

 Navigation

 	
 index

 	
 next |

 	tsuru 0.12.4 documentation

Welcome

tsuru is an open source PaaS that makes it easy and fast to deploy and manage applications
on your own servers.

To get started, first read understanding tsuru.

	Understanding
	Overview

	Concepts

	Architecture

	Installing
	Gandalf

	API Server

	Hipache Router

	Adding Nodes

	Managing
	Installing platforms

	Creating a platform

	Using Pools

	Segregate Scheduler

	Upgrading Docker

	Managing Git repositories and SSH keys

	Using
	Installing tsuru clients

	Building your app in tsuru

	Deploying Python applications in tsuru

	Deploying Ruby applications in tsuru

	Deploying Go applications in tsuru

	Deploying Java applications on tsuru

	Deploying PHP applications in tsuru

	Using Buildpacks

	Recovering an application

	Logging

	Procfile

	tsuru.yaml

	Unit states

	tsuru client plugins

	Application Deployment

	Choose a pool to deploy your app

	Services
	API workflow

	Building your service

	TSURU_SERVICES environment variable

	crane usage

	Advanced topics
	Metrics

	Node Auto Scaling

	Contributing
	Development environment

	Running the tests

	Writing docs

	Building docs

	Community

	Release Process

	Reference
	tsuru client usage

	tsuru-admin usage

	crane usage

	bs

	tsuru.conf reference

	API reference

	Frequently Asked Questions
	How do environment variables work?

	How does the quota system work?

	How does routing work?

	How are Git repositories managed?

	Release notes
	tsurud (tsuru server daemon)

	tsuru

	tsuru-admin

	crane

	Roadmap
	Release Process

	Next Release 0.12.0

	Long term Goals

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Understanding

	Overview
	Why tsuru?
	Fast and easy and continuous deployment

	Scaling

	Reliable

	Open source

	Concepts
	Docker

	Clusters

	Nodes
	Managed node

	Unmanaged node

	Applications

	Units

	Platforms

	Services

	Architecture
	API

	Database

	Queue/Cache

	Gandalf

	Registry

	Router

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Understanding

Overview

tsuru is an extensible and open source Platform as a Service (PaaS) that makes
application deployments faster and easier.
tsuru is an open source polyglot cloud application platform (PaaS).
With tsuru, you don’t need to think about servers at all.
As an application developer, you can:

	Write apps in the programming language of your choice,

	Back apps with add-on resources such as SQL and NoSQL databases, including memcached, redis, and many others.

	Manage apps using the tsuru command-line tool

	Deploy apps using the Git revision control system

Why tsuru?

Fast and easy and continuous deployment

Deploying an app is simple and easy. No special tools needed, just a plain git
push. The entire process is very simple. tsuru will also take care of all the
applications dependencies in the deployment process.

Easily create testing, staging, and production versions of your app and deploy
to them instantly.

Scaling

Scaling applications is completely painless.
Just add a unit and tsuru will take care of everything else.

Reliable

tsuru has a set of tools to make sure that the applications will be always
available.

Open source

tsuru is free, open source software released under the BSD 3-Clause license.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Understanding

Concepts

Docker

Docker [https://www.docker.com/] is an open source project to pack, ship,
and run any application as a lightweight, portable, self-sufficient container.
When you deploy an app with git push or tsuru app-deploy, tsuru builds
a Docker image and then distributes it as units (Docker containers) across
your cluster.

Clusters

A cluster is a named group of nodes. tsuru API has a scheduler algorithm that
distributes applications intelligently across a cluster of nodes.

Nodes

A node is a physical or virtual machine with Docker installed.

Managed node

A managed node is a node created and managed by tsuru, using IaaS
integration. tsuru manages this node, i.e. tsuru can heal
and scale it.

Unmanaged node

An unmanaged node is a node created manually, and just registered with tsuru.
tsuru is not able to manage these nodes, and it should be handled by whoever
created it manually.

Applications

An application consists of:

	the program’s source code - e.g.: Python, Ruby, Go, PHP, JavaScript, Java, etc.

	an operating system dependencies list – in a file called requirements.apt

	a language-level dependencies list – e.g.: requirements.txt, Gemfile, etc.

	instructions on how to run the program – in a file called Procfile

An application has a name, a unique address, a platform, associated development
teams, a repository, and a set of units.

Units

A unit is a container. A unit has everything an application needs to run; the
fetched operational system and language level dependencies, the application’s
source code, the language runtime, and the application’s processes defined in
the Procfile.

Platforms

A platform is a well-defined pack with installed dependencies for a language or
framework that a group of applications will need. A platform might be a
container template (Docker image).

For instance, tsuru has a container image for Python applications, with
virtualenv installed and other required things needed for tsuru to deploy
applications on top of that platform. Platforms are easily extendable and
managed by tsuru. Every application runs on top of a platform.

Services

A service is a well-defined API that tsuru communicates with to provide extra
functionality for applications. Examples of services are MySQL, Redis, MongoDB,
etc. tsuru has built-in services, but it is easy to create and add new services
to tsuru. Services aren’t managed by tsuru, but by their creators.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Understanding

Architecture

API

The API component (also referred as the tsuru daemon, or tsurud) is a RESTful
API server written with Go. The API is responsible for the deploy workflow
and the lifecycle of applications.

Command-line clients interact with this component.

Database

The database component is a MongoDB server.

Queue/Cache

The queue and cache component uses Redis.

Gandalf

Gandalf is a REST API to manage Git repositories and users and provides
access to them over SSH.

Registry

The registry component hosts Docker images.

Router

The router component routes traffic to application units (Docker containers).

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Installing

If you want to try tsuru with a minimum amount of effort, we recommend you to use tsuru
Now [https://github.com/tsuru/now] (or tsuru-bootstrap [https://github.com/tsuru/tsuru-bootstrap], which runs tsuru Now in a Vagrant VM).

tsuru Now will install tsuru API, tsuru Client, tsuru Admin, and all of their
dependencies on a single machine. It will also include a Docker node which will
run deployed applications.

This gives you a very nice environment for trying out tsuru, but this is not
the recommended approach for a production environment. This document will
describe how to install each component separately.

We assume that tsuru is being installed on an Ubuntu Server 14.04 LTS 64-bit
machine. This is currently the supported environment for tsuru, you may try
running it on other environments, but there’s a chance it won’t be a smooth
ride.

	Gandalf
	Adding repositories

	Installing

	Configuring tsuru to use Gandalf

	Token for authentication with tsuru API

	API Server
	Dependencies

	Adding repositories

	Installing

	Creating admin user

	Generating token for Gandalf authentication

	Hipache Router
	Adding repositories

	Installing

	Configuring

	Adding Nodes
	Managed nodes

	Unmanaged nodes

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Installing

Gandalf

tsuru optionally uses Gandalf to manage Git repositories used to push
applications to. It’s also responsible for setting hooks in these repositories
which will notify the tsuru API when a new deploy is made. For more details
check Gandalf Documentation [http://gandalf.readthedocs.org/]

This document will focus on how to setup a Gandalf installation with the
necessary hooks to notify the tsuru API.

Adding repositories

Let’s start adding the repositories for tsuru which contain the Gandalf package.

sudo apt-get update
sudo apt-get install curl python-software-properties
sudo apt-add-repository ppa:tsuru/ppa -y
sudo apt-get update

Installing

sudo apt-get install gandalf-server

A deploy is executed in the git push. In order to get it working, you will
need to add a pre-receive hook. tsuru comes with three pre-receive hooks, all
of them need further configuration:

	s3cmd: uses Amazon S3 [https://s3.amazonaws.com] to store and serve
archives

	archive-server: uses tsuru’s archive-server [https://github.com/tsuru/archive-server] to store and serve archives

	swift: uses Swift [http://swift.openstack.org] to store and serve
archives (compatible with Rackspace Cloud Files [http://www.rackspace.com/cloud/files/])

In this documentation, we will use archive-server, but you can use anything that
can store a git archive and serve it via HTTP or FTP. You can install archive-server via apt-get too:

sudo apt-get install archive-server

Then you will need to configure Gandalf, install the pre-receive hook, set the
proper environment variables and start Gandalf and the archive-server, please note
that you should replace the value <your-machine-addr> with your machine public
address:

sudo mkdir -p /home/git/bare-template/hooks
sudo curl https://raw.githubusercontent.com/tsuru/tsuru/master/misc/git-hooks/pre-receive.archive-server -o /home/git/bare-template/hooks/pre-receive
sudo chmod +x /home/git/bare-template/hooks/pre-receive
sudo chown -R git:git /home/git/bare-template
cat | sudo tee -a /home/git/.bash_profile <<EOF
export ARCHIVE_SERVER_READ=http://<your-machine-addr>:3232 ARCHIVE_SERVER_WRITE=http://127.0.0.1:3131
EOF

In the /etc/gandalf.conf file, remove the comment from the line “template:
/home/git/bare-template”, so it looks like that:

git:
 bare:
 location: /var/lib/gandalf/repositories
 template: /home/git/bare-template

Then start gandalf and archive-server:

sudo start gandalf-server
sudo start archive-server

Configuring tsuru to use Gandalf

In order to use Gandalf, you need to change tsuru.conf accordingly:

	Define “repo-manager” to use “gandalf”;

	Define “git:api-server” to point to the API of the Gandalf server
(example: “http://localhost:8000”);

For more details, please refer to the configuration page.

Token for authentication with tsuru API

There is one last step in configuring Gandalf. It involves generating an access
token so that the hook we created can access the tsuru API. This must be done
after installing the tsuru API and it’s detailed in the next installation
step.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Installing

API Server

Dependencies

tsuru API depends on a MongoDB server, Redis server, Hipache router, and
Gandalf server. Instructions for installing MongoDB [http://docs.mongodb.org/] and Redis [http://redis.io/] are outside the
scope of this documentation, but it’s pretty straight-forward following their
docs. Installing Gandalf and installing
Hipache are described in other sessions.

Adding repositories

Let’s start adding the repositories for tsuru.

sudo apt-get update
sudo apt-get install python-software-properties
sudo apt-add-repository ppa:tsuru/ppa -y
sudo apt-get update

Installing

sudo apt-get install tsuru-server -qqy

Now you need to customize the configuration in the /etc/tsuru/tsuru.conf. A
description of possible configuration values can be found in the
configuration reference. A basic possible
configuration is described below, please note that you should replace the values
your-mongodb-server, your-redis-server, your-gandalf-server and
your-hipache-server.

listen: "0.0.0.0:8080"
debug: true
host: http://<machine-public-addr>:8080 # This port must be the same as in the "listen" conf
admin-team: admin
auth:
 user-registration: true
 scheme: native
database:
 url: <your-mongodb-server>:27017
 name: tsurudb
pubsub:
 redis-host: <your-redis-server>
 redis-port: 6379
queue:
 mongo-url: <your-mongodb-server>:27017
 mongo-database: queuedb
git:
 api-server: http://<your-gandalf-server>:8000
provisioner: docker
docker:
 router: hipache
 collection: docker_containers
 repository-namespace: tsuru
 deploy-cmd: /var/lib/tsuru/deploy
 cluster:
 storage: mongodb
 mongo-url: <your-mongodb-server>:27017
 mongo-database: cluster
 run-cmd:
 bin: /var/lib/tsuru/start
 port: "8888"
 ssh:
 add-key-cmd: /var/lib/tsuru/add-key
 user: ubuntu
routers:
 hipache:
 type: hipache
 domain: <your-hipache-server-ip>.xip.io
 redis-server: <your-redis-server-with-port>

In particular, take note that you must set auth:user-registration to true:

auth:
 user-registration: true
 scheme: native

Otherwise, tsuru will fail to create an admin user in the next section.

Now you only need to start your tsuru API server:

sudo sed -i -e 's/=no/=yes/' /etc/default/tsuru-server
sudo start tsuru-server-api

Creating admin user

The creation of an admin user is necessary for the next steps, so we’re going
to describe how to install the tsuru and create a new user belonging to the
admin team configured in your tsuru.conf file. For a description of each
command shown below please refer to the client documentation.

For a description

$ sudo apt-get install tsuru-client

$ tsuru target-add default http://<your-tsuru-api-addr>:8080
$ tsuru target-set default
$ tsuru user-create myemail@somewhere.com
type a password and confirmation

$ tsuru login myemail@somewhere.com
type the chosen password

$ tsuru team-create admin

And that’s it, you now have registered a user in your tsuru API server ready to
run admin commands.

Generating token for Gandalf authentication

Assuming you have already configured your Gandalf server in the previous
installation step, now we need to export two extra
environment variables to the git user, which will run our deploy hooks, the URL
to our API server and a generated token.

First step is to generate a token in the machine we’ve just installed the API
server:

$ tsurud token
fed1000d6c05019f6550b20dbc3c572996e2c044

Now you have to go back to the machine you installed Gandalf, and run this:

$ cat | sudo tee -a /home/git/.bash_profile <<EOF
export TSURU_HOST=http://<your-tsuru-api-addr>:8080
export TSURU_TOKEN=fed1000d6c05019f6550b20dbc3c572996e2c044
EOF

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Installing

Hipache Router

Hipache [https://github.com/hipache/hipache/] is a distributed HTTP and
websocket proxy.

tsuru uses Hipache to route the requests to the containers. Routing information is
stored by tsuru in the configured Redis server, Hipache will read this
configuration directly from Redis.

Adding repositories

Let’s start adding the repositories for tsuru which contain the Hipache package.

sudo apt-get update
sudo apt-get install python-software-properties
sudo apt-add-repository ppa:tsuru/ppa -y
sudo apt-get update

Installing

In order to install Hipache, just use apt-get:

sudo apt-get install node-hipache

Configuring

In your /etc/hipache.conf file you must set the redisHost and
redisPort configuration values. After this, you only need to start Hipache
with:

sudo start hipache

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Installing

Adding Nodes

Nodes are physical or virtual machines with a Docker installation.

Nodes can be either unmanaged, which mean that they were created manually, by
provisioning a machine and installing Docker on it, in which case they have to
be registered in tsuru. Or they can be automatically managed by tsuru, which
will handle machine provisioning and Docker installation using your IaaS
configuration.

The managed option is preferred starting with tsuru-server 0.6.0. There are
advantages like automatically healing and scaling of Nodes. The sections below
describe how to add managed and unmanaged nodes.

Managed nodes

First step is configuring your IaaS provider in your tsuru.conf file. Please see
the details in IaaS configuration

Assuming you’re using EC2, the configuration will be something like:

iaas:
 default: ec2
 node-protocol: http
 node-port: 2375
 ec2:
 key-id: xxxxxxxxxxx
 secret-key: yyyyyyyyyyyyy

After you have everything configured, adding a new Docker node is done by
calling docker-node-add [http://tsuru-admin.readthedocs.org/en/stable/#docker-node-add] in
tsuru-admin command. This command will receive
a map of key=value params which are IaaS dependent. A list of possible key
params can be seen calling:

$ tsuru-admin docker-node-add iaas=ec2

EC2 IaaS required params:
 image=<image id> Image AMI ID
 type=<instance type> Your template uuid

Optional params:
 region=<region> Chosen region, defaults to us-east-1
 securityGroup=<group> Chosen security group
 keyName=<key name> Key name for machine

Every key=value pair will be added as a metadata to the Node and you can send
After registering your node, you can list it calling tsuru-admin docker-node-list [http://tsuru-admin.readthedocs.org/en/latest/#docker-node-list]

$ tsuru-admin docker-node-add iaas=ec2 image=ami-dc5387b4 region=us-east-1 type=m1.small securityGroup=my-sec-group keyName=my-key
Node successfully registered.
$ tsuru-admin docker-node-list
+---+------------+---------+----------------------------+
| Address | IaaS ID | Status | Metadata |
+---+------------+---------+----------------------------+
http://ec2-xxxxxxxxxxxxx.compute-1.amazonaws.com:2375	i-xxxxxxxx	waiting	iaas=ec2
			image=ami-dc5387b4
			keyName=my-key
			region=us-east-1
			securityGroup=my-sec-group
			type=m1.small
+---+------------+---------+----------------------------+

Unmanaged nodes

To add a previously provisioned node you call the tsuru-admin docker-node-add [http://tsuru-admin.readthedocs.org/en/latest/#docker-node-add] with the
--register flag and setting the address key with the URL of the Docker API
in the remote node.

The docker API must be responding in the referenced address. To instructions
about how to install docker on your node, please refer to Docker documentation [https://docs.docker.com/].

$ tsuru-admin docker-node-add --register address=http://node.address.com:2375

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Managing

	Installing platforms

	Creating a platform
	Overview

	Using Docker

	Adding your platform to tsuru

	Using Pools
	Overview
	Adding a pool

	Adding teams to a pool

	Listing pools

	Removing a pool

	Removing teams from a pool

	Segregate Scheduler
	Overview

	How it works
	Registering a node with pool metadata

	Upgrading Docker
	How to upgrade Docker with no application downtime

	Managing Git repositories and SSH keys
	Managing SSH public keys

	Adding Gandalf to an already existing tsuru cluster

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Managing

Installing platforms

A platform is a well defined pack with installed dependencies for a language or
framework that a group of applications will need.

Platforms are defined as Dockerfiles and tsuru already have a number of
supported ones listed in https://github.com/tsuru/basebuilder

These platforms don’t come pre-installed in tsuru, you have to add them to your
server using the platform-add [http://tsuru-admin.readthedocs.org/en/latest/#platform-add] command in
tsuru-admin.

tsuru-admin platform-add platform-name --dockerfile dockerfile-url

For example, to install the Python platform from tsuru’s basebuilder repository
you simply have to call:

tsuru-admin platform-add python --dockerfile https://raw.githubusercontent.com/tsuru/basebuilder/master/python/Dockerfile

Attention

If you have more than one Docker node, you may use docker-registry [https://docs.docker.com/registry/] to add and distribute your
platforms among your Docker nodes.

You can use the official docker registry [https://registry.hub.docker.com/] or install it by yourself. To do this
you should first have to install docker-registry [https://docs.docker.com/registry/] in any server you have. It should
have a public ip to communicate with your docker nodes.

Then you should add registry address to tsuru.conf [http://docs.tsuru.io/en/latest/reference/config.html#docker-registry].

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Managing

Creating a platform

Overview

If you need a platform that’s not already available in our platforms repository [https://github.com/tsuru/basebuilder] it’s pretty easy to create a new one
based on a existing one.

To tsuru to be able to use your platform you only need to have the following
scripts available on /var/lib/tsuru:

	/var/lib/tsuru/deploy

	/var/lib/tsuru/start

Using Docker

Now we will create a whole new platform with Docker [http://www.docker.com/],
circus [https://circus.readthedocs.org/en/] and tsuru basebuilder. tsuru
basebuilder provides to us some useful scripts like install, setup and start.

So, using the base platform provided by tsuru we can write a Dockerfile like that:

from ubuntu:14.04
run apt-get install wget -y --force-yes
run wget http://github.com/tsuru/basebuilder/tarball/master -O basebuilder.tar.gz --no-check-certificate
run mkdir /var/lib/tsuru
run tar -xvf basebuilder.tar.gz -C /var/lib/tsuru --strip 1
run cp /var/lib/tsuru/base/start /var/lib/tsuru
run cp /home/your-user/deploy /var/lib/tsuru
run /var/lib/tsuru/base/install
run /var/lib/tsuru/base/setup

Adding your platform to tsuru

After creating you platform as a Docker image, you can add it to tsuru using
tsuru-admin:

$ tsuru-admin platform-add your-platform-name --dockerfile http://url-to-dockerfile

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Managing

Using Pools

Overview

Pool is used by provisioners to group nodes and know if an application can be
deployed in these nodes. Users can choose which pool to deploy in tsuru
app-create.

Tsuru has three types of pool: team, public and default.

Team’s pool are segregated by teams, and cloud administrator should set
teams in this pool manually. This pool are just accessible by team’s
members.

Public pools are accessible by any user.

Default pool is where apps are deployed when app’s team owner don’t have a pool
associated with it or when app’s creator don’t choose any public pool. Ideally
this pool is for experimentation and low profile apps, like service dashboard
and “in development” apps. You can just have one default pool. This is the old
fallback pool, but with a explicit flag.

Adding a pool

In order to create a pool, you should invoke tsuru-admin pool-add:

$ tsuru-admin pool-add pool1

If you want to create a public pool you can do:

$ tsuru-admin pool-add pool1 -p

If you want a default pool, you can create it with:

$ tsuru-admin pool-add pool1 -d

You can overwrite default pool by setting the flag -f:

$ tsuru-admin pool-add new-default-pool -d -f

Adding teams to a pool

Then you can use tsuru-admin pool-teams-add to add teams to the pool that
you’ve just created:

$ tsuru-admin pool-teams-add pool1 team1 team2

$ tsuru-admin pool-teams-add pool2 team3

Listing pools

To list pools you do:

$ tsuru-admin pool-list
+-------+-------------+
| Pools | Teams |
+-------+-------------+
| pool1 | team1 team2 |
| pool2 | team3 |
+-------+-------------+

Removing a pool

If you want to remove a pool, use tsuru-admin pool-remove:

$ tsuru-admin pool-remove pool1

Removing teams from a pool

You can remove one or more teams from a pool using the command tsuru-admin
pool-teams-remove:

$ tsuru-admin pool-teams-remove pool1 team1

$ tsuru-admin pool-teams-remove pool1 team1 team2 team3

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Managing

Segregate Scheduler

Overview

tsuru uses schedulers to chooses which node an unit should be deployed.
Previously there was a choice between round robin and segregate scheduler.
As of 0.11.1, only segregate scheduler is available and it’s the default
choice. This change was made because round robin scheduler was broken,
unmaintained and was a worse scheduling mechanism than segregate scheduler.

How it works

Segregate scheduler is a scheduler that segregates the units among pools.

First, what you need to do is to define a relation between a pool and teams.
After that you need to register nodes with the pool metadata information,
indicating to which pool the node belongs.

When deploying an application, the scheduler will choose among the nodes within
the application pool.

Registering a node with pool metadata

You can use the tsuru-admin with docker-node-add to register or create
nodes with the pool metadata:

$ tsuru-admin docker-node-add --register address=http://localhost:2375 pool=pool1

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Managing

Upgrading Docker

A node is a physical or virtual machine with Docker
installed. The nodes should contains one or more units (containers).

Sometimes will be necessary to upgrade the Docker. It is recommended that you
use the latest Docker version.

The simple way to do it is just upgrade Docker. You can do it following the
official guide [https://docs.docker.com/installation/binaries/#upgrades].

This operation can cause some period of downtime in an application.

How to upgrade Docker with no application downtime

Note

You should use this guide to upgrade the entire host (a new version of the
Linux distro, for instance) or Docker itself.

A way to upgrade with no downtime is to move all containers from the node that
you want to upgrade to another node, upgrade the node and then move the
containers back.

You can do it using the command tsuru-admin containers-move [http://tsuru-admin.readthedocs.org/en/latest/#containers-move]:

$ tsuru-admin containers-move <from host> <to host>

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Managing

Managing Git repositories and SSH keys

There are two deployment flavors in tsuru: using git push and tsuru
app-deploy. The former is optional, while the latter will always be
available. This document focus on the usage of the Git deployment flavor.

In order to allow tsuru users to use git push for deployments, tsuru
administrators need to install and configure Gandalf.

Gandalf will store and manage all Git repositories and SSH keys, as well as
users. When tsuru is configured to use Gandalf, it will interact with the
Gandalf API in the following actions:

	When creating a new user in tsuru, a corresponding user will be created in
Gandalf;

	When removing a user from tsuru, the corresponding user will be removed from
Gandalf;

	When creating an app in tsuru, a new repository for the app will be created
in Gandalf. All users in the team that owns the app will be authorized to
access this repository;

	When removing an app, the corresponding repository will be removed from
Gandalf;

	When adding a user to a team in tsuru, the corresponding user in Gandalf will
gain access to all repositories matching the applications that the team has
access to;

	When removing a user from a team in tsuru, the corresponding user in Gandalf
will lose access to the repositories that he/she has access to because of the
team he/she is leaving;

	When adding a team to an application in tsuru, all users from the team will
gain access to the repository matching the app;

	When removing a team from an application in tsuru, all users from the team
will lose access to the repository, unless they’re in another team that also
have access to the application.

When user runs a git push, the communication happens directly between the
user host and the Gandalf host, and Gandalf will notify tsuru the new
deployment using a git hook.

Managing SSH public keys

In order to be able to send git pushes to the Git server, users need to have
their key registered in Gandalf. When Gandalf is enabled, tsuru will enable
the usage of three commands for SSH public keys management:

	tsuru key-add

	tsuru key-remove

	tsuru key-list

Each of these commands have a corresponding API endpoint, so other clients of
tsuru can also manage keys through the API.

tsuru will not store any public key data, all the data related to SSH keys is
handled by Gandalf alone, and when Gandalf is not enabled, those key commands
will not work.

Adding Gandalf to an already existing tsuru cluster

In the case of an old tsuru cluster running without Gandalf, users and
applications registered in tsuru won’t be available in the newly created
Gandalf server, or both servers may be out-of-sync.

When Gandalf is enabled, administrators of the cloud can run the tsr
gandalf-sync command.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Using

	Installing tsuru clients
	Downloading binaries (Mac OS X, Linux and Windows)

	Using homebrew (Mac OS X only)

	Using the PPA (Ubuntu only)

	Build from source (Linux, Mac OS X and Windows)

	Building your app in tsuru
	Install the tsuru client

	Sign up

	Login

	Deploy an application

	Deploying Python applications in tsuru
	Overview

	Creating the app within tsuru

	Application code

	Git deployment

	Listing dependencies

	Running the application

	Using services

	Deployment hooks

	Going further

	Deploying Ruby applications in tsuru
	Overview

	Creating the app within tsuru

	Application code

	Git deployment

	Listing dependencies

	Running the application

	Using services

	Deployment hooks

	Going further

	Deploying Go applications in tsuru
	Overview

	Creating the app within tsuru

	Application code

	Git deployment

	Running the application

	Going further

	Deploying Java applications on tsuru
	Overview

	Creating the app within tsuru

	Deploying the code
	WAR deployment

	Git deployment

	Switching between Java versions

	Going further

	Deploying PHP applications in tsuru
	Overview

	Creating the app in tsuru

	Application code

	Git deployment

	Listing dependencies

	Running the application

	Using services

	Customizing the platform

	Going further

	Using Buildpacks
	Creating an Application

	Deploying your Application

	Included Buildpacks

	Using a Custom Buildpack

	Creating your own Buildpack

	Recovering an application
	Check your application logs

	Restart your application

	Checking the status of application units

	Open a shell to the application

	Logging
	Watch your logs
	Filtering

	Realtime logging

	Limitations

	Using an external log aggregator

	Procfile
	Syntax

	Environment variables

	tsuru.yaml
	Deployment hooks

	Healthcheck

	Unit states

	tsuru client plugins
	Installing a plugin

	Listing installed plugins

	Executing a plugin

	Removing a plugin

	Creating your own plugin

	Application Deployment
	Preparing Your Application
	1. Requirements

	2. Configuration With Environment Variables

	Choose a pool to deploy your app

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Installing tsuru clients

tsuru contains three clients: tsuru, tsuru-admin and crane.

	tsuru is the command line utility used by application developers, that
will allow users to create, list, bind and manage apps. For more details,
check tsuru usage;

	crane is used by service administrators.

	tsuru-admin is used by cloud administrators. Whoever is allowed to use
it has gotten super powers :-)

This document describes how you can install those clients, using pre-compiled
binaries, packages or building them from source.

	Downloading binaries (Mac OS X, Linux and Windows)

	Using homebrew (Mac OS X only)

	Using the PPA (Ubuntu only)

	Build from source (Linux, Mac OS X and Windows)

Downloading binaries (Mac OS X, Linux and Windows)

We provide pre-built binaries for OS X and Linux, only for the amd64
architecture. You can download these binaries directly from the releases page
of the project:

	crane: https://github.com/tsuru/crane/releases

	tsuru: https://github.com/tsuru/tsuru-client/releases

	tsuru-admin: https://github.com/tsuru/tsuru-admin/releases

Using homebrew (Mac OS X only)

If you use Mac OS X and homebrew [http://mxcl.github.com/homebrew/], you may
use a custom tap to install tsuru, crane and tsuru-admin. First you
need to add the tap:

$ brew tap tsuru/homebrew-tsuru

Now you can install tsuru, tsuru-admin and crane:

$ brew install tsuru
$ brew install tsuru-admin
$ brew install crane

Whenever a new version of any of tsuru’s clients is out, you can just run:

$ brew update
$ brew upgrade <formula> # tsuru/tsuru-admin/crane

For more details on taps, check homebrew documentation [https://github.com/Homebrew/homebrew/wiki/brew-tap].

NOTE: tsuru clients require Go 1.4 or higher. Make sure you have the last version
of Go installed in your system.

Using the PPA (Ubuntu only)

Ubuntu users can install tsuru clients using apt-get and the tsuru PPA [https://launchpad.net/~tsuru/+archive/ppa]. You’ll need to add the PPA
repository locally and run an apt-get update:

$ sudo apt-add-repository ppa:tsuru/ppa
$ sudo apt-get update

Now you can install tsuru’s clients:

$ sudo apt-get install tsuru-client
$ sudo apt-get install crane
$ sudo apt-get install tsuru-admin

Build from source (Linux, Mac OS X and Windows)

Note

If you’re feeling adventurous, you can try it on other platforms, like
FreeBSD and OpenBSD. Please let us know about your progress!

tsuru’s source [https://github.com/tsuru/tsuru] is written in Go [http://golang.org], so before installing tsuru from source, please make sure
you have installed and configured Go [http://golang.org/doc/install].

With Go installed and configured, you can use go get to install any of
tsuru’s clients:

$ go get github.com/tsuru/tsuru-client/tsuru
$ go get github.com/tsuru/tsuru-admin
$ go get github.com/tsuru/crane

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Building your app in tsuru

tsuru is an open source polyglot cloud application platform. With tsuru, you
don’t need to think about servers at all. You:

	Write apps in the programming language of your choice

	Back it with add-on resources (tsuru calls these services) such as SQL and
NoSQL databases, memcached, redis, and many others.

	Manage your app using the tsuru command-line tool

	Deploy code using the Git revision control system

tsuru takes care of where in your cluster to run your apps and the services
they use. You can then focus on making your apps awesome.

Install the tsuru client

Install the tsuru client for your development platform.

The tsuru client is a command-line tool for creating and managing apps.
Check out the CLI usage guide to learn more.

Sign up

To create an account, you use the command user-create:

$ tsuru user-create youremail@domain.com

user-create will ask for the desired password twice.

Login

To login in tsuru, you use the command login:

$ tsuru login youremail@domain.com

It will ask for your password. Unless your tsuru installation is configured to
use OAuth.

Deploy an application

Choose from the following getting started tutorials to learn how to deploy your
first application using one of the supported platforms:

	Deploying Python applications in tsuru

	Deploying Ruby/Rails applications in tsuru

	Deploying PHP applications in tsuru

	Deploying go applications in tsuru

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Deploying Python applications in tsuru

Overview

This document is a hands-on guide to deploying a simple Python application in
tsuru. The example application will be a very simple Django project associated
to a MySQL service. It’s applicable to any WSGI application.

Creating the app within tsuru

To create an app, you use the command app-create:

$ tsuru app-create <app-name> <app-platform>

For Python, the app platform is, guess what, python! Let’s be over creative
and develop a never-developed tutorial-app: a blog, and its name will also be
very creative, let’s call it “blog”:

$ tsuru app-create blog python

To list all available platforms, use the command platform-list.

You can see all your applications using the command app-list:

$ tsuru app-list
+-------------+-------------------------+--------------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+--------------------------+
| blog | 0 of 0 units in-service | blog.192.168.50.4.nip.io |
+-------------+-------------------------+--------------------------+

You can then send the code of your application.

Application code

This document will not focus on how to write a Django blog, you can clone the
entire source direct from GitHub:
https://github.com/tsuru/tsuru-django-sample. Here is what we did for the
project:

	Create the project (django-admin.py startproject)

	Enable django-admin

	Install South

	Create a “posts” app (django-admin.py startapp posts)

	Add a “Post” model to the app

	Register the model in django-admin

	Generate the migration using South

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using the command app-info:

$ tsuru app-info --app blog
Application: blog
Repository: git@192.168.50.4.nip.io:blog.git
Platform: python
Teams: admin
Address: blog.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 0
Pool: theonepool

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

The Git remote will be used to deploy your application using Git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@192.168.50.4.nip.io:blog.git master
Counting objects: 119, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (53/53), done.
Writing objects: 100% (119/119), 16.24 KiB, done.
Total 119 (delta 55), reused 119 (delta 55)
remote:
remote: ---> tsuru receiving push
remote:
remote: From git://cloud.tsuru.io/blog.git
remote: * branch master -> FETCH_HEAD
remote:
remote: ---> Installing dependencies
#####################################
OMIT (see below)
#####################################
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@192.168.50.4.nip.io:blog.git
 a211fba..bbf5b53 master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use the command
key-add:

$ tsuru key-add mykey ~/.ssh/id_rsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@192.168.50.4.nip.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: blog
Repository: git@192.168.50.4.nip.io:blog.git
Platform: python
Teams: admin
Address: blog.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 0
Pool: theonepool
Units: 1
+------------+---------+
| Unit | State |
+------------+---------+
| eab5151eff | started |
+------------+---------+

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an
application can have two kinds of dependencies:

	Operating system dependencies, represented by packages in the package manager
of the underlying operating system (e.g.: yum and apt-get);

	Platform dependencies, represented by packages in the package manager of the
platform/language (in Python, pip).

All apt-get dependencies must be specified in a requirements.apt file,
located in the root of your application, and pip dependencies must be located
in a file called requirements.txt, also in the root of the application.
Since we will use MySQL with Django, we need to install mysql-python
package using pip, and this package depends on two apt-get packages:
python-dev and libmysqlclient-dev, so here is how requirements.apt
looks like:

libmysqlclient-dev
python-dev

And here is requirements.txt:

Django==1.4.1
MySQL-python==1.2.3
South==0.7.6

Please notice that we’ve included South too, for database migrations, and Django, off-course.

You can see the complete output of installing these dependencies below:

% git push tsuru master
#####################################
OMIT
#####################################
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: python-dev is already the newest version.
remote: The following extra packages will be installed:
remote: libmysqlclient18 mysql-common
remote: The following NEW packages will be installed:
remote: libmysqlclient-dev libmysqlclient18 mysql-common
remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
remote: Need to get 2360 kB of archives.
remote: After this operation, 9289 kB of additional disk space will be used.
remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysql-common all 5.5.27-0ubuntu2 [13.7 kB]
remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient18 amd64 5.5.27-0ubuntu2 [949 kB]
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient-dev amd64 5.5.27-0ubuntu2 [1398 kB]
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote: debconf: unable to initialize frontend: Readline
remote: debconf: (This frontend requires a controlling tty.)
remote: debconf: falling back to frontend: Teletype
remote: dpkg-preconfigure: unable to re-open stdin:
remote: Fetched 2360 kB in 1s (1285 kB/s)
remote: Selecting previously unselected package mysql-common.
remote: (Reading database ... 23143 files and directories currently installed.)
remote: Unpacking mysql-common (from .../mysql-common_5.5.27-0ubuntu2_all.deb) ...
remote: Selecting previously unselected package libmysqlclient18:amd64.
remote: Unpacking libmysqlclient18:amd64 (from .../libmysqlclient18_5.5.27-0ubuntu2_amd64.deb) ...
remote: Selecting previously unselected package libmysqlclient-dev.
remote: Unpacking libmysqlclient-dev (from .../libmysqlclient-dev_5.5.27-0ubuntu2_amd64.deb) ...
remote: Setting up mysql-common (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient18:amd64 (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient-dev (5.5.27-0ubuntu2) ...
remote: Processing triggers for libc-bin ...
remote: ldconfig deferred processing now taking place
remote: sudo: Downloading/unpacking Django==1.4.1 (from -r /home/application/current/requirements.txt (line 1))
remote: Running setup.py egg_info for package Django
remote:
remote: Downloading/unpacking MySQL-python==1.2.3 (from -r /home/application/current/requirements.txt (line 2))
remote: Running setup.py egg_info for package MySQL-python
remote:
remote: warning: no files found matching 'MANIFEST'
remote: warning: no files found matching 'ChangeLog'
remote: warning: no files found matching 'GPL'
remote: Downloading/unpacking South==0.7.6 (from -r /home/application/current/requirements.txt (line 3))
remote: Running setup.py egg_info for package South
remote:
remote: Installing collected packages: Django, MySQL-python, South
remote: Running setup.py install for Django
remote: changing mode of build/scripts-2.7/django-admin.py from 644 to 755
remote:
remote: changing mode of /usr/local/bin/django-admin.py to 755
remote: Running setup.py install for MySQL-python
remote: building '_mysql' extension
remote: gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC -Dversion_info=(1,2,3,'final',0) -D__version__=1.2.3 -I/usr/include/mysql -I/usr/include/python2.7 -c _mysql.c -o build/temp.linux-x86_64-2.7/_mysql.o -DBIG_JOINS=1 -fno-strict-aliasing -g
remote: In file included from _mysql.c:36:0:
remote: /usr/include/mysql/my_config.h:422:0: warning: "HAVE_WCSCOLL" redefined [enabled by default]
remote: In file included from /usr/include/python2.7/Python.h:8:0,
remote: from pymemcompat.h:10,
remote: from _mysql.c:29:
remote: /usr/include/python2.7/pyconfig.h:890:0: note: this is the location of the previous definition
remote: gcc -pthread -shared -Wl,-O1 -Wl,-Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro build/temp.linux-x86_64-2.7/_mysql.o -L/usr/lib/x86_64-linux-gnu -lmysqlclient_r -lpthread -lz -lm -lrt -ldl -o build/lib.linux-x86_64-2.7/_mysql.so
remote:
remote: warning: no files found matching 'MANIFEST'
remote: warning: no files found matching 'ChangeLog'
remote: warning: no files found matching 'GPL'
remote: Running setup.py install for South
remote:
remote: Successfully installed Django MySQL-python South
remote: Cleaning up...
#####################################
OMIT
#####################################
To git@192.168.50.4.nip.io:blog.git
 a211fba..bbf5b53 master -> master

Running the application

As you can see, in the deploy output there is a step described as “Restarting
your app”. In this step, tsuru will restart your app if it’s running, or start
it if it’s not. But how does tsuru start an application? That’s very simple, it
uses a Procfile (a concept stolen from Foreman). In this Procfile, you describe
how your application should be started. We can use gunicorn [http://gunicorn.org/], for example, to start our Django application. Here is
how the Procfile should look like:

web: gunicorn -b 0.0.0.0:$PORT blog.wsgi

Now we commit the file and push the changes to tsuru git server, running
another deploy:

$ git add Procfile
$ git commit -m "Procfile: added file"
$ git push tsuru master
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 326 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: ---> tsuru receiving push
remote:
remote: ---> Installing dependencies
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: python-dev is already the newest version.
remote: libmysqlclient-dev is already the newest version.
remote: 0 upgraded, 0 newly installed, 0 to remove and 1 not upgraded.
remote: Requirement already satisfied (use --upgrade to upgrade): Django==1.4.1 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 1))
remote: Requirement already satisfied (use --upgrade to upgrade): MySQL-python==1.2.3 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 2))
remote: Requirement already satisfied (use --upgrade to upgrade): South==0.7.6 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 3))
remote: Cleaning up...
remote:
remote: ---> Restarting your app
remote: /var/lib/tsuru/hooks/start: line 13: gunicorn: command not found
remote:
remote: ---> Deploy done!
remote:
To git@192.168.50.4.nip.io:blog.git
 81e884e..530c528 master -> master

Now we get an error: gunicorn: command not found. It means that we need to
add gunicorn to requirements.txt file:

$ cat >> requirements.txt
gunicorn==0.14.6
^D

Now we commit the changes and run another deploy:

$ git add requirements.txt
$ git commit -m "requirements.txt: added gunicorn"
$ git push tsuru master
Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 325 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: ---> tsuru receiving push
remote:
[...]
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@192.168.50.4.nip.io:blog.git
 530c528..542403a master -> master

Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+---------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+---------------------+
| blog | 1 of 1 units in-service | blog.cloud.tsuru.io |
+-------------+-------------------------+---------------------+

We can access the admin of the app in the URL http://blog.cloud.tsuru.io/admin/.

Using services

Now that gunicorn is running, we can accesss the application in the browser,
but we get a Django error: “Can’t connect to local MySQL server through socket
‘/var/run/mysqld/mysqld.sock’ (2)”. This error means that we can’t connect to
MySQL on localhost. That’s because we should not connect to MySQL on localhost,
we must use a service. The service workflow can be resumed to two steps:

	Create a service instance

	Bind the service instance to the app

But how can I see what services are available? Easy! Use the command
service-list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | |
+----------------+-----------+

The output from service-list above says that there are two available
services: “elastic-search” and “mysql”, and no instances. To create our MySQL
instance, we should run the command service-add:

$ tsuru service-add mysql blogsql
Service successfully added.

Now, if we run service-list again, we will see our new service instance in
the list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | blogsql |
+----------------+-----------+

To bind the service instance to the application, we use the command service-bind:

$ tsuru service-bind blogsql
Instance blogsql is now bound to the app blog.

The following environment variables are now available for use in your app:

- MYSQL_PORT
- MYSQL_PASSWORD
- MYSQL_USER
- MYSQL_HOST
- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the
MySQL server. Next step is update settings.py to use these variables to
connect in the database:

import os

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': os.environ.get('MYSQL_DATABASE_NAME', 'blog'),
 'USER': os.environ.get('MYSQL_USER', 'root'),
 'PASSWORD': os.environ.get('MYSQL_PASSWORD', ''),
 'HOST': os.environ.get('MYSQL_HOST', ''),
 'PORT': os.environ.get('MYSQL_PORT', ''),
 }
}

Now let’s commit it and run another deploy:

$ git add blog/settings.py
$ git commit -m "settings: using environment variables to connect to MySQL"
$ git push tsuru master
Counting objects: 7, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 535 bytes, done.
Total 4 (delta 3), reused 0 (delta 0)
remote:
remote: ---> tsuru receiving push
remote:
remote: ---> Installing dependencies
#####################################
OMIT
#####################################
remote:
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@192.168.50.4.nip.io:blog.git
 ab4e706..a780de9 master -> master

Now if we try to access the admin again, we will get another error: “Table
‘blogsql.django_session’ doesn’t exist”. Well, that means that we have access
to the database, so bind worked, but we did not set up the database yet. We
need to run syncdb and migrate (if we’re using South) in the remote
server. We can use the command app-run, we could write:

$ tsuru app-run -- python manage.py syncdb --noinput
Syncing...
Creating tables ...
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_user_permissions
Creating table auth_user_groups
Creating table auth_user
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log
Creating table south_migrationhistory
Installing custom SQL ...
Installing indexes ...
Installed 0 object(s) from 0 fixture(s)

Synced:
 > django.contrib.auth
 > django.contrib.contenttypes
 > django.contrib.sessions
 > django.contrib.sites
 > django.contrib.messages
 > django.contrib.staticfiles
 > django.contrib.admin
 > south

Not synced (use migrations):
 - blog.posts
(use ./manage.py migrate to migrate these)

The same applies for migrate.

Deployment hooks

It would be boring to manually run syncdb and/or migrate after every
deployment. So we can configure an automatic hook to always run before or after
the app restarts.

tsuru parses a file called tsuru.yaml and runs restart hooks. As the
extension suggests, this is a YAML file, that contains a list of commands that
should run before and after the restart. Here is our example of tsuru.yaml:

hooks:
 build:
 - python manage.py syncdb --noinput
 - python manage.py migrate

For more details, check the hooks documentation.

tsuru will look for the file in the root of the project. Let’s commit and
deploy it:

$ git add tsuru.yaml
$ git commit -m "tsuru.yaml: added file"
$ git push tsuru master
Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 338 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: ---> tsuru receiving push
remote:
remote: ---> Installing dependencies
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: python-dev is already the newest version.
remote: libmysqlclient-dev is already the newest version.
remote: 0 upgraded, 0 newly installed, 0 to remove and 15 not upgraded.
remote: Requirement already satisfied (use --upgrade to upgrade): Django==1.4.1 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 1))
remote: Requirement already satisfied (use --upgrade to upgrade): MySQL-python==1.2.3 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 2))
remote: Requirement already satisfied (use --upgrade to upgrade): South==0.7.6 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 3))
remote: Requirement already satisfied (use --upgrade to upgrade): gunicorn==0.14.6 in /usr/local/lib/python2.7/dist-packages (from -r /home/application/current/requirements.txt (line 4))
remote: Cleaning up...
remote:
remote: ---> Restarting your app
remote:
remote: ---> Running restart:after
remote:
remote: ---> Deploy done!
remote:
To git@192.168.50.4.nip.io:blog.git
 a780de9..1b675b8 master -> master

It’s done! Now we have a Django project deployed on tsuru, using a MySQL
service.

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [https://tsuru-client.readthedocs.org].

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Deploying Ruby applications in tsuru

Overview

This document is a hands-on guide to deploying a simple Ruby application in
tsuru. The example application will be a very simple Rails project associated
to a MySQL service.

Creating the app within tsuru

To create an app, you use the command app-create:

$ tsuru app-create <app-name> <app-platform>

For Ruby, the app platform is ruby! Let’s be over creative and develop a
never-developed tutorial-app: a blog, and its name will also be very creative,
let’s call it “blog”:

$ tsuru app-create blog ruby

To list all available platforms, use the command platform-list.

You can see all your applications using the command app-list:

$ tsuru app-list
+-------------+-------------------------+-------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+-------------+
| blog | 0 of 0 units in-service | |
+-------------+-------------------------+-------------+

Application code

This document will not focus on how to write a blog with Rails, you can clone
the entire source direct from GitHub:
https://github.com/tsuru/tsuru-ruby-sample. Here is what we did for the
project:

	Create the project (rails new blog)

	Generate the scaffold for Post (rails generate scaffold Post title:string body:text)

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using the command app-info:

$ tsuru app-info --app blog
Application: blog
Repository: git@192.168.50.4.nip.io:blog.git
Platform: ruby
Teams: admin
Address: blog.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 0
Pool: theonepool

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

The Git remote will be used to deploy your application using Git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@192.168.50.4.nip.io:blog.git master
Counting objects: 86, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (75/75), done.
Writing objects: 100% (86/86), 29.75 KiB, done.
Total 86 (delta 2), reused 0 (delta 0)
remote: Cloning into '/home/application/current'...
remote: requirements.apt not found.
remote: Skipping...
remote: /home/application/current /
remote: Fetching gem metadata from https://rubygems.org/.........
remote: Fetching gem metadata from https://rubygems.org/..
#####################################
OMIT (see below)
#####################################
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@192.168.50.4.nip.io:blog.git
 * [new branch] master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use the command key-add:

$ tsuru key-add mykey ~/.ssh/id_rsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@192.168.50.4.nip.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: blog
Repository: git@192.168.50.4.nip.io:blog.git
Platform: ruby
Teams: admin
Address: blog.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 0
Pool: theonepool
Units: 1
+------------+---------+
| Unit | State |
+------------+---------+
| eab5151eff | started |
+------------+---------+

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an
application can have two kinds of dependencies:

	Operating system dependencies, represented by packages in the package manager
of the underlying operating system (e.g.: yum and apt-get);

	Platform dependencies, represented by packages in the package manager of the
platform/language (in Ruby, bundler).

All apt-get dependencies must be specified in a requirements.apt file,
located in the root of your application, and ruby dependencies must be located
in a file called Gemfile, also in the root of the application. Since we
will use MySQL with Rails, we need to install mysql package using gem,
and this package depends on an apt-get package: libmysqlclient-dev, so
here is how requirements.apt looks like:

libmysqlclient-dev

And here is Gemfile:

source 'https://rubygems.org'

gem 'rails', '3.2.13'
gem 'mysql'
gem 'sass-rails', '~> 3.2.3'
gem 'coffee-rails', '~> 3.2.1'
gem 'therubyracer', platforms: 'ruby'
gem 'uglifier', '>= 1.0.3'
gem 'jquery-rails'

You can see the complete output of installing these dependencies below:

$ git push tsuru master
#####################################
OMIT
#####################################
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: The following extra packages will be installed:
remote: libmysqlclient18 mysql-common
remote: The following NEW packages will be installed:
remote: libmysqlclient-dev libmysqlclient18 mysql-common
remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
remote: Need to get 2360 kB of archives.
remote: After this operation, 9289 kB of additional disk space will be used.
remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysql-common all 5.5.27-0ubuntu2 [13.7 kB]
remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient18 amd64 5.5.27-0ubuntu2 [949 kB]
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient-dev amd64 5.5.27-0ubuntu2 [1398 kB]
remote: Fetched 2360 kB in 2s (1112 kB/s)
remote: Selecting previously unselected package mysql-common.
remote: (Reading database ... 41063 files and directories currently installed.)
remote: Unpacking mysql-common (from .../mysql-common_5.5.27-0ubuntu2_all.deb) ...
remote: Selecting previously unselected package libmysqlclient18:amd64.
remote: Unpacking libmysqlclient18:amd64 (from .../libmysqlclient18_5.5.27-0ubuntu2_amd64.deb) ...
remote: Selecting previously unselected package libmysqlclient-dev.
remote: Unpacking libmysqlclient-dev (from .../libmysqlclient-dev_5.5.27-0ubuntu2_amd64.deb) ...
remote: Setting up mysql-common (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient18:amd64 (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient-dev (5.5.27-0ubuntu2) ...
remote: Processing triggers for libc-bin ...
remote: ldconfig deferred processing now taking place
remote: /home/application/current /
remote: Fetching gem metadata from https://rubygems.org/..........
remote: Fetching gem metadata from https://rubygems.org/..
remote: Using rake (10.1.0)
remote: Using i18n (0.6.1)
remote: Using multi_json (1.7.8)
remote: Using activesupport (3.2.13)
remote: Using builder (3.0.4)
remote: Using activemodel (3.2.13)
remote: Using erubis (2.7.0)
remote: Using journey (1.0.4)
remote: Using rack (1.4.5)
remote: Using rack-cache (1.2)
remote: Using rack-test (0.6.2)
remote: Using hike (1.2.3)
remote: Using tilt (1.4.1)
remote: Using sprockets (2.2.2)
remote: Using actionpack (3.2.13)
remote: Using mime-types (1.23)
remote: Using polyglot (0.3.3)
remote: Using treetop (1.4.14)
remote: Using mail (2.5.4)
remote: Using actionmailer (3.2.13)
remote: Using arel (3.0.2)
remote: Using tzinfo (0.3.37)
remote: Using activerecord (3.2.13)
remote: Using activeresource (3.2.13)
remote: Using coffee-script-source (1.6.3)
remote: Using execjs (1.4.0)
remote: Using coffee-script (2.2.0)
remote: Using rack-ssl (1.3.3)
remote: Using json (1.8.0)
remote: Using rdoc (3.12.2)
remote: Using thor (0.18.1)
remote: Using railties (3.2.13)
remote: Using coffee-rails (3.2.2)
remote: Using jquery-rails (3.0.4)
remote: Installing libv8 (3.11.8.17)
remote: Installing mysql (2.9.1)
remote: Using bundler (1.3.5)
remote: Using rails (3.2.13)
remote: Installing ref (1.0.5)
remote: Using sass (3.2.10)
remote: Using sass-rails (3.2.6)
remote: Installing therubyracer (0.11.4)
remote: Installing uglifier (2.1.2)
remote: Your bundle is complete!
remote: Gems in the groups test and development were not installed.
remote: It was installed into ./vendor/bundle
#####################################
OMIT
#####################################
To git@192.168.50.4.nip.io:blog.git
 9515685..d67c3cd master -> master

Running the application

As you can see, in the deploy output there is a step described as “Restarting
your app”. In this step, tsuru will restart your app if it’s running, or start
it if it’s not. But how does tsuru start an application? That’s very simple, it
uses a Procfile (a concept stolen from Foreman). In this Procfile, you describe
how your application should be started. Here is how the Procfile should look like:

web: bundle exec rails server -p $PORT -e production

Now we commit the file and push the changes to tsuru Git server, running
another deploy:

$ git add Procfile
$ git commit -m "Procfile: added file"
$ git push tsuru master
#####################################
OMIT
#####################################
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@192.168.50.4.nip.io:blog.git
 d67c3cd..f2a5d2d master -> master

Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+---------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+---------------------+
| blog | 1 of 1 units in-service | blog.cloud.tsuru.io |
+-------------+-------------------------+---------------------+

Using services

Now that your app is not running with success because the rails can’t connect
to MySQL. That’s because we add a relation between your rails app and a mysql
instance. To do it we must use a service. The service workflow can be resumed
to two steps:

	Create a service instance

	Bind the service instance to the app

But how can I see what services are available? Easy! Use the command
service-list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | |
+----------------+-----------+

The output from service-list above says that there are two available
services: “elastic-search” and “mysql”, and no instances. To create our MySQL
instance, we should run the command service-add:

$ tsuru service-add mysql blogsql
Service successfully added.

Now, if we run service-list again, we will see our new service instance in
the list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | blogsql |
+----------------+-----------+

To bind the service instance to the application, we use the command
service-bind:

$ tsuru service-bind blogsql
Instance blogsql is now bound to the app blog.

The following environment variables are now available for use in your app:

- MYSQL_PORT
- MYSQL_PASSWORD
- MYSQL_USER
- MYSQL_HOST
- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the
MySQL server. Next step is update conf/database.yml to use these variables
to connect in the database:

production:
 adapter: mysql
 encoding: utf8
 database: <%= ENV["MYSQL_DATABASE_NAME"] %>
 pool: 5
 username: <%= ENV["MYSQL_USER"] %>
 password: <%= ENV["MYSQL_PASSWORD"] %>
 host: <%= ENV["MYSQL_HOST"] %>

Now let’s commit it and run another deploy:

$ git add conf/database.yml
$ git commit -m "database.yml: using environment variables to connect to MySQL"
$ git push tsuru master
Counting objects: 7, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 535 bytes, done.
Total 4 (delta 3), reused 0 (delta 0)
remote:
remote: ---> tsuru receiving push
remote:
remote: ---> Installing dependencies
#####################################
OMIT
#####################################
remote:
remote: ---> Restarting your app
remote:
remote: ---> Deploy done!
remote:
To git@192.168.50.4.nip.io:blog.git
 ab4e706..a780de9 master -> master

Now if we try to access the admin again, we will get another error: “Table
‘blogsql.django_session’ doesn’t exist”. Well, that means that we have access
to the database, so bind worked, but we did not set up the database yet. We
need to run rake db:migrate in the remote server. We can use the command
app-run to execute commands in the machine, so for running rake
db:migrate we could write:

$ tsuru app-run -- RAILS_ENV=production bundle exec rake db:migrate
== CreatePosts: migrating ==
-- create_table(:posts)
 -> 0.1126s
== CreatePosts: migrated (0.1128s) ===

Deployment hooks

It would be boring to manually run rake db:migrate after every deployment.
So we can configure an automatic hook to always run before or after
the app restarts.

tsuru parses a file called tsuru.yaml and runs restart hooks. As the
extension suggests, this is a YAML file, that contains a list of commands that
should run before and after the restart. Here is our example of tsuru.yaml:

hooks:
 restart:
 before-each:
 - RAILS_ENV=production bundle exec rake db:migrate

For more details, check the hooks documentation.

tsuru will look for the file in the root of the project. Let’s commit and
deploy it:

$ git add tsuru.yaml
$ git commit -m "tsuru.yaml: added file"
$ git push tsuru master
#####################################
OMIT
#####################################
To git@192.168.50.4.nip.io:blog.git
 a780de9..1b675b8 master -> master

It is necessary to compile de assets before the app restart. To do it we can
use the rake assets:precompile command. Then let’s add the command to
compile the assets in tsuru.yaml:

hooks:
 build:
 - RAILS_ENV=production bundle exec rake assets:precompile

$ git add tsuru.yaml
$ git commit -m "tsuru.yaml: added file"
$ git push tsuru master
#####################################
OMIT
#####################################
To git@192.168.50.4.nip.io:blog.git
 a780de9..1b675b8 master -> master

It’s done! Now we have a Rails project deployed on tsuru, using a MySQL
service.

Now we can access your blog app in the URL returned in app-info.

Going further

For more information, you can dig into the tsuru docs [http://docs.tsuru.io], or
read the complete instructions on how to use the tsuru command [https://tsuru-client.readthedocs.org].

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Deploying Go applications in tsuru

Overview

This document is a hands-on guide to deploying a simple Go web application in
tsuru.

Creating the app within tsuru

To create an app, you use the command app-create:

$ tsuru app-create <app-name> <app-platform>

For Go, the platform name is go! Let’s be over creative and develop a hello
world tutorial-app, let’s call it “helloworld”:

$ tsuru app-create helloworld go

To list all available platforms, use the command platform-list.

You can see all your applications using the command app-list:

$ tsuru app-list
+-------------+-------------------------+--------------------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+--------------------------------+
| helloworld | 0 of 0 units in-service | helloworld.192.168.50.4.nip.io |
+-------------+-------------------------+--------------------------------+

Application code

A simple web application in Go main.go:

package main

import (
 "fmt"
 "net/http"
 "os"
)

func main() {
 http.HandleFunc("/", hello)
 fmt.Println("listening...")
 err := http.ListenAndServe(":" + os.Getenv("PORT"), nil)
 if err != nil {
 panic(err)
 }
}

func hello(res http.ResponseWriter, req *http.Request) {
 fmt.Fprintln(res, "hello, world!")
}

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using the command app-info:

$ tsuru app-info --app helloworld
Application: helloworld
Repository: git@192.168.50.4.nip.io:helloworld.git
Platform: go
Teams: admin
Address: helloworld.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 0
Pool: theonepool

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

The git remote will be used to deploy your application using git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@192.168.50.4.nip.io:helloworld.git master
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 430 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: tar: Removing leading `/' from member names
remote: /
remote:
remote: ---- Building application image ----
remote: ---> Sending image to repository (5.57MB)
remote: ---> Cleaning up
remote:
remote: ---- Starting 1 new unit ----
remote: ---> Started unit b21298a64e...
remote:
remote: ---- Binding and checking 1 new units ----
remote: ---> Bound and checked unit b21298a64e
remote:
remote: ---- Adding routes to 1 new units ----
remote: ---> Added route to unit b21298a64e
remote:
remote: OK
To git@192.168.50.4.nip.io:helloworld.git
 * [new branch] master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use the command key-add:

$ tsuru key-add mykey ~/.ssh/id_rsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@192.168.50.4.nip.io:helloworld.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: helloworld
Repository: git@192.168.50.4.nip.io:helloworld.git
Platform: go
Teams: admin
Address: helloworld.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 1
Pool: theonepool
Units: 1
+------------+---------+
| Unit | State |
+------------+---------+
| b21298a64e | started |
+------------+---------+

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

Running the application

tsuru will compile and run the application automatically, but it’s possible to
customize how tsuru compiles and runs the application. For more details, check
the README of the Go platform:
https://github.com/tsuru/basebuilder/blob/master/go/README.md.

Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+--------------------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+--------------------------------+
| helloworld | 1 of 1 units in-service | helloworld.192.168.50.4.nip.io |
+-------------+-------------------------+--------------------------------+

It’s done! Now we have a simple go project deployed on tsuru.

Now we can access your app in the URL displayed in app-list
(“helloworld.192.168.50.4.nip.io” in this case).

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [https://tsuru-client.readthedocs.org].

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Deploying Java applications on tsuru

Overview

This document is a hands-on guide to deploying a simple Java application on
tsuru. The example application is a simple mvn generated archetype, in order to
generate it, just run:

$ mvn archetype:generate -DgroupId=io.tsuru.javasample -DartifactId=helloweb -DarchetypeArtifactId=maven-archetype-webapp

You can also deploy any other Java application you have on a tsuru server.
Another alternative is to just download the code available at GitHub:
https://github.com/tsuru/tsuru-java-sample.

Creating the app within tsuru

To create an app, you use the command app-create:

$ tsuru app-create <app-name> <app-platform>

For Java, the app platform is, guess what, java! Let’s call our application “helloweb”:

$ tsuru app-create helloweb java

To list all available platforms, use the command platform-list.

You can see all your applications using the command app-list:

$ tsuru app-list
+-------------+-------------------------+------------------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+------------------------------+
| helloweb | 0 of 0 units in-service | helloweb.192.168.50.4.nip.io |
+-------------+-------------------------+------------------------------+

Deploying the code

Using the Java platform, there are two deployment strategies: users can either
upload WAR files to tsuru or send the code using the regular git push
approach. This guide will cover both approaches:

WAR deployment

Using the mvn archetype, generating the WAR is as easy as running mvn
package, then the user can deploy the code using tsuru app-deploy:

$ mvn package
$ cd target
$ tsuru app-deploy -a helloweb helloweb.war
Uploading files.... ok

---- Building application image ----
 ---> Sending image to repository (0.00MB)
 ---> Cleaning up

---- Starting 1 new unit ----
 ---> Started unit 21c3b6aafa...

---- Binding and checking 1 new units ----
 ---> Bound and checked unit 21c3b6aafa

---- Adding routes to 1 new units ----
 ---> Added route to unit 21c3b6aafa

OK

Done! Now you can access your project in the address displayed in the output of
tsuru app-list. Remeber to add /helloweb/.

You can also deploy you application to the / address, renaming the WAR to
ROOT.war and redeploying it:

$ mv helloweb.war ROOT.war
$ tsuru app-deploy -a helloweb ROOT.war
Uploading files... ok

---- Building application image ----
 ---> Sending image to repository (0.00MB)
 ---> Cleaning up

---- Starting 1 new unit ----
 ---> Started unit 4d155e805f...

---- Adding routes to 1 new units ----
 ---> Added route to unit 4d155e805f

---- Removing routes from 1 old units ----
 ---> Removed route from unit d2811c0801

---- Removing 1 old unit ----
 ---> Removed old unit 1/1

OK

And now you can access your hello world in the root of the application address!

Git deployment

For Git deployment, we will send the code to tsuru, and compile the classes
there. For that, we’re going to use mvn with the Jetty plugin [https://www.eclipse.org/jetty/documentation/current/jetty-maven-plugin.html].
For doing that, we will need to create a Procfile with the command for starting
the application:

$ cat Procfile
helloweb: mvn jetty:run

In order to compile the application classes during deployment, we need also to
add a deployment hook. tsuru parses a file called tsuru.yaml and runs some
build hooks in the deployment phase.

Here is how the file for the helloweb application looks like:

$ cat tsuru.yaml
hooks:
 build:
 - mvn package

After adding these files, we’re ready for deploying the application. The
command app-info command will display a Git remote that we can use to push
the application code to production:

$ tsuru app-info -a helloweb
Application: helloweb
Repository: git@192.168.50.4.nip.io:helloweb.git
Platform: java
Teams: admin
Address: helloweb.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 2
Pool: theonepool
Units: 1
+------------+---------+
| Unit | State |
+------------+---------+
| 313458bb9d | started |
+------------+---------+

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

The “Repository” line contains what we need: the remote repository. Now we can
simply push the application code, using Git push:

$ git push git@192.168.50.4.nip.io:helloweb.git master
Counting objects: 25, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (19/19), done.
Writing objects: 100% (25/25), 2.59 KiB | 0 bytes/s, done.
Total 25 (delta 5), reused 0 (delta 0)
remote: tar: Removing leading `/' from member names
remote: [INFO] Scanning for projects...
remote: [INFO]
remote: [INFO] --
remote: [INFO] Building helloweb Maven Webapp 1.0-SNAPSHOT
remote: [INFO] --
remote: Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-resources-plugin/2.3/maven-resources-plugin-2.3.pom
remote: Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-resources-plugin/2.3/maven-resources-plugin-2.3.pom (5 KB at 6.0 KB/sec)
remote: Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-plugins/12/maven-plugins-12.pom
remote: Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/plugins/maven-plugins/12/maven-plugins-12.pom (12 KB at 35.9 KB/sec)

...

remote: [INFO] Packaging webapp
remote: [INFO] Assembling webapp [helloweb] in [/home/application/current/target/helloweb]
remote: [INFO] Processing war project
remote: [INFO] Copying webapp resources [/home/application/current/src/main/webapp]
remote: [INFO] Webapp assembled in [27 msecs]
remote: [INFO] Building war: /home/application/current/target/helloweb.war
remote: [INFO] WEB-INF/web.xml already added, skipping
remote: [INFO] --
remote: [INFO] BUILD SUCCESS
remote: [INFO] --
remote: [INFO] Total time: 51.729s
remote: [INFO] Finished at: Tue Nov 11 17:04:05 UTC 2014
remote: [INFO] Final Memory: 8M/19M
remote: [INFO] --
remote:
remote: ---- Building application image ----
remote: ---> Sending image to repository (2.96MB)
remote: ---> Cleaning up
remote:
remote: ---- Starting 1 new unit ----
remote: ---> Started unit e71d176232...
remote:
remote: ---- Adding routes to 1 new units ----
remote: ---> Added route to unit e71d176232
remote:
remote: ---- Removing routes from 1 old units ----
remote: ---> Removed route from unit d8a2d14948
remote:
remote: ---- Removing 1 old unit ----
remote: ---> Removed old unit 1/1
remote:
remote: OK
To git@tsuru.mycompany.com:helloweb.git
 * [new branch] master -> master

As you can see, the final part of the output is the same, and the application
is running in the address given by tsuru as well.

Switching between Java versions

In the Java platform provided by tsuru, users can use two version of Java: 7
and 8, both provided by Oracle. There’s an environment variable for defining
the Java version you wanna use: JAVA_VERSION. The default behavior of the
platform is to use Java 7, but you can change to Java 8 by running:

$ tsuru env-set -a helloweb JAVA_VERSION=8
---- Setting 1 new environment variables ----

---- Starting 1 new unit ----
 ---> Started unit d8a2d14948...

---- Adding routes to 1 new units ----
 ---> Added route to unit d8a2d14948

---- Removing routes from 1 old units ----
 ---> Removed route from unit 4d155e805f

---- Removing 1 old unit ----
 ---> Removed old unit 1/1

And... done! No need to run another deployment, your application is now running
with Java 8.

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [https://tsuru-client.readthedocs.org].

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Deploying PHP applications in tsuru

Overview

This document is a hands-on guide to deploying a simple PHP application in
tsuru. The example application will be a very simple Wordpress project
associated to a MySQL service. It’s applicable to any php over apache
application.

Creating the app in tsuru

To create an app, you use the command app-create:

$ tsuru app-create <app-name> <app-platform>

For PHP, the app platform is, guess what, php! Let’s be over creative
and develop a never-developed tutorial-app: a blog, and its name will also be
very creative, let’s call it “blog”:

$ tsuru app-create blog php

To list all available platforms, use the command platform-list.

You can see all your applications using the command app-list:

$ tsuru app-list
+-------------+-------------------------+--------------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+--------------------------+
| blog | 0 of 0 units in-service | blog.192.168.50.4.nip.io |
+-------------+-------------------------+--------------------------+

Application code

This document will not focus on how to write a php blog, you can download the
entire source direct from wordpress: http://wordpress.org/latest.zip. Here is
all you need to do with your project:

Download and unpack wordpress
$ wget http://wordpress.org/latest.zip
$ unzip latest.zip
Preparing wordpress for tsuru
$ cd wordpress
Notify tsuru about the necessary packages
$ echo php5-mysql > requirements.apt
Preparing the application to receive the tsuru environment related to the mysql service
$ sed "s/'database_name_here'/getenv('MYSQL_DATABASE_NAME')/; \
 s/'username_here'/getenv('MYSQL_USER')/; \
 s/'localhost'/getenv('MYSQL_HOST')/; \
 s/'password_here'/getenv('MYSQL_PASSWORD')/" \
 wp-config-sample.php > wp-config.php
Creating a local Git repository
$ git init
$ git add .
$ git commit -m 'initial project version'

Git deployment

When you create a new app, tsuru will display the Git remote that you should
use. You can always get it using the command app-info:

$ tsuru app-info --app blog
Application: blog
Repository: git@192.168.50.4.nip.io:blog.git
Platform: php
Teams: admin
Address: blog.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 0
Pool: theonepool

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

The Git remote will be used to deploy your application using Git. You can just
push to tsuru remote and your project will be deployed:

$ git push git@192.168.50.4.nip.io:blog.git master
Counting objects: 1295, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (1271/1271), done.
Writing objects: 100% (1295/1295), 6.09 MiB | 5.65 MiB/s, done.
Total 1295 (delta 102), reused 0 (delta 0)
remote: text
remote: Deploying the PHP application...
remote: tar: Removing leading `/' from member names
###
OMIT DEPENDENCIES STEPS (see below)
###
remote:
remote: ---- Building application image ----
remote: ---> Sending image to repository (51.40MB)
remote: ---> Cleaning up
remote:
remote: ---- Starting 1 new unit ----
remote: ---> Started unit 027c2a31a0...
remote:
remote: ---- Binding and checking 1 new units ----
remote: ---> Bound and checked unit 027c2a31a0
remote:
remote: ---- Adding routes to 1 new units ----
remote: ---> Added route to unit 027c2a31a0
remote:
remote: OK
To git@192.168.50.4.nip.io:blog.git
 * [new branch] master -> master

If you get a “Permission denied (publickey).”, make sure you’re member of a
team and have a public key added to tsuru. To add a key, use the command
key-add:

$ tsuru key-add mykey ~/.ssh/id_dsa.pub

You can use git remote add to avoid typing the entire remote url every time
you want to push:

$ git remote add tsuru git@192.168.50.4.nip.io:blog.git

Then you can run:

$ git push tsuru master
Everything up-to-date

And you will be also able to omit the --app flag from now on:

$ tsuru app-info
Application: blog
Repository: git@192.168.50.4.nip.io:blog.git
Platform: php
Teams: admin
Address: blog.192.168.50.4.nip.io
Owner: admin@example.com
Team owner: admin
Deploys: 1
Pool: theonepool
Units: 1
+------------+---------+
| Unit | State |
+------------+---------+
| 027c2a31a0 | started |
+------------+---------+

App Plan:
+---------------+--------+------+-----------+--------+---------+
| Name | Memory | Swap | Cpu Share | Router | Default |
+---------------+--------+------+-----------+--------+---------+
| autogenerated | 0 MB | 0 MB | 100 | | false |
+---------------+--------+------+-----------+--------+---------+

Listing dependencies

In the last section we omitted the dependencies step of deploy. In tsuru, an
application can have two kinds of dependencies:

	Operating system dependencies, represented by packages in the package manager
of the underlying operating system (e.g.: yum and apt-get);

	Platform dependencies, represented by packages in the package manager of the
platform/language (e.g. in Python, pip).

All apt-get dependencies must be specified in a requirements.apt file,
located in the root of your application, and pip dependencies must be located
in a file called requirements.txt, also in the root of the application.
Since we will use MySQL with PHP, we need to install the package depends on just
one apt-get package:
php5-mysql, so here is how requirements.apt
looks like:

php5-mysql

You can see the complete output of installing these dependencies below:

% git push tsuru master
#####################################
OMIT
#####################################
Counting objects: 1155, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (1124/1124), done.
Writing objects: 100% (1155/1155), 4.01 MiB | 327 KiB/s, done.
Total 1155 (delta 65), reused 0 (delta 0)
remote: Cloning into '/home/application/current'...
remote: Reading package lists...
remote: Building dependency tree...
remote: Reading state information...
remote: The following extra packages will be installed:
remote: libmysqlclient18 mysql-common
remote: The following NEW packages will be installed:
remote: libmysqlclient18 mysql-common php5-mysql
remote: 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
remote: Need to get 1042 kB of archives.
remote: After this operation, 3928 kB of additional disk space will be used.
remote: Get:1 http://archive.ubuntu.com/ubuntu/ quantal/main mysql-common all 5.5.27-0ubuntu2 [13.7 kB]
remote: Get:2 http://archive.ubuntu.com/ubuntu/ quantal/main libmysqlclient18 amd64 5.5.27-0ubuntu2 [949 kB]
remote: Get:3 http://archive.ubuntu.com/ubuntu/ quantal/main php5-mysql amd64 5.4.6-1ubuntu1 [79.0 kB]
remote: Fetched 1042 kB in 1s (739 kB/s)
remote: Selecting previously unselected package mysql-common.
remote: (Reading database ... 23874 files and directories currently installed.)
remote: Unpacking mysql-common (from .../mysql-common_5.5.27-0ubuntu2_all.deb) ...
remote: Selecting previously unselected package libmysqlclient18:amd64.
remote: Unpacking libmysqlclient18:amd64 (from .../libmysqlclient18_5.5.27-0ubuntu2_amd64.deb) ...
remote: Selecting previously unselected package php5-mysql.
remote: Unpacking php5-mysql (from .../php5-mysql_5.4.6-1ubuntu1_amd64.deb) ...
remote: Processing triggers for libapache2-mod-php5 ...
remote: * Reloading web server config
remote: ...done.
remote: Setting up mysql-common (5.5.27-0ubuntu2) ...
remote: Setting up libmysqlclient18:amd64 (5.5.27-0ubuntu2) ...
remote: Setting up php5-mysql (5.4.6-1ubuntu1) ...
remote: Processing triggers for libc-bin ...
remote: ldconfig deferred processing now taking place
remote: Processing triggers for libapache2-mod-php5 ...
remote: * Reloading web server config
remote: ...done.
remote: sudo: unable to resolve host 8cf20f4da877
remote: sudo: unable to resolve host 8cf20f4da877
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote:
remote: Creating config file /etc/php5/mods-available/mysql.ini with new version
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote:
remote: Creating config file /etc/php5/mods-available/mysqli.ini with new version
remote: debconf: unable to initialize frontend: Dialog
remote: debconf: (Dialog frontend will not work on a dumb terminal, an emacs shell buffer, or without a controlling terminal.)
remote: debconf: falling back to frontend: Readline
remote:
remote: Creating config file /etc/php5/mods-available/pdo_mysql.ini with new version
remote:
remote: ---> App will be restarted, please check its log for more details...
remote:
To git@192.168.50.4.nip.io:blog.git
 * [new branch] master -> master

Running the application

As you can see, in the deploy output there is a step described as “App will be
restarted”. In this step, tsuru will restart your app if it’s running, or start
it if it’s not.
Now that the app is deployed, you can access it from your browser, getting the
IP or host listed in app-list and opening it. For example,
in the list below:

$ tsuru app-list
+-------------+-------------------------+---------------------+
| Application | Units State Summary | Address |
+-------------+-------------------------+---------------------+
| blog | 1 of 1 units in-service | blog.cloud.tsuru.io |
+-------------+-------------------------+---------------------+

Using services

Now that php is running, we can accesss the application in the browser,
but we get a database connection error: “Error establishing a database connection”.
This error means that we can’t connect to MySQL. That’s because we
should not connect to MySQL on localhost, we must use a service.
The service workflow can be resumed to two steps:

	Create a service instance

	Bind the service instance to the app

But how can I see what services are available? Easy! Use the command
service-list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | |
+----------------+-----------+

The output from service-list above says that there are two available
services: “elastic-search” and “mysql”, and no instances. To create our MySQL
instance, we need to run the command service-add:

$ tsuru service-add mysql blogsql
Service successfully added.

Now, if we run service-list again, we will see our new service instance in
the list:

$ tsuru service-list
+----------------+-----------+
| Services | Instances |
+----------------+-----------+
| elastic-search | |
| mysql | blogsql |
+----------------+-----------+

To bind the service instance to the application, we use the command
service-bind:

$ tsuru service-bind blogsql
Instance blogsql is now bound to the app blog.

The following environment variables are now available for use in your app:

- MYSQL_PORT
- MYSQL_PASSWORD
- MYSQL_USER
- MYSQL_HOST
- MYSQL_DATABASE_NAME

For more details, please check the documentation for the service, using service-doc command.

As you can see from bind output, we use environment variables to connect to the
MySQL server. Next step would be update the wp-config.php to use these variables to
connect in the database:

$ grep getenv wp-config.php
define('DB_NAME', getenv('MYSQL_DATABASE_NAME'));
define('DB_USER', getenv('MYSQL_USER'));
define('DB_PASSWORD', getenv('MYSQL_PASSWORD'));
define('DB_HOST', getenv('MYSQL_HOST'));

You can extend your wordpress installing plugins into your repository. In the example below, we
are adding the Amazon S3 capability to wordpress, just installing 2 more plugins: Amazon S3 and Cloudfront [http://wordpress.org/plugins/amazon-s3-and-cloudfront] +
Amazon Web Services [http://wordpress.org/plugins/amazon-web-services]. It’s the right way to store content files into tsuru.

$ cd wp-content/plugins/
$ wget http://downloads.wordpress.org/plugin/amazon-web-services.0.1.zip
$ wget http://downloads.wordpress.org/plugin/amazon-s3-and-cloudfront.0.6.1.zip
$ unzip amazon-web-services.0.1.zip
$ unzip amazon-s3-and-cloudfront.0.6.1.zip
$ rm -f amazon-web-services.0.1.zip amazon-s3-and-cloudfront.0.6.1.zip
$ git add amazon-web-services/ amazon-s3-and-cloudfront/

Now you need to add the amazon AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environments
support into wp-config.php. You could add these environments right after the WP_DEBUG as below:

$ grep -A2 define.*WP_DEBUG wp-config.php
define('WP_DEBUG', false);
define('AWS_ACCESS_KEY_ID', getenv('AWS_ACCESS_KEY_ID'));
define('AWS_SECRET_ACCESS_KEY', getenv('AWS_SECRET_ACCESS_KEY'));
$ git add wp-config.php
$ git commit -m 'adding plugins for S3'
$ git push tsuru master

Now, just inject the right values for these environments with tsuru env-set as below:

$ tsuru env-set AWS_ACCESS_KEY_ID="xxx" AWS_SECRET_ACCESS_KEY="xxxxx" -a blog

It’s done! Now we have a PHP project deployed on tsuru, with S3 support using a MySQL
service.

Customizing the platform

The PHP platform supports customizations in the frontend and the interpreter,
for more details, check the README of the platform [https://github.com/tsuru/basebuilder/blob/master/php/README.md].

Going further

For more information, you can dig into tsuru docs [http://docs.tsuru.io], or
read complete instructions of use for the tsuru command [https://tsuru.readthedocs.org].

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Using Buildpacks

tsuru supports deploying applications via Heroku Buildpacks.

Buildpacks are useful if you’re interested in following Heroku’s best practices for building applications or if you are deploying an application that already runs on Heroku.

tsuru uses Buildstep Docker image [https://github.com/progrium/buildstep] to make deploy using buildpacks possible.

Creating an Application

What do you need is create an application using buildpack platform:

$ tsuru app-create myapp buildpack

Deploying your Application

Use git push to deploy your application.

$ git push <REMOTE-URL> master

Included Buildpacks

A number of buildpacks come bundled by default:

	https://github.com/heroku/heroku-buildpack-ruby.git

	https://github.com/heroku/heroku-buildpack-nodejs.git

	https://github.com/heroku/heroku-buildpack-java.git

	https://github.com/heroku/heroku-buildpack-play.git

	https://github.com/heroku/heroku-buildpack-python.git

	https://github.com/heroku/heroku-buildpack-scala.git

	https://github.com/heroku/heroku-buildpack-clojure.git

	https://github.com/heroku/heroku-buildpack-gradle.git

	https://github.com/heroku/heroku-buildpack-grails.git

	https://github.com/CHH/heroku-buildpack-php.git

	https://github.com/kr/heroku-buildpack-go.git

	https://github.com/oortcloud/heroku-buildpack-meteorite.git

	https://github.com/miyagawa/heroku-buildpack-perl.git

	https://github.com/igrigorik/heroku-buildpack-dart.git

	https://github.com/rhy-jot/buildpack-nginx.git

	https://github.com/Kloadut/heroku-buildpack-static-apache.git

	https://github.com/bacongobbler/heroku-buildpack-jekyll.git

	https://github.com/ddollar/heroku-buildpack-multi.git

tsuru will cycle through the bin/detect script of each buildpack to match the code you are pushing.

Using a Custom Buildpack

To use a custom buildpack, set the BUILDPACK_URL environment variable.

$ tsuru env-set BUILDPACK_URL=https://github.com/dpiddy/heroku-buildpack-ruby-minimal

On your next git push, the custom buildpack will be used.

Creating your own Buildpack

You can follow this Heroku documentation to learn how to create your own Buildpack: https://devcenter.heroku.com/articles/buildpack-api.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Recovering an application

Your application may be down for a number of reasons. This page can help you
discover why and guide you to fix the problem.

Check your application logs

tsuru aggregates stdout and stderr from every application process making it easier
to troubleshoot problems.

To know more how the tsuru log works see the log documentation.

Restart your application

Some application issues are solved by a simple restart. For example, your
application may need to be restarted after a schema change to your database.

$ tsuru app-restart -a appname

Checking the status of application units

$ tsuru app-info -a appname

Open a shell to the application

You can also use tsuru app-shell to open a remote shell to one of the units
of the application.

$ tsuru app-shell -a appname

You can also specify the unit ID to connect:

$ tsuru app-shell -a appname <container-id>

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Logging

tsuru aggregates stdout and stderr from every application process making it easier
to troubleshoot problems. To use the log make sure that your application is
sending the log to stdout and stderr.

Watch your logs

To see the logs for your application. You can use the tsuru app-log command:

$ tsuru app-log -a <appname>
2014-12-11 16:36:17 -0200 [tsuru][api]: ---> Removed route from unit 1d913e0910
2014-12-11 16:36:17 -0200 [tsuru][api]: ---- Removing 1 old unit ----
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Starting gunicorn 18.0
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Listening at: http://0.0.0.0:8100 (51)
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Using worker: sync
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Booting worker with pid: 60
2014-12-11 16:36:28 -0200 [tsuru][api]: ---> Removed old unit 1/1

By default is showed the last ten log lines. If you want see more lines,
you can use the -l/–lines parameter:

$ tsuru app-log -a <appname> --lines 100

Filtering

You can filter logs by unit and by source.

To filter by unit you should use -u/–unit parameter:

$ tsuru app-log -a <appname> --unit 11f863b2c14b
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Starting gunicorn 18.0
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Listening at: http://0.0.0.0:8100 (51)
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Using worker: sync

See also

To get the unit id you can use the tsuru app-info -a <appname> command.

The log can be sent by your process or by tsuru api. To filter by source
you should use -s/–source parameter:

$ tsuru app-log -a <appname> --source app
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Starting gunicorn 18.0
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Listening at: http://0.0.0.0:8100 (51)
2014-12-11 16:36:22 -0200 [app][11f863b2c14b]: Using worker: sync

$ tsuru app-log -a <appname> --source tsuru
2014-12-11 16:36:17 -0200 [tsuru][api]: ---> Removed route from unit 1d913e0910
2014-12-11 16:36:17 -0200 [tsuru][api]: ---- Removing 1 old unit ----

Realtime logging

tsuru app-log has a -f/–follow option that causes the log to not stop and wait for the
new log data. With this option you can see in real time the behaviour of your application that
is useful to debug problems:

$ tsuru app-log -a <appname> --follow

You can close the session pressing Ctrl-C.

Limitations

The tsuru native log system is designed to be fast and show the recent
log of your application. The tsuru log doesn’t store all log entries for your application.

If you want to store and see all log entries you should use an external log aggregator.

Using an external log aggregator

You can also send the log to an external log aggregator. To do this, tsuru uses
the Syslog [https://tools.ietf.org/html/rfc5424] protocol.

To use Syslog you should set the following environment variables in your
application:

TSURU_SYSLOG_SERVER
TSURU_SYSLOG_PORT (probably 514)
TSURU_SYSLOG_FACILITY (something like local0)
TSURU_SYSLOG_SOCKET (tcp or udp)

You can use the command tsuru env-set to set these enviroment variables in
your application:

$ tsuru env-set -a myapp TSURU_SYSLOG_SERVER=myserver.com TSURU_SYSLOG_PORT=514 TSURU_SYSLOG_FACILITY=local0 TSURU_SYSLOG_SOCKET=tcp

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Procfile

Procfile is a simple text file called Procfile that describe the components required
to run an applications. It is the way to tell to tsuru how to run
your applications.

This document describes some of the more
advances features of and the Procfile ecosystem.

A Procfile should look like:

web: gunicorn -w 3 wsgi

Syntax

Procfile is a plain text file called Procfile placed at the root of your
application.

Each project should be represented by a name and a command,
like below:

<name>: <command>

The name is a string which may contain alphanumerics
and underscores and identifies one type of process.

command is a shell commandline which will be executed to
spawn a process.

Environment variables

You can reference yours environment variables in the command:

web: ./manage.py runserver 0.0.0.0:$PORT

For more information about Procfile you can see the honcho documentation
about Procfiles: http://honcho.rtfd.org/en/latest/using_procfiles.html.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

tsuru.yaml

tsuru.yaml is a special file located in the root of the application. The name of
the file may be tsuru.yaml or tsuru.yml.

This file is used to describe certain aspects of your app. Currently it describes
information about deployment hooks and deployment time health checks. How to use
this features is described below.

Deployment hooks

tsuru provides some deployment hooks, like restart:before, restart:after
and build. Deployment hooks allow developers to run commands before and after
some commands.

Here is an example about how to declare this hooks in your tsuru.yaml file:

hooks:
 restart:
 before:
 - python manage.py generate_local_file
 after:
 - python manage.py clear_local_cache
 build:
 - python manage.py collectstatic --noinput
 - python manage.py compress

tsuru supports the following hooks:

	restart:before: this hook lists commands that will run before the unit is
restarted. Commands listed in this hook will run once per unit. For instance,
imagine there’s an app with two units and the tsuru.yaml file listed above.
The command python manage.py generate_local_file would run two times, once
per unit.

	restart:after: this hook is like before-each, but runs after restarting a
unit.

	build: this hook lists commands that will be run during deploy, when the
image is being generated.

Healthcheck

You can declare a health check in your tsuru.yaml file. This health check will be
called during the deployment process and tsuru will make sure this health check is
passing before continuing with the deployment process.

If tsuru fails to run the health check successfully it will abort the deployment
before switching the router to point to the new units, so your application will
never be unresponsive. You can configure the maximum time to wait for the
application to respond with the docker:healthcheck:max-time config.

Here is how you can configure a health check in your yaml file:

healthcheck:
 path: /healthcheck
 method: GET
 status: 200
 match: .*OKAY.*
 allowed_failures: 0

	healthcheck:path: Which path to call in your application. This path will be
called for each unit. It is the only mandatory field, if it’s not set your
health check will be ignored.

	healthcheck:method: The method used to make the http request. Defaults to
GET.

	healthcheck:status: The expected response code for the request. Defaults to
200.

	healthcheck:match: A regular expression to be matched against the request
body. If it’s not set the body won’t be read and only the status code will be
checked. This regular expression uses Go syntax [https://code.google.com/p/re2/wiki/Syntax] and runs with . matching
\n (s flag).

	healthcheck:allowed_failures: The number of allowed failures before that the
health check consider the application as unhealthy. Defaults to 0.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Unit states

The unit status is the way to know what is happening with a unit. You can use the
tsuru app-info -a <appname> to see the unit status:

$ tsuru app-info -a tsuru-dashboard
Application: tsuru-dashboard
Repository: git@localhost:tsuru-dashboard.git
Platform: python
...
Units: 1
+------------+---------+
| Unit | State |
+------------+---------+
| 9cf863c2c1 | started |
+------------+---------+

The unit state flow is:

+----------+ start +---------+
| building | +---------------------+| stopped |
+----------+ | +---------+
 ^ | ^
 | | |
 deploy unit | stop
 | | |
 + v RegisterUnit +
 +---------+ app unit +----------+ SetUnitStatus +---------+
 | created | +---------> | starting | +-------------> | started |
 +---------+ +----------+ +---------+
 + ^ +
 | | |
 SetUnitStatus | |
 | | |
 v | |
 +-------+ SetUnitStatus | |
 | error | +-------------------+ |
 +-------+ <---------------------+

	created: is the initial status of an unit.

	building: is the status for units being provisioned by the provisioner, like during deployment.

	error: is the status for units that failed to start, because of an application error.

	starting: is set when the container is started in docker.

	started: is for cases where the unit is up and running.

	stopped: is for cases where the unit has been stopped.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

tsuru client plugins

Installing a plugin

Let’s install a plugin. There are two ways to install a plugin. The first way
is to move your plugin to $HOME/.tsuru/plugins. The other way is to use the command
tsuru plugin-install.

tsuru plugin-install will download the plugin file to
$HOME/.tsuru/plugins. The syntax for this command is:

$ tsuru plugin-install <plugin-name> <plugin-url>

Listing installed plugins

To list all installed plugins, users can use the command tsuru plugin-list:

$ tsuru plugin-list
plugin1
plugin2

Executing a plugin

To execute a plugin just follow this pattern tsuru <plugin-name> <args>:

$ tsuru <plugin-name>
<plugin-output>

Removing a plugin

To remove a plugin just use the command tsuru plugin-remove passing the
name of the plugin as argument:

$ tsuru plugin-remove <plugin-name>
Plugin "<plugin-name>" successfully removed!

Creating your own plugin

All you need to do is to create a new file that can be executed. You can use
Shell Script, Python, Ruby, etc.

As an example, we’re going to show how to create a Hello world plugin, that
just prints “hello world!” in the screen. Let’s use Shell Script in this
plugin:

#!/bin/bash -e
echo "hello world!"

You can use the gist (https://gist.github.com) as host for your plugin, and run
tsuru plugin-install to install it:

$ tsuru plugin-install hello https://gist.githubusercontent.com/fsouza/702a767f48b0ceaafebe/raw/9bcdf9c015fda5ca410ca5eaf254a806bddfcab3/hello.bash

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Application Deployment

This document provides a high-level description on how application deployment
works on tsuru.

Preparing Your Application

If you follow the 12 Factor [http://www.12factor.net/] app principles you
shouldn’t have to change your application in order to deploy it on tsuru. Here
is what an application need to go on a tsuru cloud:

	Well defined requirements, both, on language level and operational system
level

	Configuration of external resources using environment variables

	A Procfile to tell how your process should be run

Let’s go a little deeper through each of those topics.

1. Requirements

Every well writen application nowdays has well defined dependencies. In Python,
everything is on a requirements.txt or like file, in Ruby, they go on Gemfile,
Node.js has the package.json, and so on. Some of those dependencies also have
operational system level dependencies, like the Nokogiri Ruby gem or
MySQL-Python package, tsuru bootstraps units as clean as possible, so you also
have to declare those operational system requirements you need on a file called
requirements.apt. This files should have the packages declared one per-line and
look like that:

python-dev
libmysqlclient-dev

2. Configuration With Environment Variables

Everything that vary between deploys (on different environments, like
development or production) should be managed by environment variables. tsuru
takes this principle very seriously, so all services available for usage in
tsuru that requires some sort of configuration does it via environment
variables so you have no pain while deploying on different environments using
tsuru.

For instance, if you are going to use a database service on tsuru, like MySQL,
when you bind your application into the service, tsuru will receive from the
service API everything you need to connect with MySQL, e.g: user name,
password, url and database name. Having this information, tsuru will export on
every unit your application has the equivalent environment variables with their
values. The names of those variables are defined by the service providing them,
in this case, the MySQL service.

Let’s take a look at the settings of tsuru hosted application built with Django:

import os

DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.mysql",
 "NAME": os.environ.get("MYSQLAPI_DB_NAME"),
 "USER": os.environ.get("MYSQLAPI_DB_USER"),
 "PASSWORD": os.environ.get("MYSQLAPI_DB_PASSWORD"),
 "HOST": os.environ.get("MYSQLAPI_HOST"),
 "PORT": "",
 }
}

You might be asking yourself “How am I going to know those variables names?”,
but don’t fear! When you bind your application with tsuru, it’ll return all
variables the service asked tsuru to export on your application’s units
(without the values, since you are not gonna need them), if you lost the
environments on your terminal history, again, don’t fear! You can always check
which service made what variables available to your application using the
<insert command here>.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Using

Choose a pool to deploy your app

tsuru has a concept of pool, a group of machines that will run the application
code. Pools are defined by the cloud admin as needed and users can choose one of
them in the moment of app creation.

Users can see which pools are available using the command tsuru pool-list:

$ tsuru pool-list

+---------+--------------+
| Team | Pools |
+---------+--------------+
| team1 | pool1, pool2 |
+---------+--------------+

So, in app-create, users can choose the pool using the -o/–pool pool_name
flag:

$ tsuru app-create app_name platform -o pool1

There’s no need to specify the pool when the user has access to only one pool.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Services

	API workflow
	Authentication

	Content-types

	Listing available plans

	Creating a new instance

	Binding an app to a service instance

	Unbind an app from a service instance

	Removing an instance

	Checking the status of an instance

	Additional info about an instance

	Building your service
	Overview

	Creating your service API

	Authentication
	Prerequisites

	Listing available plans

	Creating new instances

	Binding instances to apps

	Unbinding instances from apps

	Whitelisting units

	Removing instances

	Checking the status of an instance

	Creating a service manifest

	Submiting your service API

	TSURU_SERVICES environment variable

	crane usage

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Services

API workflow

tsuru sends requests to the service API to the following actions:

	create a new instance of the service (tsuru service-add)

	bind an app with the service instance (tsuru service-bind)

	unbind an app from the service instance (tsuru service-unbind)

	destroy the service instance (tsuru service-remove)

	check the status of the service instance (tsuru service-status)

	display additional info about a service, including instances and available
plans (tsuru service-info)

Authentication

tsuru will authenticate with the service API using HTTP basic authentication.
The user can be username or name of the service, and the password is defined in the
service manifest.

Content-types

tsuru uses application/x-www-form-urlencoded in requests and expect
application/json in responses.

Here is an example of a request from tsuru, to the service API:

POST /resources HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Content-Length: 38
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

name=myinstance&plan=small&team=myteam

Listing available plans

tsuru will list the available plans whenever the user issues the command
service-info

$ tsuru service-info mysql

It will display all instances of the service that the user has access to, and
also the list of plans, that tsuru gets from the service API by issuing a GET
on /resources/plans. Example of request:

GET /resources/plans HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

The API should return the following HTTP response codes with the respective
response body:

	200: if the operation has succeeded. The response body should include the
list of the plans, in JSON format. Each plan contains a “name” and a
“description”. Example of response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

[{"name":"small","description":"plan for small instances"},
 {"name":"medium","description":"plan for medium instances"},
 {"name":"huge","description":"plan for huge instances"}]

In case of failure, the service API should return the status 500, explaining
what happened in the response body.

Creating a new instance

This process begins when a tsuru customer creates an instance of the service
via command line tool:

$ tsuru service-add mysql mysql_instance

tsuru calls the service API to create a new instance via POST on /resources
(please notice that tsuru does not include a trailing slash) with the name,
plan and the team that owns the instance. Example of request:

POST /resources HTTP/1.1
Host: myserviceapi.com
Content-Length: 56
User-Agent: Go 1.1 package http
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

name=mysql_instance&plan=small&team=myteam&user=username

The API should return the following HTTP response codes with the respective
response body:

	201: when the instance is successfully created. There’s no need to
include any body, as tsuru doesn’t expect to get any content back in case
of success.

	500: in case of any failure in the operation. tsuru expects that the
service API includes an explanation of the failure in the response body.

Binding an app to a service instance

This process begins when a tsuru customer binds an app to an instance of the
service via command line tool:

$ tsuru service-bind mysql_instance --app my_app

Now, tsuru services has two bind endpoints: /resources/<service-instance-name>/bind and /resources/<service-instance-name>/bind-app.
The first endpoint will be called every time an app adds an unit.
This endpoint is a POST with app-host and unit-host, where app-host
represents the host to which the app is accessible, and unit-host is the
address of the unit. Example of request:

POST /resources/myinstance/bind HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Content-Length: 48
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

app-host=myapp.cloud.tsuru.io&unit-host=10.4.3.2

The second endpoint /resources/<service-instance-name>/bind-app will be
called once when an app is bound to a service. This endpoint is a POST with
app-host, where app-host represents the host to which the app is accessible.
Example of request:

POST /resources/myinstance/bind-app HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Content-Length: 48
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

app-host=myapp.cloud.tsuru.io

The service API should return the following HTTP response code with the
respective response body:

	201: if the app has been successfully bound to the instance. The response
body must be a JSON containing the environment variables from this
instance that should be exported in the app in order to connect to the
instance. If the service does not export any environment variable, it can
return null or {} in the response body. Example of response:

HTTP/1.1 201 CREATED
Content-Type: application/json; charset=UTF-8

{"MYSQL_HOST":"10.10.10.10","MYSQL_PORT":3306,
 "MYSQL_USER":"ROOT","MYSQL_PASSWORD":"s3cr3t",
 "MYSQL_DATABASE_NAME":"myapp"}

Status codes for errors in the process:

	404: if the service instance does not exist. There’s no need to include
anything in the response body.

	412: if the service instance is still being provisioned, and not ready
for binding yet. The service API may include an explanation of the
failure in the response body.

	500: in case of any failure in the operation. tsuru expects that the
service API includes an explanation of the failure in the response body.

Unbind an app from a service instance

This process begins when a tsuru customer unbinds an app from an instance of
the service via command line:

$ tsuru service-unbind mysql_instance --app my_app

Now, tsuru services has two unbind endpoints: /resources/<service-instance-name>/bind and /resources/<service-instance-name>/bind-app.
The first endpoint will be called every time an app removes an unit.
This endpoint is a DELETE with app-host and unit-host. Example of request:

DELETE /resources/myinstance/bind HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

app-host=myapp.cloud.tsuru.io&unit-host=10.4.3.2

The second endpoint /resources/<service-instance-name>/bind-app will be
called once when the binding between a service and an application is removed.
This endpoint is a DELETE with app-host. Example of request:

DELETE /resources/myinstance/bind-app HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

app-host=myapp.cloud.tsuru.io

The API should return the following HTTP response code with the respective
response body:

	200: if the operation has succeed and the app is not bound to the service
instance anymore. There’s no need to include anything in the response
body.

	404: if the service instance does not exist. There’s no need to include
anything in the response body.

	500: in case of any failure in the operation. tsuru expects that the
service API includes an explanation of the failure in the response body.

Removing an instance

This process begins when a tsuru customer removes an instance of the service
via command line:

$ tsuru service-remove mysql_instance -y

tsuru calls the service API to remove the instancevia DELETE on
/resources/<service-name> (please notice that tsuru does not include a
trailing slash). Example of request:

DELETE /resources/myinstance HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

The API should return the following HTTP response codes with the respective
response body:

	200: if the service instance has been successfully removed. There’s no
need to include anything in the response body.

	404: if the service instance does not exist. There’s no need to include
anything in the response body.

	500: in case of any failure in the operation. tsuru expects that the
service API includes an explanation of the failure in the response body.

Checking the status of an instance

This process begins when a tsuru customer wants to check the status of an
instance via command line:

$ tsuru service-status mysql_instance

tsuru calls the service API to check the status of the instance via GET on
/resources/mysql_instance/status (please notice that tsuru does not include
a trailing slash). Example of request:

GET /resources/myinstance/status HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

The API should return the following HTTP response code, with the respective
response body:

	202: the instance is still being provisioned (pending). There’s no need
to include anything in the response body.

	204: the instance is running and ready for connections (running).

	500: the instance is not running, nor ready for connections. tsuru
expects an explanation of what happened in the response body.

Additional info about an instance

When the user run tsuru service-info <service>, tsuru will get informations
from all instances. This is an optional endpoint in the service API. Some
services does not provide any extra information for instances. Example of
request:

GET /resources/myinstance HTTP/1.1
Host: myserviceapi.com
User-Agent: Go 1.1 package http
Accept: application/json
Authorization: Basic dXNlcjpwYXNzd29yZA==
Content-Type: application/x-www-form-urlencoded

The API should return the following HTTP response codes:

	404: when the API doesn’t have extra info about the service instance.
There’s no need to include anything in the response body.

	200: when there’s extra information of the service instance. The response
body must be a JSON containing a list of items. Each item is a JSON
object combosed by a label and a value. Example response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

[{"label":"my label","value":"my value"},
 {"label":"myLabel2.0","value":"my value 2.0"}]

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Services

Building your service

Overview

This document is a hands-on guide to turning your existing cloud service into a
tsuru service.

In order to create a service you need to implement a provisioning API for your
service, which tsuru will call using HTTP protocol [http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods]
when a customer creates a new instance or binds a service instance with an app.

You will also need to create a YAML document that will serve as the service
manifest. We provide a command-line tool to help you to create this manifest
and manage your service.

Creating your service API

To create your service API, you can use any programming language or framework.
In this tutorial we will use Flask [http://flask.pocoo.org].

Authentication

tsuru uses basic authentication for authenticating the services, for more
details, check the service API workflow.

Using Flask, you can manage basic authentication using a decorator described in
this Flask snippet: http://flask.pocoo.org/snippets/8/.

Prerequisites

First, let’s ensure that Python and pip are already installed:

$ python --version
Python 2.7.2

$ pip
Usage: pip COMMAND [OPTIONS]

pip: error: You must give a command (use "pip help" to see a list of commands)

For more information about how to install python you can see the Python
download documentation [http://python.org/download/] and about how to install
pip you can see the pip installation instructions [http://www.pip-installer.org/en/latest/installing.html].

Now, with python and pip installed, you can use pip to install Flask:

$ pip install flask

Now that Flask is installed, it’s time to create a file called api.py and add
the code needed to create a minimal Flask application:

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

For run this app you can do:

$ python api.py
 * Running on http://127.0.0.1:5000/

If you open your web browser and access the url http://127.0.0.1:5000/ you will
see the message “Hello World!”.

Then, you need to implement the resources of a tsuru service API, as described
in the tsuru service API workflow.

Listing available plans

tsuru will get the list of available plans by issuing a GET request in the
/resources/plans URL. Let’s create the view that will handle this kind
of request:

import json

@app.route("/resources/plans", methods=["GET"])
def plans():
 plans = [{"name": "small", "description": "small instance"},
 {"name": "medium", "description": "medium instance"},
 {"name": "big", "description": "big instance"},
 {"name": "giant", "description": "giant instance"}]
 return json.dumps(plans)

Creating new instances

For new instances tsuru sends a POST to /resources with the parameters needed
for creating an instance. If the service instance is successfully created, your
API should return 201 in status code.

Let’s create the view for this action:

from flask import request

@app.route("/resources", methods=["POST"])
def add_instance():
 name = request.form.get("name")
 plan = request.form.get("plan")
 team = request.form.get("team")
 # use the given parameters to create the instance
 return "", 201

Binding instances to apps

In the bind action, tsuru calls your service via POST on
/resources/<service-instance-name>/bind-app with the parameters needed for
binding an app into a service instance.

If the bind operation succeeds, the API should return 201 as status code with
the variables to be exported in the app environment on body in JSON format.

As an example, let’s create a view that returns a json with a fake variable
called “SOMEVAR” to be injected in the app environment:

import json

from flask import request

@app.route("/resources/<name>/bind-app", methods=["POST"])
def bind_app(name):
 app_host = request.form.get("app-host")
 # use name and app_host to bind the service instance and the #
 application
 envs = {"SOMEVAR": "somevalue"}
 return json.dumps(envs), 201

Unbinding instances from apps

In the unbind action, tsuru issues a DELETE request to the URL
/resources/<service-instance-name>/bind-app.

If the unbind operation succeeds, the API should return 200 as status code.
Let’s create the view for this action:

@app.route("/resources/<name>/bind-app", methods=["DELETE"])
def unbind_app(name):
 app_host = request.form.get("app-host")
 # use name and app-host to remove the bind
 return "", 200

Whitelisting units

When binding and unbindin application and service instances, tsuru will also
provide information about units that will have access to the service instance,
so the service API can handle any required whitelisting (writing ACL rules to a
network switch or authorizing access in a firewall, for example).

tsuru will send POST and DELETE requests to the route
/resources/<name>/bind, with the host of the app and the unit, so any
access control can be handled by the API:

@app.route("/resources/<name>/bind", methods=["POST", "DELETE"])
def access_control(name):
 app_host = request.form.get("app-host")
 unit_host = request.form.get("unit-host")
 # use unit-host and app-host, according to the access control tool, and
 # the request method.
 return "", 201

Removing instances

In the remove action, tsuru issues a DELETE request to the URL
/resources/<service_name>.

If the service instance is successfully removed, the API should return 200 as
status code.

Let’s create a view for this action:

@app.route("/resources/<name>", methods=["DELETE"])
def remove_instance(name):
 # remove the instance named "name"
 return "", 200

Checking the status of an instance

To check the status of an instance, tsuru issues a GET request to the URL
/resources/<service_name>/status. If the instance is ok, this URL should
return 204.

Let’s create a view for this action:

@app.route("/resources/<name>/status", methods=["GET"])
def status(name):
 # check the status of the instance named "name"
 return "", 204

The final code for our “fake API” developed in Flask is:

import json

from flask import Flask, request

app = Flask(__name__)

@app.route("/resources/plans", methods=["GET"])
def plans():
 plans = [{"name": "small", "description": "small instance"},
 {"name": "medium", "description": "medium instance"},
 {"name": "big", "description": "big instance"},
 {"name": "giant", "description": "giant instance"}]
 return json.dumps(plans)

@app.route("/resources", methods=["POST"])
def add_instance():
 name = request.form.get("name")
 plan = request.form.get("plan")
 team = request.form.get("team")
 # use the given parameters to create the instance
 return "", 201

@app.route("/resources/<name>/bind-app", methods=["POST"])
def bind_app(name):
 app_host = request.form.get("app-host")
 # use name and app_host to bind the service instance and the #
 application
 envs = {"SOMEVAR": "somevalue"}
 return json.dumps(envs), 201

@app.route("/resources/<name>/bind-app", methods=["DELETE"])
def unbind_app(name):
 app_host = request.form.get("app-host")
 # use name and app-host to remove the bind
 return "", 200

@app.route("/resources/<name>", methods=["DELETE"])
def remove_instance(name):
 # remove the instance named "name"
 return "", 200

@app.route("/resources/<name>/bind", methods=["POST", "DELETE"])
def access_control(name):
 app_host = request.form.get("app-host")
 unit_host = request.form.get("unit-host")
 # use unit-host and app-host, according to the access control tool, and
 # the request method.
 return "", 201

@app.route("/resources/<name>/status", methods=["GET"])
def status(name):
 # check the status of the instance named "name"
 return "", 204

if __name__ == "__main__":
 app.run()

Creating a service manifest

Using crane you can create a manifest template:

$ crane template

This will create a manifest.yaml in your current path with this content:

id: servicename
password: abc123
endpoint:
 production: production-endpoint.com

The manifest.yaml is used by crane to defined the ID, the password and the
production endpoint of your service.

Change these information in the created manifest, and the submit your
service:

id: servicename
username: username_to_auth
password: 1CWpoX2Zr46Jhc7u
endpoint:
 production: production-endpoint.com
 test: test-endpoint.com:8080

submit your service: Submiting your service API

Submiting your service API

To submit your service, you can run:

$ crane create manifest.yaml

For more details, check the service API workflow and the
crane usage guide.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Services

TSURU_SERVICES environment variable

tsuru exports an special environment variable in applications that use
services, this variable is named TSURU_SERVICES.
The value of this example is a JSON describing all services instances that the
application uses. Here is an example of the value of this variable:

{
 "mysql": [
 {"instance_name": "mydb",
 "envs": {"DATABASE_NAME": "mydb",
 "DATABASE_USER": "mydb",
 "DATABASE_PASSWORD": "secret",
 "DATABASE_HOST": "mysql.mycompany.com"}
 },
 {"instance_name": "otherdb",
 "envs": {"DATABASE_NAME": "otherdb",
 "DATABASE_USER": "otherdb",
 "DATABASE_PASSWORD": "secret",
 "DATABASE_HOST": "mysql.mycompany.com"}
 }],
 "redis": [
 {"instance_name": "powerredis",
 "envs": {"REDIS_HOST": "remote.redis.company.com:6379"}
 }],
 "mongodb": []
}

As described in the structure, the value of the environment variable is a JSON
object, where each key represents a service. In the example above, there are
three services: mysql, redis and mongodb. Each service contains a list of
service instances, and each instance have a name and a map of environment
variables.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Services

crane usage

crane is a command line for service providers/administrators on tsuru.

See the crane documentation for a full reference: https://tsuru-crane.readthedocs.org.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Advanced topics

	Metrics
	Sending metrics

	Metrics graph on tsuru-dashboard

	Kind of metrics

	Node Auto Scaling
	Count based scaling
	Adding nodes

	Removing nodes

	Memory based scaling
	Adding nodes

	Removing nodes

	Rebalancing nodes

	Auto scale events

	Running auto scale once

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Advanced topics

Metrics

Note

Currently tsuru supports statsd and graphite.

tsuru sends metrics data using statsd protocol and tsuru-dashboard (web interface) shows these data using graphite protocol.

Sending metrics

By default tsuru sends the metrics to localhost:8125 on each unit. You can configure the statsd host and port defining the STATSD_PORT and STATSD_HOST environment variables.

Note

If you don’t want to have your own statsd/graphite infrastructure, you can install a client to get the data from localhost and send to a private server that supports statsd protocol.

Metrics graph on tsuru-dashboard

tsuru-dashboard displays a graphic for each metric. To know where to get the metric data, the dashboards get the
GRAPHITE_HOST environment variable from the application.

Kind of metrics

	net.connections - the number of connections established

	cpu_max - cpu utilization

	mem_max - memory utilization

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Advanced topics

Node Auto Scaling

Node auto scaling can be enabled by setting docker:auto-scale:enabled to true.
It will try to add, remove and rebalance docker nodes used by tsuru.

Node scaling algorithms run in clusters of docker nodes, to specify how clusters
will be formed you must tell tsuru how they should be grouped. This is done by
setting docker:auto-scale:group-by-metadata configuration entry to the name of a
metadata present in your nodes.

There are two different scaling algorithms that will be used, depending on how
tsuru is configured: count based scaling, and memory based scaling.

Count based scaling

It’s chosen if docker:auto-scale:max-container-count is set to a value > 0 in
your tsuru configuration.

Adding nodes

Having max-container-count value as \(max\), the number of nodes in cluster
as \(nodes\), and the total number of containers in all cluster’s nodes as
\(total\), we get the number of free slots \(free\) with:

\[free = max * nodes - total\]

If \(free < 0\) then a new node will be added and tsuru will rebalance
containers using the new node.

Removing nodes

Having docker:auto-scale:scale-down-ratio value \(ratio\). tsuru will try to
remove an existing node if:

\[\begin{split}free > max * ratio\end{split}\]

Before removing a node tsuru will move it’s containers to other nodes available in
the cluster.

To avoid entering loops, removing and adding node, tsuru will require \(ratio
> 1\), if this is not true scaling will not run.

Memory based scaling

It’s chosen if docker:auto-scale:max-container-count is not set and your
scheduler is configured to use node’s memory information, by setting
docker:scheduler:total-memory-metadata and docker:scheduler:max-used-memory.

Adding nodes

Having the amount of memory necessary by the plan with the largest memory
requirement as \(maxPlanMemory\). A new node will be added if for all nodes
the amount of unreserved memory (\(unreserved\)) satisfies:

\[\begin{split}unreserved < maxPlanMemory\end{split}\]

Removing nodes

Considering the amount of memory necessary by the plan with the largest memory
requirement as \(maxPlanMemory\) and docker:auto-scale:scale-down-ratio
value as \(ratio\). A node will be removed if its current containers can be
distributed across other nodes in the same pool and at least one node still has
unreserved memory (\(unreserved\)) satisfying:

\[\begin{split}unreserved > maxPlanMemory * ratio\end{split}\]

Rebalancing nodes

Rebalancing containers will be triggered when a new node is added or if
rebalancing would decrease the difference of containers in nodes by a number
greater than 2, regardless the scaling algorithm.

Also, rebalancing will not run if docker:auto-scale:prevent-rebalance is set to
true.

Auto scale events

Each time tsuru tries to run an auto scale action (add, remove, or rebalance). It
will create an auto scale event. This event will record the result of the auto
scale action and possible errors that occurred during its execution.

You can list auto scale events with tsuru-admin docker-autoscale-list

Running auto scale once

Even if you have docker:auto-scale:enabled set to false, you can make tsuru
trigger the execution of the auto scale algorithm by running tsuru-admin docker-
autoscale-run.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Contributing

	Source hosted at GitHub [http://github.com/tsuru/tsuru]

	Report issues on GitHub Issues [http://github.com/tsuru/tsuru/issues]

Pull requests are very welcome! Make sure your patches are well tested and documented :)

Development environment

See this guide to to setup a development environment using Vagrant.

And follow our coding style guide.

Running the tests

You can use make to install all tsuru dependencies and run tests. It will also check if everything is ok with your GOPATH setup:

$ make

Please ensure that MongoDB and Redis are started before running the test suite. If you see some test failures with messages like “dial tcp 127.0.0.1:6379: connection refused” and “no reachable server”, the most likely reason is that these services are not running.

If you just want to run the tests you can use make test.

$ make test

Writing docs

tsuru documentation is written using Sphinx [http://sphinx.pocoo.org/],
which uses RST [http://docutils.sourceforge.net/rst.html].
Check out these tools documentation to learn how to write and update the documentation for tsuru.

Building docs

In order to build the HTML docs, just run in a terminal window:

$ make doc

Community

irc channel

#tsuru channel on irc.freenode.net - chat with other tsuru users and developers.

Gitter

We’re also on Gitter, check it out: https://gitter.im/tsuru/tsuru.

Release Process

tsuru major releases are guided by GitHub milestones [https://github.com/tsuru/tsuru/milestones/]. New releases should be
generated by make release version=new-version-number.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Contributing

Coding style

Please follow these coding standards when writing code for inclusion in tsuru.

Formatting

	Follow the Go formatting style [http://golang.org/doc/effective_go.html#formatting]

Naming standards

New<Something>

is used the constructor of Something:

NewApp(name string) (*App, error)

Add<Something>

is a method of a type that has a collection of Something`s. Should receive an instance of `Something:

func (a *App) AddUnit(u *Unit) error

Add

is a method of a collection that adds one or more elements:

func (a *AppList) Add(apps ...*App) error

Create<Something>

is a function that saves an instance of Something. Unlike NewSomething,
the create function would create a persistent version of Someting. Storing it
in the database, a remote API, the filesystem or wherever Something would be
stored “forever”.

Comes in two versions:

	One that receives the instance of Something and returns an error:

func CreateApp(a *App) error

	Other that receives the required parameters and returns the an instance of
Something and an error:

func CreateUser(email string) (*User, error)

Delete<Something>

is a function that destroy an instance of Something. Destroying may involve
processes like removing it from the database and some directory in the
filesystem.

For example:

func DeleteApp(app *App) error

Would delete an application from the database, delete the repository, remove
the entry in the router, and anything else that depends on the application.

It’s also valid to write the function so it receives some other kind of values
that is able to identify the instance of Something:

func DeleteApp(name string) error

Remove<Something>

is the opposite of Add<Something>.

Including the package in the name of the function

For functions, it’s also possible to omit Something when the name of the
package represents Something. For example, if there’s a package named “app”,
the function CreateApp could be just “Create”. The same applies to other
functions. This way callers won’t need to write verbose code like
something.CreateSomething, preferring something.Create.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Contributing

Building a development environment with Vagrant

First, make sure that one of the supported Vagrant providers, Vagrant [http://vagrantup.com/], and
Git [http://git-scm.com/] are installed on your machine.

Then clone the tsuru-bootstrap [https://github.com/tsuru/tsuru-bootstrap] project from GitHub:

$ git clone https://github.com/tsuru/tsuru-bootstrap.git

Enter the tsuru-bootstrap directory and execute vagrant up, defining
the environment variable TSURU_NOW_OPTIONS as “–tsuru-from-source”. It will
take some time:

$ cd tsuru-bootstrap
$ TSURU_NOW_OPTIONS="--tsuru-from-source" vagrant up

You can optionally specify a provider with the --provider parameter. The
following providers are configured in the Vagrantfile:

	VirtualBox

	EC2

	Parallels Desktop

Then configure the tsuru target with the address of the server that vagrant is using:

$ tsuru target-add development http://192.168.50.4:8080 -s

Now you can create your user and deploy your apps.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Reference

	tsuru client usage

	tsuru-admin usage

	crane usage

	bs

	tsuru.conf reference

	API reference

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Reference

tsuru client usage

tsuru-client is the command line utility used by application developers,
that will allow users to create, list, bind and manage apps.

See the tsuru-client documentation for a full reference:
https://tsuru-client.readthedocs.org.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Reference

tsuru-admin usage

tsuru-admin command supports administrative operations on a tsuru server.

See the tsuru-admin documentation for a full reference: http://tsuru-admin.readthedocs.org.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Reference

crane usage

crane is a command line for service providers/administrators on tsuru.

See the crane documentation for a full reference: http://tsuru-crane.readthedocs.org.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Reference

bs

bs (or big sibling) is a component tsuru component, responsible for reporting
information on application containers, this information include application
logs, metrics and unit status.

See the bs documentation for a full reference: https://github.com/tsuru/bs#bs.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Reference

tsuru.conf reference

tsuru uses a configuration file in YAML [http://www.yaml.org/] format. This
document describes what each option means, and how it should look.

Notation

tsuru uses a colon to represent nesting in YAML. So, whenever this document says
something like key1:key2, it refers to the value of the key2 that is
nested in the block that is the value of key1. For example,
database:url means:

database:
 url: <value>

tsuru configuration

This section describes tsuru’s core configuration. Other sections will include
configuration of optional components, and finally, a full sample file.

HTTP server

tsuru provides a REST API, that supports HTTP and HTTP/TLS (a.k.a. HTTPS). Here
are the options that affect how tsuru’s API behaves:

listen

listen defines in which address tsuru webserver will listen. It has the
form <host>:<port>. You may omit the host (example: :8080). This setting
has no default value.

use-tls

use-tls indicates whether tsuru should use TLS or not. This setting is
optional, and defaults to “false”.

tls:cert-file

tls:cert-file is the path to the X.509 certificate file configured to serve
the domain. This setting is optional, unless use-tls is true.

tls:key-file

tls:key-file is the path to private key file configured to serve the
domain. This setting is optional, unless use-tls is true.

server:read-timeout

server:read-timeout is the timeout of reading requests in the server. This
is the maximum duration of any request to the tsuru server.

This is useful to avoid leaking connections, in case clients drop the
connection before end sending the request. The default value is 0, meaning no
timeout.

server:write-timeout

server:write-timeout is the timeout of writing responses in the server.

This is useful to avoid leaking connections, in case clients drop the
connection before reading the response from tsuru. The default value is 0,
meaning no timeout.

disable-index-page

tsuru API serves an index page with some basic instructions on how to use the
current target. It’s possible to disable this page by setting the
disable-index-page flag to true. It’s also possible to customize which
template will be used in the index page, see the next configuration entry for
more details.

This setting is optional, and defaults to false.

index-page-template

index-page-template is the template that will be used for the index page.
It must use the Go template syntax [http://golang.org/pkg/text/template/],
and tsuru will provide the following variables in the context of the template:

	tsuruTarget: the target URL of the tsuru API serving the index page

	userCreate: a boolean indicating whether user registration is enabled
or disabled

	nativeLogin: a boolean indicating whether the API is configured to
use the native authentication scheme

	keysEnabled: a boolean indicating whether the API is configured to
manage SSH keys

It will also include a function used for querying configuration values, named
getConfig. Here is an example of the function usage:

<body>
 {{if getConfig "use-tls"}}
 <p>we're safe</p>
 {{else}}
 <p>we're not safe</p>
 {{end}}
</body>

This setting is optional. When index-page-template is not defined, tsuru
will use the default template [https://github.com/tsuru/tsuru/blob/master/api/index_templates.go].

Database access

tsuru uses MongoDB as a database manager to store information like users,
machines, containers, etc. You need to describe how tsuru will connect to your
database server. Therefore, it’s necessary to provide a MongoDB connection
string [https://docs.mongodb.org/manual/reference/connection-string/].
Database related options are listed below:

database:url

database:url is the database connection string. It is a mandatory setting
and it has no default value. Examples of strings include basic 127.0.0.1 and
more advanced mongodb://user:password@127.0.0.1:27017/database. Please refer
to MongoDB documentation [http://docs.mongodb.org/manual/reference/connection-string/] for more details
and examples of connection strings.

database:name

database:name is the name of the database that tsuru uses. It is a
mandatory setting and has no default value. An example of value is “tsuru”.

database:logdb-url

This setting is optional. If database:logdb-url is specified, tsuru will use
it as the connection string to the MongoDB server responsible for storing
application logs. If this value is not set, tsuru will use database:url
instead.

This setting is useful because tsuru may have to process a very large number of
log messages depending on the number of units deployed and applications
behavior. Every log message will trigger a insertion in MongoDB and this may
negatively impact the database performance. Other measures will be implemented
in the future to improve this, but for now, having the ability to use an
exclusive database server for logs will help mitigate the negative impact of log
writing.

database:logdb-name

This setting is optional. If database:logdb-name is specified, tsuru will
use it as the database name for storing application logs. If this value is not
set, tsuru will use database:name instead.

Email configuration

tsuru sends email to users when they request password recovery. In order to send
those emails, tsuru needs to be configured with some SMTP settings. Omitting
these settings won’t break tsuru, but users will not be able to reset their
password.

smtp:server

The SMTP server to connect to. It must be in the form <host>:<port>. Example:
“smtp.gmail.com:587”.

smtp:user

The user to authenticate with the SMTP sever. Currently, tsuru requires
authenticated sessions.

smtp:password

The password for authentication within the SMTP server.

Repository configuration

tsuru optionally uses Gandalf [https://github.com/tsuru/gandalf] to manage
git repositories. Gandalf exposes a REST API for repositories management and
tsuru needs information about the Gandalf HTTP server endpoint.

repo-manager

repo-manager represents the repository manager that tsuru-server should use.
For backward compatibility reasons, the default value is “gandalf”. Users can
disable repository and SSH key management by setting “repo-manager” to “none”.
For more details, please refer to the repository management page in the documentation.

git:api-server

git:api-server is the address of the Gandalf API. It should define the
entire address, including protocol and port. Examples of value:
http://localhost:9090 and https://gandalf.tsuru.io:9595.

Authentication configuration

tsuru has support for native and oauth authentication schemes.

The default scheme is native and it supports the creation of users in
tsuru’s internal database. It hashes passwords brcypt. Tokens are generated
during authentication and are hashed using SHA512.

The auth section also controls whether user registration is on or off. When
user registration is off, only admin users are able to create new users.

auth:scheme

The authentication scheme to be used. The default value is native, the other
supported value is oauth.

auth:user-registration

This flag indicates whether user registration is enabled. This setting is
optional, and defaults to false.

auth:hash-cost

Required only with native chosen as auth:scheme.

This number indicates how many CPU time you’re willing to give to hashing
calculation. It is an absolute number, between 4 and 31, where 4 is faster and
less secure, while 31 is very secure and very slow.

auth:token-expire-days

Required only with native chosen as auth:scheme.

Whenever a user logs in, tsuru generates a token for him/her, and the user may
store the token. auth:token-expire-days setting defines the amount of days
that the token will be valid. This setting is optional, and defaults to “7”.

auth:max-simultaneous-sessions

tsuru can limit the number of simultaneous sessions per user. This setting is
optional, and defaults to “unlimited”.

auth:oauth

Every config entry inside auth:oauth are used when the auth:scheme is
set to “oauth”. Please check rfc6749 [http://tools.ietf.org/html/rfc6749] for
more details.

auth:oauth:client-id

The client id provided by your OAuth server.

auth:oauth:client-secret

The client secret provided by your OAuth server.

auth:oauth:scope

The scope for your authentication request.

auth:oauth:auth-url

The URL used in the authorization step of the OAuth flow. tsuru CLI will receive
this URL and trigger the opening a browser on this URL with the necessary
parameters.

During the authorization step, tsuru CLI will start a server locally and set the
callback to http://localhost:<port>, if auth:oauth:callback-port is set
tsuru CLI will use its value as <port>. If auth:oauth:callback-port isn’t
present tsuru CLI will automatically choose an open port.

The callback URL should be registered on your OAuth server.

If the chosen server requires the callback URL to match the same host and port
as the registered one you should register “http://localhost:<chosen port>” and
set the auth:oauth:callback-port accordingly.

If the chosen server is more lenient and allows a different port to be used you
should register simply “http://localhost” and leave auth:oauth:callback-port
empty.

auth:oauth:token-url

The URL used in the exchange token step of the OAuth flow.

auth:oauth:info-url

The URL used to fetch information about the authenticated user. tsuru expects a
json response containing a field called email.

tsuru will also make call this URL on every request to the API to make sure the
token is still valid and hasn’t been revoked.

auth:oauth:collection

The database collection used to store valid access tokens. Defaults to
“oauth_tokens”.

auth:oauth:callback-port

The port used in the callback URL during the authorization step. Check docs for
auth:oauth:auth-url for more details.

Queue configuration

tsuru uses a work queue for asynchronous tasks.

queue:* groups configuration settings for a MongoDB server that will be used
as storage for delayed execution of queued jobs.

This queue is used to manage creation and destruction of IaaS machines, but
tsuru may start using it in more places in the future.

It’s not mandatory to configure the queue, however creating and removing
machines using a IaaS provider will not be possible.

queue:mongo-url

Connection url for MongoDB server used to store task information.

queue:mongo-database

Database name used in MongoDB. This value will take precedence over any database
name already specified in the connection url.

pubsub

pubsub configuration is optional and depends on a redis server instance.
It’s used only for following application logs (running tsuru app-log -f). If
this is not configured tsuru will fail when running tsuru app-log -f.

Previously the configuration for this redis server was inside redis-queue:*
keys shown below. Using these keys is deprecated and tsuru will start ignoring
them before 1.0 release.

pubsub:redis-host

pubsub:redis-host is the host of the Redis server to be used for pub/sub.
This settings is optional and defaults to “localhost”.

pubsub:redis-port

pubsub:redis-port is the port of the Redis server to be used for pub/sub.
This settings is optional and defaults to 6379.

pubsub:redis-password

pubsub:redis-password is the password of the Redis server to be used for
pub/sub. This settings is optional and defaults to “”, indicating that the Redis
server is not authenticated.

pubsub:redis-db

pubsub:redis-db is the database number of the Redis server to be used for
pub/sub. This settings is optional and defaults to 3.

pubsub:pool-max-idle-conn

pubsub:pool-max-idle-conn is the maximum number of idle connections to
redis. Defaults to 20.

pubsub:pool-idle-timeout

pubsub:pool-idle-timeout is the number of seconds idle connections will
remain in connection pool to redis. Defaults to 300.

pubsub:redis-dial-timeout

pubsub:redis-dial-timeout is the number of seconds used as dial timeout.
Defaults to 0.1.

pubsub:redis-read-timeout

pubsub:redis-read-timeout is the number of seconds used as read timeout.
Defaults to 1800 (30 minutes).

pubsub:redis-write-timeout

pubsub:redis-write-timeout is the number of seconds used as write timeout.
Defaults to 0.5.

redis-queue:host

Deprecated. See pubsub:redis-host.

redis-queue:port

Deprecated. See pubsub:redis-port.

redis-queue:password

Deprecated. See pubsub:redis-password.

redis-queue:db

Deprecated. See pubsub:redis-db.

Admin users

tsuru has a very simple way to identify admin users: an admin user is a user
that is the member of the admin team, and the admin team is defined in the
configuration file, using the admin-team setting.

admin-team

admin-team is the name of the administration team for the current tsuru
installation. All members of the administration team is able to use the
tsuru-admin command.

Quota management

tsuru can, optionally, manage quotas. Currently, there are two available
quotas: apps per user and units per app.

tsuru administrators can control the default quota for new users and new apps
in the configuration file, and use tsuru-admin command to change quotas for
users or apps. Quota management is disabled by default, to enable it, just set
the desired quota to a positive integer.

quota:units-per-app

quota:units-per-app is the default value for units per-app quota. All new
apps will have at most the number of units specified by this setting. This
setting is optional, and defaults to “unlimited”.

quota:apps-per-user

quota:apps-per-user is the default value for apps per-user quota. All new
users will have at most the number of apps specified by this setting. This
setting is optional, and defaults to “unlimited”.

Logging

Tsuru supports three logging flavors, that can be enabled or disabled
altogether. The default behavior of tsuru is to send all logs to syslog, but it
can also send logs to the standard error stream or a file. It’s is possible to
use any combination of the three flavors at any time in tsuru configuration
(e.g.: write logs both to stderr and syslog, or a file and stderr, or to all of
the flavors simultaneously).

There’s also the possibility to enable or disable debugging log, via the debug
flag.

debug

false is the default value, so you won’t see any
noises on logs, to turn it on set it to true, e.g.: debug: true

log:file

Use this to specify a path to a log file. If no file is specified, tsuru-server
won’t write logs to any file.

log:disable-syslog

log:disable-syslog indicates whether tsuru-server should disable the use of
syslog. false is the default value. If it’s true, tsuru-server won’t
send any logs to syslog.

log:syslog-tag

log:syslog-tag is the tag that will be attached to every log line. The
default value is “tsr”.

log:use-stderr

log:use-stderr indicates whether tsuru-server should write logs to standard
error stream. The default value is false.

Routers

As of 0.10.0, all your router configuration should live under entries with the
format routers:<router name>.

routers:<router name>:type (type: hipache, galeb, vulcand)

Indicates the type of this router configuration. The standard router supported
by tsuru is hipache [https://github.com/hipache/hipache]. There is also
experimental support for galeb [http://galeb.io/] and vulcand [https://docs.vulcand.io/]).

Depending on the type, there are some specific configuration options available.

routers:<router name>:domain (type: hipache, galeb, vulcand)

The domain of the server running your router. Applications created with
tsuru will have a address of http://<app-name>.<domain>

routers:<router name>:redis-server (type: hipache)

Redis server used by Hipache router. This same server (or a redis slave of it),
must be configured in your hipache.conf file.

routers:<router name>:api-url (type: galeb, vulcand)

The URL for the Galeb or vulcand manager API.

routers:<router name>:username (type: galeb)

Galeb manager username.

routers:<router name>:password (type: galeb)

Galeb manager password.

routers:<router name>:environment (type: galeb)

Galeb manager environment used to create virtual hosts and backend pools.

routers:<router name>:farm-type (type: galeb)

Galeb manager farm type used to create virtual hosts and backend pools.

routers:<router name>:plan (type: galeb)

Galeb manager plan used to create virtual hosts and backend pools.

routers:<router name>:project (type: galeb)

Galeb manager project used to create virtual hosts, backend pools and pools.

routers:<router name>:load-balance-policy (type: galeb)

Galeb manager load balancing policy used to create backend pools.

routers:<router name>:rule-type (type: galeb)

Galeb manager rule type used to create rules.

Hipache

hipache:redis-server

Redis server used by Hipache router. This same server (or a redis slave of it),
must be configured in your hipache.conf file.

This setting is deprecated in favor of routers:<router name>:type = hipache
and routers:<router name>:redis-server.

hipache:domain

The domain of the server running your hipache server. Applications created with
tsuru will have a address of http://<app-name>.<hipache:domain>.

This setting is deprecated in favor of routers:<router name>:type = hipache
and routers:<router name>:domain

Defining the provisioner

tsuru has extensible support for provisioners. A provisioner is a Go type that
satisfies the provision.Provisioner interface. By default, tsuru will use
DockerProvisioner (identified by the string “docker”), and now that’s the
only supported provisioner (Ubuntu Juju was supported in the past but its
support has been removed from tsuru).

provisioner

provisioner is the string the name of the provisioner that will be used by
tsuru. This setting is optional and defaults to “docker”.

Docker provisioner configuration

docker:collection

Database collection name used to store containers information.

docker:port-allocator

The choice of port allocator. There are two possible values:

	docker: trust Docker to allocate ports. Meaning that whenever a
container restarts, the port might change (usually, it changes).

	tsuru: leverage port allocation to tsuru, so ports mapped to containers
never change.

The default value is “docker”.

docker:registry

For tsuru to work with multiple docker nodes, you will need a docker-registry.
This should be in the form of hostname:port, the scheme cannot be present.

docker:registry-max-try

Number of times tsuru will try to send a image to registry.

docker:registry-auth:username

The username used for registry authentication. This setting is optional, for
registries with authentication disabled, it can be omitted.

docker:registry-auth:password

The password used for registry authentication. This setting is optional, for
registries with authentication disabled, it can be omitted.

docker:registry-auth:email

The email used for registry authentication. This setting is optional, for
registries with authentication disabled, it can be omitted.

docker:repository-namespace

Docker repository namespace to be used for application and platform images. Images
will be tagged in docker as <docker:repository-namespace>/<platform-name> and
<docker:repository-namespace>/<app-name>

docker:bs:image

docker:bs:image is the name of the Docker image to be used to create big
sibling [https://github.com/tsuru/bs] containers. The default value is
“tsuru/bs”, which represents the official image hosted at Docker Hub [https://registry.hub.docker.com/u/tsuru/bs/], maintained by the tsuru team.

docker:bs:socket

docker:bs:socket is the path to the Unix socket in the Docker host. This
should be configured so bs can connect to Docker via socket instead of TCP.
This is an optional setting, when omitted, bs will talk to the Docker API using
the TCP endpoint.

docker:bs:syslog-port

docker:bs:syslog-port is the port in the Docker node that will be used by
the bs container for collecting logs. The default value is 1514.

docker:max-workers

Maximum amount of threads to be created when starting new containers, so tsuru
doesn’t start too much threads in the process of starting 1000 units, for
instance. Defaults to 0 which means unlimited.

docker:router

Default router to be used to distribute requests to units. This should be the
name of a router configured under the routers:<name> key, see routers.

For backward compatibility reasons, the value hipache is also supported, and
it will use either configuration available under router:hipache:* or
hipache:*, in this order.

Note that as of 0.10.0, routers may be associated to plans, if when creating an
application the chosen plan has a router value it will be used instead of the
value set in docker:router.

The router defined in docker:router will only be used if the chosen plan
doesn’t specify one.

docker:deploy-cmd

The command that will be called in your platform when a new deploy happens. The
default value for platforms supported in tsuru’s basebuilder repository is
/var/lib/tsuru/deploy.

docker:security-opts

This setting describes a list of security options that will be passed to
containers. This setting must be a list, and has no default value. If one wants
to specify just one value, it’s still needed to use the list notation:

docker:
 ...
 security-opts:
 - apparmor:PROFILE

For more details on the available options, please refer to the Docker
documentation: <https://docs.docker.com/reference/run/#security-configuration>.

docker:segregate

Deprecated. As of tsuru 0.11.1, using segregate scheduler is the default
setting. See Segregate Scheduler for details.

docker:scheduler:total-memory-metadata

This value describes which metadata key will describe the total amount of
memory, in bytes, available to a docker node.

docker:scheduler:max-used-memory

This should be a value between 0.0 and 1.0 which describes which fraction of the
total amount of memory available to a server should be reserved for app units.

The amount of memory available is found based on the node metadata described by
docker:scheduler:total-memory-metadata config setting.

If this value is set, tsuru will try to find a node with enough unreserved
memory to fit the creation of new units, based on how much memory is required by
the plan used to create the application. If no node with enough unreserved
memory is found, tsuru will ignore memory restrictions and let the scheduler
choose any node.

This setting, along with docker:scheduler:total-memory-metadata, are also
used by node auto scaling. See node auto scaling for more details.

docker:cluster:storage

This setting has been removed. You shouldn’t define it anymore, the only storage
available for the docker cluster is now mongodb.

docker:cluster:mongo-url

Connection URL to the mongodb server used to store information about the docker
cluster.

docker:cluster:mongo-database

Database name to be used to store information about the docker cluster.

docker:run-cmd:bin

The command that will be called on the application image to start the
application. The default value for platforms supported in tsuru’s basebuilder
repository is /var/lib/tsuru/start.

docker:run-cmd:port

The tcp port that will be exported by the container to the node network. The
default value expected by platforms defined in tsuru’s basebuilder repository is
8888.

docker:user

The user tsuru will use to start the container. The value expected for
basebuilder platforms is ubuntu.

docker:healing:heal-nodes

Boolean value that indicates whether tsuru should try to heal nodes that have
failed a specified number of times. Healing nodes is only available if the node
was created by tsuru itself using the IaaS configuration. Defaults to false.

docker:healing:active-monitoring-interval

Number of seconds between calls to <server>/_ping in each one of the docker
nodes. If this value is 0 or unset tsuru will never call the ping URL. Defaults
to 0.

docker:healing:disabled-time

Number of seconds tsuru disables a node after a failure. This setting is only
valid if heal-nodes is set to true. Defaults to 30 seconds.

docker:healing:max-failures

Number of consecutive failures a node should have before triggering a healing
operation. Only valid if heal-nodes is set to true. Defaults to 5.

docker:healing:wait-new-time

Number of seconds tsuru should wait for the creation of a new node during the
healing process. Only valid if heal-nodes is set to true. Defaults to
300 seconds (5 minutes).

docker:healing:heal-containers-timeout

Number of seconds a container should be unresponsive before triggering the
recreation of the container. A container is deemed unresponsive if it doesn’t
call the set unit status URL (/apps/{app}/units/{unit}) with a started
status. If this value is 0 or unset tsuru will never try to heal unresponsive
containers. Defaults to 0.

docker:healing:events_collection

Collection name in mongodb used to store information about triggered healing
events. Defaults to healing_events.

docker:healthcheck:max-time

Maximum time in seconds to wait for deployment time health check to be
successful. Defaults to 120 seconds.

docker:image-history-size

Number of images available for rollback using tsuru app-deploy-rollback.
tsuru will try to delete older images, but it may not be able to due to it being
used as a layer to a newer image. tsuru will keep trying to remove these old
images until they are not used as layers anymore. Defaults to 10 images.

docker:auto-scale:enabled

Enable node auto scaling. See node auto scaling for more details. Defaults to false.

docker:auto-scale:wait-new-time

Number of seconds tsuru should wait for the creation of a new node during the
scaling up process. Defaults to 300 seconds (5 minutes).

docker:auto-scale:group-by-metadata

Name of the metadata present in nodes that will be used for grouping nodes into
clusters. See node auto scaling for more
details. Defaults to empty (all nodes belong the the same cluster).

docker:auto-scale:metadata-filter

Value of the metadata specified by docker:auto-scale:group-by-metadata. If
this is set, tsuru will only run auto scale algorithms for nodes in the cluster
defined by this value.

docker:auto-scale:max-container-count

Maximum number of containers per node, for count based scaling. See node
auto scaling for more details.

docker:auto-scale:prevent-rebalance

Prevent rebalancing from happening when adding new nodes, or if a rebalance is
needed. See node auto scaling for more
details.

docker:auto-scale:run-interval

Number of seconds between two periodic runs of the auto scaling algorithm.
Defaults to 3600 seconds (1 hour).

docker:auto-scale:scale-down-ratio

Ratio used when scaling down. Must be greater than 1.0. See node auto
scaling for more details. Defaults to 1.33.

IaaS configuration

tsuru uses IaaS configuration to automatically create new docker nodes and
adding them to your cluster when using docker-node-add command. See
adding nodes for more details about how to use
this command.

Attention

You should configure queue to be able to use IaaS.

General settings

iaas:default

The default IaaS tsuru will use when calling docker-node-add without
specifying iaas=<iaas_name> as a metadata. Defaults to ec2.

iaas:node-protocol

Which protocol to use when accessing the docker api in the created node.
Defaults to http.

iaas:node-port

In which port the docker API will be accessible in the created node. Defaults to
2375.

iaas:collection

Collection name on database containing information about created machines.
Defaults to iaas_machines.

EC2 IaaS

iaas:ec2:key-id

Your AWS key id.

iaas:ec2:secret-key

Your AWS secret key.

iaas:ec2:user-data

A url for which the response body will be sent to ec2 as user-data.
Defaults to a script which will run tsuru now installation [https://github.com/tsuru/now].

iaas:ec2:wait-timeout

Number of seconds to wait for the machine to be created. Defaults to 300 (5
minutes).

CloudStack IaaS

iaas:cloudstack:api-key

Your api key.

iaas:cloudstack:secret-key

Your secret key.

iaas:cloudstack:url

The url for the cloudstack api.

iaas:cloudstack:user-data

A url for which the response body will be sent to cloudstack as user-data.
Defaults to a script which will run tsuru now installation [https://github.com/tsuru/now].

iaas:cloudstack:wait-timeout

Number of seconds to wait for the machine to be created. Defaults to 300 (5
minutes).

Custom IaaS

You can define a custom IaaS based on an existing provider. Any configuration
keys with the format iaas:custom:<name> will create a new IaaS with
name.

iaas:custom:<name>:provider

The base provider name, it can be one of the supported providers: cloudstack
or ec2.

iaas:custom:<name>:<any_other_option>

This will overwrite the value of iaas:<provider>:<any_other_option> for this
IaaS. As an example, having the configuration below would allow you to call
tsuru-admin docker-node-add iaas=region1_cloudstack ...:

iaas:
 custom:
 region1_cloudstack:
 provider: cloudstack
 url: http://region1.url/
 secret-key: mysecretkey
 cloudstack:
 api-key: myapikey

Sample file

Here is a complete example:

listen: "0.0.0.0:8080"
debug: true
host: http://<machine-public-addr>:8080 # This port must be the same as in the "listen" conf
admin-team: admin
auth:
 user-registration: true
 scheme: native
database:
 url: <your-mongodb-server>:27017
 name: tsurudb
pubsub:
 redis-host: <your-redis-server>
 redis-port: 6379
queue:
 mongo-url: <your-mongodb-server>:27017
 mongo-database: queuedb
git:
 api-server: http://<your-gandalf-server>:8000
provisioner: docker
docker:
 router: hipache
 collection: docker_containers
 repository-namespace: tsuru
 deploy-cmd: /var/lib/tsuru/deploy
 cluster:
 storage: mongodb
 mongo-url: <your-mongodb-server>:27017
 mongo-database: cluster
 run-cmd:
 bin: /var/lib/tsuru/start
 port: "8888"
routers:
 hipache:
 type: hipache
 domain: <your-hipache-server-ip>.xip.io
 redis-server: <your-redis-server-with-port>

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Reference

API reference

1. Endpoints

1.1 Apps

List apps

	Method: GET

	Endpoint: /apps

	Format: JSON

Returns 200 in case of success, and JSON in the body of the response containing the app list.

Example:

GET /apps HTTP/1.1
Content-Length: 82
[{"Ip":"10.10.10.10","Name":"app1","Units":[{"Name":"app1/0","State":"started"}]}]

Info about an app

	Method: GET

	Endpoint: /apps/<appname>

	Format: JSON

Returns 200 in case of success, and a JSON in the body of the response containing the app content.

Example:

GET /apps/myapp HTTP/1.1
Content-Length: 284
{"Name":"app1","Framework":"php","Repository":"git@git.com:php.git","State":"dead","Units":[{"Ip":"10.10.10.10","Name":"app1/0","State":"started"}, {"Ip":"9.9.9.9","Name":"app1/1","State":"started"},{"Ip":"","Name":"app1/2","State":"pending"}],"Teams":["tsuruteam","crane"],"Pool": "mypool"}

Remove an app

	Method: DELETE

	Endpoint: /apps/<appname>

Returns 200 in case of success.

Example:

DELETE /apps/myapp HTTP/1.1

Create an app

	Method: POST

	Endpoint: /apps

	Format: JSON

Returns 200 in case of success, and JSON in the body of the response containing the status and the URL for Git repository.

Example:

POST /apps HTTP/1.1
{"status":"success", "repository_url":"git@tsuru.mycompany.com:ble.git"}

Restart an app

	Method: GET

	Endpoint: /apps/<appname>/restart

Returns 200 in case of success.

Example:

GET /apps/myapp/restart HTTP/1.1

Get app environment variables

	Method: GET

	Endpoint: /apps/<appname>/env

Returns 200 in case of success, and JSON in the body returning a dictionary with environment names and values.

Example:

GET /apps/myapp/env HTTP/1.1
[{"name": "DATABASE_HOST", "value": "localhost", "public": true}]

Set an app environment

	Method: POST

	Endpoint: /apps/<appname>/env

Returns 200 in case of success.

Example:

POST /apps/myapp/env HTTP/1.1

Execute a command

	Method: POST

	Endpoint: /apps/<appname>/run?once=true

Returns 200 in case of success.

Where:

	once is a boolean and indicates if the command will run just in an
unit(once=true) or all of them(once=false). This parameter is not required,
and the default is false.

Example:

POST /apps/myapp/run HTTP/1.1
ls -la

Remove one or more environment variables from an app

	Method: DELETE

	Endpoint: /apps/<appname>/env

Returns 200 in case of success.

Example:

DELETE /apps/myapp/env HTTP/1.1

Swap the address of two apps

	Method: PUT

	Endpoint: /swap?app1=appname&app2=anotherapp

Returns 200 in case of success.

Example:

PUT /swap?app1=myapp&app2=anotherapp

Get the logs of an app

	Method: GET

	Endpoint: /apps/appname/log?lines=10&source=web&unit=abc123

Returns 200 in case of success. Returns 404 if app is not found.

Where:

	lines is the number of the log lines. This parameter is required.

	source is the source of the log, like tsuru (tsuru API) or a process.

	unit is the id of an unit.

Example:

GET /apps/myapp/log?lines=20&source=web&unit=83535b503c96
Content-Length: 142
[{"Date":"2014-09-26T00:26:30.036Z","Message":"Booting worker with pid: 53","Source":"web","AppName":"tsuru-dashboard","Unit":"83535b503c96"}]

List available pools

	Method: GET

	Endpoint: /pools

Returns 200 in case of success.

Example:

GET /pools
[{"Team":"team1","Pools":["pool1","pool2"]},{"Team":"team2","Pools":["pool3"]}]

Change the pool of an app

	Method: POST

	Endpoint: /apps/<appname>/pool

Returns 200 in case of success. Returns 404 if app is not found.

Example:

POST /apps/myapp/pool

1.2 Services

List services

	Method: GET

	Endpoint: /services

	Format: JSON

Returns 200 in case of success.

Example:

GET /services HTTP/1.1
Content-Length: 67
{"service": "mongodb", "instances": ["my_nosql", "other-instance"]}

Create a new service

	Method: POST

	Endpoint: /services

	Format: yaml

	Body: a yaml with the service metadata.

Returns 200 in case of success.
Returns 403 if the user is not a member of a team.
Returns 500 if the yaml is invalid.
Returns 500 if the service name already exists.

Example:

POST /services HTTP/1.1
id: some_service
endpoint:
 production: someservice.com

Remove a service

	Method: DELETE

	Endpoint: /services/<servicename>

Returns 204 in case of success.
Returns 403 if user has not access to the server.
Returns 403 if service has instances.
Returns 404 if service is not found.

Example:

DELETE /services/mongodb HTTP/1.1

Update a service

	Method: PUT

	Endpoint: /services

	Format: yaml

	Body: a yaml with the service metadata.

Returns 200 in case of success.
Returns 403 if the user is not a member of a team.
Returns 500 if the yaml is invalid.
Returns 500 if the service name already exists.

Example:

PUT /services HTTP/1.1
id: some_service
endpoint:
 production: someservice.com

Get info about a service

	Method: GET

	Endpoint: /services/<servicename>

	Format: JSON

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

GET /services/mongodb HTTP/1.1
[{"Name": "my-mongo", "Teams": ["myteam"], "Apps": ["myapp"], "ServiceName": "mongodb"}]

Get service documentation

	Method: GET

	Endpoint: /services/<servicename>/doc

	Format: text

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

GET /services/mongodb/doc HTTP/1.1
Mongodb exports the ...

Update service documentation

	Method: PUT

	Endpoint: /services/<servicename>/doc

	Format: text

	Body: text with the documentation

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

PUT /services/mongodb/doc HTTP/1.1
Body: Mongodb exports the ...

Grant access to a service

	Method: PUT

	Endpoint: /services/<servicename>/<teamname>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

PUT /services/mongodb/cobrateam HTTP/1.1

Revoke access from a service

	Method: DELETE

	Endpoint: /services/<servicename>/<teamname>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

DELETE /services/mongodb/cobrateam HTTP/1.1

1.3 Service instances

Add a new service instance

	Method: POST

	Endpoint: /services/instances

	Body: {“name”: “mymysql”, “service_name”: “mysql”}

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

POST /services/instances HTTP/1.1
{"name": "mymysql", "service_name": "mysql"}

Remove a service instance

	Method: DELETE

	Endpoint: /services/instances/<serviceinstancename>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

DELETE /services/instances/mymysql HTTP/1.1

Bind a service instance to an app

	Method: PUT

	Endpoint: /services/instances/<serviceinstancename>/<appname>

	Format: JSON

Returns 200 in case of success, and JSON with the environment variables to be exported
in the app environ.
Returns 403 if the user has not access to the app.
Returns 404 if the application does not exists.
Returns 404 if the service instance does not exists.

Example:

PUT /services/instances/mymysql/myapp HTTP/1.1
Content-Length: 29
{"DATABASE_HOST":"localhost"}

Unbind a service instance from an app

	Method: DELETE

	Endpoint: /services/instances/<serviceinstancename>/<appname>

Returns 200 in case of success.
Returns 403 if the user has not access to the app.
Returns 404 if the application does not exists.
Returns 404 if the service instance does not exists.

Example:

DELETE /services/instances/mymysql/myapp HTTP/1.1

List all services and your instances

	Method: GET

	Endpoint: /services/instances?app=appname

	Format: JSON

Returns 200 in case of success and a JSON with the service list.

Where:

	app is the name an app you want to use as filter. If defined only instances
bound to this app will be returned. This parameter is optional.

Example:

GET /services/instances HTTP/1.1
Content-Length: 52
[{"service": "redis", "instances": ["redis-globo"]}]

Get an info about a service instance

	Method: GET

	Endpoint: /services/instances/<serviceinstancename>

	Format: JSON

Returns 200 in case of success and a JSON with the service instance data.
Returns 404 if the service instance does not exists.

Example:

GET /services/instances/mymysql HTTP/1.1
Content-Length: 71
{"name": "mongo-1", "servicename": "mongodb", "teams": [], "apps": []}

service instance status

	Method: GET

	Endpoint: /services/instances/<serviceinstancename>/status

Returns 200 in case of success.

Example:

GET /services/instances/mymysql/status HTTP/1.1

Grant access to a service instance

	Method: PUT

	Endpoint: /services/instances/permission/<servicename>/<teamname>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

PUT /services/instances/permission/mongodb-instance/cobrateam HTTP/1.1

Revoke access from a service instance

	Method: DELETE

	Endpoint: /services/instances/permission/<servicename>/<teamname>

Returns 200 in case of success.
Returns 404 if the service does not exists.

Example:

DELETE /services/instances/permission/mongodb-instance/cobrateam HTTP/1.1

1.4 Quotas

Get quota info of a user

	Method: GET

	Endpoint: /quota/<user>

	Format: JSON

Returns 200 in case of success, and JSON with the quota info.

Example:

GET /quota/wolverine HTTP/1.1
Content-Length: 29
{"items": 10, "available": 2}

1.5 Healers

List healers

	Method: GET

	Endpoint: /healers

	Format: JSON

Returns 200 in case of success, and JSON in the body with a list of healers.

Example:

GET /healers HTTP/1.1
Content-Length: 35
[{"app-heal": "http://healer.com"}]

Execute healer

	Method: GET

	Endpoint: /healers/<healer>

Returns 200 in case of success.

Example:

GET /healers/app-heal HTTP/1.1

1.6 Platforms

List platforms

	Method: GET

	Endpoint: /platforms

	Format: JSON

Returns 200 in case of success, and JSON in the body with a list of platforms.

Example:

GET /platforms HTTP/1.1
Content-Length: 67
[{Name: "python"},{Name: "java"},{Name: "ruby20"},{Name: "static"}]

1.7 Users

Create a user

	Method: POST

	Endpoint: /users

	Body: {“email”:”nobody@globo.com”,”password”:”123456”}

Returns 200 in case of success.
Returns 400 if the JSON is invalid.
Returns 400 if the email is invalid.
Returns 400 if the password characters length is less than 6 and greater than 50.
Returns 409 if the email already exists.

Example:

POST /users HTTP/1.1
Body: `{"email":"nobody@globo.com","password":"123456"}`

Reset password

	Method: POST

	Endpoint: /users/<email>/password?token=token

Returns 200 in case of success.
Returns 404 if the user is not found.

The token parameter is optional.

Example:

POST /users/user@email.com/password?token=1234 HTTP/1.1

Login

	Method: POST

	Endpoint: /users/<email>/tokens

	Body: {“password”:”123456”}

Returns 200 in case of success.
Returns 400 if the JSON is invalid.
Returns 400 if the password is empty or nil.
Returns 404 if the user is not found.

Example:

POST /users/user@email.com/tokens HTTP/1.1
{"token":"e275317394fb099f62b3993fd09e5f23b258d55f"}

Logout

	Method: DELETE

	Endpoint: /users/tokens

Returns 200 in case of success.

Example:

DELETE /users/tokens HTTP/1.1

Info about the current user

	Method: GET

	Endpoint: /users/info

Returns 200 in case of success, and a JSON with information about the current user.

Example:

GET /users/info HTTP/1.1
{"Email":"myuser@company.com","Teams":["frontend","backend","sysadmin","full stack"]}

Change password

	Method: PUT

	Endpoint: /users/password

	Body: {“old”:”123456”,”new”:”654321”}

Returns 200 in case of success.
Returns 400 if the JSON is invalid.
Returns 400 if the old or new password is empty or nil.
Returns 400 if the new password characters length is less than 6 and greater than 50.
Returns 403 if the old password does not match with the current password.

Example:

PUT /users/password HTTP/1.1
Body: `{"old":"123456","new":"654321"}`

Remove a user

	Method: DELETE

	Endpoint: /users

Returns 200 in case of success.

Example:

DELETE /users HTTP/1.1

Add public key to user

	Method: POST

	Endpoint: /users/keys

	Body: {“key”:”my-key”}

Returns 200 in case of success.

Example:

POST /users/keys HTTP/1.1
Body: `{"key":"my-key"}`

Remove public key from user

	Method: DELETE

	Endpoint: /users/keys

	Body: {“key”:”my-key”}

Returns 200 in case of success.

Example:

DELETE /users/keys HTTP/1.1
Body: `{"key":"my-key"}`

Show API key

	Method: GET

	Endpoint: /users/api-key

	Format: JSON

Returns 200 in case of success, and JSON in the body with the API key.

Example:

GET /users/api-key HTTP/1.1
Body: `{"token": "e275317394fb099f62b3993fd09e5f23b258d55f", "users": "user@email.com"}`

Regenerate API key

	Method: POST

	Endpoint: /users/api-key

Returns 200 in case of success.

Example:

POST /users/api-key HTTP/1.1

1.8 Teams

List teams

	Method: GET

	Endpoint: /teams

	Format: JSON

Returns 200 in case of success, and JSON in the body with a list of teams.

Example:

GET /teams HTTP/1.1
Content-Length: 22
[{"name": "teamname"}]

Info about a team

	Method: GET

	Endpoint: /teams/<teamname>

	Format: JSON

Returns 200 in case of success, and JSON in the body with the info about a team.

Example:

GET /teams/teamname HTTP/1.1
{"name": "teamname", "users": ["user@email.com"]}

Add a team

	Method: POST

	Endpoint: /teams

Returns 200 in case of success.

Example:

POST /teams HTTP/1.1
{"name": "teamname"}

Remove a team

	Method: DELETE

	Endpoint: /teams/<teamname>

Returns 200 in case of success.

Example:

DELELE /teams/myteam HTTP/1.1

Add user to team

	Method: PUT

	Endpoint: /teams/<teanmaname>/<username>

Returns 200 in case of success.

Example:

PUT /teams/myteam/myuser HTTP/1.1

Remove user from team

	Method: DELETE

	Endpoint: /teams/<teanmaname>/<username>

Returns 200 in case of success.

Example:

DELETE /teams/myteam/myuser HTTP/1.1

1.9 Deploy

Deploy list

	Method: GET

	Endpoint: /deploys?app=appname&service=servicename

	Format: JSON

Returns 200 in case of success, and JSON in the body of the response containing the deploy list.

Where:

	app is a app name.

	service is a service name.

Example:

GET /deploys HTTP/1.1
[{"Ip":"10.10.10.10","Name":"app1","Units":[{"Name":"app1/0","State":"started"}]}]
[{"ID":"543c20a09e7aea60156191c0","App":"myapp","Timestamp":"2013-11-01T00:01:00-02:00","Duration":29955456221322857,"Commit":"","Error":""},{"ID":"543c20a09e7aea60156191c1","App":"yourapp","Timestamp":"2013-11-01T00:00:01-02:00","Duration":29955456221322857,"Commit":"","Error":""}]

Get info about a deploy

	Method: GET

	Format: JSON

	Endpoint: /deploys/:deployid

Returns 200 in case of success. Returns 404 if deploy is not found.

Example:

GET /deploys/12345
{"ID":"54ff355c283dbed9868f01fb","App":"tsuru-dashboard","Timestamp":"2015-03-10T15:18:04.301-03:00","Duration":20413970850,"Commit":"","Error":"","Image":"192.168.50.4:3030/tsuru/app-tsuru-dashboard:v2","Log":"[deploy log]","Origin":"app-deploy","CanRollback":false,"RemoveDate":"0001-01-01T00:00:00Z"}

1.10 Metadata

Info about Tsuru API

	Method: GET

	Endpoint: /info

	Format: JSON

Returns 200 in case of success, and JSON in the body of the response containing the metadata.

Example:

GET /info HTTP/1.1
{"version": "1.0"}

Basic healthcheck of Tsuru API server

	Method: GET

	Endpoint: /healthcheck/

	Format: text

Always returns 200 and text body of WORKING.

Example:

GET /healthcheck/ HTTP/1.1
WORKING

Full healthcheck of all Tsuru components

	Method: GET

	Endpoint: /healthcheck/?check=all

	Format: text

Returns 200 when all components have a status of WORKING.
Returns 500 if any component does not have a status of WORKING.
Body always contains text with status and time to complete check for each component.

Example:

GET /healthcheck/?check=all HTTP/1.1
MongoDB: WORKING (643.81µs)
Router Hipache: WORKING (845.457µs)
docker-registry: WORKING (1.954069ms)
Gandalf: WORKING (1.787768ms)

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Frequently Asked Questions

	How do environment variables work?

	How does the quota system work?

	How does routing work?

	How are Git repositories managed?

This document is an attempt to explain concepts you’ll face when deploying and
managing applications using tsuru. To request additional explanations you can
open an issue on our issue tracker, talk to us at #tsuru @ freenode.net or open
a thread on our mailing list.

How do environment variables work?

All configurations in tsuru are handled by the use of environment variables. If
you need to connect with a third party service, e.g. twitter’s API, you are
probably going to need some extra configurations, like client_id. In tsuru, you
can export those as environment variables, visible only by your application’s
processes.

When you bind your application into a service, most likely you’ll need to
communicate with that service in some way. Services can export environment
variables by telling tsuru what they need, so whenever you bind your
application with a service, its API can return environment variables for tsuru
to export on your application’s units.

How does the quota system work?

Quotas are handled per application and user. Every user has a quota number for
applications. For example, users may have a default quota of 2 applications, so
whenever a user tries to create more than two applications, he/she will receive
a quota exceeded error. There are also per applications quota. This one limits
the maximum number of units that an application may have.

How does routing work?

tsuru has a router interface, which makes it extremely easy to change the way
routing works with any provisioner. There are two ready-to-go routers: one
using hipache [https://github.com/hipache/hipache] and another with galeb [http://galeb.io/].

Note

as of 0.10.0 version tsuru supports more than one router. You can have
a default router, configured by “docker:router” and you can define a custom
router by plan

How are Git repositories managed?

tsuru uses Gandalf [https://github.com/tsuru/gandalf] to manage git
repositories. Every time you create an application, tsuru will ask Gandalf to
create a related git bare repository for you to push in.

This is the remote tsuru gives you when you create a new app. Everytime you
perform a git push, Gandalf intercepts it, check if you have the required
authorization to write into the application’s repository, and then lets the
push proceeds or returns an error message.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

Note

For tsuru-admin, tsuru and crane release notes, check GitHub release history:

	crane: https://github.com/tsuru/crane/releases

	tsuru: https://github.com/tsuru/tsuru-client/releases

	tsuru-admin: https://github.com/tsuru/tsuru-admin/releases

Release notes

Release notes for the official tsuru releases. Each release note will
tell you what’s new in each version.

tsurud (tsuru server daemon)

Warning

tsurud used to be called tsr, the name changed in the 0.12.0 release.

	tsurud 0.12.4 release notes

	tsurud 0.12.3 release notes

	tsurud 0.12.2 release notes

	tsurud 0.12.1 release notes

	tsurud 0.12.0 release notes

	tsr 0.11.3 release notes

	tsr 0.11.2 release notes

	tsr 0.11.1 release notes

	tsr 0.11.0 release notes

	tsr 0.10.2 release notes

	tsr 0.10.1 release notes

	tsr 0.10.0 release notes

	tsr 0.9.1 release notes

	tsr 0.9.0 release notes

	tsr 0.8.2 release notes

	tsr 0.8.1 release notes

	tsr 0.8.0 release notes

	tsr 0.7.2 release notes

	tsr 0.7.1 release notes

	tsr 0.7.0 release notes

	tsr 0.6.2 release notes

	tsr 0.6.1 release notes

	tsr 0.6.0 release notes

	tsr 0.5.3 release notes

	tsr 0.5.2 release notes

	tsr 0.5.1 release notes

	tsr 0.5.0 release notes

	tsr 0.4.0 release notes

	tsr 0.3.12 release notes

	tsr 0.3.11 release notes

	tsr 0.3.10 release notes

	tsr 0.3.9 release notes

	tsr 0.3.8 release notes

	tsr 0.3.7 release notes

	tsr 0.3.6 release notes

	tsr 0.3.5 release notes

	tsr 0.3.4 release notes

	tsr 0.3.3 release notes

	tsr 0.3.2 release notes

	tsr 0.3.1 release notes

	tsr 0.3.0 release notes

tsuru

tsuru is the tsuru client. For details on releases of the client, check the
release history in the tsuru-client repository at GitHub [https://github.com/tsuru/tsuru-client/releases].

tsuru-admin

tsuru-admin is the tsuru administrative client. For details on releases of
tsuru-admin, check the release history in the tsuru-admin repository at GitHub [https://github.com/tsuru/tsuru-admin/releases].

crane

crane is the command line interface used by service providers. For details on
releases of crane, check the release history in the crane repository at GitHub [https://github.com/tsuru/crane/releases].

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsurud 0.12.4 release notes

Welcome to tsurud 0.12.4!

tsurud 0.12.4 includes bug fixes and some improvements on error
reporting and in the way tsuru handlers application logs.

Improvements

	Reduce the amount of MongoDB connections in the WebSocket that receive
application logs. The code used to keep too many connections laying around.
The old code used to keep at most one connection per app per WebSocket, and
now it keeps one connection per WebSocket.

	Reduce the amount of Redis connections in the WebSocket that receive
application logs. This is kind of bugfix and improvement: the code used to
recreate the instance of the connection pool on every request instead of
sharing the pool across requests.

	Report status in the API when relaunching bs containers, preventing
connection aborts when upgrading the version of bs (issue #1268 [https://github.com/tsuru/tsuru/issues/1268])

Bug fixes

	Fix the translation of application name to Docker images that caused
applications that do not belong to the app being deleted (issue #1302 [https://github.com/tsuru/tsuru/issues/1302])

	Fix race condition that caused the deploy to fail with the message “unit not
found” (issue #1303 [https://github.com/tsuru/tsuru/issues/1303])

	Fix bug in log forwarding that caused the API to panic sometimes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsurud 0.12.3 release notes

Welcome to tsurud 0.12.3!

tsurud 0.12.3 includes bug fixes and some improvements on unstable
network environments.

Improvements

	On some unstable network environments it was possible for a deploy to remain
frozen while running Attach and Wait operations on the docker node. This can
happen after a network partition where the connection was severed without FIN
or RST being sent from on end to the other.

This problem was solved in two different ways. First TCP keepalive was enabled
for all connections with the Docker API. This way if there are any problems
severing the connection, the keepalive probe will hopefully receive RST as an
answer when the connectivity with the remote server is re-established, closing
the connection on our end.

As a failsafe, while tsuru is blocked on Attach and Wait requests it will also
keep polling Docker for the current container state. If the container is
stopped it means that the Attach and Wait operations should have ended. At
this moment tsuru will resume the deploy process and ignore the output from
Attach and Wait.

	Use the KeepAliveWriter across all streaming handlers in the API, so the API
is able to cope with small timeouts in the network.

	Add a service level proxy so service APIs can have management plugins. This
proxy endpoint checks the permission of the user as an admin of the service.
The other proxy endpoint checks the user permission in the service instance.

Bug fixes

	Fix bug in /units/status route that is called by bs containers. The bug
caused this route to return a 500 error if the request included containers
with the status building in tsuru’s database.

	Fix error message in the docker-node-update handler when it’s called with an
invalid name (issue #1207 [https://github.com/tsuru/tsuru/issues/1207]).

	Fix bug in Procfile parsing in the API. We used to parse it as YAML, but a
Procfile is not really an YAML.

	Properly manage repository permissions in Gandalf after running
app-set-team-owner (issue #1270 [https://github.com/tsuru/tsuru/issues/1270]).

	Fix quota management for units in applications (issue #1279 [https://github.com/tsuru/tsuru/issues/1279]).

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsurud 0.12.2 release notes

Welcome to tsurud 0.12.2!

tsurud 0.12.2 includes bug fixes related to application environment
variables.

Bug fixes

Two different bugs prevented commands setting and unsetting environment
variables for an application from working correctly. This release also depends
on updating platforms to use tsuru-unit-agent version 0.4.5.

	The first bug prevented env-unset from working because environment
variables were being committed in the application image during the deploy.
This way, it wasn’t possible to unset a variable because even if they were not
used when starting a new container the image would include them.

	The second bug prevented env-set from overriding the value of a previously
set environment variable after at least one deploy happened with the first
value set.

This bug happened because during deploy tsuru would write a file called
apprc including all environment variables available during the deploy and
this file would then be loaded in the application environment, overriding
environment variables used to start the container.

This file was only needed by tsuru versions before 0.12.0 and the solution was
simply not to add application environment variables to this file anymore if
tsuru server is greater than or equal to 0.12.0.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsurud 0.12.1 release notes

Welcome to tsurud 0.12.1!

tsurud 0.12.1 includes bug fixes and improvements in the management of the
tsuru host agent (bs) [https://github.com/tsuru/bs].

General improvements

	Improve node registering process: now, when the creation of the bs container
fails, we do not destroy managed hosts, but rather mark them as “waiting”.
tsuru already ensures that bs is running in the node before executing other
operations.

	Use “ready” as the status of nodes running bs. In case everything goes fine
during node creation/registration, tsuru will now mark the node as “ready”
instead of “waiting”.

	Use “tsuru/bs:v1” as the default bs image. It’s possible to use “tsuru/bs” to
get the old behavior back, or even “tsuru/bs:latest” to seat on the bleeding
edge of bs.

Bug fixes

	Fix race condition between bs status reporting and the deployment process,
preventing bs from destroying containers that are still being deployed.

	Fix application token leaking in the OAuth authentication scheme.

	Prevent the removal of swapped applications to avoid router
inconsistencies.

	Fix inconsistency in the Galeb router: it didn’t handle removal properly,
leading to inconsistencies in the router after running tsuru
app-plan-change.

	Fix swapping applications using hipache router. There was a bug that allowed
only the first swap and wouldn’t allow swapping back.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsurud 0.12.0 release notes

Welcome to tsurud 0.12.0!

These release notes cover the new features, bug fixes, general
improvements and backward incompatible changes you’ll want to be aware of
when upgrading from tsr 0.11.2 or older versions.

Main new features

	Lean containers: this is definitely the big feature of this release. With
lean containers, we’ve dropped Circus [https://circus.readthedocs.org/en/latest/], making application images
smaller, and containers faster. Improving resource usage.

Application containers won’t run tsuru-unit-agent [https://github.com/tsuru/tsuru-unit-agent/] anymore either. It’s still
used during the deployment process, but it’s not competing with the
application process anymore.

Instead of having one agent inside each unit, Docker nodes will now have
one agent collecting information about containers running in the node.
This agent is named bs. The default behavior of tsuru is to create the bs
container before running operation in the node. It should work
out-of-the-box after the update, but you can tune bs configuration, customizing the Docker image for running it or configuring
it to use Unix socket instead of TCP for Docker API communication (which
is safer).

tsuru will create and manage at least one container per Procfile entry. Users
are now able to manage the amount of units for each process.

Latest tsuru-admin release includes commands for managing bs
configuration [https://tsuru-admin.readthedocs.org/en/latest/#bs-management].

See issues #647 [https://github.com/tsuru/tsuru/issues/647] and #1136 [https://github.com/tsuru/tsuru/issues/1136] for more details.

	There are now three kinds of pools: by team, public and default.
Team’s pool are segregated by teams, and cloud administrator should set
teams in this pool manually. This pool are just accessible by team’s
members.

Public pools are accessible by any user. It can be used to segregate
machines that have specific hardware.

Default pool are for experimentation and low profile apps, like service
dashboard and “in development” apps. This is the old fallback pool, but with
an explicit flag.

	New router available: vulcand [https://vulcand.io/] (thanks Dan Carley).
Vulcand is a powerful reverse proxy, with SNI based TLS support. This is the
first step on being able to configure TLS on applications (see issue #1206 [https://github.com/tsuru/tsuru/issues/1206]).

It’s now possible to choose between Hipache, Galeb (which is still partially
open source) and Vulcand.

	Users are now able to change the plan of an application. tsuru will handle
changes in the router and in other plan-defined application resources (i.e.
memory, swap and CPU shares) #1181 [https://github.com/tsuru/tsuru/issues/1181]

	Introduce a custom port allocator on tsuru. This allocator replaces the
default port allocation provided by Docker, offering a way of persisting the
port of a container after restarts.

The motivation behind this feature is making sure the host port mapped
to one container never changes, even after restarting docker daemon or
rebooting the host. This way, we can always be sure that routers are
pointing to a valid address.

The default behavior is to stick to the Docker allocator, please refer to the
port-allocator configuration documentation for
instructions on how to choose the tsuru allocator.

This is related to issue #1072 [https://github.com/tsuru/tsuru/issues/1072].

Bug fixes

	Properly handle suffixes when adding a CNAME to an application (thanks
Leandro Souza). #1215 [https://github.com/tsuru/tsuru/pull/1215]

	Improve safety in app-restart and other containers related operations. #1188 [https://github.com/tsuru/tsuru/issues/1188]

	Admin users can now delete any teams. #1232 [https://github.com/tsuru/tsuru/issues/1232]

	Prevent service instances orphaning by not allowing a team that is the owner
of a service instance to be removed. #1236 [https://github.com/tsuru/tsuru/issues/1236]

	Properly handle key overriding on key management functions. Previously, when
a user added a new key reusing a name, tsuru created the new key with the
given name and body, letting the old body as an orphan key, making it
impossible to remove the old key or associate it to another user. #1249 [https://github.com/tsuru/tsuru/issues/1249]

	Unbind is now atomic, meaning that it’s safer to service administrators to
trust on tsuru service operations being all-or-nothing. #1253 [https://github.com/tsuru/tsuru/issues/1253]

	Fix error message on app-create when pool doesn’t exist. #1257 [https://github.com/tsuru/tsuru/issues/1257]

Other improvements

	Now tsuru doesn’t try to start stopped/errored containers when containers
move. #1186 [https://github.com/tsuru/tsuru/issues/1186]

	app-shell now uses WebSocket for communication between the tsuru client and
the API. This allows app-shell to be used behind proxies that support
WebSocket (e.g. nginx). For more details, see #1162 [https://github.com/tsuru/tsuru/issues/1162].

	tsuru will always use the segregate scheduler, the round robin scheduler has
been disabled. In order to get a similar behavior, cloud admins can create a
single pool and set it as the default pool, so users don’t need to choose the
pool on app-create.

	tsuru is now compatible with Docker 1.8.x. There was a small change in the
Docker API, changing the way of handling mount points, which affected shared
file systems.

	Node auto-scaling now support multi-step scaling, meaning that when scaling
up or down, it might add or remove multiple nodes at once. This reduces lock
content on applications and the amount of containers rebalance runnings.

	Support for Docker Registry API v2 (also known as Docker Distribution).

	Application logs are now collected via WebSocket as well. Each Docker node
connects to the tsuru API once, and then streams logs from all containers in
the node.

	Change application tokens so they never expire.

	The EC2 IaaS now supports tagging. #1094 [https://github.com/tsuru/tsuru/issues/1094]

	Add configuration options for timeouts in the Redis pubsub connection (use
for real time logging, a.k.a. tsuru app-log -f).

	Add a heartbeat for keeping connections open during platform-add and
platform-update (thanks Richard Knop).

	Improve error reporting in the user API (thanks Dan Hilton).

	Change the behavior of unit-remove and app-remove handlers so they don’t run
in background.

	Enforce memory limits on Docker nodes when auto-scale is disabled. Now,
whenever node auto-scaling is disabled, tsuru will enforce the max memory
policy because this will trigger an error and someone will have to manually
add a new node to allow new units to be created. #1251 [https://github.com/tsuru/tsuru/issues/1251]

	docker-node-remove command now rebalance all containers in removed host.
You also have a flag, --no-rebalance, to not rebalance thes containers. #1246 [https://github.com/tsuru/tsuru/issues/1246]

	Add --disable flag in docker-node-update command. This flag tag your node
as disabled in cluster. #1246 [https://github.com/tsuru/tsuru/issues/1246]

	General improvements in the documentation:

	add documentation about the /healthcheck/ endpoint (thanks Dan Carley)

	improvements to router documentation pages (thanks Dan Carley)

	fix code snippets in the services documentation page (thanks Leandro
Souza)

	typo and broken link fixes and structural improvements across all the
documentation (thanks Dan Hilton).

Backward incompatible changes (action needed)

	As tsuru now creates containers per processes, whenever an application has
more than one process, tsuru will forward requests to the process named
“web”. So, in a Procfile like the one below, “api” should be replaced with
“web”:

api: ./start-api
worker1: ./start-worker1
worker2: ./start-worker2

	You should change your fallback pool to default pool and to do that you
can run a tsuru-admin pool-update pool_name --default=true

	tsr has been renamed to tsurud. Please update any procedures and
workflows (including upstart and other init scripts).

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.11.3 release notes

Welcome to tsr 0.11.3!

tsr 0.11.3 includes fixes related to the deploy process:

	New configuration options related to timeouts in pub/sub redis connections.
Default timeout values set so we can fail fast and not hang if there are
connection problems accessing the redis server. See config
reference for more details.

	Writing deploy execution logs is done in background to prevent slow storage
backends from interfering in deploy time.

	Hitting Ctrl-C during a deploy does not stop the deploy process anymore. It
can be followed again using app-log. #1238 [https://github.com/tsuru/tsuru/issues/1238]

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.11.2 release notes

Welcome to tsr 0.11.2!

tsr 0.11.2 includes some bug fixes and adds performance improvements related to
the database management:

	Fix of database connection leaks across the entire code base, including a
mechanism for automatically detecting new connection leaks. Also preventing
new connection leaks by always closing the connection on object’s finalizer.

	Fix compatibility with Docker 1.6+. Docker 1.6 introduced a new way of
limiting container resources (CPU and memory). See issue #1213 [https://github.com/tsuru/tsuru/issues/1213] for more details.

	Introduced a new configuration entry, for splitting the main database and the
logs database, avoiding issues with global locks in MongoDB. For more
details, see the configuration docs.

	Performance improvements in the log processing: properly ordering the logs
and using less indexes to speed up write operations.

	Add a hard timeout to healthcheck requests, preventing stale of deployments
while tsuru waits for the response of the application healthcheck. The
current value for this timeout is 1 minute.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.11.1 release notes

Welcome to tsr 0.11.1!

tsr 0.11.1 includes some bug fixes and adds profiling routes to enable further
performance improvements to tsuru server:

	Remove support for round robin scheduler. Pools are mandatory since 0.11.0 and
round robin didn’t work anymore. This fix make this change clearer by
validating tsuru.conf and explicitly preventing round robin scheduler from
being used. Related to #1204 [https://github.com/tsuru/tsuru/issues/1204]

	Fix unit-remove from trying to remove a unit from nodes without units
belonging to the specified application. Also making sure unit-remove choose
the optimal node from which remove a unit (the one with the maximum number of
unit from the same application). Related to #1204 [https://github.com/tsuru/tsuru/issues/1204]

	Updated monsterqueue version to avoid errors regarding unregistered tasks
trying to be executed.

	Added HTTP routes to enable profiling tsuru server during its execution. This
is intended to analyze and improve tsuru server performance under heavy loads.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.11.0 release notes

Welcome to tsr 0.11.0!

These release notes cover the new features, bug fixes, general
improvements and backward incompatible changes you’ll want to be aware of
when upgrading from tsr 0.10.0 or older versions.

Main new features

	Pool management overhaul. Now pools are a concept independent on the docker
provisioner. You can have multiple pools associated with each team. If that’s
the case, when creating a new application, users will be able to choose which
pool they want to use to deploy it.

To support these features some client commands have changed, mainly tsuru app-create
support a --pool <poolname> parameter.

Some action is needed to migrate old pool configuration to this new format. See
backward incompatible changes section for more details. #1013 [https://github.com/tsuru/tsuru/issues/1013]

	Node auto scaling. It’s now possible to enable automatic scaling of docker
nodes, this will add or remove nodes according to rules specified in your
tsuru.conf file. See node auto scaling
topic and config reference for more details.
#1110 [https://github.com/tsuru/tsuru/issues/1110]

Bug fixes

	Better handling erroneous tsuru.yaml files with tabs instead of spaces. #1165 [https://github.com/tsuru/tsuru/issues/1165]

	Restart after hooks now correctly run with environment variables associated to
applications. #1159 [https://github.com/tsuru/tsuru/issues/1159]

	tsuru app-shell command now works with tsuru api under TLS. #1148 [https://github.com/tsuru/tsuru/issues/1148]

	Removing machines from IaaS succeed if referenced machine was already manually
removed from IaaS. #1103 [https://github.com/tsuru/tsuru/issues/1103]

	Deploy details API call (/deploy/<id>) no longer fail with deploys originated by
running tsuru app-deploy. #1098 [https://github.com/tsuru/tsuru/issues/1098]

	Cleaner syslog output without lots of apparmor entries. #997 [https://github.com/tsuru/tsuru/issues/997]

	Running tsuru app-deploy on Windows now correctly handle directories and
home path. #1168 [https://github.com/tsuru/tsuru/issues/1168] #1169 [https://github.com/tsuru/tsuru/issues/1169]

	Application listing could temporarily fail after removing an application, this
was fixed. #1176 [https://github.com/tsuru/tsuru/issues/1176]

	Running tsuru app-shell now correctly sets terminal size and TERM
environment value, also container id is no longer ignored. #1112 [https://github.com/tsuru/tsuru/issues/1112] #1114 [https://github.com/tsuru/tsuru/issues/1114]

	Fix bug in the flow of binding and unbinding applications to service
instances. With this old bug, units could end-up being bound twice with a
service instance.

Other improvements

	Limited number of goroutines started when initiating new units, avoiding
starving docker with too many simultaneous connections. #1149 [https://github.com/tsuru/tsuru/issues/1149]

	There is now a tsr command to run necessary migrations when updating from older
versions. You can run it with tsr migrate and it should not have side-
effects on already up-to-date installations. #1137 [https://github.com/tsuru/tsuru/issues/1137]

	Added command tsr gandalf-sync, it should be called if Gandalf is activated
on an existing tsuru api instance. It’s responsible for copying existing users
and teams credentials to Gandalf. Users added after Gandalf activation in
tsuru.conf will already be created on Gandalf and this command doesn’t needed to
be called further. #1138 [https://github.com/tsuru/tsuru/issues/1138]

	It’s now possible to remove all units from an application (thanks Lucas Weiblen). #1111 [https://github.com/tsuru/tsuru/issues/1111].

	Removing units now uses the scheduler to correctly maintain units balanced
across nodes when removing a number of units. #1109 [https://github.com/tsuru/tsuru/issues/1109]

	tsuru will keep trying to send image to registry during deploy for some time if
the registry fails on the first request. #1099 [https://github.com/tsuru/tsuru/issues/1099]

	It’s possible to use a docker registry with authentication support. See
config reference for more details. #1182 [https://github.com/tsuru/tsuru/issues/1182]

	Partial support for docker distribution (registry 2.0). Image removal is not yet
supported. #1175 [https://github.com/tsuru/tsuru/issues/1175]

	Improved logging support, allowing cloud admins to
configure any of the three tsuru logging options: syslog, stderr or log file.
At any time, it’s possible to enable any of the three options.

	Running commands with tsuru app-run now log command’s output to tsuru logs.
#986 [https://github.com/tsuru/tsuru/issues/986]

	Graceful shutdown of API when SIGTERM or SIGINT is received. The shutdown
process now is:

	Stop listening for new connections;

	Wait for all ongoing connections to end;

	Forcibly close tsuru app-log -f connections;

	Wait for ongoing healing processes to end;

	Wait for queue tasks to finish running;

	Wait for ongoing auto scaling processes to end.

#776 [https://github.com/tsuru/tsuru/issues/776]

	Included lock information in API call returning application information. #1171 [https://github.com/tsuru/tsuru/issues/1171]

	Unit names now are prefixed with application’s name (thanks Lucas Weiblen). #1160 [https://github.com/tsuru/tsuru/issues/1160].

	Admin users can now specify which user they want removed. #1014 [https://github.com/tsuru/tsuru/issues/1014]

	It’s now possible to change metadata associated with a node. #1016 [https://github.com/tsuru/tsuru/issues/1016]

	Users can now define a private environment variable with tsuru env-set
(thanks Diogo Munaro).

	Better error messages on server startup when MongoDB isn’t available (thanks
Lucas Weiblen). #1125 [https://github.com/tsuru/tsuru/issues/1125].

	Add timing information to the healthcheck endpoint, so tsuru admins can
detect components that are slow, besides detecting which are down.

	Now tsuru app-remove does not guess app name (thanks Lucas Weiblen). #1106 [https://github.com/tsuru/tsuru/issues/1106].

	General improvements in the documentation:

	typo fixes and wording improvements to install
and configuration pages (thanks Anna Shipman).

	fix instructions for key management in the quickstart page (thanks Felippe Raposo).

	improve documentation for the contributing
page (thanks Lucas Weiblen).

	fix user creation instruction in the installing page (thanks Samuel Roze).

	fix wording and spelling in the Gandalf install page
(thanks Martin Jackson).

Backward incompatible changes (action needed)

	There are two migrations that must run before deploying applications with tsr
0.11.0, they concern pools and can be run with tsr migrate. The way pools
are handled has changed. Now it’s possible for a team to have access to more
than one pool, if that’s the case the pool name will have to be specified during
application creation. #1110 [https://github.com/tsuru/tsuru/issues/1110]

	Queue configuration is necessary for creating and removing machines using a IaaS
provider. This can be simply done by indicating a MongoDB database configuration
that will be used by tsuru for managing the queue. No external process is
necessary. See configuration reference for more
details. #1147 [https://github.com/tsuru/tsuru/issues/1147]

	Previously it was possible for more than one machine have the same address this
could cause a number of inconsistencies when trying to remove said machine using
tsuru docker-node-remove --destroy. To solve this problem tsuru will now
raise an error if the IaaS provider return the same address of an already
registered machine.

If you already have multiple machines with the same address registered in tsuru,
trying to add new machines will raise an error until the machines with
duplicated address are removed.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.10.2 release notes

Welcome to tsr 0.10.2!

tsr 0.10.2 includes one bug fixes to administration commands:

	tsuru-admin commands container-move, containers-move and containers-
rebalance caused tsuru server to freeze. This issue was caused by a global
mutex for all connections being permanently locked. This fix eliminates the
global mutex and instead creates an independent lock per request. A performance
improvement in api calls is also expected with this fix.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.10.1 release notes

Welcome to tsr 0.10.1!

tsr 0.10.1 includes two improvements from the previous version and one bug fix:

	During start-up and image migration, skip applications that have already been
moved (related to issue #712 [https://github.com/tsuru/tsuru/issues/712]);

	Limit healing for Docker nodes. Now tsuru will heal Docker nodes when only
there’s a network error in the communication between the tsuru API and the
Docker node with general operations, like pulling an image. When creating a
container, any failure will count as a trigger for healing;

	Fix bug with authorization in the deploy hook, that allowed users to issue
deployments to any application, via the API.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.10.0 release notes

Welcome to tsr 0.10.0!

These release notes cover the new features, bug fixes, backward
incompatible changes (specially the requirement on Gandalf and Docker
versions), general improvements and changes in the API you’ll want to be
aware of when upgrading from tsr 0.9.0 or older versions.

What’s new in tsr 0.10.0

	Now tsuru app-run and tsuru-admin ssh use docker exec to run
commands on containers, this means that tsuru doesn’t sshd inside containers
anymore, making the containers more lightweight and saving some machine
resources (issue #1002 [https://github.com/tsuru/tsuru/issues/1002]).

	It’s now possible to have multiple routers configurations in your tsuru.conf
file. The configuration to be used will be defined by which plan the
application is using. See routers configuration
reference and plan-create [http://tsuru-admin.readthedocs.org/en/latest/#plan-create] command for
more details.

For plans without a router configuration, the value defined in
docker:router will still be used. So nothing will break with this change.
See docker:router for more information.

There’s also a new router available: Galeb. For more details, please refer to
tsuru configuration reference and Galeb’s webpage [http://galeb.io/].

	Users are now able to create apps with the same name used by a platform
(issue #712 [https://github.com/tsuru/tsuru/issues/712]).

	Extended the healthcheck entry in the tsuru.yaml file so users can
specify a threshold of allowed failures. Please refer to the tsuru.yaml
documentation page for more details (thanks Samuel
ROZE).

	It’s now possible to rollback your application to a previously deployed version.
To support this feature the commands app-deploy-list and app-deploy-
rollback were added. Also, all newly created application images in docker are
versioned with :vN. You can change how many images will be available for
rollback in tsuru.conf. See config reference and tsuru-client reference [http://tsuru-client.readthedocs.org] for more details.

	Gandalf [https://github.com/tsuru/gandalf] is now optional. There’s a new
configuration entry for choosing the “repo-manager”. For backwards
compatibility purposes, when this entry is undefined, tsuru will use Gandalf.
In order to disable Gandalf, users can set repo-manager to “none”. When
Gandalf is disabled, tsuru will not manage keys as well. For more details,
see repository management page.

	New Ruby platform [https://github.com/tsuru/basebuilder/tree/master/ruby]
with support to multiple Ruby versions. Instead of having one platform per
Ruby version, now users can just change the Ruby version they use by
specifying it in the Gemfile or in the .ruby-version file.

	New PHP platform [https://github.com/tsuru/basebuilder/tree/master/php],
with support to multiple PHP interpretors (FPM, mod_php) and frontends
(Apache or nginx), including the support for configuring the virtual host
(thanks Samuel ROZE).

Bug fixes

	Fix error message for unauthorized access in the team-user-add endpoint
(issue #1006 [https://github.com/tsuru/tsuru/issues/1006]).

	Fix double restart bug on bind and unbind. When binding or unbinding apps,
previous version of the tsuru-server daemon restarted the app twice, making
the process _really_ slow when apps have a lot of units.

	Do not try to restart an app that has no units when removing environment
variables.

	Bring back restart:after hooks, running them from the API after success in
the healthcheck.

Other improvements in tsr 0.10.0

	tsuru doesn’t store SSH public keys anymore, this handling is forwarded to
the repository manager, and it’s possible to run tsuru with no key management
at all, by setting repo-manager to “none”. Then the client will fail on
key-add, key-remove and key-list with the message “key management
is disabled” (issue #402 [https://github.com/tsuru/tsuru/issues/402]).

	Improve user actions tracking. All app-related actions now use the
app=<appname> format. Currently, these informations are available only
in the database now, but in the future tsuru will expose all actions to
admins, and may expose all actions of a user to themself.

	Support EBS optimized instances in the EC2 IaaS provider (issue #1058 [https://github.com/tsuru/tsuru/issues/1058]).

	Record the user that made the deploy when running git push (depends on
upgrading the platforms and Gandalf).

	Improve user feedback (thanks Marc Abramowitz)

	when the user creation fails

	when failing to detect authentication scheme in the server

	when making an unauthenticated requests, and receiving an unauthorized
response

	when resetting password

	Improve user feedback on API start-up (thanks Marc Abramowitz)

	send fatal failures both to standard output and syslog (issue #1019 [https://github.com/tsuru/tsuru/issues/1019])

	properly report failure to connect to MongoDB

	properly report failures to open the /etc/tsuru/tsuru.conf file

	print the list of Docker nodes registered in the cluster

	include more precise information about the router (including the
configured domain and Redis endpoint, for Hipache)

	Properly set Content-Type headers in the API (thanks Marc Abramowitz)

	General improvements in the documentation:

	Using rsyslog in tsuru applications (issue #796 [https://github.com/tsuru/tsuru/issues/796]). See the logging
documentation for more details;

	Improvements in the recovery docs (thanks Mateus
Del Bianco);

	General grammar and RST syntax fixes in the documentation (thanks
Alessandro Corbelli, Lucas Weiblen, Marc Abramowitz and Rogério Yokomizo);

	Improve the contributing page;

	Properly document the states of appplication units;

	Split client documentation pages from the tsuru-server docs, there are
now dedicated documentation sites for crane [http://tsuru-crane.readthedocs.org], tsuru-admin [http://tsuru-admin.readthedocs.org] and tsuru-client [http://tsuru-client.readthedocs.org];

	Fix broken links in the documentation pages;

	Improve Hipache installation docs;

	Add documentation for the application metrics system (issue #990 [https://github.com/tsuru/tsuru/issues/990]).

	Add instructions for upgrading Docker in the management documentation.

Backward incompatible changes

	This version of tsuru makes use of some features available only in the
latest version of Gandalf [https://github.com/tsuru/gandalf], so if you
plan to continue using Gandalf after this upgrade, you need to upgrade
Gandalf to the version 0.6.0 (or bigger) [https://github.com/tsuru/gandalf/releases/tag/0.6.0].

	This version of tsuru makes use of features available only from the 1.4
version of Docker [https://docker.com], so before upgrading to
tsuru-server 0.10.0, users must ensure that all Docker nodes are running
Docker 1.4 or greater. Please refer to the upgrade Docker page for instructions on upgrading Docker with
lesser downtime.

	tsuru changed the name of Docker images used for applications. During
start-up, the server daemon will migrate images automatically. This may slow
down the first start-up after the upgrade (issue #712 [https://github.com/tsuru/tsuru/issues/712]).

	Drop support for Docker images that do not run tsuru-unit-agent [https://github.com/tsuru/tsuru-unit-agent]. Starting at tsuru-server
0.10.0, every platform image must have tsuru-unit-agent installed, and ready
to run.

API changes

tsuru-server 0.10.0 also include some changes in the API. Please refer to the
API documentation page for more details.

	/apps/{appname}/ssh: new shell route to access app containers. In
previous versions of API this route was in provision/docker package and just
allowed admin access to app containers. Now, standart users and admin users
can access app containers through ssh. Admins can access any app in tsuru
and standart users can only access your apps.

	/deploys: allow non-admin users to issue requests to this endpoint. The
response will list only deployments of applications that the user has access
to. Admin users can still see all deployments from all applications (issue
#1092 [https://github.com/tsuru/tsuru/issues/1092]).

	/healthcheck: tsuru now has an improved healthcheck endpoint, that will
check the health of multiple components. In order to check everything, users
should send a new request with the querystring parameter check set to
all. Example: GET /healthcheck?check=all (issue #967 [https://github.com/tsuru/tsuru/issues/967]).

	/info: this new endpoint returns meta information about the current
running version of tsuru, like the server version and which components are
enabled (issue #1093 [https://github.com/tsuru/tsuru/issues/1093]).

	/services/instances/{instance}/{appname}: bind and unbind endpoints now
streams the progress of the binding/unbinding process (issue #963 [https://github.com/tsuru/tsuru/issues/963]).

	/tokens: removed endpoint for generating an application token via the
API. Users can no longer send POST requests to this URL.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.9.1 release notes

Welcome to tsr 0.9.1!

These release notes cover the bug fixes, general improvements and
changes in the API you’ll want to be aware of when upgrading from tsr 0.9.0
or older versions.

Bug fixes

	fix panic in the API when auto scale is enabled and the metric data is
invalid.

	auto scale honors the min and max units when scaling

	app-run ignore build containers (issue #987 [https://github.com/tsuru/tsuru/issues/987]).

Other improvements in tsr 0.9.1

	added some unit status and use correct status on build. Now the
unit flow is:

Flow:

+----------+ Start +---------+
| Building | +---------------------+| Stopped |
+----------+ | +---------+
 ^ | ^
 | | |
 deploy unit | Stop
 | | |
 + v RegisterUnit +
 +---------+ app unit +----------+ SetUnitStatus +---------+
 | Created | +---------> | Starting | +-------------> | Started |
 +---------+ +----------+ +---------+
 + ^ +
 | | |
 SetUnitStatus | |
 | | |
 v | |
 +-------+ SetUnitStatus | |
 | Error | +-------------------+ |
 +-------+ <---------------------+

API changes

	auto scale config info is now returned in the app-info endpoint.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.9.0 release notes

Welcome to tsr 0.9.0!

These release notes cover the new features, bug fixes, backward
incompatible changes, general improvements and changes in the API
you’ll want to be aware of when upgrading from tsr 0.8.0 or older versions.

What’s new in tsr 0.9.0

	Now tsuru users can generate an API key, enabling authentication with no
interactions required and having a token that never expires. Users can
generate a new API key at any time using the command tsuru token-regenerate to
replace the old one. To view the current key that you own, just use the
command tsuru token-show.

	It’s possible to use templates to create machines in the IaaS provider with
docker-node-add. See machine-template-add [http://tsuru-admin.readthedocs.org/en/latest/#machine-template-add] command for more details.

	TSURU_SERVICES environment variable: this environment variable lists all
service instances that the application is bound. This enables binding an
application to multiple instances of a service (issue #991 [https://github.com/tsuru/tsuru/issues/991]). For more details, check the
TSURU_SERVICES documentation.

	auto scale: tsuru now includes an experimental support for auto scale. The auto scale uses the
metric system to know when scale.
To enable auto scale you should add the autoscale: true in then tsuru.conf.

Bug fixes

	app: SetEnvs not return error in apps with no units (issue #954 [https://github.com/tsuru/tsuru/issues/954]).

	iaas/ec2: fixed panic after machine creation timeout.

Other improvements in tsr 0.9.0

	Improvements to EC2 IaaS provider, it now accepts user-data config through
iaas:ec2:user-data and a timeout for machine creation with
iaas:ec2:wait-timeout config.

	A new debug route is available in the API: /debug/goroutines. It can only be
hit with admin credentials and will dump a trace of each running goroutine.

Backward incompatible changes

	Service API flow: the service API flow has changed, splitting the bind
process in two steps: binding/unbinding the application and binding/unbinding
the units. The old flow is now deprecated (issue #982 [https://github.com/tsuru/tsuru/issues/982]).

API changes

For more details on the API, please refer to the tsuru API documentation.

	/users/keys: in previous versions of the API, this endpoint was used for
adding and removing keys from the user account. Now it also lists the keys
registered in the account of the user. Here is a summary of the behavior of
this endpoint:

	GET: return the list of keys registered in the user account

	POST: add a new SSH key to the user account

	DELETE: remove a SSH key from the user account

For the two last kind of requests, the user is now able to specify the name
of the key, as well as the content.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.8.2 release notes

Welcome to tsr 0.8.2!

These release notes cover the bug fixes you’ll want to be aware of when
upgrading from tsr 0.8.1 or older versions.

Bug fixes

	Requests to services using the proxy api call (/services/proxy/{instance}) now
send the Host header of the original service endpoint. This allow proxied
requests to be made to service apis running on tsuru. This fix is complementary
to those made in proxy requests in 0.8.1.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.8.1 release notes

Welcome to tsr 0.8.1!

These release notes cover the bug fixes you’ll want to be aware of when
upgrading from tsr 0.8.0 or older versions.

Bug fixes

	Fix trying to heal containers multiple times when it’s unresponsive. Now tsuru
will try to acquire a lock before storing the healing event. The healing will
only be started if the lock has been successfully acquired and the container
still exists in the database after the lock has been checked.

	Containers without exported ports (used during deploy) and with stopped state
(set by running tsuru stop on the application) won’t be healed anymore.

	The api call /services/proxy/{instance} route now will correctly handle HTTP
headers. Previously, request headers weren’t send from tsuru to the service,
neither were response headers set by the service sent back to the client.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.8.0 release notes

Welcome to tsr 0.8.0!

These release notes cover the new features, bug fixes, backward
incompatible changes, general improvements and changes in the API
you’ll want to be aware of when upgrading from tsr 0.7.0 or older versions.

What’s new in tsr 0.8.0

	tsuru now supports associating apps to plans which define how it can use machine
resources, see backward incompatible changes for more information about which
settings are no longer used with plans available, and how to use them.

	When using segregate scheduler, it’s now possible to set a limit on how much
memory of a memory will be reserved for app units. This can be done by defining
some new config options. See the config reference for more details.

	The behavior of restart, env-set and env-unset has changed. Now
they’ll log their progress as they go through the following steps:
	add new units;

	wait for the health check if any is defined in tsuru.yaml;

	add routes to new units;

	remove routes from old units;

	remove old units.

	tsuru now supports multiple configuration entries for the same IaaS provider,
allowing a multi-region CloudStack or EC2 setup, for example. For more
details, check the Custom IaaS documentation.

Bug fixes

	docker-pool-teams-add: fix to don’t allow duplicate teams in a pool (issue #926 [https://github.com/tsuru/tsuru/issues/926]).

	platform-remove: fix bug in the API that prevented the platform from being
removed from the database (issue #936 [https://github.com/tsuru/tsuru/issues/936]).

	Fix parameter mismatch between bind and unbind calls in service API (issue
#794 [https://github.com/tsuru/tsuru/issues/794]).

Other improvements in tsr 0.8.0

	Allow platform customization of environment for new units. This allow the use
of virtualenv in the Python platform (contributes to fixing issue #928 [https://github.com/tsuru/tsuru/issues/928])

	Improve tsuru API acccess log (issue #608 [https://github.com/tsuru/tsuru/issues/608])

	Do not prevent users from running commands on units that are in the “error”
state (issue #876 [https://github.com/tsuru/tsuru/issues/876])

	Now only the team that owns the application has access to it when the
application is created. Other teams may be added in the future, using
app-grant (issue #871 [https://github.com/tsuru/tsuru/issues/871])

Backward incompatible changes

The following config settings have been deprecated:

	docker:allow-memory-set

	docker:max-allowed-memory

	docker:max-allowed-swap

	docker:memory

	docker:swap

You should now create plans specifying the limits for memory, swap and cpu share.
See tsuru-admin plan-create [http://tsuru-admin.readthedocs.org/en/latest/#plan-create] for more details.

API changes

For more details on the API, please refer to the tsuru API documentation.

	/app/<appname>/run: the endpoint for running commands has changed.
Instead of streaming the output of the command in text format, now it streams
it in JSON format, allowing clients to properly detect failures in the
execution of the command.

	/deploys: list deployments in tsuru, with the possibility of filtering by
application, service and/or user (issue #939 [https://github.com/tsuru/tsuru/issues/939]).

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.7.2 release notes

Welcome to tsr 0.7.2!

These release notes cover the bug fixes you’ll want to be aware of when
upgrading from tsr 0.7.1 or older versions.

Bug fixes

	Fix bug which allow duplicated cname among apps;

	Fix bug on removing cname it doesn’t exists;

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.7.1 release notes

Welcome to tsr 0.7.1!

These release notes cover the bug fixes you’ll want to be aware of when
upgrading from tsr 0.7.0 or older versions.

What’s new in tsr 0.7.1

Bug fixes

	Fix bug causing deployment containers to be added in the router;

	Fix bug in deploy, causing it to run twice if tsuru_unit_agent is used and
there’s a failure during the deploy;

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.7.0 release notes

Welcome to tsr 0.7.0!

These release notes cover the new features, bug fixes, backward
incompatible changes and general improvements you’ll want to be aware of
when upgrading from tsr 0.6.0 or older versions.

What’s new in tsr 0.7.0

	quota management via API is back: now tsuru administrators are able to view
and change the quota of a user of an application. It can be done from the
remote API or using tsuru-admin (issue #869 [https://github.com/tsuru/tsuru/issues/869])

	deploy via upload: now it’s possible to upload a tar archive to the API. In
this case, users are able to just drop the file in the tsuru server, without
using git. This feature enables the deployment of binaries, WAR files, and
other things that may need local processing (issue #874 [https://github.com/tsuru/tsuru/issues/874]). The tsuru client also
includes a tsuru deploy command

	removing platforms via API: now tsuru administrators are able to remove
platforms from tsuru. It can be done from the remote API or using tsuru-admin
(issue #779 [https://github.com/tsuru/tsuru/issues/779])

	new apps now get a new environment variable: TSURU_APPDIR. This
environment variable represents the path where the application was deployed,
the root directory of the application (issue #783 [https://github.com/tsuru/tsuru/issues/783])

	now tsuru server will reload configuration on SIGHUP. Users running the API
under upstart or other services like that are now able to call the reload
command and get the expected behaviour (issue #898 [https://github.com/tsuru/tsuru/issues/898])

	multiple cnames: now it’s possible to app have multiple cnames. The tsuru set-
cname and tsuru unset-cname commands changed to tsuru add-cname and
tsuru remove-cname respectively (issue #677 [https://github.com/tsuru/tsuru/issues/677]).

	tsuru is now able to heal failing nodes and containers automatically, this is
disabled by default. Instructions can be found in the config reference

	set app’s owner team: now it’s possible to user to change app’s owner team.
App’s new owner team should be one of user’s team. Admin user can change app’s
owner team to any team. (issue #894 [https://github.com/tsuru/tsuru/issues/894]).

	Now it’s possible to configure a health check request path to be called during
the deployment process of an application. tsuru will make sure the health check
is passing before switching the router to the newly created units. See
health check docs for more details.

Bug fixes

	API: fix the endpoint for creating new services so it returns 409 Conflict
instead of 500 when there’s already a service registered with the provided
name

	PlatformAdd: returns better error when an platform is added but theres no node
to build the platform image (issue #906 [https://github.com/tsuru/tsuru/issues/906]).

Other improvements in tsr 0.7.0

	API: improve the App swap endpoint, so it will refuse to swap incompatible
apps. Two apps are incompatible if they don’t use the same platform or don’t
have the same amount of units. Users can force the swap of incompatible apps
by providing the force parameter (issue #582 [https://github.com/tsuru/tsuru/issues/582])

	API: admin users now see all service instances in the service instances list
endpoint (issue #614 [https://github.com/tsuru/tsuru/issues/614])

	API: Handler that returns information about the deploy has implemented. Its
included the diff attribute that returns the difference between the last
commit and the preceding it.

Backward incompatible changes

	tsr ssh-agent has been totally removed, it’s no longe possible to use it
with tsuru server

	tsuru no longer accepts teams with space in the name (issue #674 [https://github.com/tsuru/tsuru/issues/674])

	tsuru no longer supports docker:cluster:storage set to redis, the only
storage available is now mongodb. See config reference for more details. Also, there’s a python script [https://gist.github.com/cezarsa/d2c8b8db611af9a2d67d] that can be used to
migrate from redis to mongodb.

	Hooks semantic has changed, restart:before-each and restart:after-each
no longer exist and now restart:before and restart:afer run on every
unit. Also existing app.yaml file should be renamed to tsuru.yaml. See
hooks for more details.

	Existing platform images should be updated due to changes in tsuru-circus and
tsuru-unit-agent. Old platforms still work, but support will be dropped on the
next version.

	router cnames should be migrate from string to list in redis. There is a script [https://gist.github.com/tarsisazevedo/c31c0e6ba62bee002784] that can be used to migrate it.

	app should be migrate from string to list in mongo too. You can execute this code to do it:

db.apps.find().forEach(function(item) {
 cname = item.cname;
 item.cname !== "" ? item.cname = [cname]:item.cname = [];
 db.apps.save(item);
})

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.6.2 release notes

Welcome to tsr 0.6.2!

These release notes cover the bug fixes you’ll want to be aware of when
upgrading from tsr 0.6.1 or older versions.

What’s new in tsr 0.6.2

Bug fixes

	Fix service proxy to read the request body properly.

	Fix deploy when trying to remove images from nodes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.6.1 release notes

Welcome to tsr 0.6.1!

These release notes cover the bug fixes you’ll want to be aware of when
upgrading from tsr 0.6.0 or older versions.

What’s new in tsr 0.6.1

Bug fixes

	Fix eternal application locks after a Ctrl-C during deploy.

	Fix leak of connections to OAuth provider. Only users using auth:scheme as
oauth are affected.

	Fix leak of connections to services.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.6.0 release notes

Welcome to tsr 0.6.0!

These release notes cover the new features, bug fixes and general
improvements you’ll want to be aware of when upgrading from tsr 0.5.0 or
older versions.

What’s new in tsr 0.6.0

	Removed the ssh-agent dependency. Now tsuru will generate a RSA keypair per
container, making it more secure and with one less agent running in the
Docker hosts. Now a Docker host is just a host that runs Docker. tsuru server
is still able to communicate with containers created using the ssh-agent, but
won’t create any new containers using a preconfigured SSH key. The version
0.7.0 will delete ssh-agent completely.

	tsuru now supports managing IaaS providers, this allow tsuru to provision new
docker nodes making it a lot easier to install and maintain. The behavior of
docker-node-* admin commands was changed to receive machine information and
new commands have been added. See tsuru-admin
for more details.

Right now, EC2 and Cloudstack are supported as IaaS providers. You can see more
details about how to configure them in the config reference

	Improved handling of unit statuses. Now the unit will communicate with the
server, minute after minute, updating the status. This will work as a heart
beat. So the unit will change to the status “error” whenever the heart beat
fails after 4 minutes or the unit informs that the process failed to install.

	Add the capability to specify the owner of a service instance. tsuru will use
this information when communicating with the service API

	During the deployment process, tsuru will now remove old units only after
adding the new ones (related to the issue #511 [https://github.com/tsuru/tsuru/issues/511]). It makes the process more
stable and resilient.

Bug fixes

	fix security issue with user tokens: handlers that expected application token
did not validate user access properly. With this failure, any authenticated
user were able to add logs to an application, even if he/she doesn’t have
access to the app.

Breaking changes

	tsuru source no longer supports Go 1.1. It’s possible that tsuru will build
with Go 1.1, but it’s no longer supported.

	tsuru_unit_agent package is not optional anymore, it must be available in the
image otherwise the container won’t start.

	docker cluster storage format in Redis has changed, also MongoDB is supported as
an alternative to Redis. There is a migration script [https://gist.github.com/cezarsa/d2c8b8db611af9a2d67d] available which convert
data in Redis to the new format, and also allows importing Redis data in
MongoDB.

	since tsuru requires a service instance to have an owner team, i.e. a team
that owns the service, users that are members of more than one team aren’t
able to create service instances using older versions of tsuru client (any
version older than 0.11).

	in order to define the owner team of an already created service instance,
tsuru administrators should run a migration script [https://gist.github.com/fsouza/5e65879c5547fe753f48], that get’s the first
team of the service instance and use it as the owner team.

	all code related to beanstalkd has been removed, it isn’t possible to use it
anymore, users that were still using beanstalkd need to change the
configuration of the API server to use redis instead

Other improvements

	improved documentation search and structure

	improved reliability of docker nodes, automatically trying another node in
case of failures

	experimental support for automatically healing docker nodes added through the
IaaS provider

	cmd: properly handle multiline cells in tables

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.5.3 release notes

Welcome to tsr 0.5.3!

These release notes cover the bug fixes you’ll want to be aware of when
upgrading from tsr 0.5.2 or older versions.

What’s new in tsr 0.5.3

Bug fixes

	Fix leak of connections to Redis when using queue: redis in config.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.5.2 release notes

Welcome to tsr 0.5.2!

These release notes cover the new features and bug fixes you’ll want to
be aware of when upgrading from tsr 0.5.1 or older
versions.

What’s new in tsr 0.5.2

Improvements

	improve the Docker cluster management so it keeps track of which node
contains a certain image, so a request to remove an image from the cluster
can be sent only to the proper nodes (docker-cluster #22 [https://github.com/tsuru/docker-cluster/issues/22]).

	improve error handling on OAuth authentication

Bug fixes

	Check if node exists before excludind it (mongo doesn’t return an error if I
try to remove a node which not exists from a pool) (#840 [https://github.com/tsuru/tsuru/issues/840]).

	Fix race condition in unit-remove that prevented the command from removing
the requested number of units

	Fix app lock management in unit-remove

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.5.1 release notes

Welcome to tsr 0.5.1!

These release notes cover the new features, bug fixes and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.5.0 or older
versions.

What’s new in tsr 0.5.1

	tsr api now checks tsuru.conf file and refuse to start if it is
misconfigured. It’s also possible to exclusively test the config file with
the -t flag. i.e.: running “tsr api -t”. (#714 [https://github.com/tsuru/tsuru/issues/714]).

	new command in the tsuru-admin: the command fix-containers will look for
broken containers and fix their configuration within the router, and in the
database

Bug fixes

	Do not lock application on tsuru run

Backwards incompatible changes

	tsr collector is no more. In the 0.5.0 release, collector got much less
responsibilities, and now it does nothing, because it no longer exists. The
last of its responsibilities is now available in the tsuru-admin
fix-containers command.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.5.0 release notes

Welcome to tsr 0.5.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.4.0 or older
versions.

What’s new in tsr 0.5.0

Stability and Consistency

One of the main feature on this release is improve the stability and consitency
of the tsuru API.

	prevent inconsitency caused by problems on deploy (#803 [https://github.com/tsuru/tsuru/issues/803]) / (#804 [https://github.com/tsuru/tsuru/issues/804])

	units information is not updated by collector (#806 [https://github.com/tsuru/tsuru/issues/806])

	fixed log listener on multiple API hosts (#762 [https://github.com/tsuru/tsuru/issues/762])

	prevent inconsitency caused by simultaneous operations in an application
(#789 [https://github.com/tsuru/tsuru/issues/789])

	prevent inconsitency cause by simultaneous env-set calls (#820 [https://github.com/tsuru/tsuru/issues/820])

	store information about errors and identify flawed application deployments
(#816 [https://github.com/tsuru/tsuru/issues/816])

Buildpack

tsuru now supports deploying applications using Heroku Buildpacks [https://devcenter.heroku.com/articles/buildpacks].

Buildpacks are useful if you’re interested in following Heroku’s best practices
for building applications or if you are deploying an application that already
runs on Heroku.

tsuru uses Buildstep Docker [https://github.com/progrium/buildstep] image to
deploy applications using buildpacks. For more information, take a look at the
buildpacks documentation page.

Other features

	filter application logs by unit (#375 [https://github.com/tsuru/tsuru/issues/375])

	support for deployments with archives, which enables the use of the
pre-receive Git hook, and also deployments without Git (#458 [https://github.com/tsuru/tsuru/issues/458], #442 [https://github.com/tsuru/tsuru/issues/442] and #701 [https://github.com/tsuru/tsuru/issues/701])

	stop and start commands (#606 [https://github.com/tsuru/tsuru/issues/606])

	oauth support (#752 [https://github.com/tsuru/tsuru/issues/752])

	platform update command (#780 [https://github.com/tsuru/tsuru/issues/780])

	support services with https endpoint (#812 [https://github.com/tsuru/tsuru/pull/812]) / (#821 [https://github.com/tsuru/tsuru/pull/821])

	grouping nodes by pool in segregate scheduler. For more information you can see
the docs about the segregate scheduler: Segregate Scheduler.

Platforms

	deployment hooks support for static and PHP applications (#607 [https://github.com/tsuru/tsuru/issues/607])

	new platform: buildpack (used for buildpack support)

Backwards incompatible changes

	Juju provisioner was removed. This provisioner was not being maintained. A
possible idea is to use Juju in the future to provision the tsuru nodes
instead of units

	ELB router was removed. This router was used only by juju.

	tsr admin was removed.

	The field units was removed from the collection apps. Information
about units are now available in the provisioner.
Now the unit state is controlled by provisioner. If you are upgrading tsuru
from 0.4.0 or an older version you should run the MongoDB script below,
where the docker collection name is the name configured by
docker:collection in tsuru.conf:

var migration = function(doc) {
 doc.units.forEach(function(unit){
 db.docker.update({"id": unit.name}, {$set: {"status": unit.state}});
 });
};

db.apps.find().forEach(migration);

	The scheduler collection has changed to group nodes by pool. If you are using
this scheduler you shoul run the MongoDB script below:

function idGenerator(id) {
 return id.replace(/\d+/g, "")
}

var migration = function(doc) {
 var id = idGenerator(doc._id);
 db.temp_scheduler_collection.update(
 {teams: doc.teams},
 {$push: {nodes: doc.address},
 $set: {teams: doc.teams, _id: id}},
 {upsert: true});
}
db.docker_scheduler.find().forEach(migration);
db.temp_scheduler_collection.renameCollection("docker_scheduler", true);

You can implement your own idGenerator to return the name for the new pools.
In our case the idGenerator generates an id based on node name. It makes
sense because we use the node name to identify a node group.

Features deprecated in 0.5.0

beanstalkd queue backend will be removed in 0.6.0.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.4.0 release notes

Welcome to tsr 0.4.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.x or older
versions.

What’s new in tsr 0.4.0

	redis queue backend was refactored.

	fixed output when service doesn’t export environment variables (issue #772 [https://github.com/tsuru/tsuru/issues/772])

Docker

	refactored unit creation to be more atomic

	support for unit-agent (issue #633 [https://github.com/tsuru/tsuru/issues/633]) - tsuru unit agent repository:
https://github.com/tsuru/tsuru-unit-agent.

	added an administrative command to move and rebalance containers between
nodes (issue #646 [https://github.com/tsuru/tsuru/issues/646]). For more
details, see the containers-rebalance reference [http://tsuru-admin.readthedocs.org/en/latest/#containers-rebalance].

	memory swap limit is configurable (issue #764 [https://github.com/tsuru/tsuru/issues/764])

	added a command to add a new platform (issue #780 [https://github.com/tsuru/tsuru/issues/780]). For more details, see the
platform-add reference [http://tsuru-admin.readthedocs.org/en/latest/#platform-add].

Backwards incompatible changes

The S3 integration on app creation was removed. The config properties
bucket-support, aws:iam aws:s3 were removed as well.

You should use tsuru 0.9.0 and tsuru-admin 0.3.0 version.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.12 release notes

Welcome to tsr 0.3.12!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.11 or older
versions.

What’s new in tsr 0.3.12

Docker provisioner

	integrated the segregated scheduler with owner team - #753 [https://github.com/tsuru/tsuru/issues/753]

Backwards incompatible changes

tsr 0.3.12 did not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.11 release notes

Welcome to tsr 0.3.11!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.10 or older
versions.

What’s new in tsr 0.3.11

API

	Added app team owner - #619 [https://github.com/tsuru/tsuru/issues/619]

	Expose public url in create-app - #724 [https://github.com/tsuru/tsuru/issues/724]

Docker provisioner

	Add support to custom memory - #434 [https://github.com/tsuru/tsuru/issues/434]

Backwards incompatible changes

All existing apps have no team owner.
You can run the mongodb script below to automatically set the first existing team in the app as team owner.

db.apps.find({ teamowner: { $exists: false }}).forEach(
 function(app) {
 app.teamowner = app.teams[0];
 db.apps.save(app);
 }
);

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.10 release notes

Welcome to tsr 0.3.10!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.9 or older
versions.

What’s new in tsr 0.3.10

API

	Improve feedback for duplicated users (issue #693 [https://github.com/tsuru/tsuru/issues/693])

Docker provisioner

	Update docker-cluster library, to fix the behavior of the default
scheduler (issue #716 [https://github.com/tsuru/tsuru/issues/716])

	Improve debug logs for SSH (issue #665 [https://github.com/tsuru/tsuru/issues/665])

	Fix URL for listing containers by app

Backwards incompatible changes

tsr 0.3.10 did not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.9 release notes

Welcome to tsr 0.3.9!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.8 or older
versions.

What’s new in tsr 0.3.9

API

	Login expose is_admin info.

	Changed get environs output data.

Backwards incompatible changes

tsr 0.3.9 has changed the API output data for get environs from an app.

You should use tsuru cli 0.8.10 version.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.8 release notes

Welcome to tsr 0.3.8!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.8 or older
versions.

What’s new in tsr 0.3.8

API

	Expose deploys of the app in the app-info API

Docker

	deploy hook support enviroment variables with space.

Backwards incompatible changes

tsr 0.3.7 does not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.7 release notes

Welcome to tsr 0.3.7!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.6 or older
versions.

What’s new in tsr 0.3.7

API

	Improve administrative API for the Docker provisioner

	Store deploy metadata

	Improve healthcheck (ping MongoDB before marking the API is ok)

	Expose owner of the app in the app-info API

Backwards incompatible changes

tsr 0.3.7 does not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.6 release notes

Welcome to tsr 0.3.6!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.5 or older
versions.

What’s new in tsr 0.3.6

Application state control

	Add new functionality to the API and provisoners: stop and starting an
App

Services

	Add support for plans in services

Backwards incompatible changes

tsr 0.3.6 does not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.5 release notes

Welcome to tsr 0.3.5!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.4 or older
versions.

What’s new in tsr 0.3.5

Bugfixes

	Fix administrative API for Docker provisioner

Backwards incompatible changes

tsr 0.3.5 does not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.4 release notes

Welcome to tsr 0.3.4!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.3 or older
versions.

What’s new in tsr 0.3.4

Documentation improvements

	Improvements in the layout of the documentation

Bugfixes

	Swap address and cname on apps when running swap

	Always pull the image before creating the container

Backwards incompatible changes

tsr 0.3.4 does not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.3 release notes

Welcome to tsr 0.3.3!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.2 or older
versions.

What’s new in tsr 0.3.3

Queue

	Add an option to use Redis instead of beanstalkd for work queue

In order to use Redis, you need to change the configuration file:

queue: redis
redis-queue:
 host: "localhost"
 port: 6379
 db: 4
 password: "your-password"

All settings are optional (queue will still default to “beanstalkd”), refer
to configuration docs for more details.

Other improvements and bugfixes

	Do not depend on Docker code

	Improve the layout of the documentation

	Fix multiple data races in tests

	[BUGFIX] fix bug with unit-add and application image

	[BUGFIX] fix image replication on docker nodes

Backwards incompatible changes

tsr 0.3.3 does not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.2 release notes

Welcome to tsr 0.3.2!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsr 0.3.1 or older
versions.

What’s new in tsr 0.3.2

Segregated scheduler

	Support more than one team per scheduler

	Fix the behavior of the segregated scheduler

	Improve documentation of the scheduler

API

	Improve administrative API registration

Other improvements and bugfixes

	Do not run restart on unit-add (nor unit-remove)

	Improve node management in the Docker provisioner

	Rebuild app image on every 10 deployment

Backwards incompatible changes

tsr 0.3.2 does not introduce any incompatible changes.

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.1 release notes

Welcome to tsr 0.3.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsuru 0.3.0 or older
versions.

What’s new in tsr 0.3.1

Backwards incompatible changes

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	tsuru 0.12.4 documentation

 	Release notes

tsr 0.3.0 release notes

Welcome to tsr 0.3.0!

These release notes cover the new features and backwards incompatible
changes you’ll want to be aware of when upgrading from tsuru 0.2.x or older
versions.

What’s new in tsr 0.3.0

Support Docker 0.7.x and other improvements

	Fixed the 42 layers problem.

	Support all Docker storages.

	Pull image on creation if it does not exists.

	BUGFIX: when using segregatedScheduler, the provisioner fails to get
the proper host address.

	BUGFIX: units losing access to services on deploy bug.

Improvements related to Services

	bind is atomic.

	service-add is atomic

	Service instance name is unique.

	Add support to bind an app without units.

Collector ticker time is configurable

Now you can define the collector ticker time. To do it just set on tsuru.conf:

collector:
 ticker-time: 120

The default value is 60 seconds.

Other improvements and bugfixes

	unit-remove does not block util all units are removed.

	BUGFIX: send on closed channel: https://github.com/tsuru/tsuru/issues/624.

	Api handler that returns information about all deploys.

	Refactored quota backend.

	New lisp platform. Thanks to Nick Ricketts.

Backwards incompatible changes

tsuru 0.3.0 handles quota in a brand new way. Users upgrading from 0.2.x need
to run a migration script in the database. There are two scripts available: one
for installations with quota enabled and other for installations without quota.

The easiest script is recommended for environments where quota is disabled,
you’ll need to run just a couple of commands in MongoDB:

% mongo tsuru
MongoDB shell version: x.x.x
connecting to: tsuru
> db.users.update({}, {$set: {quota: {limit: -1}}});
> db.apps.update({}, {$set: {quota: {limit: -1}}});

In environments where quota is enabled, the script is longer, but still simple:

db.quota.find().forEach(function(quota) {
 if(quota.owner.indexOf("@") > -1) {
 db.users.update({email: quota.owner}, {$set: {quota: {limit: quota.limit, inuse: quota.items.length}}});
 } else {
 db.apps.update({name: quota.owner}, {$set: {quota: {limit: quota.limit, inuse: quota.items.length}}});
 }
});

db.apps.update({quota: null}, {$set: {quota: {limit: -1}}});
db.users.update({quota: null}, {$set: {quota: {limit: -1}}});
db.quota.remove()

The best way to run it is saving it to a file and invoke MongoDB with the file
parameter:

% mongo tsuru <filename.js>

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	tsuru 0.12.4 documentation

Roadmap

Release Process

We use GitHub’s milestones to releases’ planning and anyone is free to
suggest an issue to a milestone, and discuss about any issue in the next tsuru
version. We also have internal goals as listed bellow and our focus will be
these goals. But it’s not immutable, we can change any goal at any time as
community need.

At globo.com we have goals by quarter of a year (short term goals bellow), but
it doesn’t mean that there’s only one release per quarter. Our releases have
one or more main issues and minor issues which can be minor bugfixes, ground
work issue and other “not so important but needed” issues.

You can suggest any issue to any milestones at any time, and we’ll
discuss it in the issue or in Gitter [https://gitter.im/tsuru/tsuru].

Next Release 0.12.0

	Lean containers (issue #1136 [https://github.com/tsuru/tsuru/issues/1136])

	Dockerize tsuru installation (issue #1091 [https://github.com/tsuru/tsuru/issues/1091])

Long term Goals

These are our goals to 1.0 version.

	review platform management.

We are thinking to change our way to manage platform. Today tsuru has its own platform. But we have a lot of problems to mantain it.
In other way, we have buildpacks and we can use it to provide any platform we want, but there’s no free lunch.`
Buildpack can be built by anyone and are updated “automagically”, so your application may stop to deploy properly, totally out of the blue.

	docker images with envs.

	get logs and metrics from outside of app container.

	improve app-swap

	improve plugins

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	tsuru 0.12.4 documentation

Index

 Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

 releases/tsuru/0.10.1.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.10.1 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.10.1].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.8.7.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.8.7 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.8.7].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.8.9.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.8.9 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.8.9].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.8.11.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.8.11 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.8.11].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.10.0.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.10.0 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.10.0].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.11.0.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.11.0 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.11.0].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.9.0.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.9.0 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.9.0].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.8.10.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.8.10 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.8.10].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.8.8.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.8.8 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.8.8].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.12.0.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.12.0 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.12.0].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru/0.8.6.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru 0.8.6 release notes

New page with release notes [https://github.com/tsuru/tsuru-client/releases/tag/0.8.6].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru-admin/0.6.0.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru-admin 0.6.0 release notes

New page with release notes [https://github.com/tsuru/tsuru-admin/releases/tag/0.6.0].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

_static/comment.png

releases/tsuru-admin/0.4.0.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru-admin 0.4.0 release notes

New page with release notes [https://github.com/tsuru/tsuru-admin/releases/tag/0.4.0].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

install/client.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated install/client page

New page that documents installing clients

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru-admin/0.4.1.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru-admin 0.4.1 release notes

New page with release notes [https://github.com/tsuru/tsuru-admin/releases/tag/0.4.1].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru-admin/0.4.2.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru-admin 0.4.2 release notes

New page with release notes [https://github.com/tsuru/tsuru-admin/releases/tag/0.4.2].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

releases/tsuru-admin/0.5.0.html

 Navigation

 		
 index

 		tsuru 0.12.4 documentation »

Deprecated tsuru-admin 0.5.0 release notes

New page with release notes [https://github.com/tsuru/tsuru-admin/releases/tag/0.5.0].

 © Copyright 2015, Globo.com.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/file.png

_static/comment-bright.png

_static/up.png

_static/plus.png

_static/down.png

