

 Navigation

 	
 index

 	
 next |

 	Trump 0.0.5 documentation

Trump

Introduction

Trump is a framework for objectifying data, with the goal of centralizing the management
of data feeds to enable quicker deployment of analytics, applications,
and reporting. Munging data, common calculations, validation of data, can all be handled by Trump, upstream of
any application or user requirement.

Inside the Trump framework, a symbol refers to one or more data feeds, each with their own instructions
saved for retrieving data from a specific source. Once it’s retrieved by Trump, depending on the attributes of the symbol,
it gets munged, aggregated, checked, and cached. Downstream users are free to query the existing cache,
force a re-cache, or check any property of the data prior to using it.

System Admins can systematically detect problems in advance, via common integrity checks of the data,
then optionally schedule the re-cache by tag or symbol name. Users and admins have the ability to manually
override problems if they exist, with a specific feed, in a way that is centralized, auditable, and backed-up efficiently.

With a focus on business processes, Trump’s long run goals enable data feeds to be:

	Prioritized, flexibly - a symbol can be associated with multiple data source for a variety of reasons including redundancy, calculations, or optionality.

	Modified, reliably - a symbol’s data feeds can be changed out, without any changes requiring testing to the downstream application or user.

	Verified, systematically - a variety of common data processing checks are performed as the symbol’s data is cached.

	Audited, quickly - alerts and reports all become possible to assess integrity or inspect where manual over-rides have been performed.

	Aggregated, intelligently - on a symbol by symbol basis, feeds can be combined and used in an extensible number of ways.

	Customized, dynamically - extensibility is possible at the templating, munging, aggregation, and validity steps.

Getting Started

	Installation
	Step 1. Install Package

	Step 2. Configure Settings

	Step 3. Adjust Existing Template Settings (Optional)

	Step 4. Run SetupTrump()

	Configuring Data Sources

	Testing the Installation

	Uninstall

	Basic Usage
	Tesla Closing Price from Multiple Sources

	Data From CSV, with a frequency-specified index

	Tesla Closing Price from Two Sources, With Validity Checks

	Oil from Quandl & SQL Example

	Google Stock Price Daily Percent Change Munging

Object Model

	Object-Relational Model
	Symbol Manager

	Conversion Manager

	Symbols
	Indices
	Index Types

	Validity Checking

	Feeds
	Feed Munging

	Centralized Data Editing

	Reporting

	Error Handling
	BitFlags

	Data Flow
	Objectification
	First Principles

	Template Based

	Caching
	The Datatable & Aggregation

	Aggregation Methods
	Apply-Row Methods

	Choose-Column Methods

Templating

	Template Base Classes

	Template Classes
	Tag Templates

	Munging Templates

	Source Templates

	Feed Templates

	Index Templates

	Validity Templates

Source Extensions

	Creating & Modifying Source Extensions
	Source Extension Standard Form
	stype (str)

	renew (boolean)

	Source (class)

	Pre-Installed Source Extensions
	BBFetch

	DBAPI

	psycopg2

	PyDataCSV

	PyDataDataReaderST

	Quandl

	SQLAlchemy

	WorldBankST

User Interface

	UI Prototype
	Web Interface

	Search

	Background Caching

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

Installation

Step 1. Install Package

SUMMARY OF STEP 1: Clone and install trump, from github.

git clone https://github.com/Equitable/trump.git
+
cd trump
+
python setup.py install

Note

If you use any other installation method (Eg. python setup.py develop),
you will need to manually create your own .cfg files, in step 2, by renaming the
.cfg_sample files to cfg files.

Note

Trump is setup to work with pip install trump, however the codebase and features
are being worked on very quickly right now (2015Q2). The version on pypi, will be very stale, very
quickly. It’s best to install from the latest commit to the master branch direct from GitHub.

Step 2. Configure Settings

SUMMARY OF STEP 2: Put a SQLAlchemy Engine String in trump/config/trump.cfg. Comment out all other engines.

Trump needs information about a database it can use, plus there are a couple other settings you
may want to tweak. You can either follow the instructions below, or pass a
SQLAlchemy engine/engine-string, to both SetupTrump() and SymbolManager() everytime you use them.

The configuration file for trump is in:

userbase/PythonXY/site-packages/trump/config/trump.cfg

or

yourprojfolder/trump/config/trump.cfg

Note

A sample config file is included, by the name trump.cfg_sample. Depending on your installation
method, you may need to copy and rename it to trump.cfg. cfg files aren’t tracked by git,
nor does the installation do anything other than copy and rename the file extension.
pip and python setup.py install will rename them for you.
python setup.py develop won’t rename them for you, you’ll have to do it yourself.

Assuming you want to use a file based sqlite database (easiest, for beginners), change:

engine: sqlite:// to
;engine: sqlite:// (notice the semi-colon, this just comments out the line)

and change this line:

;engine: sqlite:////home/jnmclarty/Desktop/trump.db to

engine: sqlite:////home/path/to/some/file/mytrumpfile.db (on linux) or

engine: sqlite:///C:\path\to\some\mytrumpfile.db (on windows)

The folder needs to exist in advance, the file should not exist. Trump creates the file.

Step 3. Adjust Existing Template Settings (Optional)

SUMMARY OF STEP 3: Adjust any settings for templates you intend you use.

Trump has template settings, stored in multiple settings files, using an identical method as the
config file in Step 2. pip or python setup.py install would have created some from samples.
Using any other installation methode, you would have to rename cfg_sample to cfg yourself.

The files are here:

userbase/PythonXY/site-packages/trump/templates/settings/

or

yourprojfolder/trump/templates/settings/

Edit trump/templating/settings cfg files, depending on the intended data sources to be used.

See the documentation section “Configuring Data Sources” for guidance.

Step 4. Run SetupTrump()

SUMMARY OF STEP 4: Run trump.SetupTrump(), to setup the tables required for Trump to work.

Running the code block below, will create all the tables required in the database
provided in Step 2.

from trump import SetupTrump
SetupTrump()
Or, if you skipped step 2 correctly, you could do:
SetupTrump(r'sqlite:////home/path/to/some/file/mytrumpfile.db')

If it all worked, you will see “Trump is installed @...”. You’re Done! Hard part is over.

You’re now ready to create a SymbolManager, which will help you create your first symbol.

from trump import SymbolManager
sm = SymbolManager()
Or, if you skipped step 2 correctly, you could do:
sm = SymbolManager(r'sqlite:////home/path/to/some/file/mytrumpfile.db')
...
mysymbol = sm.create('MyFirstSymbol') # should run without error.

Configuring Data Sources

Data feed source template classes map to their respective .cfg file in the templating/settings directory,
as discussed in Step 3.

The goal of the files is to add a small layer of security. The goal of the template classes is to reduce code during
symbol creation scripts. There is nothing preventing a password from being hardcoded into a template, the
same way a tablename can be added to a .cfg file. It’s only a maintenance decision for the admin.

The sections of the cfg files get used by the template’s in their respective classes. The section of the config files’
names are then either referenced at the symbol creation point, storing .cfg file info with the symbol in the database,
or leaving Trump to query the attributes at every cache, from the source .cfg file.

Trump will use parameters for a source in the following order:

	Specified explicitly when a template is used. (Eg. table name)

#Assuming the template doesn't clober the value.
myfeed = QuandlFT(authtoken='XXXXXXXX')

	Specified implicitly using default value or logic derived in the template. (Eg. Database Names)

class QuandlFT(object):
 def __init__(authtoken ='XXXXXXXXX'):
 if len(authtoken) == 8:
 self.authtoken = authtoken
 else:
 self.authtoken = 'YYYYYYYYY'

	Specified implicitly using read_settings(). (Eg. database host, port)

class QuandlFT(object):
 def __init__(**kwargs):
 autht = read_settings('Quandl', 'userone', 'authtoken')
 self.authtoken = autht

	Specified via cfg section. (Eg. authentication keys and passwords)

class QuandlFT(object):
 def __init__(**kwargs):
 self.meta['stype'] = 'Quandl' #cfg file name
 self.meta['sourcing_key'] = 'userone' #cfg file section

contents of templating/settings/Quandl.cfg:

[userone]
authtoken = XXXXXXXXX

If the template points to a section of a config file, rather than reading in a value from a config file,
(ie, #4), the info will not be stored in the database. Instead, the information will be looked up
during caching from the appropriate section in the cfg file.

This means that the cfg file values can be changed post symbol creation, outside of Trump.

Testing the Installation

After Trump has been configured, and pointed at a database via an engine string using
a config file, one can run the py.test enabled test suite. The tests require network
access, but will skip certain tests without it. The testing suite makes a mess, and doesn’t clean
up after itself. So, be prepared to run it on a database which can be delete immediately after.

Insight into compatibility with databases other SQLite and PostGres, are of interest to the maintainers.
So, if you run the test suite on some other database, and it all works, do let us know via a GitHub issue or e-mail.
If it doesn’t, please let us know that as well!

Uninstall

#. Delete all tables Trump created. (There is a script, which attempts to do that for you. See uninstall.py.
This will (attempt to) remove all tables created by Trump. The file will likely require minor changes
if you use anything other than PostgreSQL, or if it hasn’t been updated to reflect newer tables in Trump.)
#. Delete site-packages/trump and all it’s subdirectories.

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

Basic Usage

These examples dramatically understate the utility of Trump’s long term feature set.

	Tesla Closing Price from Multiple Sources
	Adding the Symbol

	Using the Symbol

	Data From CSV, with a frequency-specified index
	Adding the Symbol

	Using the Symbol

	Tesla Closing Price from Two Sources, With Validity Checks
	Adding the Symbol

	Using the Symbol

	Oil from Quandl & SQL Example
	Adding the Symbol

	Using the Symbol

	Google Stock Price Daily Percent Change Munging
	Adding the Symbol

	Using the Symbol

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

 	Basic Usage

Tesla Closing Price from Multiple Sources

Adding the Symbol

from trump.orm import SymbolManager
from trump.templating import QuandlFT, GoogleFinanceFT, YahooFinanceFT,
 DateExistsVT, FeedMatchVT

sm = SymbolManager()

TSLA = sm.create(name = "TSLA",
 description = "Tesla Closing Price USD",
 units = '$ / share')

TSLA.add_tags(["stocks","US"])

#Try Google First
#If Google's feed has a problem, try Quandl's backup
#If all else fails, use Yahoo's data...

'Close' is stored in the GoogleFinanceFT Template
TSLA.add_feed(GoogleFinanceFT("TSLA"))

TSLA.add_feed(QuandlFT("GOOG/NASDAQ_TSLA", fieldname='Close'))

'Close' is stored in the YahooFinanceFT Template
TSLA.add_feed(YahooFinanceFT("TSLA"))

#All three are downloaded, with every cache instruction
TSLA.cache()

In the end, the result is one clean pandas Series representing
TSLA's closing price, with source, munging, and validity parameters
all stored persistently for future
re-caching.

print TSLA.df.tail()

 TSLA
dateindex
2015-03-20 198.08
2015-03-23 199.63
2015-03-24 201.72
2015-03-25 194.30
2015-03-26 190.40

sm.finish()

Using the Symbol

from trump.orm import SymbolManager

sm = SymbolManager()

TSLA = sm.get("TSLA")

#optional
TSLA.cache()

print TSLA.df.tail()

 TSLA
dateindex
2015-03-20 198.08
2015-03-23 199.63
2015-03-24 201.72
2015-03-25 194.30
2015-03-26 190.40

sm.finish()

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

 	Basic Usage

Data From CSV, with a frequency-specified index

Adding the Symbol

from trump.orm import SymbolManager

#Import the CSV Feed Template
from trump.templating import CSVFT

#Import the Forward-Fill Index Template
from trump.templating import FFillIT

sm = SymbolManager()

sym = sm.create(name = "DailyDataTurnedWeekly")

f1 = CSVFT('somedata.csv', 'ColumnName', parse_dates=0, index_col=0)

sym.add_feed(f1)

weeklyind = FFillIT('W')
sym.set_indexing(weekly)

sym.cache()

sm.finish()

Using the Symbol

from trump.orm import SymbolManager

sm = SymbolManager()

sym = sm.get("DailyDataTurnedWeekly")

#optional
oil.cache()

print sym.df.index
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-01-03, ..., 2010-01-17]
Length: 3, Freq: W-SUN, Timezone: None

sm.finish()

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

 	Basic Usage

Tesla Closing Price from Two Sources, With Validity Checks

Adding the Symbol

from trump.orm import SymbolManager
from trump.templating import QuandlFT, GoogleFinanceFT,
 DateExistsVT, FeedsMatchVT

sm = SymbolManager()

TSLA = sm.create(name = "TSLA",
 description = "Tesla Closing Price USD",
 units = '$ / share')

TSLA.add_feed(GoogleFinanceFT("TSLA"))
TSLA.add_feed(QuandlFT("GOOG/NASDAQ_TSLA", fieldname='Close'))

Tell trump, to check the first and second feed,
because they should be equal.

validity_settings = FeedsMatchVT(1, 2)
TSLA.add_validity(validity_settings)

Tell trump, to make sure we have a data point for the current day
any time we check validity.

validity_settings = DateExistsVT('today')
TSLA.add_validity(validity_settings)

By default, the cache process checks the validity settings
or will raise/log/warn/print/etc. based on the appropriate
handler for validity.

Since we're going to check validity, with a bit more
granularity upstream/later, we can skip it during the cache process
by setting it to False.

TSLA.cache(checkvalidty=False)

sm.finish()

Using the Symbol

from trump.orm import SymbolManager

sm = SymbolManager()

TSLA = sm.get("TSLA")

#optional
TSLA.cache()

#There are a few options, to check the data...

#Individual validity checks can be ran, with the
settings stored persistently in the object

Eg 1
if TSLA.check_validity('FeedsMatch'):
 #do stuff with clean data

Eg 2
if TSLA.check_validity('DateExists'):
 #do stuff with today's data point

Or, all the validity checks with their
respective settings can be ran with one simple
property:

if TSLA.isvalid:
 #do stuff with knowing both feeds match, and
 # a datapoint for today exists.

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

 	Basic Usage

Oil from Quandl & SQL Example

Adding the Symbol

from trump.orm import SymbolManager
from trump.templating import QuandlFT, SQLFT

sm = SymbolManager()

oil = sm.create(name = "oil_front_month",
 description = "Crude Oil",
 units = '$ / barrel')

oil.add_tags(['commodity','oil','futures'])

f1 = QuandlFT(r"CHRIS/CME_CL2",fieldname='Settle')
f2 = SQLFT("SELECT date,data FROM test_oil_data;")

oil.add_feed(f1)
oil.add_feed(f2)

oil.cache()

print oil.df.tail()

sm.finish()

Using the Symbol

from trump.orm import SymbolManager

sm = SymbolManager()

oil = sm.get("oil_front_month")

#optional
oil.cache()

print oil.df.tail()

sm.finish()

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

 	Basic Usage

Google Stock Price Daily Percent Change Munging

Adding the Symbol

from trump.orm import SymbolManager
from trump.templating import YahooFinaceFT

sm = SymbolManager()

GOOGpct = sm.create(name = "GOOGpct",
 description = "Google Percent Change")

fdtemp = YahooFinanceFT("GOOG")

mgtemp = PctChangeMT()

GOOGpct.add_feed(fdtemp, munging=mgtemp)

Using the Symbol

from trump.orm import SymbolManager

sm = SymbolManager()

GOOG = sm.get("GOOGpct")

#optional
GOOG.cache()

print GOOG.df.tail()

GOOGpct
2015-05-04 0.005354
2015-05-05 -0.018455
2015-05-06 -0.012396
2015-05-07 0.012361
2015-05-08 0.014170

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

Object-Relational Model

Trump’s persistent object model, made possible by it’s object-relational model (ORM), all starts with
a Symbol, and an associated list of Feed objects.

An fragmented illustration of the ORM is presented in the three figures below.

Supporting objects store details persistently about error handling, sourcing, munging, and validation, so that a Symbol can cache()
the data provided from the various Feed objects,
in a single datatable or serve up a fresh pandas.Series at anytime. A symbol’s it’s Index, can further enhance the intelligence that Trump can serve via pandas.

[image: ../_images/full-orm.png]
The full ORM, excludes the symbol’s datatable.

[image: ../_images/symbol-orm.png]
The Symbol portion of the ORM, excludes the symbol’s datatable.

[image: ../_images/feed-orm.png]
The Feed, FailSafe & Override portion of the ORM

[image: ../_images/index-orm.png]
The Index portion of the ORM.

Note

Trump’s template system consists of objects, which are external to the ORM.
Templates are used to expedite construction of ORM objects. Nothing about any template,
persists in the database. Only instatiated ORM objects would do so. Templates,
should be thought of as boilerplate, or macros, to reduce Feed creation time.

Symbol Manager

Conversion Manager

Symbols

Indices

A Symbol object’s Index stores the information
required for Trump to cache and serve data with different types of pandas indices.

Warning

A Trump Index does not contain a list of hashable values, like a pandas
index. It should not be confused with the datatable’s index, however it is used in the creation
of the datatable’s index. A more appropriate name for the class might be IndexCreationKwargs.

Index Types

Validity Checking

Feeds

Feed Munging

Centralized Data Editing

Each trump datatable comes with two extra columns beyond the feeds, index and final.

The two columns are populated by any existing Override and FailSafe objects which survive
caching, and modification to feeds.

Any Override will get applied blindly regardless of feeds, while the FailSafe objects are used
only when data isn’t availabe for a specific point. Once a datapoint becomes available for a specific
index in the datatable, the failsafe is ignored.

Reporting

During the cache process, information comes back from validity checks, and any exceptions.
This area of Trump’s code base is currently WIP, however the basic idea is that the caching of a
Feed, returns a FeedReport. For each cached Feed, there would
be one report, all of which would get aggregated up into, and combined with the symbol-level information,
in a SymbolReport. When the SymbolManager caches one or more
symbols, it aggregates SymbolReports into one big and final
TrumpReport.

Each of the three levels of reports, have the appropriate aggregated results,
plus collections of their own HandlePointReport and ReportPoint objects.

Error Handling

The Symbol & Feed objects have a single SymbolHandle and FeedHandle object accessed
via their .handle attribute. They both work identically. The only difference is the
column names that each have. Each column, aside from symname,
represents a checkpoint during caching, which could cause errors external to trump.
The integer stored in each column is a serialized BitFlag object, which uses bit-wise
logic to save the settings associated with what to do upon an exception. What to do,
mainly means deciding between various printing, logging, warning or raising options.

The Symbol’s possible exception-inducing handle-points include:

	caching (of feeds)

	concatenation (of feeds)

	aggregation (of final value column)

	validity_check

The Feed’s possible exception-inducing handle-points include:

	api_failure

	feed_type

	index_type_problem

	index_property_problem

	data_type_problem

	monounique

For example, if a feed source is prone to problems, set the api_failure to print the trace by setting the BitFlag object’s ‘stdout’ flag to True, and the other flags to False.
If there’s a problem, Trump will attempt to continue, and hope that there is another feed with good data available. However, if a source should be reliably available,
you may want to set the BitFlag object’s ‘raise’ flag to True.

BitFlags

Trump stores instructions regarding how to handle exceptions in specific points of the cache
process using a serializable object representing a list of boolean values calleda BitFlag.
There are two objects which make the BitFlag implementation work. There is the BitFlag object, which
converts dictionaries and integers to bitwise logic, and then there is the BitFlagType which give
SQLAlchemy the ability to create columns, and handle them appropriately, containing BitFlag objects.

The likely values assigned, will commonly be from the list below. Use Bitwise logic operators to make other
combinations.

	Desired Effect
	BitFlag Instantiation
	Description

	Raise-Only
	BitFlag(1)
	Raise an Exception

	Warn-Only
	BitFlag(2)
	Raise a Warning

	Email-Only *
	BitFlag(4)
	Send an E-mail

	DBLog-Only *
	BitFlag(8)
	Log to the Database

	TxtLog-Only
	BitFlag(16)
	Text Log

	StdOut-Only
	BitFlag(32)
	Standard Output Stream

	Report-Only
	BitFlag(64)
	Report

	TxtLog and StdOut
	BitFlag(48)
	Print & Log

	Denotes Features not implemented, yet.

The implementation is awkard, all in the name of speed. There are (4 + 7 x # of Feeds) BitFlags, per symbol. So they are serialized into integers, rather than having (4 + 7 x # of Feeds) x 7 boolean database columns.

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

Data Flow

Trump centralizes the flow of information using two concepts:

	Objectification - the process of persistently storing information about data.

	Caching - the process of fetching data, saving it systematically, and serving it intelligently.

Objectification

The objectification happens via an addition-like process entailing the instantiation of one or more symbols.
The objectification enables downstream applications to work with symbol names in order to force the caching, and be served reliable data.

There are two approaches to perform the objectification instantiation of Symbols

	First Principles (from ORM)

	Template Based (from Special Python Classes + ORM)

First Principles

The first principles approach to using Trump is basically direct access to the SQLAlchemy-based object-relational model.
It’s time consuming to develop with, but necessary to understand in order to design new intelligent templates.

Using Trump’s ORM, the process is something akin to:

For Every Symbol:

	Instantiate a new Symbol

	Optionally, add some SymbolTag

	Optionally, adjust the symbol’s Index case and type

	Optionally, adjust the symbol’s SymbolHandle handlepoints

	Instantiate one ore more Feed objects

	For each Feed, update FeedMeta, FeedSource details

	Optionally, adjust each feed’s FeedMunge instructions

	Optionally, adjust each feed’s FeedHandle handlepoints

	Optionally, adjust each Symbol’s SymbolValidity instructions

Template Based

By setting up, and using Trump template classes, the two steps below replace steps 1 to 8 of the first principles approach.

For Every Kind of Symbol:

	Create custom templates for common sources of proprietary data.

For Every Symbol:

	Instantiate a new Symbol using a template containing Tag, Feed, Source, Handle, Validity settings.

	Tweak any details uncovered by the chosen templates for the symbol, or any of it’s feeds.

In practice, it’s inevitable that templates will be used where possible, and do the heavy lifting of instantiation, but tweaks to each symbol would be made post-instantiation.

Caching

The cache process, is more than just caching, but that’s the main purpose. The cache process,
essentially builds a fresh datatable. In order to cache a symbol, Trump performs the following
steps:

For each Feed...

	Fetches a fresh copy of each Feed, based on the FeedSource parameters.

	Munges each Feed, based on the FeedMunge parameters.

	Converts the datatype using a SymbolDataDef

Then...

	Concatenates the data from each feed, into a dataframe.

	Converts the index datatype using the Symbol’s Index parameters.

	Two columns are appended to the dataframe, one for overrides, one for failsafes. Any which exist, are fetched.

	An aggregation method is used to build a final series out of the data from the feeds and any overrides/failsafes.

	The dataframe is stored in the database, in it’s own table, called a datatable.

	Optionally, any validity checks, which are set up in SymbolValidity, are performed.

When executed, data from each Feed is queried, and munged according to predefined instructions,
on a per-feed basis. The feeds are joined together, each forming columns of a pandas Dataframe.
A IndexImplementor corrects the index. An aggregation method converts the Dataframe into a single, final, Series.
Depending on the aggregation method, any single values are overrode, and blanks get populated, based on any previously
defined Override and FailSafe objects associated with the symbol being cached.

The Datatable & Aggregation

Steps #6, #7 & #8 above are easiest to understand, with a graphical look at the final product: a cached Symbol’s datatable.

An example of a datatable, is in the figure below. This, is a simple table, common to anybody with SQL knowledge.

[image: _images/datatable.png]
Example of a symbol’s datatable, with two feeds of data, both with problems.

The example datatable, seen above, is one symbol with two feeds, both of which had problems. One of the
feeds stopped completely on the 11th, the other had a missing datapoint. Plus, a previous problem,
looks like it was manually overrode on the 6th, but then later, the feed started working again.
The overrides and failsafes were applied appropriately on the 6th, and the 12th, while the
failsafe on the 10th, was ignored after the feed #2 started working again.

It’s easy to imagine the simple Dataframe after step #5 of the cache process. It would have a single
index, then a column for every Feed. #6, appends the two columns mentioned, along with any individual datapoints.
Then an aggregation method creates the ‘final’ column. Details about the specific aggregation method are defined at, or updated after,
Symbol instantiation. Up to and including the aggregation, all operations are simply changing the dataframe of feeds, overrides, and failsafes.

After the final is calculated, the dataframe is stored until the next cache, as a table - the datatable, illustrated in the figure above.
It can then be quickly checked for validity and served to applications.

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

Aggregation Methods

Trump currently has two types of aggregation methods:

	Apply-Row

	Choose-Column

As the names infer, the apply-row methods have one thing in common,
they build the final data values by looking at each row of the datatable, one at a time.
The choose-column methods, compare the data available in each column, then return an entire series.
Row-apply methods all take a pandas Series, and return a value. Column-choose methods
all take a pandas Dataframe, and return a series.

Row-apply functions are invoked using the pseudo code below:

df['final'] = df.apply(row_apply_method, axis=1)

Column-choose functions are invoked using the pseudo code below:

df['final'] = column_choose_method(df)

Both methods have access to the data in the override, and failsafe, columns so
it’s technically possible to create a method which overloads the
behaviour of these columns. It is the responsibility of each method
to implement the override, and failsafe, logic.

Apply-Row Methods

Each of these methods, can be thought of as a for-loop that looks at each
row of the datatable, then decides on the correct value for the final column,
on a row by row basis.

The datatable, as a Dataframe, gets these methods applied. The columns
are sorted prior to being passed. So, the value at index 0, is always
the override datapoint, if it exists, and the value at index -1, is always
the failsafe datapoint, if it exists. Everything else, that is, the feeds,
are in columns 1 through n, where n is the number of feeds.

Note

The aggregation methods are organized in the code
using private mixin classes. The FeedAggregator object
handles the implementation of every static method,
based solely on it’s name. This means that
any new methods added, must be unique to either mixin.

Choose-Column Methods

Each of these methods, can be thought of as a for-loop that looks at each
column of the datatable, then chooses the appropriate feed to use, as final.
They all still apply overrides and failsafes on a row-by-row basis.

The datatable, as a Dataframe, is passed to these methods in a single call.

Note

See the note in the previous section about custom method
naming.

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

Template Base Classes

Template Classes

Tag Templates

Munging Templates

Source Templates

Feed Templates

Index Templates

Validity Templates

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Trump 0.0.5 documentation

Creating & Modifying Source Extensions

This section of the docs is really only intended for those who want to write, or modify,
their own source extensions. But, it can be helpful to understand how they work, even for those who
don’t want to write an extension.

Trump’s framework enables sources of varying, dynamic, and proprietary types. A source extension is
basically a generalized way of getting a pandas Series out of an existing external API. For instance
examples include, the pandas datareader, a standardized DBAPI 2.0 accessible schema, a proprietary
library, or something as simple as a CSV file. At a high level, each symbol’s feed’s source’s kwargs
are passed to the appropriate source extension, based on the defined source type.

When each symbol is cached, it loops through each of it’s feeds. Each feed’s source is queried,
using four critical python lines in orm.Feed.cache():

if stype in sources:
 self.data = sources[stype](self.ses, **kwargs)
else:
 raise Exception("Unknown Source Type : {}".format(stype))

The important line, is the second one. ‘sources’, is a dictionary loaded every time trump’s orm.py is
imported. The key’s are just strings representing the “Source Type”,
eg. “DBAPI”, “Quandl”, “BBFetch” (Example of a proprietary source).
The values of the sources dictionary are SourceExtension objects. The SourceExtension objects wrap modules discovered
dynamically when loader.py scans the source extension folder. The code for the SourceExtension
is below:

class SourceExtension(object):
 def __init__(self, mod): #instantiated only once per import of trump.orm
 self.initialized = False
 self.mod = mod
 self.renew = mod.renew
 self.Source = mod.Source
 def __call__(self, _ses, **kwargs): #called each symbol's feed's cache (in the second line above)
 if not self.initialized or self.renew:
 self.fetcher = self.Source(_ses, **kwargs)
 self.initialized = True
 return self.fetcher.getseries(_ses, **kwargs)

A SourceExtension is instantiated only once, when loader.py passes a module it discovered.
The modules, are the “source extension”, which are just simply python files, required to be created in a
standard way. The standard can be illustrated with an example. Below, is an example csv-file
source extension (which may be stale, compared to the actual csv extension).

See trump/extensions/source for more examples.

stype = 'PyDataCSV'
renew = False

class Source(object):
 def __init__(self, ses, **kwargs):
 from pandas import read_csv
 self.read_csv = read_csv

 def getseries(self, ses, **kwargs):

 col = kwargs['data_column']
 del kwargs['data_column']

 fpob = kwargs['filepath_or_buffer']
 del kwargs['filepath_or_buffer']

 df = self.read_csv(fpob, **kwargs)

 data = df[col]

 return data

Noticed that the two variables, stype & renew, as well as the Source class, are used in the SourceExtension
instantiation.

Source Extension Standard Form

Any extension module needs 3 things; an stype variable, renew variable, and Source class.

stype (str)

stype is the string used in the ‘sources’ dictionary mentioned earlier, and must match the
the stype set in the corresponding Source template(s).

renew (boolean)

renew is a boolean, which determines if the Source object is reinstantiated on
every use. For instance, one might create a source, which sets up a database connection, which
stays open for the life of any script using trump’s orm, but only if that specific source
is used at least once. Renew would be set to False,
and the connection logic, would be put in Source.__init__. Alternatively, if a new connection would
be required on every symbol’s cache, renew would be set to True. The tradeoffs, are speed and
resource constraints. Both __init__ and getseries get the same arguments. The current live
trump session, and the symbol’s feed’s source kwargs.

Source (class)

Source is an an object with one other method, getseries, other than the constructor (__init__).
Both take the same arguments: the trump session, and the Symbol’s Feed’s Source’s kwargs. getseries,
returns a dataframe.

Pre-Installed Source Extensions

BBFetch

the directory is tx-bbfetch
stype = 'BBFetch'
renew = True

Required kwargs:

	‘elid’

	‘bbtype’ = [‘COMMON’, ‘BULK’], then a few relevant kwargs depending on each.

Optional kwargs:

	‘duphandler’ - ‘sum’

	‘croptime’ - boolean

DBAPI

the directory is tx-dbapi
stype = 'DBAPI'
renew = True

The DBAPI driver, will use by default the same driver SQLAlchemy is using for trump.
There is currently no way to change this default. It’s assumed that the driver
is DBAPI 2.0 compliant.

Required kwargs include:

	‘dbinsttype’ which must be one of ‘COMMAND’, ‘KEYCOL’, ‘TWOKEYCOL’

	‘dsn’, ‘user’, ‘password’, ‘host’, ‘database’, ‘port’

Optional kwargs include:

	duphandler [‘sum’] which just groups duplicate index values together via the sum.

Additional kwargs:

Required based on ‘dbinsttype’ chosen:

‘COMMAND’ :
- ‘command’ which is just a SQL string, where the first column becomes the index, and the second
column becomes the data.

‘KEYCOL’ :
- [‘indexcol’, ‘datacol’, ‘table’, ‘keycol’, ‘key’]

‘TWOKEYCOL’ :
- [‘indexcol’, ‘datacol’, ‘table’, ‘keyacol’, ‘keya’, ‘keybcol’, ‘keyb’]

psycopg2

the directory is tx-psycopg2
stype = 'psycopg2'
renew = True

Started extension for a Postgres-specifc source.

Not fully implemented.

PyDataCSV

the directory is tx-pydatacsv
stype = 'PyDataCSV'
renew = False

All kwargs are passed to panda’s read_csv function.

Additional required kwargs:

	‘filepath_or_buffer’ - should be an absolute path. Relative will only work, if caching is only

performed by a python script which can access the relative path.

	‘data_column’ - the specific column required, so to turn the dataframe into a series.

PyDataDataReaderST

the directory is tx-pydatadatareaderst
stype = 'PyDataDataReaderST'
renew = True

This uses pandas.io.data.DataReader, all kwargs get passed to that.

start and end are optional, but must be of the form ‘YYYY-MM-DD’.

Will default to since the beginning of available data, and run through “today”.

data_column is required to be specified as well.

Quandl

the directory is tx-quandl
stype = 'Quandl'
renew = True

All kwargs are passed to Quandl’s API quandl.get()

An additional ‘fieldname’ is available to select a specific column if a specifc quandl DB,
doesn’t support quandl’s version of the same feature.

SQLAlchemy

the directory is tx-sqlalchemy
stype = 'SQLAlchemy'
renew = True

a SQLAlchemy based implementation...so an engine string could be used.

Not fully implemented

WorldBankST

the directory is tx-worldbankst
stype = 'WorldBankST'
renew = False

Uses pandas.io.wb.download to query indicators, for a specific country.

country, must be a world bank country code.

Some assumptions as implied about the indicator and the first level of the index. This
may not work for all worldbank indicators.

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Trump 0.0.5 documentation

UI Prototype

A preliminary user interface for Trump is being prototyped.

Web Interface

The web UI was born out of Flask, Jinja2 and Bootstrap “hello world”.

Some screen shots, of the beginning, are below.

[image: ../_images/ui-search.png]
SQL-like search, is straight forward and as expected.

[image: ../_images/ui-tsla.png]
An example of symbol page, for a symbol with two feeds.

[image: ../_images/ui-analyze.png]
View the index, data, and do common analysis.
Or, download to excel/csv...

[image: ../_images/ui-charting.png]
Histograms and basic charting are available.

[image: ../_images/ui-orfs.png]
Overrides and failsafes, are what makes Trump amazing for business processes.

[image: ../_images/ui-symbol-status.png]
The last time a symbol was attempted, and successfully cached, are available.

[image: ../_images/ui-tags.png]
Browse and cache sets of symbols, based on tags...

And, much, much more, coming soon...

Search

Trump’s SymbolManager object, has basic/expected SQL-enabled search functionality.

The Trump UI prototype is boosted by an ElasticSearch server with a single index consisting
of symbol, tag, description, and meta data. To add a symbol to the index, use the
json created from Symbol.to_json().

[image: ../_images/ui-search-fuzzy.png]
ElasticSearch, makes searching much cooler...

Background Caching

Trump’s caching process isn’t blazing fast, which means using the UI to kick off caching of
one or more symbols, requires a background process in order for the web interface to
stay responsive.

A very simple RabbitMQ consumer application, is included with the UI, which listens
for the instruction to cache. The python pika package is required.

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Trump 0.0.5 documentation

Index

 Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/up-pressed.png

_images/ui-orfs.png
201507-1300:00:00

201507-14 00:00:00

201507-1500:00:00 263.140015

201507-16 00:00:00 266679993

201507-17 00:00:00

Overrides

2015-07-13 00:00:00 | 264.0

2015-07-17 00:00:00 | 274.5

262.160004 262,16
265649994 265,65
263.140015 263.14
266679993 266,68

Submit

Actually closed at 264, 262.12 was the hatt.

Ttwilllikely close near 2745 today, | want to ty printing a report scheduled

Feed Details
Feest ‘YahooFinanceFT
PyDataDataReaderST

0
[on]

data_column
data_source

name
start

Close
yahoo
now

TSLA
199501-01

for tomorrow.

aitone [ESp———
oroy e prep—
pp—— s

_static/down.png

_images/ui-symbol-status.png
SCSSSLTIQ
SEESINQ
SENEASOETQ
SPY

SSFNSNIQ
STESADTQ
STRISIATCIEIQ
SYRGSNIQ
SYUTSONQ
TATTTRNQ
THTITAPQ
TISITTLSEQ
TLXTRQ
TOFTOCLTQ
TRLATCASTIQ
TRNOTDEEEIQ
TRNSTOLTATQ
TSLA

UPIUTCLQ
UQMUIBTQ

VENTURE_Biotechnology

Never cached
Never cached
Never cached

2015 Wed Jul
15@ 7:08 AM

Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached

2015 Sat Jul 18
@ 11:53PM

Never cached
Never cached

Never cached

Never cached
Never cached
Never cached

2015 Wed Jul
15@ 7:08 AM

Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached
Never cached

2015 Sat Jul 18
@ 11:53PM

Never cached
Never cached

Never cached

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

Cache

'SCSS : Long Term Investments
SEE : Intangbles, Net

‘SENEA : Other Equiy, Total
SPDR S&P 500 ETF Trust

SSFN : Net Income.

STE : Accumulated Depreciation, Total

STRI: Income Available to Common Incl. Extra Items
SYRG : Net Income

SYUT : Other, Net

TAIT: Total Receivables, Net

THTI: Accounts Payable

TISI: Total Liabilties & Shareholders’ Equity

TLX : Revenue

TOF : Other Current liabiliies, Total

TRLA : Cash and Short Term Investments.

TRNO : Diuted EPS Excluding Extraordinary tems.
TRNS : Other Long Term Assets, Total

Tesla Motor Company Common Stock

UPI : Total Current Liabilties
UQM : Income Before Tax

Venture Captal Investments By Industry

_images/ui-tsla.png
Symbol | Munging Valdity

TSLA

Tesla Motor Company Common Stock

[conpeny [=rv]
AssetClass
Equity

feo YahooFinanceFT

0 PyDataDataReaderST

Feedt .
GoogleFinanceFT
PyDataDataReaderST

Last Completed Cache: Sat Jul 18 @ 11:53 PM
Last Attempted Cache: Sat Jul 18 @ 11:53 PM

index Data

Geography

usA

data_column

data_column
data_source

Analyze~ Download~ Chart~

=
pandas.tseries.index. Datetimelndex

Sector

Automotive

Close
yahoo
now
TSLA
19950101

Close.
google:
now

TSLA
1995-01-01

Log

Edit ~

=
2015-07-14 265.649994

201507-15 263140015
2015-07-16 266.679993
2015-07-17 274.660004
length : 1272
diype : float64

i fare

=

emptyfeed

=

ndex_type_prodem

=

i fare

=

emptyfeed

=

ndex_type_prodem

=

_images/ui-tags.png
Tags
Cache

Cache.

Click "Cache" to cache all
symbols tagged, or click the
tag to view all symbols

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

Cache.

_static/comment.png

_images/ui-charting.png
Symbol | Munging Vaiidty index Data Anayze- Download~ Cha~ Lo Edit~

SPDR S&P 500 ETF Trust

200 - -
180 - -

160 - -

120 - -

USD/unit

100 - -

60 - -

40 - | | | | |
B L3
o° ©® o o 2 2o° o® ° o 2o
SPY

_images/symbol-orm.png
fnum \symname Y‘mf){mname num ymname Symname
SymbolHandle Smboilogsent SymbolValiity
_ - . 3 _ .

setting() METH
ymname symname ymname

add_tags() METH
cachel) METH
update_handle(] METH

ymname ymname

Symbol

add_alias()
add_feed()

add_metal)

add_tags() METH
addvalidator() METH
cachel) METH
check validiy) METH
del_feed() METH
del_tags() METH
exsting_orfs() METH
last_cache() METH
set_description(] METH
setindexing) METH
set_units() METH
to_json() METH

update_handle(] METH

_images/ui-search-fuzzy.png
Search

Canada Search Search By
searched: Canada 0 Name
255QL. 0 Fuzzy Results found.) Description
5 5 T
Did fuzzy search Did SQL search & Tags
) Meta
& Fuzzy (Beta)

GDP_CAN [[ZTZY GDP (current USS)

WB World Development Indicators

Country Canada

topics Climate Change ; Economy & Growth
1S0 3166-1 Country CAN
WBOrganization World Bank national accounts data, and OECD National Accounts data files.

WBNote GDP at purchasers prices is the sum of gross value added by all resident producers in the economy plus any
product taxes and minus any subsidies not included in the value of the products. It is calculated without making
deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in
current U.S. dollars. Dollar figures for GDP are converted from domestic currencies using single year official
exchange rates. For a few countries where the official exchange rate does not reflect the rate effectively applied to
actual foreign exchange transactions, an alternative conversion factor s used.

id NY.GDP.MKTP.CD

XIU [EZEIETY S&P/TSX 60 Index Fund

[£ [isnares |

_images/index-orm.png
IndexKvarg

ymname

getkwargs() METH
setkwargs() METH

\

_images/feed-orm.png
FoedMungoKwarg

Failsafe.

x -

foum \symname

FeadMunge

setting()
Feed
add_tags() METH

cachel) METH
update_handle(] METH

_images/datatable.png
indx

final | override_feed000 feed001 feed002 failsafe_feed999

1 2015:03-02.
2 2015:03-03 .
3 2015-03-04.
4 2015:03-05 .
5 2015-03-06 .
6 2015-03-09 .
7 2015-03-10.
8 20150311 ..
9 2015-03-12.
10 20150313 .

43.88 {null}
43.28 {null}
43.06 {null}
43.11 {null}
4237

42.85 {null}
42.03 {null}
41.98 {null}
41.02 {null}
4138 {null)

4237

43.88] 43.88/{null)
4328 43.28 {null)
43.06 43.06 {null)
4311 43.11 {null)
4236 42.36 {null)
4285 42.85 {null)
4203 42.03/{null)
{null} 21.98 {null}
ull {null}

{null}

4138

41.02
41.44

_images/ui-analyze.png
Symbol | Munging Vaiidty index Dala Analyze- Download~ = Char~ Lo Edit~

Excel
Asls

SPY Analyze @ freq W Weoky

Monthiy
Quarterly

SPDR S&P 500 ETF Trust Annel

csv

Index Information Asls
Weekly
DatetineTndex(['1995-01-68', '1995-01-15', '1995-01-22", ' pouhy
'1995-02-05', '1995-02-12', '1995-02-19', '
'1995-03-05', '1995-03-12, Quarterly
Annual
12015-05-10", '2015-05-17", '2015-05-24", "ms sy
'2015-06-07', '2015-06-14', '2015-06-21', '2015-06-28',
'2015-07-05', '2015-07-12'],
dtype=datetinesd[ns]’, length=1071, Treq='W-SUN', tz=None)

SPY floatés
dtype: object

Raw

sy
1995-01-08 46.046799
1995-01-15 46.734299
1995-01-22 46.546799
1995-01-29 47.109299
1995-02-05 48.031200

spy

search.html

 Navigation

 		
 index

 		Trump 0.0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Jeffrey McLarty.
 Created using Sphinx 1.3.5.

_images/ui-search.png
Search

app Search Search By
searched: GDP @ Name
0'SQL, 212 Fuzzy Results found.) Description
T
Did SQL search 4 Taos
) Meta
0 Fuzzy (Beta)

GDP_ABW [[JSIETTY GDP (current USS)

2014-12-31 to 1960-12-31

GDP_AFG [Ty GDP (current USS)

2014-12-31 to 1960-12-31

GDP_AGO [[JIETY GDP (current USS)

2014-12-31 to 1960-12-31

GDP_ALB [Ty GDP (current USS)

2014-12-31 to 1960-12-31

_images/full-orm.png
FoedMungoKwarg e

[symnamefum

IndexKvarg BT

setting()
ymname foum \symname \fnum [symnameffnum ymname fnum
Feed

‘SymbolValiity
Index SymbolHandle OpThezrn
Symbolalias
getkwargs() METH
setkwargs() METH setting()

add_tags() METH
cachel) METH
update_handle(] METH

ymname symname ymname

Symbol

add_alias()
add_feed()

add_metal)

add_tags()
add_validator()

cachel)

check validiy) METH
del_feed() METH
del_tags() METH
exsting_orfs() METH
last_cache() METH
set_description(] METH
setindexing) METH
set_units() METH
to_json() METH

update_handle(] METH

Trump's ORM

_static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

