

Welcome to trumpet’s documentation!

Contents:

	trumpet
	News

	Goals and Progress

	Old

	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.2.0 (2017-12-07)

	Developing trumpet without vagrant
	Setup

	Trumpet Static Resources
	CSS Framework

	Basic Javascript Libraries

	Older Web Views Documentation
	Webviews

Indices and tables

	Index

	Module Index

	Search Page

trumpet

[image: _images/trumpet.svg]
 [https://pypi.python.org/pypi/trumpet][image: _images/trumpet1.svg]
 [https://travis-ci.org/umeboshi2/trumpet][image: Documentation Status]
 [https://trumpet.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/umeboshi2/trumpet/]Build a website with pyramid

	Free software: UNLICENSED

	Documentation: https://trumpet.readthedocs.io.

News

Trumpet is getting a bit closer to the original intended goal of
being a set of building blocks and tools to help build a pyramid
web application. Management of static resources has moved
completely away from python. Compass is still being used to
help manage the stylesheets. Webpack is being used to handle the
javascript, as well as some css, fonts, etc. Currently, cookiecutter
is being used to test generating project skeletons, replacing the
previous scaffold.

The general concept is to have support for creating web applications
with different hosting requirements. A creative use of cookiecutter
templates may provide the ability to generate a pyramid site, a static
application/site, or even a tree of static assets that can be used in
many projects.

Goals and Progress

	user management

	login/logout

	administer users via REST

	reflective sqlalchemy code, db should provide minimum user/password tables

	db support

	common sqlalchemy code for all databases complete

	request object with attached sessionmaker completed by upstream scaffold

	session management obsolete?

	minimal use of cookies completed by using JSON Web Tokens

	use access_token as parameter to all requests requiring authentication

	policies for session management now token policies

	sessions per user (configure number of sessions a user can have)

	sessions per device (register devices to user?)

	session duration

	session timeout/expiration

	view classes

	basic view classes to be used by all views

	common methods WIP

	app settings available still debating usefulness, JSONAPI may be better

	base user aware view class

	base class for requests that need auth

	base cornice resource

	base static resource

	base page resource this is almost good enough

	send the html page that runs the app complete

	use template to fill the head with links and meta info

	handle permissions for access to app send auth_token as query param?

	server side validation still needed

	use colander to build schemas for validation (or JSONSchema?)

	integrate with job servers for long running jobs

Old

Remnants of the old README can be found [here](https://github.com/umeboshi2/trumpet/blob/master/docs/misc.md).

Features

	TODO

	remember vobject and icalendar to make .vcf files, etc…

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install trumpet, run this command in your terminal:

$ pip install trumpet

This is the preferred method to install trumpet, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for trumpet can be downloaded from the Github repo [https://github.com/umeboshi2/trumpet].

You can either clone the public repository:

$ git clone git://github.com/umeboshi2/trumpet

Or download the tarball [https://github.com/umeboshi2/trumpet/tarball/master]:

$ curl -OL https://github.com/umeboshi2/trumpet/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use trumpet in a project:

import trumpet

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/umeboshi2/trumpet/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

trumpet could always use more documentation, whether as part of the
official trumpet docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/umeboshi2/trumpet/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up trumpet for local development.

	Fork the trumpet repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/trumpet.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv trumpet
$ cd trumpet/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 trumpet tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/umeboshi2/trumpet/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_trumpet

Credits

Development Lead

	Joseph Rawson <joseph.rawson.works@gmail.com>

Contributors

None yet. Why not be the first?

History

0.2.0 (2017-12-07)

	First release on PyPI.

Developing trumpet without vagrant

Setup

I like to use virtualenvwrapper

sudo apt-get install virtualenvwrapper
mkvirtualenv trumpet
workon trumpet
pip install requests

Development packages are needed to install some of the python packages:

.. code:: sh

sudo apt-get install libpq-dev python-dev libjpeg62-dev libpng12-dev libfreetype6-dev liblcms1-dev python-requests libxml2-dev libxslt1-dev libssl-dev

Next we have to download build and prepare the static resources.

Setup Compass

Make sure rubygems is on your system:

sudo apt-get install rubygems

Setup local gem environment:

mkdir -p ~/local/gems

Add to ~/.bashrc:

#setup gems if directory exists
if [-d ~/local/gems]; then
 export GEM_HOME=~/local/gems
 export PATH=~/local/gems/bin:$PATH
fi

Source the bashrc or spawn another shell and install the gems:

gem install sass -v 3.2.18
gem install compass -v 0.12.2
gem install susy -v 1.0.9
gem install sassy-buttons -v 0.2.6
gem install bootstrap-sass -v 3.0.2.1
gem install compass-ui -v 0.0.5

Setup NodeJS

FIXME: Need better instructions for nodeenv.

Get nodejs for virtualenv

workon trumpet
pip install nodeenv
nodeenv -p

The last statement will download the latest stable version of nodejs and
build it in the python virtual environment so that both virtual
environments can be integrated together.

Install global nodejs packages

Then, install these packages globally:

npm install -g coffee-script
npm install -g grunt-cli
npm install -g bower

Get packages for grunt

In the project directory, get the packages for grunt:

npm install

Get bower components

Then install the bower packages:

bower install

Bower packages can contain whole git repositories, which can be
excessive when deploying a python package of static resources. I have
written a script that helps to deploy only what is needed from the bower
components. The script is not very smart, but handles any bower package
that points to a single file, or list of files very well.

run grunt

grunt

make package

python setup.py (develop/install/sdist)

Trumpet Static Resources

CSS Framework

	
Compass [http://compass-style.org/]:

Compass is the tool I use to generate my CSS resources. The CSS
specification has no definitios for variables, forcing many web
developers to make class names such as “green” and then add CSS
code like this:

.green {
background-color: green;
}

But what the developer really needs is something more along this idea:

.warn {
background-color: $warning-background;
}

… which helps to simplify the structure of the CSS and remove some
of the bad hacks that are used to workaround the deficiencies of the CSS
specification.

	Susy [http://susy.oddbird.net/](Unused): Susy is a grid layout
system that will allow for responsive webpages. I am not using this
anymore, as bootstrap is currently handling the responsive grid
layout, but Susy is superior to bootstrap and since I am also using
bootstrap-sass, I feel that I can eventually reimplement the
bootstrap grid layout in Susy. UPDATE: I decided to use the bootstrap
grid system for the time being.

	Sassy Buttons [http://jaredhardy.com/sassy-buttons/]: This is a
collection of mixins and defaults that help a developer make custom
buttons very easily.

	Bootstrap for
Sass [https://github.com/thomas-mcdonald/bootstrap-sass]: This
wonderful package allows me to refrain from using the css that is
provided with bootstrap and quickly make a custom version that I can
integrate more closely with other objects on the page. Having
bootstrap in this form allows me to adjust how bootstrap operates and
allows me to only choose the parts I need (Currently everything is
included).

	FontAwesome [http://fontawesome.io/]: Instead of just using the
basic css, I have chosen to use the fontawesome-sass distribution.
This provides scalable vector icons to websites.

	Compass UI [https://github.com/patrickward/compass-ui]: This
compass plugin provides the ability to generate jQueryUI themes with
a minimum of effort. I have spent hours on the themeroller before
trying to create a custom theme that would match the general colors
that I use on a web page. With this plugin, all I have to do is set
the variables to correspond to the color variables that I use
elsewhere on the page and I instantly get themed widgets that don’t
look like they came from another site.

Basic Javascript Libraries

	Requirejs [http://requirejs.org]: Required.

	jQuery [http://jquery.com/]: jQuery is a very good for selecting
and maninpulating elements in the DOM.

	jQuery User Interface [http://jqueryui.com/]: jQueryUI is used
for the fullcalendar widget, as well as for dialog boxes and other
user interface elements that aren’t used through boostrap. The
corresponding styles are maintained with compass.

	Bootstrap v3 [http://getbootstrap.com/]: Bootstrap is a
CSS/Javascript framework used to help make responsive websites.
Bootstrap was selected to be used in order to serve to mobile
devices. The CSS is handled through compass with bootstrap-sass.

	Underscore.js [http://underscorejs.org/]: Underscore is a library
full of useful utilities, and like jqueryui, is depended upon by
other javascript libraries I use.

	Backbone.js [http://backbonejs.org/]: Backbone is an excellent
library that provides an api to make very rich views tied to models
that are seamlessly synchronized with the server via a REST
interface.

	FullCalendar [http://arshaw.com/fullcalendar/]: FullCalendar is a
very good library that provides an interactive calendar where events
can be retrieved dynamically and grouped, colored, or otherwised
styled in many ways. The calendar provides monthly, weekly, and daily
view models to interact with.

	Ace Editor [http://ace.c9.io/#nav=about]: The ACE editor is a
good text editor that is very useful for editing html, css,
java/coffee scripts, and other formats that aren’t being used yet.

	CoffeeScript [http://coffeescript.org/]: I am currently
experimenting executing coffeescript on the client using the browser
to compile the code. While compilation is generally quick on the
browser, the size of the compiler (196KB, and already minified)
encourages me to consider implementing server side compilation.

	Teacup [http://goodeggs.github.io/teacup/]: “Teacup is templates
in CoffeeScript.” – nuff said
http://en.wikipedia.org/wiki/Domain-specific_language

Older Web Views Documentation

Webviews

A Webview is a name created to denote a single page application. Trumpet
is being geared to become a library to help create websites where
most/all pages are apps. I have managed to shrink the html page served
by pyramid to a very small head with one script tag loading requirejs
and pointing to the loader for the app. I would love to use another name
for this, but naming is probably the hardest part of development.

Page Layouts

Before switching to the SPA paradigm of thought, every page was rendered
with a template that depended on the presence of a layout model. The
layout model was simply an object with attributes that was applied to a
mako template. The type of each attribute is either text or mako
template. One of my original goals was to store the main layout template
in the database, as well as css and javascript, to allow the end
user/admin to customize the site without updating the code.

Server vs. Client

Mako templates are very powerful, allowing the author to wield the full
power of python when rendering the template. In fact, the templates are
versatile enough to bypass writing code in the view callable and put all
the logic in the template, although this is generally not the wisest
thing to do. The largest problem with using the mako templates is that
the code is executed server side, preventing me from being able to
protect the service from mistakes or malice. I thought about using a
more restrictive template system, but soon realized that the inherent
problem was the server side rendering, and the server templates would
either have to be too limited to be of more than cosmetic use, or
flexible enough to bypass the policy of the server.

This is where client side templating comes to the rescue. With client
side templates, it is far more difficult to endanger the service that is
being provided. I am expecting the worst of the problems to be
dysfunctional pages, although the admin pages that edit the templates
should always work. I also see a very slim (I hope!) possibility that
bad templates could cause a denial of service, but I don’t expect this
to be a problem that occurs often.

Being less familiar with javascript than with python, I had to search
and compare templating styles. I started with underscore templates, but
found them to be very limiting. I then started using EJS templates, and
found them to be very similar to mako templates, although not as
versatile. Nevertheless, I settled on using EJS templates for trumpet.

After believing I was happy with using EJS templates, I was looking
around the stackoverflow forums to find a solution that I was having
with CoffeeScript and learned about teacup. Teacup is a domain specific
language that works very well as a templating system. With teacup, not
only do you have the full flexibility of javascript when rendering the
template, you are also using coffeescript to define the template, which
is far more elegant than anything else I have seen on either the python
or javascript sides. I did like how concise jade is, but I feel that
teacup will be a better fit for trumpet.

REST

The general idea behind REST isn’t really hard to understand. It was
having to unlearn the way by which much of the web had already been
operating for years. I spent many years knowing nothing of PUT and
DELETE, but only being familiar with GET and POST, which I naively
treated (loosely) as read/write methods. Now that I look back (and not
very far either) I was often using GET to perform both deletions of
single objects, as well as attaching relations together.

After learning REST, my ability to write arbitrary url’s to perform a
function has been severely hampered, and this is a good thing. I now
have only four verbs that I am able to use, and I am completely
restricted from putting verbs in the url, or even identifying the url as
an action. These restrictions help keep the web services well structured
and coherent. In fact, a good REST API decouples the server from the
browser, allowing a larger variety of clients to have access to the
services.

Static Resources

Managing static resources can become very messy the more involved a
project becomes in using them. The very large variety of javascript
libraries and css frameworks available can be overwhelming. Making sure
that everything fits together and works can be an arduous task. Tracking
upstream dependencies is probably a bit more difficult for a
python/pyramid programmer than it is for a person using rails or nodejs.
I had been (and I am currently still) using fanstatic to help manage
these resources. There are quite a few prepackaged libraries depending
on fanstatic available on the Python Package Index. These packages don’t
seem to be in much use, and after updating quite a few of them myself, I
decided to wean myself away from fanstatic. I am currently investigating
webassets, which seems to be a far more robust and capable asset
manager.

Moreover, and more especially with css, it can become very time
consuming to modify two or more upstream css resources to match the
general style of your page.

Index

Some Former Trumpet Documentation

Abstract

Trumpet uses the Pyramid [http://www.pylonsproject.org/] framework to provide services to help
build websites. The goal of this project is to provide a more opinionated
framework that focuses on REST [http://en.wikipedia.org/wiki/Representational_state_transfer] resources and provides a system to
develop Single Page Applications [http://en.wikipedia.org/wiki/Single-page_application], as well as use some simple ones
provided by the trumpet package.

A page on the static resources used to build SPA’s can be found here [https://github.com/umeboshi2/trumpet/blob/master/docs/TrumpetStaticResources.md].

Old News

Trumpet is being converted into it’s original concept of being a
set of building blocks to help build a pyramid web service. In the past,
a large amount of time has been spent on managing static resources
through pyramid and python. A separate project, haberdashery, was created
to help manage the static resources in a python package. While the idea
of developing the static resources has evolved into an environment where
no python is required, except for a few development scripts, many of the
ideas used previously have been made obsolescent by using nodejs and
compass.

Trumpet is now focused primarily on providing server side components to
help make a website/application. Static resources are to be developed
in another project, although they may be served through the pyramid
server.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to trumpet’s documentation!

 		
 trumpet

 		
 News

 		
 Goals and Progress

 		
 Old

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.0 (2017-12-07)

 		
 Developing trumpet without vagrant

 		
 Setup

 		
 Setup Compass

 		
 Setup NodeJS

 		
 Get packages for grunt

 		
 Get bower components

 		
 Trumpet Static Resources

 		
 CSS Framework

 		
 Basic Javascript Libraries

 		
 Older Web Views Documentation

 		
 Webviews

 		
 Page Layouts

 		
 Server vs. Client

 		
 REST

 		
 Static Resources

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

