

TrustNoSql

.. image:: http://img.shields.io/github/release/vegvisir/trustnosql.svg :target: https://packagist.org/packages/vegvisir/trustnosql :alt: Latest Stable Version .. image:: http://img.shields.io/packagist/dm/vegvisir/trustnosql.svg :target: https://packagist.org/packages/vegvisir/trustnosql :alt: Total Downloads .. image:: https://api.travis-ci.org/vegvisir-for-all/trustnosql.svg?branch=master :target: https://travis-ci.org/vegvisir-for-all/trustnosql :alt: Build Status .. image:: http://img.shields.io/coveralls/vegvisir-for-all/trustnosql.svg?branch=master :target: https://coveralls.io/r/vegvisir-for-all/trustnosql?branch=master :alt: Coverage Status .. image:: https://github.styleci.io/repos/161784926/shield?branch=master :target: https://github.styleci.io/repos/161784926 :alt: StyleCI .. image:: https://readthedocs.org/projects/trustnosql/badge/?version=latest :target: https://trustnosql.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

Introduction

What is TrustNoSql

TrustNoSql is a Laravel (>=5.4) role/permission manager for MongoDB-based applications. It supports roles, permissions, and teams, and offers a nice CLI for your convenience. TrustNoSql is built atop a great jenssegers/laravel-mongodb [https://github.com/jenssegers/laravel-mongodb] package, and it’s inspired by Laratrust [https://github.com/santigarcor/laratrust].

This documentation of TrustNoSql is currently under development. We work day and night to complete it as soon as possible.

Key features

	permission/role/team

	cache support

	middleware with complex matching rules (SQL-like)

	custom model events

	convenient command-line interface

Why TrustNoSql?

We decided to create TrustNoSql as we began to develop Laravel application without MySQL (or another relational) databases in favor for NoSQL systems, mainly MongoDB. At first we planned to adjust Laratrust to our needs, but as we kept on thinking, we felt that we need some more functionalities than Laratrust offers, like complex middleware rules.

Since we believe that TrustNoSql can prove useful for a wide range of Laravel developers, we wanted it to be an open-source project from the very beggining. As MongoDB fans, we must admit that it would be great if TrustNoSql helps to promote MongoDB among Laravel developers.

Requirements

In order to have TrustNoSql working correctly you need to have:

	Laravel [https://packagist.org/packages/laravel/framework] >=5.4

	Laravel-MongoDB [https://packagist.org/packages/jenssegers/mongodb] >=3.2

	PHP >=7.0

TrustNoSql would probably run also with Laravel 5.3 (and Laravel-MongoDB >=3.1), but no tests for Laravel 5.3 have been performed. As soon as we run such tests, we’ll relase official statement on that.

Make sure your Laravel application have correct configuration for Laravel-MongoDB (database configuration).

Installation

Via Composer

You can install TrustNoSql with Composer:

$ composer require vegvisir/trustnosql

Service provider and alias (Laravel <5.5)

Add the TrustNoSql service provider in your config/app.php file:

<?php

'providers' => [
 // ...
 Vegvisir\TrustNoSql\TrustNoSqlServiceProvider::class,
 // ...
]

Also, you should add an alias to your config/app.php file:

<?php

'aliases' => [
 // ...
 'TrustNoSql' => Vegvisir\TrustNoSql\TrustNoSqlFacade::class,
 // ...
]

Create models for your TrustNoSql

Permission (obligatory)

In your models directory, create a base model for permission, using a TrustNoSql permission trait.

<?php

namespace App\Models;

use Vegvisir\TrustNoSql\Models\Permission as TrustNoSqlPermission;
use Vegvisir\TrustNoSql\Traits\PermissionTrait as TrustNoSqlPermissionTrait;

class Permission extends TrustNoSqlPermission
{
 use TrustNoSqlPermissionTrait;
}

Vegvisir\TrustNoSql\Models\Permission extends Moloquent model. Vegvisir\TrustNoSql\Traits\PermissionTrait provides necessary methods.

Role

In your models directory, create a base model for role, using a TrustNoSql role trait.

<?php

namespace App\Models;

use Vegvisir\TrustNoSql\Models\Role as TrustNoSqlRole;
use Vegvisir\TrustNoSql\Traits\RoleTrait as TrustNoSqlRoleTrait;

class Role extends TrustNoSqlRole
{
 use TrustNoSqlRoleTrait;
}

Vegvisir\TrustNoSql\Models\Role extends Moloquent model. Vegvisir\TrustNoSql\Traits\RoleTrait provides necessary methods.

User

Additionaly to permission and role models, you need to modify your user model, adding a TrustNoSql user trait:

<?php

namespace App\Models;

use Jenssegers\Mongodb\Auth\User as Authenticable;
use Vegvisir\TrustNoSql\Traits\UserTrait as TrustNoSqlUserTrait;

class User extends Authenticable
{
 use TrustNoSqlUserTrait;
 // ...
}

Optimally, you could also extend your user model with TrustNoSql user model. It extends Jenssegers\Mongodb\Auth\User, so you don’t need to worry about your user model methods:

<?php

namespace App\Models;

use Vegvisir\TrustNoSql\Models\User as Authenticable;
use Vegvisir\TrustNoSql\Traits\UserTrait as TrustNoSqlUserTrait;

class User extends Authenticable
{
 use TrustNoSqlUserTrait;
 // ...
}

Thus, your user model will inherit implementation of the UserInterface contract, being a part of TrustNoSql package, making your code more compatible with SOLID principles.

Team

This model is optional - create it only if you intend to use team functionality.

In your models directory, create a base model for team, using a TrustNoSql team trait.

<?php

namespace App\Models;

use Vegvisir\TrustNoSql\Models\Team as TrustNoSqlTeam;
use Vegvisir\TrustNoSql\Traits\TeamTrait as TrustNoSqlTeamTrait;

class Team extends TrustNoSqlTeam
{
 use TrustNoSqlTeamTrait;
}

Vegvisir\TrustNoSql\Models\Team extends Moloquent model. Vegvisir\TrustNoSql\Traits\TeamTrait provides necessary methods.

Middleware setup

If you want to use middleware in your application, add folowing lines to your app/Http/Kernel.php file under $routeMiddleware:

<?php

protected $routeMiddleware = [
 // ...
 'permission' => \Vegvisir\TrustNoSql\Middleware\Permission::class,
 'role' => \Vegvisir\TrustNoSql\Middleware\Role::class,
 'reject' => \Vegvisir\TrustNoSql\Middleware\Reject::class,
 'trust' => \Vegvisir\TrustNoSql\Middleware\Trust::class,
 'team' => \Vegvisir\TrustNoSql\Middleware\Team::class,
 // ...
];

Of course, you can use only one of our middleware classes. You can also use your custom middleware aliases, f.e. wedontlikethem instead of reject or yescomeon instead of trust, but remember to use your custom aliases while defining middleware routes.

Configuration

All configuration setting are included in config/trustnosql.php file.

If you don’t see trustnosql.php in config folder, try publishing config files from TrustNoSql:

$ artisan vendor:publish

You’ll see that the config/trustnosql.php file is divided into few sections, reflecting concepts and key parts of TrustNoSql:

	Cache

	Command-line interface (CLI)

	Collections

	Events

	Middleware

	Permissions

	Teams

	User models

Cache

Set use_cache to false if you don’t want to use cache.

CLI

Set use_cli to false if you don’t want TrustNoSql service provider to register artisan commands.

You can change the default trustnosql signature to any of your choice. Set signature to the signature of your choice.

Collections

You can set collection names for roles, permissions, teams and users. If you use default names, omit that section.

Events

Settings for custom model events handling within TrustNoSql.

TrustNoSql offers custom model events functionality. You can specify your own event handlers for such events as attaching permissions/roles/teams to user or detaching them.

Set use_events to false if you don’t want to use custom model events within TrustNoSql at all.

If you want to specify your own event handlers, you need to create model observers and declare them in the observers section of the events config.

Supposing, you put your PermissionObserver, RoleObserver, TeamObserver and UserObserver under app\observers, your configuration should look as following:

<?php

return [
 // ...

 'events' => [

 // Whether to use events
 'use_events' => true,

 // Observers list
 'observers' => [

 // Observer for Permission model
 'Permission' => \App\PermissionObserver::class,

 // Observer for Role model
 'Role' => \App\RoleObserver::class,

 // Observer for Team model
 'Team' => \App\TeamObserver::class,

 // Observer for application user model
 'User' => \App\UserObserver::class,
],
],
];

You can override some of the observers, not all four.

Middleware

You can choose from two available handling methods, that TrustNoSql middleware will call whenever user is not authorized to access a resource: abort and redirect.

abort handler means that application will throw a 403 exception. redirect means the application will redirect user to other route - moreover, an error message can be flashed.

Usage

Permission

Permission is a right to perform a specific task. Permissions can be attached both to Roles and (explicitely) Users.

Permissions have three fillable fields:

	name - a unique name created in a manner described below,

	display_name - a user-friendly name of the permission,

	description - a user-friendly description of the permission.

Unlike it Lararust or Zizaco’s Entrust packages, TrustNoSql permissions names (field name) must be created in a namespace/task manner. The slash sign / is really important, because it’s used by TrustNoSql to distinguish namespace from task.

Therefore such permission names are not valid:

	users-create

	createusers

	users:create

The only valid permission name for creating users would be built that way:

	user/create

	users/create

	or similar

It’s important not to use all or * as a task name, since those are keywords used by our wildcard permission functionality.

Given that your user is stored within $user variable, and you want to check if $user can create users (permission user/create), you can do that using one of following methods:

<?php

$user->hasPermission('user/create');
$user->hasPermissions('user/create');
$user->can('user/create');

// You can all TrustNoSql facade method...
TrustNoSql::can($user, 'user/create');

// ...or use our magic can methods
$user->canCreateUser();
TrustNoSql::canCreateUser($user);

As an argument for hasPermission, hasPermissions and can methods, you can pass:

	permission name as a string (user/create),

	permission names as comma-separated string (user/create,user/delete),

	array of permission names (['user/create', 'user/delete']),

	a wildcard permission name (user/* or user/all).

TrustNoSql provides wildcard permission functionality to use for checking if a user can perform a specific task.

Currently, we offer support for * wildcard, with its alias all, like in the example below:

<?php

/*
 * Suppose the $user has the permissions: order/view and order/update
 */

$user->can('order/view'); // true
$user->can('order/*'); // true
$user->can('order/all'); // true
$user->can('order/everything'); // false
$user->can('orders/*'); // false because of namespace mismatch

Role

Role is a set of permissions. Users can have roles, like admin or manager, and that means they have a set of permissions related to the roles they have.

Roles have three fillable fields:

	name - a unique name created in a manner described below,

	display_name - a user-friendly name of the role,

	description - a user-friendly description of the role.

Roles can have any name you think of (unlike permisisons). However, it’s a good practice to keep your role names as representative as they can be.

Given that your user is stored within $user variable, and you want to check if $user has a role manager, you can do that using one of following methods:

<?php

$user->hasRole('manager');
$user->hasRoles('manager');
$user->isA('manager');
$user->isAn('manager');

// You can all TrustNoSql facade method...
TrustNoSql::isA($user, 'manager');
TrustNoSql::isAn($user, 'manager');

Similar to permissions, you can pass an array of role names as an argument to one of the abovementioned methods.

Team

Grabbable

Events

Middleware

Command-line interface (CLI)

TrustNoSql comes with handy CLI of its own. It’s especially useful at the initial phase of application development, when you have to create admin roles.

TrustNoSql CLI provides all possible actions for Permission, Role and Team (create, delete, attach, detach, list, info), as well as detailed info for chosen user.

Commands description

You don’t have to specify parameters for commands inline, as all of them provide simple interactive interface.

Permission namespace

	Command

	Description

	trustnosql:permission:attach

	Attaches permission(s) to role(s) and/or user(s)

	trustnosql:permission:create

	Creates new permission(s)

	trustnosql:permission:delete

	Deletes permission(s)

	trustnosql:permission:detach

	Detaches permission(s) from role(s) and/or user(s)

	trustnosql:permission:info

	Shows detailed information about permission

	trustnosql:permissions

	Shows a list of permissions

Role namespace

	Command

	Description

	trustnosql:role:attach

	Attaches role(s) to team(s) and/or user(s)

	trustnosql:role:create

	Creates new role(s)

	trustnosql:role:delete

	Deletes role(s)

	trustnosql:role:detach

	Detaches role(s) from team(s) and/or user(s)

	trustnosql:role:info

	Shows detailed information about role

	trustnosql:roles

	Shows a list of roles

Team namespace

	Command

	Description

	trustnosql:team:attach

	Attaches team(s) to role(s) and/or user(s)

	trustnosql:team:create

	Creates new team(s)

	trustnosql:team:delete

	Deletes team(s)

	trustnosql:team:detach

	Detaches role(s) from team(s) and/or team(s)

	trustnosql:team:info

	Shows detailed information about team

	trustnosql:teams

	Shows a list of teams

User namespace

	Command

	Description

	trustnosql:user:info

	Shows detailed information about user

Troubleshooting

So far, this section is empty. As soon as we get info on some troubles you might experience, we will definitely provide some solutions.

License

TrustNoSql is an open-source project, distributed under the terms of GNU General Public License v3.0. More information, along with the license terms can be found at https://www.gnu.org/licenses/gpl-3.0.en.html.

Contributing

You are more than welcome to contribute to TrustNoSql. We look forward to your pull requests, hints and ideas, as well as constructive criticism of TrustNoSql.

Please report all issues at https://github.com/vegvisir-for-all/trustnosql/issues. We also provide e-mail address vegvisir.for.all(at)gmail.com, but, unfortunately, we cannot guarantee swift responses (or reponses whatsoever) to your e-mail messages.

Tests

TrustNoSql uses Travis for continuous integration and tests. However, if you want to perform tests of your own, you can use our docker-compose.yml and Dockerfile files provided at the root of the package. All you have to do is (supposing you have Docker and Docker Compose installed) run:

$ docker-compose up

About us

TrustNoSql have been created by Vegvisir - a small software house from Warsaw, Poland and its main developer was Marek Ognicki (Kapusta).

We specialize in Laravel applications, using NoSQL databases (mainly MongoDB), deployed on mainly Google Cloud Engine. We tend to keep our code clean and professional (SOLID/DRY principles), that’s why we use such services like StyleCI. For our tests we use TravisCI.

We’d love to make your software dreams come true. If you believe, we migt be the right choice for you, let us know :)

Index

 nav.xhtml

 Table of Contents

 		
 TrustNoSql

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

