#####################################
OMIT (see below)
#####################################
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@git.tsuru.io:blog.git
 a211fba..bbf5b53 master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use key-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server]
command:

$ tsuru key-add ~/.ssh/id_dsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@git.tsuru.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: blog
Repository: git@git.tsuru.io:blog.git
Platform: php
Teams: tsuruteam
Address: blog.cloud.tsuru.io
Units:
+--------------+---------+
| Unit | State |
+--------------+---------+
| 9e70748f4f25 | started |
+--------------+---------+

For more details on the --app flag, see “Guessing app names” [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Guessing_app_names]
section of tsuru command documentation.

Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an
application can have two kinds of dependencies:

	Operating system dependencies, represented by packages in the package manager
of the underlying operating system (e.g.: yum and apt-get);

	Platform dependencies, represented by packages in the package manager of the
platform/language (e.g. in Python, pip).

All apt-get dependencies must be specified in a requirements.apt file,
located in the root of your application, and pip dependencies must be located
in a file called requirements.txt, also in the root of the application.
Since we will use MySQL with PHP, we need to install the package depends on just
one apt-get package:
php5-mysql, so here is how requirements.apt
looks like:

php5-mysql

You can see the complete output of installing these dependencies bellow:

% git push tsuru master
#####################################
OMIT
#####################################
Counting objects: 1155, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (1124/1124), done.
Writing objects: 100% (1155/1155), 4.01 MiB | 327 KiB/s, done.
Total 1155 (delta 65), reused 0 (delta 0)
remote: Cloning into '/home/application/current'...
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: The following extra packages will be installed:
remote: libmysqlclient18 mysql-common
remote: The following NEW packages will be installed:
remote: libmysqlclient18 mysql-common php5-mysql
remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
remote: Need to get 1042 kB of archives.
remote: After this operation, 3928 kB of additional disk space will be used.
remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysql-common all 5.5.27-0ubuntu2 [13.7 kB]
remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient18 amd64 5.5.27-0ubuntu2 [949 kB]
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main php5-mysql amd64 5.4.6-1ubuntu1 [79.0 kB]
remote: Fetched 1042 kB in 1s (739 kB/s)
remote: Selecting previously unselected package mysql-common.
remote: (Reading database ... 23874 files and directories currently installed.)
remote: Unpacking mysql-common (from .../mysql-common_5.5.27-0ubuntu2_all.deb) ...
remote: Selecting previously unselected package libmysqlclient18:amd64.
remote: Unpacking libmysqlclient18:amd64 (from .../libmysqlclient18_5.5.27-0ubuntu2_amd64.deb) ...
remote: Selecting previously unselected package php5-mysql.
remote: Unpacking php5-mysql (from .../php5-mysql_5.4.6-1ubuntu1_amd64.deb) ...
remote: Processing triggers for libapache2-mod-php5 ...
remote: * Reloading web server config
remote: ...done.
remote: Setting up mysql-common (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient18:amd64 (5.5.27-0ubuntu2) ...
remote: Setting up php5-mysql (5.4.6-1ubuntu1) ...
remote: Processing triggers for libc-bin ...
remote: ldconfig deferred processing now taking place
remote: Processing triggers for libapache2-mod-php5 ...
remote: * Reloading web server config
remote: ...done.
remote: sudo: unable to resolve host 8cf20f4da877
remote: sudo: unable to resolve host 8cf20f4da877
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote:
remote: Creating config file /etc/php5/mods-available/mysql.ini with new version
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote:
remote: Creating config file /etc/php5/mods-available/mysqli.ini with new version
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote:
remote: Creating config file /etc/php5/mods-available/pdo_mysql.ini with new version
remote:
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@git.tsuru.io:ingress.git
 * [new branch] master -> master

Running the application

As you can see, in the deploy output there is a step described as “App will be
restarted”. In this step, tsuru will restart your app if it’s running, or start
it if it’s not.
Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+---------------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------------------+--------+
| blog | 1 of 1 units in-service | blog.cloud.tsuru.io | Yes |
+-------------+-------------------------+---------------------+--------+

Using services

Now that php is running, we can accesss the application in the browser,
but we get a database connection error: “Error establishing a database connection”.
This error means that we can’t connect to MySQL. That’s because we
should not connect to MySQL on localhost, we must use a service.
The service workflow can be resumed to two steps:

	Create a service instance

	Bind the service instance to the app

But how can I see what services are available? Easy! Use service-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_available_services_and_instances]
command:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| mongodb | |
| mysql | |
+----------------+-----------+

The output from service-list above says that there are two available
services: “elastic-search” and “mysql”, and no instances. To create our MySQL
instance, we should run the service-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_a_new_service_instance]
command:

$ tsuru service-add mysql blogsql
Service successfully added.

Now, if we run service-list again, we will see our new service instance in
the list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | blogsql |
+----------------+-----------+

To bind the service instance to the application, we use the bind [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Bind_an_application_to_a_service_instance]
command:

$ tsuru bind blogsql
Instance blogsql is now bound to the app blog.

The following environment variables are now available for use in your app:

- MYSQL_PORT
- MYSQL_PASSWORD
- MYSQL_USER
- MYSQL_HOST
- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the
MySQL server. Next step would be update the wp-config.php to use these variables to
connect in the database:

$ grep getenv wp-config.php
define('DB_NAME', getenv('MYSQL_DATABASE_NAME'));
define('DB_USER', getenv('MYSQL_USER'));
define('DB_PASSWORD', getenv('MYSQL_PASSWORD'));
define('DB_HOST', getenv('MYSQL_HOST'));

You can extend your wordpress installing plugins into your repository. In the example bellow, we
are installing the W3 Total Cache, adding the Amazon S3 capability to wordpress

$ cd wp-content/plugins/
$ wget http://downloads.wordpress.org/plugin/w3-total-cache.0.9.3.zip
$ unzip w3-total-cache.0.9.3.zip
$ rm w3-total-cache.0.9.3.zip
$ git add w3-total-cache/
$ git commit -m 'adding plugin for caching and S3'
$ git push tsuru master

It’s done! Now we have a PHP project deployed on tsuru, using a MySQL
service.

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru].

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Deploying Python applications in tsuru

Overview

This document is a hands-on guide to deploying a simple Python application in
Tsuru. The example application will be a very simple Django project associated
to a MySQL service. It’s applicable to any WSGI application.

Creating the app within tsuru

To create an app, you use app-create [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_an_app]
command:

$ tsuru app-create <app-name> <app-platform>

For Python, the app platform is, guess what, python! Let’s be over creative
and develop a never-developed tutorial-app: a blog, and its name will also be
very creative, let’s call it “blog”:

$ tsuru app-create blog python

To list all available platforms, use platform-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_the_list_of_available_platforms]
command.

You can see all your applications using app-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_apps_that_you_have_access_to]
command:

$ tsuru app-list
+-------------+-------------------------+---------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------+--------+
| blog | 0 of 0 units in-service | | No |
+-------------+-------------------------+---------+--------+

Once your app is ready, you will be able to deploy your code, e.g.:

$ tsuru app-list
+-------------+-------------------------+-------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+-------------+--------+
| blog | 0 of 1 units in-service | | Yes |
+-------------+-------------------------+-------------+--------+

Application code

This document will not focus on how to write a Django blog, you can clone the
entire source direct from GitHub:
https://github.com/globocom/tsuru-django-sample. Here is what we did for the
project:

	Create the project (django-admin.py startproject)

	Enable django-admin

	Install South

	Create a “posts” app (django-admin.py startapp posts)

	Add a “Post” model to the app

	Register the model in django-admin

	Generate the migration using South

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using app-info [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_information_about_an_app]
command:

$ tsuru app-info --app blog
Application: blog
Repository: git@git.tsuru.io:blog.git
Platform: python
Teams: tsuruteam
Address:

The git remote will be used to deploy your application using git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@git.tsuru.io:blog.git master
Counting objects: 119, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (53/53), done.
Writing objects: 100% (119/119), 16.24 KiB, done.
Total 119 (delta 55), reused 119 (delta 55)
remote:
remote: ---> Tsuru receiving push
remote:
remote: From git://cloud.tsuru.io/blog.git
remote: * branch master -> FETCH_HEAD
remote:
remote: ---> Installing dependencies
#####################################
OMIT (see below)
#####################################
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@git.tsuru.io:blog.git
 a211fba..bbf5b53 master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use key-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server]
command:

$ tsuru key-add ~/.ssh/id_rsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@git.tsuru.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: blog
Repository: git@git.tsuru.io:blog.git
Platform: python
Teams: tsuruteam
Address: blog.cloud.tsuru.io
Units:
+--------------+---------+
| Unit | State |
+--------------+---------+
| 9e70748f4f25 | started |
+--------------+---------+

For more details on the --app flag, see “Guessing app names” [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Guessing_app_names]
section of tsuru command documentation.

Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an
application can have two kinds of dependencies:

	Operating system dependencies, represented by packages in the package manager
of the underlying operating system (e.g.: yum and apt-get);

	Platform dependencies, represented by packages in the package manager of the
platform/language (in Python, pip).

All apt-get dependencies must be specified in a requirements.apt file,
located in the root of your application, and pip dependencies must be located
in a file called requirements.txt, also in the root of the application.
Since we will use MySQL with Django, we need to install mysql-python
package using pip, and this package depends on two apt-get packages:
python-dev and libmysqlclient-dev, so here is how requirements.apt
looks like:

libmysqlclient-dev
python-dev

And here is requirements.txt:

Django==1.4.1
MySQL-python==1.2.3
South==0.7.6

Please notice that we’ve included South too, for database migrations, and Django, off-course.

You can see the complete output of installing these dependencies bellow:

% git push tsuru master
#####################################
OMIT
#####################################
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: python-dev is already the newest version.
remote: The following extra packages will be installed:
remote: libmysqlclient18 mysql-common
remote: The following NEW packages will be installed:
remote: libmysqlclient-dev libmysqlclient18 mysql-common
remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
remote: Need to get 2360 kB of archives.
remote: After this operation, 9289 kB of additional disk space will be used.
remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysql-common all 5.5.27-0ubuntu2 [13.7 kB]
remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient18 amd64 5.5.27-0ubuntu2 [949 kB]
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient-dev amd64 5.5.27-0ubuntu2 [1398 kB]
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote: debconf: unable to initialize frontend: Readline
remote: debconf: (This frontend requires a controlling tty.)
remote: debconf: falling back to frontend: Teletype
remote: dpkg-preconfigure: unable to re-open stdin:
remote: Fetched 2360 kB in 1s (1285 kB/s)
remote: Selecting previously unselected package mysql-common.
remote: (Reading database ... 23143 files and directories currently installed.)
remote: Unpacking mysql-common (from .../mysql-common_5.5.27-0ubuntu2_all.deb) ...
remote: Selecting previously unselected package libmysqlclient18:amd64.
remote: Unpacking libmysqlclient18:amd64 (from .../libmysqlclient18_5.5.27-0ubuntu2_amd64.deb) ...
remote: Selecting previously unselected package libmysqlclient-dev.
remote: Unpacking libmysqlclient-dev (from .../libmysqlclient-dev_5.5.27-0ubuntu2_amd64.deb) ...
remote: Setting up mysql-common (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient18:amd64 (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient-dev (5.5.27-0ubuntu2) ...
remote: Processing triggers for libc-bin ...
remote: ldconfig deferred processing now taking place
remote: sudo: Downloading/unpacking Django==1.4.1 (from -r /home/application/current/requirements.txt (line 1))
remote: Running setup.py egg_info for package Django
remote:
remote: Downloading/unpacking MySQL-python==1.2.3 (from -r /home/application/current/requirements.txt (line 2))
remote: Running setup.py egg_info for package MySQL-python
remote:
remote: warning: no files found matching 'MANIFEST'
remote: warning: no files found matching 'ChangeLog'
remote: warning: no files found matching 'GPL'
remote: Downloading/unpacking South==0.7.6 (from -r /home/application/current/requirements.txt (line 3))
remote: Running setup.py egg_info for package South
remote:
remote: Installing collected packages: Django, MySQL-python, South
remote: Running setup.py install for Django
remote: changing mode of build/scripts-2.7/django-admin.py from 644 to 755
remote:
remote: changing mode of /usr/local/bin/django-admin.py to 755
remote: Running setup.py install for MySQL-python
remote: building '_mysql' extension
remote: gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC -Dversion_info=(1,2,3,'final',0) -D__version__=1.2.3 -I/usr/include/mysql -I/usr/include/python2.7 -c _mysql.c -o build/temp.linux-x86_64-2.7/_mysql.o -DBIG_JOINS=1 -fno-strict-aliasing -g
remote: In file included from _mysql.c:36:0:
remote: /usr/include/mysql/my_config.h:422:0: warning: "HAVE_WCSCOLL" redefined [enabled by default]
remote: In file included from /usr/include/python2.7/Python.h:8:0,
remote: from pymemcompat.h:10,
remote: from _mysql.c:29:
remote: /usr/include/python2.7/pyconfig.h:890:0: note: this is the location of the previous definition
remote: gcc -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro build/temp.linux-x86_64-2.7/_mysql.o -L/usr/lib/x86_64-linux-gnu -lmysqlclient_r -lpthread -lz -lm -lrt -ldl -o build/lib.linux-x86_64-2.7/_mysql.so
remote:
remote: warning: no files found matching 'MANIFEST'
remote: warning: no files found matching 'ChangeLog'
remote: warning: no files found matching 'GPL'
remote: Running setup.py install for South
remote:
remote: Successfully installed Django MySQL-python South
remote: Cleaning up...
#####################################
OMIT
#####################################
To git@git.tsuru.io:blog.git
 a211fba..bbf5b53 master -> master

Running the application

As you can see, in the deploy output there is a step described as “Restarting
your app”. In this step, tsuru will restart your app if it’s running, or start
it if it’s not. But how does tsuru start an application? That’s very simple, it
uses a Procfile (a concept stolen from Foreman). In this Procfile, you describe
how your application should be started. We can use gunicorn [http://gunicorn.org/], for example, to start our Django application. Here is
how the Procfile should look like:

web: gunicorn -b 0.0.0.0:$PORT blog.wsgi

Now we commit the file and push the changes to tsuru git server, running
another deploy:

$ git add Procfile
$ git commit -m "Procfile: added file"
$ git push tsuru master
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 326 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: ---> Tsuru receiving push
remote:
remote: ---> Installing dependencies
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: python-dev is already the newest version.
remote: libmysqlclient-dev is already the newest version.
remote: 0 upgraded, 0 newly installed, 0 to remove and 1 not upgraded.
remote: Requirement already satisfied (use --upgrade to upgrade): Django==1.4.1 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 1))
remote: Requirement already satisfied (use --upgrade to upgrade): MySQL-python==1.2.3 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 2))
remote: Requirement already satisfied (use --upgrade to upgrade): South==0.7.6 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 3))
remote: Cleaning up...
remote:
remote: ---> Restarting your app
remote: /var/lib/tsuru/hooks/start: line 13: gunicorn: command not found
remote:
remote: ---> Deploy done!
remote:
To git@git.tsuru.io:blog.git
 81e884e..530c528 master -> master

Now we get an error: gunicorn: command not found. It means that we need to
add gunicorn to requirements.txt file:

$ cat >> requirements.txt
gunicorn==0.14.6
^D

Now we commit the changes and run another deploy:

$ git add requirements.txt
$ git commit -m "requirements.txt: added gunicorn"
$ git push tsuru master
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 325 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: ---> Tsuru receiving push
remote:
[...]
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@git.tsuru.io:blog.git
 530c528..542403a master -> master

Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+---------------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------------------+--------+
| blog | 1 of 1 units in-service | blog.cloud.tsuru.io | Yes |
+-------------+-------------------------+---------------------+--------+

We can access the admin of the app in the URL http://blog.cloud.tsuru.io/admin/.

Using services

Now that gunicorn is running, we can accesss the application in the browser,
but we get a Django error: “Can’t connect to local MySQL server through socket
‘/var/run/mysqld/mysqld.sock’ (2)”. This error means that we can’t connect to
MySQL on localhost. That’s because we should not connect to MySQL on localhost,
we must use a service. The service workflow can be resumed to two steps:

	Create a service instance

	Bind the service instance to the app

But how can I see what services are available? Easy! Use service-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_available_services_and_instances]
command:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | |
+----------------+-----------+

The output from service-list above says that there are two available
services: “elastic-search” and “mysql”, and no instances. To create our MySQL
instance, we should run the service-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_a_new_service_instance]
command:

$ tsuru service-add mysql blogsql
Service successfully added.

Now, if we run service-list again, we will see our new service instance in
the list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | blogsql |
+----------------+-----------+

To bind the service instance to the application, we use the bind [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Bind_an_application_to_a_service_instance]
command:

$ tsuru bind blogsql
Instance blogsql is now bound to the app blog.

The following environment variables are now available for use in your app:

- MYSQL_PORT
- MYSQL_PASSWORD
- MYSQL_USER
- MYSQL_HOST
- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the
MySQL server. Next step is update settings.py to use these variables to
connect in the database:

import os

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': os.environ.get('MYSQL_DATABASE_NAME', 'blog'),
 'USER': os.environ.get('MYSQL_USER', 'root'),
 'PASSWORD': os.environ.get('MYSQL_PASSWORD', ''),
 'HOST': os.environ.get('MYSQL_HOST', ''),
 'PORT': os.environ.get('MYSQL_PORT', ''),
 }
}

Now let’s commit it and run another deploy:

$ git add blog/settings.py
$ git commit -m "settings: using environment variables to connect to MySQL"
$ git push tsuru master
Counting objects: 7, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 535 bytes, done.
Total 4 (delta 3), reused 0 (delta 0)
remote:
remote: ---> Tsuru receiving push
remote:
remote: ---> Installing dependencies
#####################################
OMIT
#####################################
remote:
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@git.tsuru.io:blog.git
 ab4e706..a780de9 master -> master

Now if we try to access the admin again, we will get another error: “Table
‘blogsql.django_session’ doesn’t exist”. Well, that means that we have access
to the database, so bind worked, but we did not set up the database yet. We
need to run syncdb and migrate (if we’re using South) in the remote
server. We can use run [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Run_an_arbitrary_command_in_the_app_machine]
command to execute commands in the machine, so for running syncdb we could
write:

$ tsuru run -- python manage.py syncdb --noinput
Syncing...
Creating tables ...
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_user_permissions
Creating table auth_user_groups
Creating table auth_user
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log
Creating table south_migrationhistory
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

Synced:
 > django.contrib.auth
 > django.contrib.contenttypes
 > django.contrib.sessions
 > django.contrib.sites
 > django.contrib.messages
 > django.contrib.staticfiles
 > django.contrib.admin
 > south

Not synced (use migrations):
 - blog.posts
(use ./manage.py migrate to migrate these)

The same applies for migrate.

Deployment hooks

It would be boring to manually run syncdb and/or migrate after every
deployment. So we can configure an automatic hook to always run before or after
the app restarts.

Tsuru parses a file called app.yaml and runs restart hooks. As the
extension suggests, this is a YAML file, that contains a list of commands that
should run before and after the restart. Here is our example of app.yaml:

hooks:
 restart:
 after:
 - python manage.py syncdb --noinput
 - python manage.py migrate

For more details, check the hooks documentation.

Tsuru will look for the file in the root of the project. Let’s commit and
deploy it:

$ git add app.yaml
$ git commit -m "app.yaml: added file"
$ git push tsuru master
Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 338 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: ---> Tsuru receiving push
remote:
remote: ---> Installing dependencies
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: python-dev is already the newest version.
remote: libmysqlclient-dev is already the newest version.
remote: 0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
remote: Requirement already satisfied (use --upgrade to upgrade): Django==1.4.1 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 1))
remote: Requirement already satisfied (use --upgrade to upgrade): MySQL-python==1.2.3 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 2))
remote: Requirement already satisfied (use --upgrade to upgrade): South==0.7.6 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 3))
remote: Requirement already satisfied (use --upgrade to upgrade): gunicorn==0.14.6 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 4))
remote: Cleaning up...
remote:
remote: ---> Restarting your app
remote:
remote: ---> Running restart:after
remote:
remote: ---> Deploy done!
remote:
To git@git.tsuru.io:blog.git
 a780de9..1b675b8 master -> master

It’s done! Now we have a Django project deployed on tsuru, using a MySQL
service.

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru].

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Deploying Ruby applications in tsuru

Overview

This document is a hands-on guide to deploying a simple Ruby application in
Tsuru. The example application will be a very simple Rails project associated
to a MySQL service.

Creating the app within tsuru

To create an app, you use app-create [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_an_app]
command:

$ tsuru app-create <app-name> <app-platform>

For Ruby, the app platform is, guess what, ruby! Let’s be over creative
and develop a never-developed tutorial-app: a blog, and its name will also be
very creative, let’s call it “blog”:

$ tsuru app-create blog ruby

To list all available platforms, use platform-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_the_list_of_available_platforms]
command.

You can see all your applications using app-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_apps_that_you_have_access_to]
command:

$ tsuru app-list
+-------------+-------------------------+---------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------+--------+
| blog | 0 of 0 units in-service | | No |
+-------------+-------------------------+---------+--------+

Once your app is ready, you will be able to deploy your code, e.g.:

$ tsuru app-list
+-------------+-------------------------+-------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+-------------+--------+
| blog | 0 of 0 units in-service | | Yes |
+-------------+-------------------------+-------------+--------+

Application code

This document will not focus on how to write a blog with Rails, you can clone the
entire source direct from GitHub:
https://github.com/globocom/tsuru-ruby-sample. Here is what we did for the
project:

	Create the project (rails new blog)

	Generate the scaffold for Post (rails generate scaffold Post title:string body:text)

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using app-info [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Display_information_about_an_app]
command:

$ tsuru app-info --app blog
Application: blog
Repository: git@cloud.tsuru.io:blog.git
Platform: ruby
Teams: tsuruteam
Address:

The git remote will be used to deploy your application using git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@cloud.tsuru.io:blog.git master
Counting objects: 86, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (75/75), done.
Writing objects: 100% (86/86), 29.75 KiB, done.
Total 86 (delta 2), reused 0 (delta 0)
remote: Cloning into '/home/application/current'...
remote: requirements.apt not found.
remote: Skipping...
remote: /home/application/current /
remote: Fetching gem metadata from https://rubygems.org/.........
remote: Fetching gem metadata from https://rubygems.org/..
#####################################
OMIT (see below)
#####################################
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@cloud.tsuru.io:blog.git
 * [new branch] master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use key-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Add_SSH_public_key_to_tsuru_s_git_server]
command:

$ tsuru key-add ~/.ssh/id_rsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@cloud.tsuru.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: blog
Repository: git@cloud.tsuru.io:blog.git
Platform: ruby
Teams: tsuruteam
Address: blog.cloud.tsuru.io
Units:
+--------------+---------+
| Unit | State |
+--------------+---------+
| 9e70748f4f25 | started |
+--------------+---------+

For more details on the --app flag, see “Guessing app names” [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Guessing_app_names]
section of tsuru command documentation.

Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an
application can have two kinds of dependencies:

	Operating system dependencies, represented by packages in the package manager
of the underlying operating system (e.g.: yum and apt-get);

	Platform dependencies, represented by packages in the package manager of the
platform/language (in Ruby, bundler).

All apt-get dependencies must be specified in a requirements.apt file,
located in the root of your application, and ruby dependencies must be located
in a file called Gemfile, also in the root of the application.
Since we will use MySQL with Rails, we need to install mysql
package using gem, and this package depends on an apt-get package:
libmysqlclient-dev, so here is how requirements.apt
looks like:

libmysqlclient-dev

And here is Gemfile:

source 'https://rubygems.org'

gem 'rails', '3.2.13'
gem 'mysql'
gem 'sass-rails', '~> 3.2.3'
gem 'coffee-rails', '~> 3.2.1'
gem 'therubyracer', :platforms => :ruby
gem 'uglifier', '>= 1.0.3'
gem 'jquery-rails'

You can see the complete output of installing these dependencies bellow:

$ git push tsuru master
#####################################
OMIT
#####################################
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: The following extra packages will be installed:
remote: libmysqlclient18 mysql-common
remote: The following NEW packages will be installed:
remote: libmysqlclient-dev libmysqlclient18 mysql-common
remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
remote: Need to get 2360 kB of archives.
remote: After this operation, 9289 kB of additional disk space will be used.
remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysql-common all 5.5.27-0ubuntu2 [13.7 kB]
remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient18 amd64 5.5.27-0ubuntu2 [949 kB]
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient-dev amd64 5.5.27-0ubuntu2 [1398 kB]
remote: Fetched 2360 kB in 2s (1112 kB/s)
remote: Selecting previously unselected package mysql-common.
remote: (Reading database ... 41063 files and directories currently installed.)
remote: Unpacking mysql-common (from .../mysql-common_5.5.27-0ubuntu2_all.deb) ...
remote: Selecting previously unselected package libmysqlclient18:amd64.
remote: Unpacking libmysqlclient18:amd64 (from .../libmysqlclient18_5.5.27-0ubuntu2_amd64.deb) ...
remote: Selecting previously unselected package libmysqlclient-dev.
remote: Unpacking libmysqlclient-dev (from .../libmysqlclient-dev_5.5.27-0ubuntu2_amd64.deb) ...
remote: Setting up mysql-common (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient18:amd64 (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient-dev (5.5.27-0ubuntu2) ...
remote: Processing triggers for libc-bin ...
remote: ldconfig deferred processing now taking place
remote: /home/application/current /
remote: Fetching gem metadata from https://rubygems.org/..........
remote: Fetching gem metadata from https://rubygems.org/..
remote: Using rake (10.1.0)
remote: Using i18n (0.6.1)
remote: Using multi_json (1.7.8)
remote: Using activesupport (3.2.13)
remote: Using builder (3.0.4)
remote: Using activemodel (3.2.13)
remote: Using erubis (2.7.0)
remote: Using journey (1.0.4)
remote: Using rack (1.4.5)
remote: Using rack-cache (1.2)
remote: Using rack-test (0.6.2)
remote: Using hike (1.2.3)
remote: Using tilt (1.4.1)
remote: Using sprockets (2.2.2)
remote: Using actionpack (3.2.13)
remote: Using mime-types (1.23)
remote: Using polyglot (0.3.3)
remote: Using treetop (1.4.14)
remote: Using mail (2.5.4)
remote: Using actionmailer (3.2.13)
remote: Using arel (3.0.2)
remote: Using tzinfo (0.3.37)
remote: Using activerecord (3.2.13)
remote: Using activeresource (3.2.13)
remote: Using coffee-script-source (1.6.3)
remote: Using execjs (1.4.0)
remote: Using coffee-script (2.2.0)
remote: Using rack-ssl (1.3.3)
remote: Using json (1.8.0)
remote: Using rdoc (3.12.2)
remote: Using thor (0.18.1)
remote: Using railties (3.2.13)
remote: Using coffee-rails (3.2.2)
remote: Using jquery-rails (3.0.4)
remote: Installing libv8 (3.11.8.17)
remote: Installing mysql (2.9.1)
remote: Using bundler (1.3.5)
remote: Using rails (3.2.13)
remote: Installing ref (1.0.5)
remote: Using sass (3.2.10)
remote: Using sass-rails (3.2.6)
remote: Installing therubyracer (0.11.4)
remote: Installing uglifier (2.1.2)
remote: Your bundle is complete!
remote: Gems in the groups test and development were not installed.
remote: It was installed into ./vendor/bundle
#####################################
OMIT
#####################################
To git@cloud.tsuru.io:blog.git
 9515685..d67c3cd master -> master

Running the application

As you can see, in the deploy output there is a step described as “Restarting
your app”. In this step, tsuru will restart your app if it’s running, or start
it if it’s not. But how does tsuru start an application? That’s very simple, it
uses a Procfile (a concept stolen from Foreman). In this Procfile, you describe
how your application should be started. Here is how the Procfile should look like:

web: bundle exec rails server -p $PORT -e production

Now we commit the file and push the changes to tsuru git server, running
another deploy:

$ git add Procfile
$ git commit -m "Procfile: added file"
$ git push tsuru master
#####################################
OMIT
#####################################
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@cloud.tsuru.io:blog.git
 d67c3cd..f2a5d2d master -> master

Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+---------------------+--------+
| Application | Units State Summary | Address | Ready? |
+-------------+-------------------------+---------------------+--------+
| blog | 1 of 1 units in-service | blog.cloud.tsuru.io | Yes |
+-------------+-------------------------+---------------------+--------+

Using services

Now that your app is not running with success because the rails can’t connect to
MySQL. That’s because we add a relation between your rails app and a mysql instance.
To do it we must use a service. The service workflow can be resumed to two steps:

	Create a service instance

	Bind the service instance to the app

But how can I see what services are available? Easy! Use service-list [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-List_available_services_and_instances]
command:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | |
+----------------+-----------+

The output from service-list above says that there are two available
services: “elastic-search” and “mysql”, and no instances. To create our MySQL
instance, we should run the service-add [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Create_a_new_service_instance]
command:

$ tsuru service-add mysql blogsql
Service successfully added.

Now, if we run service-list again, we will see our new service instance in
the list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | blogsql |
+----------------+-----------+

To bind the service instance to the application, we use the bind [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Bind_an_application_to_a_service_instance]
command:

$ tsuru bind blogsql
Instance blogsql is now bound to the app blog.

The following environment variables are now available for use in your app:

- MYSQL_PORT
- MYSQL_PASSWORD
- MYSQL_USER
- MYSQL_HOST
- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the
MySQL server. Next step is update conf/database.yml to use these variables to
connect in the database:

production:
 adapter: mysql
 encoding: utf8
 database: <%= ENV["MYSQL_DATABASE_NAME"] %>
 pool: 5
 username: <%= ENV["MYSQL_USER"] %>
 password: <%= ENV["MYSQL_PASSWORD"] %>
 host: <%= ENV["MYSQL_HOST"] %>

Now let’s commit it and run another deploy:

$ git add conf/database.yml
$ git commit -m "database.yml: using environment variables to connect to MySQL"
$ git push tsuru master
Counting objects: 7, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 535 bytes, done.
Total 4 (delta 3), reused 0 (delta 0)
remote:
remote: ---> Tsuru receiving push
remote:
remote: ---> Installing dependencies
#####################################
OMIT
#####################################
remote:
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@cloud.tsuru.io:blog.git
 ab4e706..a780de9 master -> master

Now if we try to access the admin again, we will get another error: “Table
‘blogsql.django_session’ doesn’t exist”. Well, that means that we have access
to the database, so bind worked, but we did not set up the database yet. We
need to run rake db:migrate in the remote server. We can use run [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru#hdr-Run_an_arbitrary_command_in_the_app_machine]
command to execute commands in the machine, so for running rake db:migrate we could
write:

$ tsuru run -- RAILS_ENV=production bundle exec rake db:migrate
== CreatePosts: migrating ==
-- create_table(:posts)
 -> 0.1126s
== CreatePosts: migrated (0.1128s) ===

Deployment hooks

It would be boring to manually run rake db:migrate after every deployment.
So we can configure an automatic hook to always run before or after
the app restarts.

Tsuru parses a file called app.yaml and runs restart hooks. As the
extension suggests, this is a YAML file, that contains a list of commands that
should run before and after the restart. Here is our example of app.yaml:

hooks:
 restart:
 before-each:
 - RAILS_ENV=production bundle exec rake db:migrate

For more details, check the hooks documentation.

Tsuru will look for the file in the root of the project. Let’s commit and
deploy it:

$ git add app.yaml
$ git commit -m "app.yaml: added file"
$ git push tsuru master
#####################################
OMIT
#####################################
To git@cloud.tsuru.io:blog.git
 a780de9..1b675b8 master -> master

It is necessary to compile de assets before the app restart. To do it we can
use the rake assets:precompile command. Then let’s add the command to
compile the assets in app.yaml:

hooks:
 restart:
 before:
 - RAILS_ENV=production bundle exec rake assets:precompile

$ git add app.yaml
$ git commit -m "app.yaml: added file"
$ git push tsuru master
#####################################
OMIT
#####################################
To git@cloud.tsuru.io:blog.git
 a780de9..1b675b8 master -> master

It’s done! Now we have a Rails project deployed on tsuru, using a MySQL
service.

Now we can access your blog app in the URL http://blog.cloud.tsuru.io/posts/.

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [http://godoc.org/github.com/globocom/tsuru/cmd/tsuru].

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Docker Provisioner Architecture

This document describes how tsuru works when configured with docker provisioner.
Docker [http://docker.io]

The docker provisioner is responsible for provisioning your application units. Everytime your perform an action
in your application Tsuru repasses the request with specific parameters to the configured provisioner. In this document
you will learn how the docker provisioner reacts facing those actions.

Given the app creation -> deploy workflow.

App Provisioning

When you create an application Tsuru asks the provisioner to provision the application, the docker provisioner
will do nothing in this action, the only change is that Tsuru creates the application on the database. Docker
provisioner will wait until you perform a deploy, so it can create a base image to your application.

Deployment

When you perform a git push into your application repository on Tsuru the custom
pre-receive git hook [http://git-scm.com/book/en/Customizing-Git-Git-Hooks#Server-Side-Hooks] is triggered, this hook will ask Tsuru
to deploy your application, Tsuru will then repass the action to docker. Docker will run a container, clone your
application code to it and install all dependencies specified by your application, then it will generate an image of that
container and store its id on the database, this container is then destroyed and a new one is run starting your application.
This allows an easy and fast scalability for your application, whenever you need a new unit Tsuru can deploy one in a few seconds.

Every deploy will trigger this process, resulting in a new image with the deployed version and new dependencies if any.

HTTP Routing

Because containers are ephemeral their routes changes everytime a deploy is performed. So we need an easy and fast way to manage routes to
containers, by default the docker provisioner uses Hipache [https://github.com/dotcloud/hipache] router.
Routes to containers are managed transparently by the docker provisioner. The hipache router also acts as a load balancer to the containers,
distributing traffic using a round robin algorithm.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

Schedulers

Tsuru uses schedulers to chooses which node an unit should be deployed. There are
two schedulers: round robin and segregate scheduler.

Segregate scheduler

Segregate scheduler is a scheduler that segregates the units between nodes by team.

irst, what you need to do is to define a relation between nodes and teams.
And then, the scheduler deploys the app unit on the node related to its team.

	team1 -> node1

	team2 -> node3

	others -> fallback (node4)

Configuration and setup

To use the segregate scheduler you shoud enable the segregate mode in
tsuru.conf and make sure that the details about the scheduler storage (redis)
is also configured:

docker:
 segregate: true
 scheduler:
 redis-server: 127.0.0.1:6379
 redis-prefix: docker-cluster

Adding a node

You can use the tsr to add nodes:

$ tsr docker-add-node someid http://localhost:4243 myteam

Adding a fallback node

To add a fallback, you just need to add a node without team:

$ tsr docker-add-node someid http://localhost:4243

Removing a node

You can use the tsr to remove nodes:

$ tsr docker-rm-node xxx
Node successfully removed.

List nodes

Just use docker-list-nodes to list nodes:

$ tsr docker-list-nodes
+------+-----------------------+------------------+
| ID | Address | Team |
+------+-----------------------+------------------+
| fall | http://localhost:4243 | |
| xpto | http://localhost:4243 | xpto |
+------+-----------------------+------------------+

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

tsr 0.3.0 release notes

Welcome to tsr 0.3.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from Tsuru 0.2.x or older
versions.

What’s new in tsr 0.3.0

Support Docker 0.7.x and other improvements

	Fixed the 42 layers problem.

	Support all Docker storages.

	Pull image on creation if it does not exists.

	BUGFIX: when using segregatedScheduler, the provisioner fails to get
the proper host address.

	BUGFIX: units losing access to services on deploy bug.

Improvements related to Services

	bind is atomic.

	service-add is atomic

	Service instance name is unique.

	Add support to bind an app without units.

Collector ticker time is configurable

Now you can define the collector ticker time. To do it just set on tsuru.conf:

collector:
 ticker-time: 120

The default value is 60 seconds.

Other improvements and bugfixes

	unit-remove does not block util all units are removed.

	BUGFIX: send on closed channel: https://github.com/globocom/tsuru/issues/624.

	Api handler that returns information about all deploys.

	Refactored quota backend.

	New lisp platform. Thanks to Nick Ricketts.

Backwards incompatible changes

Tsuru 0.3.0 handles quota in a brand new way. Users upgrading from 0.2.x need
to run a migration script in the database. There are two scripts available: one
for installations with quota enabled and other for installations without quota.

The easiest script is recommended for environments where quota is disabled,
you’ll need to run just a couple of commands in MongoDB:

% mongo tsuru
MongoDB shell version: x.x.x
connecting to: tsuru
> db.users.update({}, {$set: {quota: {limit: -1}}});
> db.apps.update({}, {$set: {quota: {limit: -1}}});

In environments where quota is enabled, the script is longer, but still simple:

db.quota.find().forEach(function(quota) {
 if(quota.owner.indexOf("@") > -1) {
 db.users.update({email: quota.owner}, {$set: {quota: {limit: quota.limit, inuse: quota.items.length}}});
 } else {
 db.apps.update({name: quota.owner}, {$set: {quota: {limit: quota.limit, inuse: quota.items.length}}});
 }
});

db.apps.update({quota: null}, {$set: {quota: {limit: -1}}});
db.users.update({quota: null}, {$set: {quota: {limit: -1}}});
db.quota.remove()

The best way to run it is saving it to a file and invoke MongoDB with the file
parameter:

% mongo tsuru <filename.js>

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.1 documentation

tsr 0.3.1 release notes - UNDER DEVELOPMENT

Welcome to tsr 0.3.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from Tsuru 0.3.0 or older
versions.

What’s new in tsr 0.3.1

Backwards incompatible changes

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	tsuru 0.1 documentation

tsuru 0.8.6 release notes

Welcome to tsuru 0.8.6!

These release notes cover the new features you’ll want to be aware of when
upgrading from Tsuru 0.8.5 or older versions.

What’s new in tsuru 0.8.6

Improvements related to Services

	Added confirmation on service-remove command.

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	tsuru 0.1 documentation

Index

 Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		tsuru 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Globo.com.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/img/tsuru_maps.png
5

N

“
N\ S
& \\‘ ‘§\ \\S §\ \\
NN N .\\\\“*;*’\\\
\\\\) >« N \\\ ': t
- \\\5 §¢ \\}\\) §:\\§\\%\ ‘ \:
N \\}\\ ‘ \ R %‘S\

