
TrueNTH Shared Services
Documentation

Release 18.11.14.dev43+g80e99d0

CIRG, University of Washington

Dec 18, 2018

Contents

1 API Documentation 1

2 Contents: 3
2.1 README . 3
2.2 Configuration . 10
2.3 Interventions . 13
2.4 Organizations . 17
2.5 Timeouts . 18
2.6 Provider Authentication . 19
2.7 Sessions . 21
2.8 Development . 22
2.9 Internationalization . 23
2.10 Code Documentation . 24
2.11 Docker . 59
2.12 Contributing . 63
2.13 Testing . 64

Python Module Index 67

i

ii

CHAPTER 1

API Documentation

Note: Please see Public API documentation for all public and OAuth protected endpoints.

1

https://stg.us.truenth.org/dist

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

2 Chapter 1. API Documentation

CHAPTER 2

Contents:

2.1 README

2.1.1 true_nth_usa_portal

Movember TrueNTH USA Shared Services

INSTALLATION

Pick any path for installation

$ export PROJECT_HOME=~/truenth_ss

Prerequisites (done one time)

Install required packages

$ sudo apt-get install postgresql python-virtualenv python-dev
$ sudo apt-get install libffi-dev libpq-dev build-essential redis-server

Clone the Project

$ git clone https://github.com/uwcirg/true_nth_usa_portal.git $PROJECT_HOME

3

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Create a Virtual Environment

This critical step enables isolation of the project from system python, making dependency maintenance easier and
more stable. It does require that you activate the virtual environment before you interact with python or the
installer scripts. The virtual environment can be installed anywhere, using the nested ‘env’ pattern here.

$ virtualenv $PROJECT_HOME/env

Activate the Virtual Environment

Required to interact with the python installed in this virtual environment. Forgetting this step will result in obvious
warnings about missing dependencies. This needs to be done in every shell session that you work from.

$ cd $PROJECT_HOME
$ source env/bin/activate

Create the Database

To create the postgresql database that backs your Shared Services issue the following commands:

$ sudo -u postgres createuser truenth-dev --pwprompt # enter password at prompt
$ sudo -u postgres createdb truenth-dev --owner truenth-dev

Building the schema and populating with basic configured values is done via the flask sync command. See details
below.

Update pip

The default version of pip provided in the virtual environment is often out of date. Best to update first, for optimal
results:

$ pip install --upgrade pip setuptools

CONFIGURE

Create the configuration file

Create a configuration file if one does not already exist

$ cp $PROJECT_HOME/instance/application.cfg{.default,}

Add Support For 3rd Party Logins

See OAuth Config

4 Chapter 2. Contents:

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Install the Latest Package and Dependencies

Instruct pip to install the correct version of all dependencies into the virtual environment. This idempotent step can
be run anytime to confirm the correct libraries are installed:

pip install --requirement requirements.txt

COMMAND LINE INTERFACE

A number of built in and custom extensions for command line interaction are available via the click command line
interface, several of which are documented below.

To use or view the usage of the available commands:

1. Activate the Virtual Environment

2. Set FLASK_APP environment variable to point at manage.py

export FLASK_APP=manage.py

3. Issue the flask --help or flask <cmd> --help commands for more details

flask sync --help

Note: All flask commands mentioned within this document require the first two steps listed above.

Sync Database and Config Files

The idempotent sync function takes necessary steps to build tables, upgrade the database schema and run seed to
populate with static data. Safe to run on existing or brand new databases.

flask sync

Add User

Especially useful in bootstrapping a new install, a user may be added and blessed with the admin role from the
command line. Be sure to use a secure password.

flask add-user --email user@server.com --password reDacted! --role admin

Password Reset

Users who forget their passwords should be encouraged to use the forgot password link from the login page. In rare
instances when direct password reset is necessary, an admin may perform the following:

flask password-reset --email forgotten_user@server.com --password newPassword --actor
→˓<admin's email>

2.1. README 5

http://click.pocoo.org/
http://click.pocoo.org/

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Install the Latest Package, Dependencies and Synchronize DB (via script)

To update your Shared Services installation run the deploy.sh script (this process wraps together pulling the latest
from the repository, the pip and flask sync commands listed above).

This script will:

• Update the project with the latest code

• Install any dependencies, if necessary

• Perform any database migrations, if necessary

• Seed any new data to the database, if necessary

$ cd $PROJECT_HOME
$./bin/deploy.sh

To see all available options run:

$./bin/deploy.sh -h

Run the Shared Services Server

To run the flask development server, run the below command from an activated virtual environment

$ flask run

By default the flask dev server will run without the debugger and listen on port 5000 of localhost. To override these
defaults, call flask run as follows

$ FLASK_DEBUG=1 flask run --port 5001 --host 0.0.0.0

Run the Celery Worker

$ celery worker --app portal.celery_worker.celery --loglevel=info

Alternatively, install an init script and configure. See Daemonizing Celery

Should the need ever arise to purge the queue of jobs, run the following destructive command. All tasks should be
idempotent by design, so doing this is suggested, especially if the server is struggling.

$ celery purge --force --app portal.celery_worker.celery

Without running purge, celery will resume any unfinished tasks when it restarts

DATABASE

The value of SQLALCHEMY_DATABASE_URI defines which database engine and database to use. Alternatively, the
following environment variables may be used (and if defined, will be preferred):

1. PGDATABASE

2. PGUSER

3. PGPASSWORD

6 Chapter 2. Contents:

http://docs.celeryproject.org/en/latest/tutorials/daemonizing.html

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

4. PGHOST

At this time, only PostgreSQL is supported.

Migrations

Thanks to Alembic and Flask-Migrate, database migrations are easily managed and run.

Note: Alembic tracks the current version of the database to determine which migration scripts to apply. After the
initial install, stamp the current version for subsequent upgrades to succeed:

flask db stamp head

Note: The flask sync command covers this step automatically.

Upgrade

Anytime a database (might) need an upgrade, run the manage script with the db upgrade arguments (or run the
deployment script)

This is idempotent process, meaning it’s safe to run again on a database that already received the upgrade.

flask db upgrade

Note: The flask sync command covers this step automatically.

Schema Changes

Update the python source files containing table definitions (typically classes derived from db.Model) and run the
manage script to sniff out the code changes and generate the necessary migration steps:

flask db migrate

Then execute the upgrade as previously mentioned:

flask db upgrade

Testing

To run the tests, repeat the postgres createuser && postgres createdb commands as above with the
values for the {user, password, database} as defined in the TestConfig class within portal\config\config.
py

All test modules under the tests directory can be executed via py.test (again from project root with the virtual
environment activated)

2.1. README 7

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

$ py.test

Alternatively, run a single modules worth of tests, telling py.test to not suppress standard out (vital for debugging) and
to stop on first error:

$ py.test tests/test_intervention.py

Tox

The test runner Tox is configured to run the portal test suite and test other parts of the build process, each configured
as a separate Tox “environment”. To run all available environments, execute the following command:

$ tox

To run a specific tox environment, “docs” or the docgen environment in this case, invoke tox with the -e option eg:

$ tox -e docs

Tox will also run the environment specified by the TOXENV environment variable, as configured in the TravisCI
integration.

Tox will pass any options after – to the test runner, py.test. To run tests only from a certain module (analogous the
above py.test invocation):

$ tox -- tests/test_intervention.py

Continuous Integration

This project includes integration with the TravisCI continuous integration platform. The full test suite (every Tox
virtual environment) is automatically run for the last commit pushed to any branch, and for all pull requests. Results
are reported as passing with a and failing with a .

UI/Integration (Selenium) Testing

UI integration/acceptance testing is performed by Selenium and is included in the test suite and continuous integra-
tion setup. Specifically, Sauce Labs integration with TravisCI allows Selenium tests to be run with any number of
browser/OS combinations and captures video from running tests.

UI tests can also be run locally (after installing xvfb and geckodriver) by passing Tox the virtual environment that
corresponds to the UI tests (ui).

Setup

• sudo apt-get install xvfb

• Install geckodriver from https://github.com/mozilla/geckodriver/releases. For example

$ wget https://github.com/mozilla/geckodriver/releases/download/v0.21.0/geckodriver-
→˓v0.21.0-linux64.tar.gz
$ tar -xvzf geckodriver-v0.21.0-linux64.tar.gz
$ rm geckodriver-v0.21.0-linux64.tar.gz

(continues on next page)

8 Chapter 2. Contents:

https://tox.readthedocs.io/en/latest/
https://docs.travis-ci.com/user/languages/python/
https://travis-ci.org/uwcirg/true_nth_usa_portal
https://docs.travis-ci.com/user/sauce-connect
https://saucelabs.com/open_sauce/user/ivan-c
https://github.com/mozilla/geckodriver/releases

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

(continued from previous page)

$ chmod +x geckdriver
$ sudo mv geckodriver /usr/local/bin/

Run Tests

$ tox -e ui

Dependency Management

Project dependencies are hard-coded to specific versions (see requirements.txt) known to be compatible with
Shared Services to prevent dependency updates from breaking existing code.

If pyup.io integration is enabled the service will create pull requests when individual dependencies are updated, al-
lowing the project to track the latest dependencies. These pull requests should be merged without need for review,
assuming they pass continuous integration.

Documentation

Docs are built separately via sphinx. Change to the docs directory and use the contained Makefile to build - then view
in browser starting with the docs/build/html/index.html file

$ cd docs
$ make html

POSTGRESQL WINDOWS INSTALLATION GUIDE

Download

Download PostgreSQL via: https://www.postgresql.org/download/windows/

Creating the Database and User

To create the postgresql database, in pgAdmin click “databases” and “create” and enter the desired characteristics of
the database, including the owner. To create the user, similarly in pgAdmin, click “login roles” and “create” and enter
the desired characteristics of the user. Ensure that it has permission to login.

Configuration

Installing requirements

Ensure that C++ is installed – if not, download from: https://www.microsoft.com/en-us/download/details.aspx?id=
44266

Ensure that setuptools is up-to-date by running:

$ python -m pip install --upgrade pip setuptools

2.1. README 9

https://www.postgresql.org/download/windows/
https://www.microsoft.com/en-us/download/details.aspx?id=44266
https://www.microsoft.com/en-us/download/details.aspx?id=44266

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Ensure that ez_setup is installed by running:

$ pip install ez_setup

Install requirements by running:

$ pip install --requirement requirements.txt

Configuration files

In $PATH\\data\pg_hba.conf , change the bottom few lines to read:

TYPE DATABASE USER ADDRESS METHOD

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

Copy the default configuration file to the named configuration file

$ copy $PROJECT_HOME/instance/application.cfg.default $PROJECT_HOME/instance/
→˓application.cfg

In application.cfg, (below), fill in the values for SQLALCHEMY_DATABASE_URI for user, password, local-
host, portnum, and dbname.

user, password, and dbname were setup earlier in pgAdmin.

portnum can also be found in pgAdmin.

localhost should be 127.0.0.1

SQLALCHEMY_DATABASE_URI = 'postgresql://user:password@localhost:portnum/
dbname'

Testing

To test that the database is set up correctly, from a virtual environment run:

$ python ./bin/testconnection.py

2.2 Configuration

TruenNTH Shared Services can be configured in a number of fashions, to support a variety of use cases.

Three primary mechanisms are in place to setup the system as desired:

• Flask Configuration Files

• Site Persistence

• AppText

10 Chapter 2. Contents:

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

2.2.1 Flask Configuration Files

Flask configuration files (.cfg) are simple python files used to set Flask configuration parameters.

application.cfg

This primary configuration file lives in the instance source directory. See README for initial setup of
application.cfg.

Only values unique to a particular install belong in application.cfg including:

1. passwords

2. keys / secrets

3. filesystem paths or local connection details

All others should likely be handled by Site Persistence.

Values with defaults are typically defined in the portal.config.BaseConfig class. Most are self explanatory
or include inline comments for clarification.

Of special note, the one used to control which set of values are pulled in by Site Persistence.

PERSISTENCE_DIR:

See also Site Persistence, this controls which persistence directory the
`FLASK_APP=manage.py flask sync` command uses to load persistence data
and build the `site.cfg` file. The value is relative to the
`portal/config` directory.

For TrueNTH:

PERSISTENCE_DIR='gil'

For ePROMs:

PERSISTENCE_DIR='eproms'

site.cfg

This configuration file also lives in the instance source directory, but unlike application.cfg, it is managed by Site
Persistence. It houses the configuration variables used to define the look of the site, such as those use to differentiate
ePROMs from TrueNTH.

A few worthy of special mention for the task of customizing Shared Services.

REQUIRED_CORE_DATA:

Set to control what portions of data are considered *required* prior
to allowing the user to transition beyond initial_queries. Expects
a list, with the following options:

REQUIRED_CORE_DATA = ['name', 'dob', 'role', 'org', 'clinical', 'tou']

PORTAL_STYLESHEET:

2.2. Configuration 11

readme_link.html

TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Define which stylesheet to include. Defaults to 'css/portal.css'

For ePROMs:

PORTAL_STYLESHEET = 'css/eproms.css'

To update the site.cfg file contents, edit the site_persistence_file.json file or
use the FLASK_APP=manage.py flask export-site command and commit the changed
site_persistence_file.json to the appropriate repository.

base.cfg

An optional configuration file loaded before application.cfg, useful for setting infrastructure-specific defaults.

2.2.2 Site Persistence

In order to handle the migration of site specific data, one can generate or import a persistence file, housing details such
as:

• business rules defining when interventions should be presented to users

• customization of intervention text

• organizations and clinics on the site

The portal.SitePersistence class manages the import and export of the site.cfg configuration file as
well as a number of database tables holding significant data required for a rich experience. This should never include
any patient or personal data, but will include codified business rules and required data to support them.

Database tables included:

• AccessStrategies

• AppText

• CommunicationRequest

• Interventions

• Organizations

• Questionnaires

• QuestionnaireBanks

• ScheduledJobs

Both importing and exporting use the value of PERSISTENCE_DIR. Its value is initially looked for as an environment
variable, and if not found, the configuration value of ‘GIL’ is used. (With ‘GIL’ set, the gil configuration directory is
used, otherwise, eproms).

Export

Site persistence files can be generated in the PERSISTENCE_DIR. See above for correct setting. To generate persis-
tence files from current database values, execute:

```FLASK_APP=manage.py flask export-site```

12 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Import

As a final step in the seed process, site persistence brings the respective database tables in sync, and generates the
site.cfg config file:

`FLASK_APP=manage.py flask seed`

Detailed logging will inform the user of changes made.

Note: It may be wise to back up the existing database prior to running python manage.py seed in the unlikely
event of unwanted overwrites or deletes.

2.2.3 AppText

To avoid near duplication of templates needing only a few minor string changes, the portal.models.AppText
class (and its surrogate apptext database table), provide a mechanism for customizing individual strings.

In a template, in place of a static string, insert a jinja2 variable string calling the app_text function, including the
unique name of the string to be customized. For example, in the portal.templates.layout.html file, the value of the title
string is imported via:

<title>{{ app_text('layout title') }}</title>

The value for such an AppText can be manually inserted in the database, or added to the site persistence file. Such an
entry looks like:

{
"custom_text": "Movember ePROMs",
"name": "layout title",
"resourceType": "AppText"

},

AppText can also handle positional arguments as well as references to configuration values to fill in dynamic values
within a string. The positional arguments are zero indexed, and must be defined when the template is rendered (i.e.
JavaScript variables will not be properly defined until the script is evaluated within the browser, and will therefore not
work).

For example, given the application has the configuration value USER_APP_NAME set to TrueNTH and the following:

AppText(name='ex', custom_text='Welcome to {config[USER_APP_NAME]}, {0}. {1} {0}')

A template including:

<p>{{ app_text('ex', 'Bob', 'Goodbye') }}</p>

Would render:

<p>Welcome to TrueNTH, Bob. Goodbye Bob</p>

2.3 Interventions

2.3. Interventions 13



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

• Roles

• Access

• Communication

2.3.1 Roles

Any client can assume the role of an intervention. By doing so, the client becomes the official implementation for said
role.

2.3.2 Access

Controlling access to interventions deserves special mention. On the /client/<client_id> page, the application
developer may view and alter the value of public_accessible.

Note: With public_accessible set, the intervention will always be displayed.

When public_accessible is not set, two additional options exist for enabling said intervention.

1. To control per user, the service account associated with the intervention should make use of the /api/
intervention/<intervention_name>/ endpoint.

2. Alternatively, any number of strategy functions can be added to an intervention, to give access to any
subgroup of users as defined by the strategy itself. The available strategies are defined in the portal.
models.intervention_strategies module, such as the allow_if_not_in_intervention strategy.
Use the /api/intervention/<intervention_name>/access_rule endpoint to view or
modify.

Note: All of the checks above function as a short-circuited or. That is, the first check that evaluates as True grants
the user access to the intervention. See combine_strategies for a workaround.

Note: An optional rank setting (unique integer value sorted in ascending order) may be included to control the order
of evaluation when multiple strategies are in use. Strategies with a rank value will be evaluated before those without a
set rank.

For example, to add a rule that enables the care_plan intervention for users registered with the UCSF clinic:

$ cat data
{"name": "UCSF Patients",
"function_details": {
"function": "limit_by_clinic_list",
"kwargs': [{"name": "org_list",

"value": ["UCSF",]},]
}

}

$ curl -H 'Authorization: Bearer <valid-token>' \
-H 'Content-Type: application/json' -X POST -d @data \
https://stg.us.truenth.org/api/intervention/care_plan/access_rule

14 Chapter 2. Contents:

https://stg.us.truenth.org/dist/#!/Intervention/user_intervention_set
portal_models.html#portal.models.intervention_strategies.allow_if_not_in_intervention
portal_views.html#portal.views.intervention.intervention_rule_set


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Sometimes it is necessary to combine multiple strategies into a logical AND operation. To do so, use the
combine_strategies function, passing the respective set of strategy_n and strategy_n_kwargs as so:

{
"name": "not in sr AND in clinc uw",
"function_details": {
"function": "combine_strategies",
"name": "not in sr AND in clinc uw",
"kwargs": [{

"name": "strategy_1",
"value": "allow_if_not_in_intervention"

}, {
"name": "strategy_1_kwargs",
"value": [{

"name": "intervention_name",
"value": "sexual_recovery"

}]
}, {

"name": "strategy_2",
"value": "limit_by_clinic_list"

}, {
"name": "strategy_2_kwargs",
"value": [{

"name": "org_list",
"value": ["UW Medicine (University of Washington)",]

}]
}]

}
}

The full list of strategies used for DECISION_SUPPORT_P3P:

{
"name": "P3P Access Conditions",
"description": "[strategy_1: (user NOT IN sexual_recovery)] AND [strategy_2 <a

→˓nested combined strategy>: ((user NOT IN list of clinics (including UCSF)) OR (user
→˓IN list of clinics including UCSF and UW))] AND [strategy_3: (user has NOT started
→˓TX)] AND [strategy_4: (user does NOT have PCaMETASTASIZE)]",
"function_details": {
"function": "combine_strategies",
"kwargs": [

{
"name": "strategy_1",
"value": "allow_if_not_in_intervention"

},
{

"name": "strategy_1_kwargs",
"value": [
{
"name": "intervention_name",
"value": "sexual_recovery"

}
]

},
{

"name": "strategy_2",
"value": "combine_strategies"

},

(continues on next page)

2.3. Interventions 15



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

(continued from previous page)

{
"name": "strategy_2_kwargs",
"value": [
{
"name": "combinator",
"value": "any"

},
{

"name": "strategy_1",
"value": "not_in_clinic_list"

},
{

"name": "strategy_1_kwargs",
"value": [
{
"name": "org_list",
"value": [
"UCSF Medical Center"

]
}

]
},
{

"name": "strategy_2",
"value": "limit_by_clinic_list"

},
{

"name": "strategy_2_kwargs",
"value": [
{
"name": "org_list",
"value": [
"UW Medicine (University of Washington)",
"UCSF Medical Center"

]
}

]
}

]
},
{

"name": "strategy_3",
"value": "observation_check"

},
{

"name": "strategy_3_kwargs",
"value": [
{

"name": "display",
"value": "treatment begun"

},
{

"name": "boolean_value",
"value": "false"

}
]

},
(continues on next page)

16 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

(continued from previous page)

{
"name": "strategy_4",
"value": "observation_check"

},
{

"name": "strategy_4_kwargs",
"value": [
{
"name": "display",
"value": "PCa localized diagnosis"

},
{

"name": "boolean_value",
"value": "true"

}
]

}
]

}

2.3.3 Communication

Communicate from an intervention to any group of TrueNTH users via the /api/intervention/
<intervention_name>/communicate endpoint.

The groups API is used to view existing and create new groups. Add existing users via the /api/user/
<user_id>/groups endpoint.

2.4 Organizations

Organizations are used to name clinics and parent organizations. Use the /api/organization endpoint to view the list of
organizations in the system.

Add new organizations via POST to /api/organization with a JSON document defining the organization compliant
with the FHIR Organization resource.

Warning: The parent organization must exist in the system before a child can name it in the partOf reference.

To enable use of the /go/<shortcut_alias> endpoint, to pre-select clinics for new users, an identifier must be included
in the FHIR resource.

For example, after looking up the correct ID, a PUT of the following document adds a shortcut alias to the UCSF
Urologic Surgical Oncology organization.

Note: For the shortcut alias to function, the added identifier must have a system value of http://us.truenth.org/identity-
codes/shortcut-alias

PUT to /api/organization/6

2.4. Organizations 17

https://stg.us.truenth.org/dist/#!/Intervention/intervention_communicate
https://stg.us.truenth.org/dist/#!/Group
https://stg.us.truenth.org/dist/#!/Group/set_user_groups
https://www.hl7.org/fhir/organization.html


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

$ cat data
{

"resourceType": "Organization",
"identifier": [

{ "system": "http://us.truenth.org/identity-codes/shortcut-alias",
"value": "ucsfurology"

}
]

}

$ curl -H 'Authorization: Bearer <valid-token>' \
-H 'Content-Type: application/json' -X PUT -d @data \
https://stg.us.truenth.org/api/organization/6

Note that organizations now contain a set of ‘options’ fields, as follows:

• use_specific_codings : toggles whether or not the organization should use the subsequent custom op-
tions

• race_codings : toggles whether or not the organization should capture race information for its users

• ethnicity_codings : as above, but for ethnicity information

• indigenous_codings : as above, but for indigenous information

For each organization:

• If an org has a True value for use_specific_codings, then the r/e/i properties will use the r/e/i options
from that org

• If an org has False value for use_specific_codings, and it has a parent, then the r/e/i properties will use
the r/e/i options from the parent org. Note that this continues recursively, until either it hits either (a) an org with
specific codings turned on, or (b) an org with no parent

• If an org has a False value for use_specific_codings, and it has NO parent, then it will return true for all
r/e/i properties.

These settings are accessible/set-able through the API (via any endpoint that uses the as_fhir or
update_from_fhir methods)

For each user:

• There’s a new property on the User model, org_coding_display_options. If the user has any orgs,
then this property will iterate through all the user’s org. For each of the r/e/i options, if any of the orgs’ r/e/i
properties return true (using the logic presented above), then that user’s r/e/i display setting will be set to true
(otherwise, it’s false).

• If the user has no orgs, these display settings default to true.

When displaying the user profile, each r/e/i section will check the relevant r/e/i display settings for the profile user,
and use that to decide whether or not to display the relevant section.

2.5 Timeouts

Session timeouts are handled slightly differently in the browser and on the server hosting Shared Services.

18 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

2.5.1 Backend

After authenticating with Shared Services, a cookie is set with an expiration time corresponding to the value of PER-
MANENT_SESSION_LIFETIME, in seconds. If no requests are made in that duration, the cookie and corresponding
redis-backed session automatically expire (via TTL). Subsequent requests will be effectively be unauthenticated and
force redirection to the login page.

The backend session (the cookie and corresponding redis entry) can be refreshed from the front-end by sending a
POST request to /api/ping that will modify the current backend session, refreshing the timeout duration (to the
value specified by PERMANENT_SESSION_LIFETIME).

2.5.2 Frontend

The browser is made aware of the session duration specified by PERMANENT_SESSION_LIFETIME and will prompt
a user to refresh their session one minute before it expires, but cannot reliably determine the remaining time in the
backend session because it may have been refreshed in another tab or browser window.

2.5.3 Intervention

After authenticating with Shared Services, interventions are granted access through a bearer token that expires after a
duration set by OAUTH2_PROVIDER_TOKEN_EXPIRES_IN (defaults to 4 hours).

Subsequent requests with the same bearer token refresh its expiration each time.

PERMANENT_SESSION_LIFETIME The lifetime of a permanent session, defaults to one hour. Configures ses-
sion cookie and corresponding redis-backed session. Configuration value provided by Flask.

OAUTH2_PROVIDER_TOKEN_EXPIRES_IN Bearer token expires time, defaults to four hours. Configuration
value provided by Flask-OAuthlib.

2.6 Provider Authentication

• OAuth Workflow

• Configuration

– Facebook

– Google

– activate

• Adding a new provider

2.6.1 OAuth Workflow

In order for a user to access authenticated portal pages they first need to login. When logging in through a 3rd party,
such as Facebook or Google, the OAuth workflow is used. In this workflow, after the user clicks on the 3rd party’s
login button they’re taken to the 3rd party’s login page where they enter their credentials. Upon successful login the
3rd party passes the portal an access token that allows us to fetch information from the third party on the user’s behalf
which we use to update the user’s account and log them in to our system.

2.6. Provider Authentication 19

http://flask.pocoo.org/docs/0.12/config/#builtin-configuration-values
https://flask-oauthlib.readthedocs.io/en/latest/oauth2.html#configuration


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Underneath the hood we use Flask-Dance. At a high level, Flask-Dance uses blueprints to authenticate with providers
and returns control to our APIs when auth succeeds or fails. The blueprints and APIs are defined in portal/views/
auth.py. Upon successful authentication the login() API is called with the user’s access/bearer token which
we use to get info about the user. To get this info we create an instance of FacebookFlaskDanceProvider or
GoogleFlaskDanceProvider, which both inherit from FlaskDanceProvider, and call get_user_info.
This function uses the user’s access token to send an authenticated request to the provider. When the request returns
with the user’s information we use create the user an account if they’ve never logged in before or update an existing
account if they’ve logged in using a different provider, and finally log them in to the current session. All of this logic
takes place in login_user_with_provider().

2.6.2 Configuration

In order to authenticate users the portal must know the public and private keys to each 3rd party application. If
you haven’t already, you’ll need to create a third party app and copy its configuration values to instance/
application.cfg by following the steps below:

Facebook

To enable Facebook OAuth, create a new app on Facebook’s App page and copy the consumer_key and
consumer_secret to application.cfg:

# application.cfg
[...]
FACEBOOK_OAUTH_CLIENT_ID = '<App ID From FB>'
FACEBOOK_OAUTH_CLIENT_SECRET = '<App Secret From FB>'

• Set the Authorized redirect URIs to exactly match the location of <scheme>://<hostname>/
login/facebook/

• Set the deauthorize callback. Go to your app, then choose Products, then Facebook Login, and finally
Settings. A text field is provided for the Deauthorize Callback URL. Enter <scheme>://<hostname>/
deauthorized

Google

To enable Google OAuth, create a new app on Google’s API page and copy the consumer_key and
consumer_secret to application.cfg:

# application.cfg
[...]
GOOGLE_OAUTH_CLIENT_ID = '<App ID From Google>'
GOOGLE_OAUTH_CLIENT_SECRET = '<App Secret From Google>'

• Under APIs Credentials, select OAuth 2.0 client ID

• Set the Authorized redirect URIs to exactly match the location of <scheme>://<hostname>/
login/google/

• Enable the Google+ API

activate

In a non-production environment add the following to the bottom of env/bin/activate:

20 Chapter 2. Contents:

https://github.com/singingwolfboy/flask-dance
https://developers.facebook.com/apps
https://console.developers.google.com/project/_/apiui/credential?pli=1


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

export OAUTHLIB_RELAX_TOKEN_SCOPE=1
export OAUTHLIB_INSECURE_TRANSPORT=1

In a production environment you should only add the following to the bottom of env/bin/activate:

export OAUTHLIB_RELAX_TOKEN_SCOPE=1

Explination

2.6.3 Adding a new provider

To add a new provider you’ll need to

1. Create a new blueprint in portal/views/auth.py (see the google_blueprint and
facebook_blueprint as examples and use Flask-Dance Documentation as a reference)

2. Update the existing callback API functions login() and provider_oauth_error to use your new
blueprint (see examples from Google and Facebook blueprints in portal/views/auth.py)

3. Create a new class in portal/models/flaskdanceprovider.py that inherits from FlaskDan-
ceProvider and overrides send_get_user_json_request( to get user info from the provider (see
FacebookFlaskDanceProvider and GoogleFlaskDanceProvider for examples)

4. Import the class created in #3 into portal/views/auth.py and create a new instance of it
when login() is called by the new provider (see how FacebookFlaskDanceProvider and
GoogleFlaskDanceProvider are used in login() for reference)

2.7 Sessions

User session data is stored on the server via Flask-Session, specifically in the same redis server used to house the
celery tasks.

2.7.1 redis-cli

To view sessions (or other key/values) stored in redis, fire up the command line interface (CLI) and execute simple
queries:

$ redis-cli
127.0.0.1:6379> keys session*
1) "session:0e17f42c-72d9-49c1-8066-195a1e770ad2"
2) "session:42c94702-f1cb-447d-a998-409dbd5a99b6"
3) "session:e116b0f1-2271-4473-97d0-6d910a4ff582"
4) "session:2483797a-4261-4c6e-a3d0-1d19d6db6446"
5) "session:3ae29547-943c-48e9-bc7e-b44b78c99551"
6) "session:2264efc6-eb5a-46c0-98c6-fb458b435256"
7) "session:1ac11b4b-bafc-41b5-9d93-b6fb90608054"
[...]
127.0.0.1:6379> ttl session:1ac11b4b-bafc-41b5-9d93-b6fb90608054
(integer) 2677441
127.0.0.1:6379> dump session:3e3ff4ed-2848-41e5-b78f-3ea909219d52
"\x00\xc3@\xd4@\xdf\x16(dp1\nS'_fresh'\np2\nI01\ns \x11\x01id \x0e\x003
→˓\x1b\x1f892f7fec2c15835660cba1324da22125\x17e167e65bbe5de394d486a744
→˓0\x1007be014719895f627 E\x1f58b1ab0de00d8e2b5bc9bb4e29a7e3c7\x108329d9d2051ec0e84
→˓\x86\x004@\x91\x03user\x80\x95\x035\nV2@\x11`\xa2\x006\xa0\x0c\t_permanent
→˓0\x007`\xc6\x01s.\x06\x00\xb2\xbd\xb0W\xf3d\x18\x0c" (continues on next page)

2.7. Sessions 21

https://flask-dance.readthedocs.io/en/latest/quickstarts/google.html?highlight=OAUTHLIB_RELAX_TOKEN_SCOPE
https://flask-dance.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-Session/
http://redis.io


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

(continued from previous page)

ttl: Time To Live. Once expired, redis will delete the respective session.

dump: The session data is a pickled python dictionary.

2.8 Development

• Context

• System-specific text (app_text)

• System-specific pages

• Mapping URL’s to views

• Retrieving content from Liferay

• Use of front-end libs

2.8.1 Context

This documentation is oriented towards supporting CHCR implementation of non-authenticated designs and content:
mostly front-end. Note that one complexity is that this code base is used for two different systems/configuations (and
more will be added): TrueNTH USA, and ePROMs.

2.8.2 System-specific text (app_text)

app_text

2.8.3 System-specific pages

For example, adding a link from the landing page to a “prostate cancer 101” page, but only for TrueNTH (not
ePROMs). Guidance: use SHOW_* configurations. See this example

2.8.4 Mapping URL’s to views

Eg in views/patients.py:

@patients.route('/patient_profile/<int:patient_id>')

2.8.5 Retrieving content from Liferay

Note that one of the systems used for this is AppText Information on managing content in Liferay is here

22 Chapter 2. Contents:

configuration.html#apptext
https://github.com/uwcirg/ePROMs-site-config/blob/master/site_persistence_file.json#L372
configuration.html#apptext
http://tiny.cc/truenth_liferay


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

2.8.6 Use of front-end libs

LESS, jquery, bootstrap, and other

CSS file - for truenth:

• css/portal.css

• less/portal.less

Note: CSS files are compiled from LESS, and that both the CSS and LESS files are managed in git. Lo-
cally, do less portal/static/less/portal.less portal/static/css/portal.css Compila-
tion likely to be moved to deploy.sh, at which point we won’t need to manage css files in git.

2.9 Internationalization

• Indicating Translatable Strings

• Updating Translation Files

– Updating POT files

– Updating PO files

• Initializing Translation Files

• External Documentation

2.9.1 Indicating Translatable Strings

We use gettext for this within python files; we also use Liferay to manage content in different languages.

Surround all strings with _( ) and it will automatically attempt to find a translation, like:

_(‘CELLPHONE’)

This should automatically be available in any template file.

Note: we are moving to a model where en_US is used as the key here, with no need to use an english .po file.*

For adding new translations, you need to add the blank translation to the .pot file:

# <optional comment pointing to where in the code the translation is used>
msgid “Cellphone”
msgstr “”

2.9.2 Updating Translation Files

GNU Gettext translation files consist of a single Portable Object Template file (POT file) and Portable Object (PO file)
for each localization (language).

2.9. Internationalization 23

http://tiny.cc/truenth_liferay#heading=h.ei0lyxrk4ix0


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Updating POT files

To update the .pot file with all source strings from the apptext/interventions tables run the following command:

$ FLASK_APP=manage.py flask translations

Updating PO files

To update the PO files with the latest translations from Smartling, run the following command:

$ FLASK_APP=manage.py flask translation-download

2.9.3 Initializing Translation Files

You can create a new .pot file with all extracted translations from the code by running the following pybabel command:

$ pybabel extract -F instance/babel.cfg -o portal/translations/messages.pot portal/

2.9.4 External Documentation

jinja i18n-extension

gettext

2.10 Code Documentation

All the project files contain some level of inline documentation. Organized below by module.

Note: This does not include API endpoints documented via swagger, as the swagger syntax is incompatable with
restructuredText

2.10.1 Portal

Portal module

portal.factories.app.configure_app(app, config)
Load successive configs - overriding defaults

portal.factories.app.configure_blueprints(app, blueprints)
Register blueprints with application

portal.factories.app.configure_cache(app)
Configure requests-cache

portal.factories.app.configure_csrf(app)
Initialize CSRF protection

See csrf.csrf_protect() for implementation. Not using default as OAuth API use needs exclusion.

24 Chapter 2. Contents:

http://jinja.pocoo.org/docs/dev/extensions/#i18n-extension
https://docs.python.org/dev/library/gettext.html
https://stg.us.truenth.org/dist


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

portal.factories.app.configure_dogpile(app)
Initialize dogpile cache with config values

portal.factories.app.configure_extensions(app)
Bind extensions to application

portal.factories.app.configure_healthcheck(app)
Configure the API used to check the health of our dependencies

portal.factories.app.configure_logging(app)
Configure logging.

portal.factories.app.configure_metadata(app)
Add distribution metadata for display in templates

portal.factories.app.create_app(config=None, app_name=None, blueprints=None)
Returns the configured flask app

AUDIT module

Maintain a log exclusively used for recording auditable events.

Any action deemed an auditable event should make a call to auditable_event()

Audit data is also persisted in the database audit table.

portal.audit.auditable_event(message, user_id, subject_id, context=u’other’)
Record auditable event

message: The message to record, i.e. “log in via facebook” user_id: The authenticated user id performing the
action subject_id: The user id upon which the action was performed

portal.audit.configure_audit_log(app)
Configure audit logging.

The audit log is only active when running as a service (not during database updates, etc.) It should only received
auditable events and never be rotated out.

Extensions used at application level

Generally the objects instantiated here are needed for imports throughout the system, but require factory pattern
initialization once the flask app comes to life.

Defined here to break the circular dependencies. See app.py for additional configuration of most objects defined
herein.

class portal.extensions.OAuthOrAlternateAuth(app=None)
Specialize OAuth2Provider with alternate authorization

require_oauth(*scopes)
Specialze the superclass decorator with alternates

This method is intended to be in lock step with the super class, with the following two exceptions:

1. if actively “TESTING”, skip oauth and return the function, effectively undecorated.

2. if the user appears to be locally logged in (i.e. browser session cookie with a valid user.id), return the
effecively undecorated function.

Namespace module to house system URIs for use in FHIR

2.10.2 Portal.Config

Configuration

2.10. Code Documentation 25



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

class portal.config.config.BaseConfig
Base configuration - override in subclasses

class portal.config.config.DefaultConfig
Default configuration

class portal.config.config.TestConfig
Testing configuration - used by unit tests

portal.config.config.best_sql_url()
Return compliant sql url from available environment variables

portal.config.config.testing_sql_url()
Return compliant sql url from available environment variables

If tests are being run with pytest-xdist workers, a pre-existing database will be required for each worker, suffixed
with the worker index.

SitePersistence Module

class portal.config.site_persistence.ModelDetails(cls, sequence_name, lookup_field)

cls
Alias for field number 0

lookup_field
Alias for field number 2

sequence_name
Alias for field number 1

class portal.config.site_persistence.SitePersistence(target_dir)
Manage import and export of dynamic site data

export(staging_exclusion=False)
Generate JSON files defining dynamic site objects

Parameters staging_exclusion – set only if persisting exclusions to retain on staging
when pulling over production data

Export dynamic data, such as Organizations and Access Strategies for import into other sites. This does
NOT export values expected to live in the site config file or the static set generated by the seed managment
command.

To import the data, use the seed command as defined in manage.py

import_(keep_unmentioned, staging_exclusion=False)
If persistence file is found, import the data

Parameters

• keep_unmentioned – if True, unmentioned data, such as an organization or interven-
tion in the current database but not in the persistence file, will be left in place. if False, any
unmentioned data will be purged as part of the import process.

• staging_exclusion – set only if persisting exclusions to retain on staging when
pulling over production data

2.10.3 Portal.Models

Address module

26 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Address data lives in the ‘addresses’ table. Several entities link to address via foreign keys.

class portal.models.address.Address(**kwargs)
SQLAlchemy class for addresses table

as_fhir()

city

country

district

classmethod from_fhir(data)

id

line1

line2

line3

lines

postalCode

state

type

use

Audit Module

class portal.models.audit.Audit(**kwargs)
ORM class for audit data

Holds meta info about changes in other tables, such as when and by whom the data was added. Several other
tables maintain foreign keys to audit rows, such as Observation and Procedure.

as_fhir()
Typically included as meta data in containing FHIR resource

comment

context

classmethod from_logentry(entry)
Parse and create an Audit instance from audit log entry

Prior to version v16.5.12, audit entries only landed in log. This may be used to convert old entries, but
newer ones should already be there.

id

subject_id

timestamp

user_id

version

class portal.models.audit.Context

account = 5

2.10. Code Documentation 27



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

assessment = 2

authentication = 3

consent = 6

group = 10

intervention = 4

login = 1

observation = 8

organization = 9

other = 0

procedure = 11

relationship = 12

role = 13

tou = 14

user = 7

portal.models.audit.lookup_version()

Auth related model classes

class portal.models.auth.AuthProvider(**kwargs)

as_fhir()

created_at

id

provider

provider_id

token

user

user_id

class portal.models.auth.AuthProviderPersistable(**kwargs)
For persistence to function, need instance serialization

The base class for AuthProvider implements a non persistence-compliant version of as_fhir() as needed to
show FHIR compliant identifiers in demographics.

This subclass (adapter) exists solely to provide serialization methods that work with persistence.

as_fhir()
serialize the AuthProvider

created_at

classmethod from_fhir(data)

id

provider

28 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

provider_id

token

update_from_fhir(data)

user

user_id

class portal.models.auth.Grant(**kwargs)

client

client_id

code

delete()

expires

id

redirect_uri

scopes

user

user_id

validate_redirect_uri(redirect_uri)
Validate the redirect_uri from the OAuth Grant request

The RFC requires exact match on the redirect_uri. In practice this is too great of a burden for the interven-
tions. Make sure it’s from the same scheme:://host:port the client registered with

http://tools.ietf.org/html/rfc6749#section-4.1.3

class portal.models.auth.Mock

class portal.models.auth.Token(**kwargs)

access_token

as_json()
serialize the token - used to preserve service tokens

client

client_id

expires

classmethod from_json(data)

id

refresh_token

scopes

token_type

update_from_json(data)

user

2.10. Code Documentation 29

http://tools.ietf.org/html/rfc6749#section-4.1.3


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

user_id

portal.models.auth.create_service_token(client, user)
Generate and return a bearer token for service calls

Partners need a mechanism for automated, authorized API access. This function returns a bearer token for
subsequent authorized calls.

NB - as this opens a back door, it’s only offered to users with the single role ‘service’.

portal.models.auth.load_grant(client_id, code)

portal.models.auth.load_token(access_token=None, refresh_token=None)

portal.models.auth.save_grant(client_id, code, request, *args, **kwargs)

portal.models.auth.save_token(token, request, *args, **kwargs)

portal.models.auth.token_janitor()
Called by scheduled job to clean up and send alerts

No value in keeping around stale tokens, so we delete any that have expired.

For service tokens, trigger an email alert if they will be expiring soon.

Returns list of unreachable email addresses

Model classes for retaining FHIR data

class portal.models.fhir.BundleType

portal.models.fhir.bundle_results(elements, bundle_type=<BundleType.searchset: 8>,
links=None)

Generate FHIR Bundle from element lists

Parameters

• elements – iterable of FHIR Resources to bundle

• bundle_type – limited by FHIR to be of the BundleType enum.

• links – links related to this bundle, such as API used to generate

Returns a FHIR compliant bundle

portal.models.fhir.v_or_first(value, field_name)
Return desired from list or scalar value

Parameters

• value – the raw data, may be a single value (directly returned) or a list from which the first
element will be returned

• field_name – used in error text when multiple values are found for a constrained item.

Some fields, such as name were assumed to always be a single dictionary containing single values, whereas the
FHIR spec defines them to support 0..* meaning we must handle a list.

NB - as the datamodel still only expects one, a 400 will be raised if given multiple values, using the field_name
in the text.

portal.models.fhir.v_or_n(value)
Return None unless the value contains data

class portal.models.flaskdanceprovider.FacebookFlaskDanceProvider(blueprint,
token)

fetches user info from Facebook after successfull auth

30 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

After the user successfully authenticates with Facebook this class fetches the user’s info from Facebook

send_get_user_json_request()
sends a GET request to Facebook for user data

This function is used to get user information from Facebook that is encoded in json.

:return Response

class portal.models.flaskdanceprovider.FlaskDanceProvider(blueprint, token, stan-
dard_key_to_provider_key_map)

base class for flask dance providers

When a new provider is added to the protal’s consumer oauth flow a descendent of this class needs to be created
to get the user’s information from the provider after a successful auth

get_user_info()
gets user info from the provider

This function parses json returned from the provider and returns an instance of FlaskProviderUserInfo that
is filled with the user’s information

:return FlaskProviderUserInfo with the user’s info

parse_json(user_json)
parses the user’s json and returns it in a standard format

Providers encode user information in json. This function parses the json and stores values in an instance
of FlaskProviderUserInfo

Parameters user_json – info about the user encoded in json

:return instance of FlaskProviderUserInfo with the user’s info

send_get_user_json_request()
sends a request to the provider to get user json

This function must be overriden in descendant classes to return a response with the user’s json

class portal.models.flaskdanceprovider.FlaskProviderUserInfo
a common format for user info fetched from providers

Each provider packages user info a litle differently. Google, for example, uses “given_name” and the key for
the user’s first name, and Facebook uses “first_name”. To make it easier for our code to parse responses in a
common function this class provides a common format to store the results from each provider.

class portal.models.flaskdanceprovider.GoogleFlaskDanceProvider(blueprint, to-
ken)

fetches user info from Google after successfull auth

After the user successfully authenticates with Google this class fetches the user’s info from Google

send_get_user_json_request()
sends a GET request to Google for user data

This function is used to get user information from Google that is encoded in json.

:return Response

class portal.models.flaskdanceprovider.MockFlaskDanceProvider(provider_name,
token, user_json,
fail_to_get_user_json)

creates user info from test data to validate auth logic

This class should only be used during testing. It simply mocks user json that is normally retrieved from a
provider which allows us to granularly test auth logic

2.10. Code Documentation 31



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

send_get_user_json_request()
return a mock request based on test data passed into the constructor

Normally a request is sent to a provider and user json is returned. This function mocks out that request by
returning a response with the user json passed through the test backdoor

class portal.models.flaskdanceprovider.MockJsonResponse(ok, user_json)
mocks a GET json response

During auth we send a request to providers that returns user json. During tests we need to mock out providers
so we can test our auth logic. This class is used to mock out requests that are normally sent to providers.

json()
returns mock json

Identifier Model Module

class portal.models.identifier.Identifier(**kwargs)
Identifier ORM, for FHIR Identifier resources

add_if_not_found(commit_immediately=False)
Add self to database, or return existing

Queries for similar, matching on system and value alone. Note the database unique constraint to match.

@return: the new or matched Identifier

class portal.models.identifier.UserIdentifier(**kwargs)
ORM class for user_identifiers data

Holds links to any additional identifiers a user may have, such as study participation.

Intervention Module

class portal.models.intervention.DisplayDetails(access, intervention,
user_intervention)

Simple abstraction to communicate display details to front end

To provide a custom experience, intevention access can be set at several levels. For a user, access is either
available or not, and when available, the link controls may be intentionally disabled for a reason the intervention
should note in the status_text field.

Attributes:: access: {True, False} card_html: Text to display on the card link_label: Text used to label the
button or hyperlink link_url: URL for the button or link - link to be disabled when null status_text: Text
to inform user of status, or why it’s disabled

class portal.models.intervention.Intervention(**kwargs)

as_json()
Returns the ‘safe to export’ portions of an intervention

The client_id and link_url are non-portable between systems. The id is also independent - return the rest
of the not null fields as a simple json dict.

NB for staging exclusions to function, link_url and client_id are now included. Take care to remove it
from persistence files where it is NOT portable, for example, when generating persistence files program-
matically.

display_for_user(user)
Return the intervention display details for the given user

Somewhat complicated method, depending on intervention configuration. The following ordered steps are
used to determine if a user should have access to an intervention. The first ‘true’ found provides access,
otherwise the intervention will not be displayed.

32 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

1. call each strategy_function in intervention.access_strategies. Note, on rare occasions, a strategy may
alter the UserIntervention attributes given the circumstances.

2. check for a UserIntervention row defining access for the given user on this intervention.

3. check if the intervention has public_access set

@return DisplayDetails object defining ‘access’ and other details for how to render the intervention.

fetch_strategies()
Generator to return each registered strategy

Strategies need to be brought to life from their persisted state. This generator does so, and returns them in
a call ready fashion, ordered by the strategy’s rank.

quick_access_check(user)
Return boolean representing given user’s access to intervention

Somewhat complicated method, depending on intervention configuration. The following ordered steps are
used to determine if a user should have access to an intervention. The first ‘true’ found is returned (as to
make the check as quick as possible).

1. check if the intervention has public_access set

2. check for a UserIntervention row defining access for the given user on this intervention.

3. call each strategy_function in intervention.access_strategies.

@return boolean representing ‘access’.

class portal.models.intervention.UserIntervention(**kwargs)

classmethod user_access_granted(intervention_id, user_id)
Shortcut to query for specific (intervention, user) access

portal.models.intervention.add_static_interventions()
Seed database with default static interventions

Idempotent - run anytime to push any new interventions into existing dbs

Module for intervention access strategy functions

Determining whether or not to provide access to a given intervention for a user is occasionally tricky business. By
way of the access_strategies property on all interventions, one can add additional criteria by defining a function here
(or elsewhere) and adding it to the desired intervention.

function signature: takes named parameters (intervention, user) and returns a boolean - True grants access (and short
circuits further access tests), False does not.

NB - several functions are closures returning access_strategy functions with the parameters given to the closures.

class portal.models.intervention_strategies.AccessStrategy(**kwargs)
ORM to persist access strategies on an intervention

The function_details field contains JSON defining which strategy to use and how it should be instantiated by
one of the closures implementing the access_strategy interface. Said closures must be defined in this module (a
security measure to keep unsanitized code out).

as_json()
Return self in JSON friendly dictionary

instantiate()
Bring the serialized access strategy function to life

Using the JSON in self.function_details, instantiate the function and return it ready to use.

2.10. Code Documentation 33



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

portal.models.intervention_strategies.allow_if_not_in_intervention(intervention_name)
Strategy API checks user does not belong to named intervention

portal.models.intervention_strategies.combine_strategies(**kwargs)
Make multiple strategies into a single statement

The nature of the access lookup returns True for the first success in the list of strategies for an intervention. Use
this method to chain multiple strategies together into a logical and fashion rather than the built in locical or.

NB - kwargs must have keys such as ‘strategy_n’, ‘strategy_n_kwargs’ for every ‘n’ strategies being combined,
starting at 1. Set arbitrary limit of 6 strategies for time being.

Nested strategies may actually want a logical ‘OR’. Optional kwarg combinator takes values {‘any’, ‘all’} -
default ‘all’ means all strategies must evaluate true. ‘any’ means just one must eval true for a positive result.

portal.models.intervention_strategies.in_role_list(role_list)
Requires user is associated with any role in the list

portal.models.intervention_strategies.limit_by_clinic_w_id(identifier_value,
identifier_system=’http://us.truenth.org/identity-
codes/decision-
support-group’, com-
binator=u’any’, in-
clude_children=True)

Requires user is associated with {any,all} clinics with identifier

Parameters

• identifier_value – value string for identifer associated with org(s)

• identifier_system – system string for identifier, defaults to DECI-
SION_SUPPORT_GROUP

• combinator – determines if the user must be in ‘any’ (default) or ‘all’ of the clinics in
the given list. NB combining ‘all’ with include_children=True would mean all orgs in the
list AND all chidren of all orgs in list must be associated with the user for a true result.

• include_children – include children in the organization tree if set (default), otherwise,
only include the organizations in the list

portal.models.intervention_strategies.not_in_clinic_w_id(identifier_value,
identifier_system=’http://us.truenth.org/identity-
codes/decision-
support-group’, in-
clude_children=True)

Requires user isn’t associated with any clinic in the list

Parameters

• identifier_value – value string for identifer associated with org(s)

• identifier_system – system string for identifier, defaults to DECI-
SION_SUPPORT_GROUP

• include_children – include children in the organization tree if set (default), otherwise,
only include the organizations directly associated with the identifier

portal.models.intervention_strategies.not_in_role_list(role_list)
Requires user isn’t associated with any role in the list

portal.models.intervention_strategies.observation_check(display, boolean_value, in-
vert_logic=False)

Returns strategy function for a particular observation and logic value

34 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Parameters

• display – observation coding.display from TRUENTH_CLINICAL_CODE_SYSTEM

• boolean_value – ValueQuantity boolean true or false expected

• invert_logic – Effective binary not to apply to test. If set, will return True only if
given observation with boolean_value is NOT defined for user

NB a history of observations is maintained, with the most recent taking precedence.

portal.models.intervention_strategies.tx_begun(boolean_value)
Returns strategy function testing if user is known to have started Tx

Parameters boolean_value – true for known treatment started (i.e. procedure indicating tx has
begun), false to confirm a user doesn’t have a procedure indicating tx has begun

portal.models.intervention_strategies.update_card_html_on_completion()
Update description and card_html depending on state

portal.models.lazy.lazyprop(fn)
Property decorator for lazy intialization (load on first request)

Useful on any expensive to load attribute on any class. Simply decorate the ‘getter’ with @lazyprop, where the
function definition loads the object to be assigned to the given attribute.

As the SQLAlchemy session is NOT thread safe and this tends to be the primary use of the lazyprop decorator,
we include the thread identifier in the key

portal.models.lazy.query_by_name(cls, name)
returns a lazy load function capable of caching object

Use this alternative for classes with dynamic attributes (names not hardcoded in class definition), as property
decorators (i.e. @lazyprop) don’t function properly.

As the SQLAlchemy session is NOT thread safe, we include the thread identifier in the key

NB - attribute instances must be unique over (cls.__name__, name) within the containing class to avoid colli-
sions.

@param cls: ORM class to query @param name: name field in ORM class to uniquely define object

Model classes for message data

class portal.models.message.EmailMessage(**kwargs)

as_json()

body

id

recipients

send_message(cc_address=None)
Send the message

Parameters cc_address – include valid email address to send a carbon copy

NB the cc isn’t persisted with the rest of the record.

sender

sent_at

2.10. Code Documentation 35



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

static style_message(body)
Implicitly called on send, to wrap body with style tags

subject

user_id

portal.models.message.log_message(message, app)
Configured to handle signals on email_dispatched - log the event

Model classes for organizations and related entities.

Designed around FHIR guidelines for representation of organizations, locations and healthcare services which are
used to describe hospitals and clinics.

class portal.models.organization.LocaleExtension(organization, extension)

children

extension_url = 'http://hl7.org/fhir/valueset/languages'

class portal.models.organization.OrgNode(id, parent=None, children=None)
Node in tree of organizations - used by org tree

Simple tree implementation to house organizations in a hierarchical structure. One root - any number of nodes
at each tier. The organization identifiers (integers referring to the database primary key) are used as reference
keys.

insert(id, partOf_id=None)
Insert new nodes into the org tree

Designed for this special organizaion purpose, we expect the tree is built from the top (root) down, so no
rebalancing is necessary.

Parameters

• id – of organizaiton to insert

• partOf_id – if organization has a parent - its identifier

Returns the newly inserted node

top_level()
Lookup top_level organization id from the given node

Use OrgTree.find() to locate starter node, if necessary

class portal.models.organization.OrgTree
In-memory organizations tree for hierarchy and structure

Organizations may define a ‘partOf’ in the database records to describe where the organization fits in a hierarchy.
As there may be any number of organization tiers, and the need exists to lookup where an organiztion fits in this
hiearchy. For example, needing to lookup the top level organization for any node, or all the organizations at or
below a level for permission issues. etc.

This singleton class will build up the tree when it’s first needed (i.e. lazy load).

Note, the root of the tree is a dummy object, so the first tier can be multiple top-level organizations.

static all_ids_with_rp(research_protocol)
Returns set of org IDs that are associated with Research Protocol

As child orgs are considered to be associated if the parent org is, this will return the full list for optimized
comparisons.

36 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

all_leaf_ids()

all_leaves_below_id(organization_id)
Given org at arbitrary level, return list of leaf nodes below it

all_top_level_ids()
Return list of all top level organization identifiers

at_and_above_ids(organization_id)
Returns list of ids from any point in tree and up the parent stack

Parameters organization_id – node in tree, will be included in return list

Returns list of organization ids from the one given on up including every parent found in chain

at_or_below_ids(organization_id, other_organizations)
Check if the other_organizations are at or below given organization

Parameters

• organization_id – effective parent to check against

• other_organizations – iterable of organization_ids as potential children.

Returns True if any org in other_organizations is equal to the given organization_id, or a child
of it.

find(organization_id)
Locates and returns node in OrgTree for given organization_id

Parameters organization_id – primary key of organization to locate

Returns OrgNode from OrgTree

Raises ValueError if not found - unexpected

find_top_level_orgs(organizations, first=False)
Returns top level organization(s) from those provided

Parameters

• organizations – organizations against which top level organization(s) will be queried

• first – if set, return the first org in the result list rather than a set of orgs.

Returns set of top level organization(s), or a single org if first is set.

here_and_below_id(organization_id)
Given org at arbitrary level, return list at and below

classmethod invalidate_cache()
Invalidate cache on org changes

lookup_table = None

populate_tree()
Recursively build tree from top down

root = None

top_level_names()
Fetch org names for all_top_level_ids

Returns list of top level org names

2.10. Code Documentation 37



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

visible_patients(staff_user)
Returns patient IDs for whom the current staff_user can view

Staff users can view all patients at or below their own org level.

NB - no patients should ever have a consent on file with the special organization ‘none of the above’ - said
organization is ignored in the search.

class portal.models.organization.Organization(**kwargs)
Model representing a FHIR organization

Organizations represent a collection of people that have come together to achieve an objective. As an example,
all the healthcare services provided by the same university hospital will belong to the organization representing
said university hospital.

Organizations can reference other organizations via the ‘partOf_id’, where children name their parent organiza-
tion id.

addresses

as_fhir(include_empties=True)
Return JSON representation of organization

Parameters include_empties – if True, returns entire object definition; if False, empty
elements are removed from the result

Returns JSON representation of a FHIR Organization resource

coding_options

static consent_agreements(locale_code)
Return consent agreements for all top level organizations

Parameters locale_code – preferred locale, typically user’s.

Returns dictionary keyed by top level organization id containing a VersionedResource for each
organization IFF the organization has a custom consent agreement on file. The organiza-
tion_name is also added to the versioned resource to simplify UI code.

default_locale

default_locale_id

email

ethnicity_codings

classmethod from_fhir(data)

classmethod generate_bundle(limit_to_ids=None, include_empties=True)
Generate a FHIR bundle of existing orgs ordered by ID

Parameters

• limit_to_ids – if defined, only return the matching set, otherwise all organizations
found

• include_empties – set to include empty attributes

Returns

id

identifiers

indigenous_codings

38 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

locales

name

organization_research_protocols

partOf_id

phone

phone_id

race_codings

research_protocol(as_of_date)
Lookup research protocol for this org valid at as_of_date

Complicated scenario as it may only be defined on the parent or further up the tree. Secondly, we keep
history of research protocols in case backdated entry is necessary.

Returns research protocol for org (or parent org) valid as_of_date

research_protocols
A descriptor that presents a read/write view of an object attribute.

rps_w_retired(consider_parents=False)
accessor to collate research protocols and retired_as_of values

The SQLAlchemy association proxy doesn’t provide easy access to intermediary table data - i.e. columns
in the link table between a many:many association. This accessor collates the value stored in the interme-
diary table, retired_as_of with the research protocols for this organization.

Parameters consider_parents – if set and the org doesn’t have an associated RP, continue
up the org hiearchy till one is found.

Returns ready query for use in iteration or count or other methods. Query will produce a list
of tuples (ResearchProtocol, retired_as_of) associated with the organization, ordered by re-
tired_as_of dates with nulls last.

shortname
Return shortname identifier if found, else the org name

timezone

type

type_id

update_from_fhir(data)

use_specific_codings

users

class portal.models.organization.OrganizationAddress(**kwargs)
link table for organization : n addresses

address_id

id

organization_id

class portal.models.organization.OrganizationIdentifier(**kwargs)
link table for organization : n identifiers

id

2.10. Code Documentation 39



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

identifier_id

organization_id

class portal.models.organization.OrganizationLocale(**kwargs)

coding_id

id

organization_id

class portal.models.organization.OrganizationResearchProtocol(research_protocol=None,
organiza-
tion=None, re-
tired_as_of=None)

id

organization

organization_id

research_protocol

research_protocol_id

retired_as_of

class portal.models.organization.ResearchProtocolExtension(organization, exten-
sion)

apply_fhir()

as_fhir(include_empties=True)

children

extension_url = 'http://us.truenth.org/identity-codes/research-protocol'

class portal.models.organization.UserOrganization(**kwargs)
link table for users (n) : organizations (n)

id

organization

organization_id

user_id

portal.models.organization.add_static_organization()
Insert special none of the above org at index 0

portal.models.organization.org_extension_map(organization, extension)
Map the given extension to the Organization

FHIR uses extensions for elements beyond base set defined. Lookup an adapter to handle the given extension
for the organization.

Parameters

• organization – the org to apply to or read the extension from

• extension – a dictionary with at least a ‘url’ key defining the extension.

Returns adapter implementing apply_fhir and as_fhir methods

40 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

:raises exceptions.ValueError: if the extension isn’t recognized

Performer module - encapsulate the FHIR Performer resource

class portal.models.performer.ObservationPerformer(**kwargs)
Link table for observation to list of performers

id

observation_id

performer_id

class portal.models.performer.Performer(**kwargs)
ORM for FHIR Performer - performers table

add_if_not_found(commit_immediately=False)
Add self to database, or return existing

Queries for matching, existing Performer. Populates self.id if found, adds to database first if not.

as_fhir()
Return self in JSON FHIR formatted string

FHIR is not currently consistant in performer inclusion. For example, Observation.performer is simply
a list of Reference resources, whereas Procedure.performer is a list including the resource labeled as an
actor and a codable concept labeled as the role defining the actor’s role.

Returns the best JSON FHIR formatted string for the instance

codeable_concept

codeable_concept_id
The codeable concept for performers including a role

classmethod from_fhir(fhir)
Return performer instance from JSON FHIR formatted string

See note in as_fhir, the format of a performer depends on context. Populate self.codeable_concept only if
it’s included as a role.

Returns new performer instance from values in given fhir

id

observations

reference_txt
Text for performer (aka actor), i.e. {“reference”: “patient/12”}

Procedure Model

class portal.models.procedure.Procedure(**kwargs)
ORM class for procedures

Similar to the profiles published by SMART

Each Procedure must haveProcedure must have

1 patient in Procedure.subject (aka Procedure.user)

1 code in Procedure.code (pointing to a CodeableConcept) with system of http://
snomed.info/sct

1 performed datetime in Procedure.performedDateTime

2.10. Code Documentation 41

https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError
http://docs.smarthealthit.org/profiles/
http://snomed.info/sct
http://snomed.info/sct


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

as_fhir()
produces FHIR representation of procedure in JSON format

audit
tracks when and by whom the procedure was retained, included as meta data in the FHIR output

code
procedure.code (a CodeableConcept) defines the procedure. coding.system is required to be
http://snomed.info/sct

end_time
when defined, produces a performedPeriod, otherwise start_time is used alone as performedDateTime

classmethod from_fhir(data, audit)
Parses FHIR data to produce a new procedure instance

start_time
required whereas end_time is optional

Reference module - encapsulate FHIR Reference type

exception portal.models.reference.MissingReference
Raised when FHIR references cannot be found

exception portal.models.reference.MultipleReference
Raised when FHIR references retrieve multiple results

class portal.models.reference.Reference

as_fhir()
Return FHIR compliant reference string

FHIR uses the Reference Resource within a number of other resources to define things like who performed
an observation or what organization another is a partOf.

Returns the appropriate JSON formatted reference string.

classmethod intervention(intervention_id)
Create a reference object from given intervention

Intervention references maintained by name - lookup from given id.

classmethod organization(organization_id)
Create a reference object from a known organization id

classmethod parse(reference_dict)
Parse an organization from a FHIR Reference resource

Typical format: “{‘Reference’: ‘Organization/12’}” or “{‘reference’: ‘api/patient/6’}”

FHIR is a little sloppy on upper/lower case, so this parser is also flexible.

Returns the referenced object - instantiated from the db

:raises portal.models.reference.MissingReference: if the referenced object can not be
found

:raises portal.models.reference.MultipleReference: if the referenced object retrieves
multiple results

:raises exceptions.ValueError: if the text format can’t be parsed

42 Chapter 2. Contents:

https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

classmethod patient(patient_id)
Create a reference object from a known patient id

classmethod practitioner(practitioner_id)
Create a reference object from a known patient id

classmethod questionnaire(questionnaire_name)
Create a reference object from a known questionnaire name

classmethod questionnaire_bank(questionnaire_bank_name)
Create a reference object from a known questionnaire bank

classmethod research_protocol(research_protocol_name)
Create a reference object from a known research protocol

Relationship module

Relationship data lives in the relationships table, populated via: FLASK_APP=manage.py flask seed

To extend the list of roles, add name: description pairs to the STATIC_RELATIONSHIPS dict within, and rerun the
seed command above.

class portal.models.relationship.Relationship(**kwargs)
SQLAlchemy class for relationships table

description

id

name

portal.models.relationship.add_static_relationships()
Seed database with default static relationships

Idempotent - run anytime to pick up any new relationships in existing dbs

Role module

Role data lives in the roles table, populated via: flask seed

To restrict access to a given role, use the ROLE object: @roles_required(ROLE.ADMIN.value)

To extend the list of roles, add name: description pairs to the STATIC_ROLES dict within.

class portal.models.role.Role(**kwargs)
SQLAlchemy class for roles table

as_json()

description

display_name
Generate and return ‘Title Case’ version of name ‘title_case’

id

name

users

portal.models.role.add_static_roles()
Seed database with default static roles

Idempotent - run anytime to pick up any new roles in existing dbs

Telecom Module

FHIR uses a telecom structure for email, fax, phone, etc.

2.10. Code Documentation 43



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

class portal.models.telecom.ContactPoint(**kwargs)
ContactPoint model for storing FHIR telecom entries

as_fhir()

classmethod from_fhir(data)

id

rank

system

update_from_fhir(data)

use

value

class portal.models.telecom.Telecom(email=None, contact_points=None)
Telecom model - not a formal db front at this time

Several FHIR resources include telecom entries. This helper class wraps common functions.

as_fhir()

cp_dict()

classmethod from_fhir(data)

User model

exception portal.models.user.RoleError

class portal.models.user.User(**kwargs)

active

add_observation(fhir, audit)

add_organization(organization_name)
Shortcut to add a clinic/organization by name

add_password_verification_failure()
remembers when a user fails password verification

Each time a user fails password verification this function is called. Use user.is_locked_out to tell whether
this has been called enough times to lock the user out of the system

Returns total failures since last reset

add_relationship(other_user, relationship_name)

add_roles(role_list, acting_user)
Add one or more roles to user’s existing roles

Parameters

• role_list – list of role objects defining what roles to add

• acting_user – user performing action, for permissions, etc.

Raises 409 if any named roles are already assigned to the user

add_service_account()
Service account generation.

44 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

For automated, authenticated access to protected API endpoints, a service user can be created and used to
generate a long-life bearer token. The account is a user with the service role, attached to a sposor account
- the (self) individual creating it.

Only a single service account is allowed per user. If one is found to exist for this user, simply return it.

all_consents
Access to all consents including deleted and expired

alt_phone

alt_phone_id

as_fhir(include_empties=True)
Return JSON representation of user

Parameters include_empties – if True, returns entire object definition; if False, empty
elements are removed from the result

Returns JSON representation of a FHIR Patient resource

auth_providers

birthdate

check_role(permission, other_id)
check user for adequate role

if user is an admin or a service account, grant carte blanche otherwise, must be self or have a relationship
granting permission to “verb” the other user.

returns true if permission should be granted, raises 404 if the other_id can’t be found, otherwise raise a
401

clinical_history(requestURL=None, patch_dstu2=False)

classmethod column_names()

concept_value(codeable_concept)
Look up logical value for given concept

Returns the most current setting for a given concept, by interpreting the results of a matching
fetch_value_status_for_concept() call.

NB - as there are states beyond true/false, such as “unknown” for a given concept, this does NOT return a
boolean but a string.

Returns a string, typically “true”, “false” or “unknown”

confirmed_at

current_encounter
Shortcut to current encounter, if present

An encounter is typically bound to the logged in user, not the subject, if a different user is performing the
action.

deactivate_tous(acting_user, types=None)
Mark user’s current active ToU agreements as inactive

Marks the user’s current active ToU agreements as inactive. User must agree to ToUs again upon next
login (per CoreData logic). If types provided, only deactivates agreements of that ToU type. Called when
the ToU agreement language is updated.

Parameters

2.10. Code Documentation 45



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

• acting_user – user behind the request for permission checks

• types – ToU types for which to invalide agreements (optional)

deceased

deceased_id

delete_roles(role_list, acting_user)
Delete one or more roles from user’s existing roles

Parameters

• role_list – list of role objects defining what roles to remove

• acting_user – user performing action, for permissions, etc.

Raises 409 if any named roles are not currently assigned to the user

delete_user(acting_user)
Mark user deleted from the system

Due to audit constraints, we do NOT actually delete the user, but mark the user as deleted. See perma-
nently_delete_user for more serious alternative.

Parameters

• self – user to mark deleted

• acting_user – individual executing the command, for audit trail

deleted

deleted_id

display_name

documents

email

email_ready()
Returns (True, None) IFF user has valid email & necessary criteria

As user’s frequently forget their passwords or start in a state without a valid email address, the system
should NOT email invites or reminders unless adequate data is on file for the user to perform a reset
password loop.

NB exceptions exist for systems with the NO_CHALLENGE_WO_DATA configuration set, as those sys-
tems allow for change of password without the verification step, if the user doesn’t have a required field
set.

Returns (Success, Failure message), such as (True, None) if the user account is “email_ready”
or (False, _”invalid email”) if the reason for failure is a lack of valid email address.

encounters

ethnicities

external_study_id
Return the value of the user’s external study identifier(s)

If more than one external study identifiers are found for the user, values will be joined by ‘, ‘

failed_login_attempts_before_lockout
Number of failed login attempts before lockout

46 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

fetch_datetime_for_concept(codeable_concept)
Return newest issued timestamp from matching observation

fetch_value_status_for_concept(codeable_concept)
Return matching ValueQuantity & status for this user

Given the possibility of multiple matching observations, returns the most current info available.

See also concept_value()

Returns (value_quantity, status) tuple for the observation if found on the user, else (None, None)

first_name

first_top_organization()
Return first top level organization for user

NB, none of the above doesn’t count and will not be retuned.

A user may have any number of organizations, but most business decisions, assume there is only one.
Arbitrarily returning the first from the matching query in case of multiple.

Returns a single top level organization, or None

classmethod from_fhir(data)

fuzzy_match(first_name, last_name, birthdate)
Returns probability score [0-100] of it being the same user

gender

groups

has_relationship(relationship_name, other_user)

has_role(role_name)
Return True if the user has one of the specified roles. Return False otherwise.

has_roles() accepts a 1 or more role name parameters has_role(role_name1, role_name2,
role_name3).

For example: has_roles(‘a’, ‘b’)

Translates to: User has role ‘a’ OR role ‘b’

id

identifiers
Return list of identifiers

Several identifiers are “implicit”, such as the primary key from the user table, and any auth_providers
associated with this user. These will be prepended to the existing identifiers but should never be stored, as
they’re generated from other fields.

Returns list of implicit and existing identifiers

image_url

implicit_identifiers()
Generate and return the implicit identifiers

The primary key, email and auth providers are all visible in formats such as demographics, but should
never be stored as user_identifiers, less problems of duplicate, out of sync data arise.

This method generates those on the fly for display purposes.

Returns list of implicit identifiers

2.10. Code Documentation 47



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

indigenous

interventions

is_locked_out
tells if user is temporarily locked out

To slow down brute force password attacks we temporarily lock users out of the system for a short period
of time. This property tells whether or not the user is locked out.

is_registered()
Returns True if user has completed registration

Not to be confused with the registered column (which captures the moment when the account was
created), is_registered returns true once the user has blessed their account with login credentials,
such as a password or auth_provider access.

Roles are considered in this check - special roles such as access_on_verify and write_only
should never exist on registered users, and therefore this method will return False for any users with these
roles.

last_name

last_password_verification_failure

leaf_organizations()
Return list of ‘leaf’ organization ids for user’s orgs

Users, especially staff, have arbitrary number of organization associations, at any level of the organization
hierarchy. This method looks up all child leaf nodes from the users existing orgs.

locale

locale_code

locale_display_options
Collates all the locale options from the user’s orgs to establish which should be visible to the user

locale_id

locale_name

lockout_period_minutes
The lockout period in minutes

lockout_period_timedelta
The lockout period as a timedelta

mask_email(prefix=u’__invite__’)
Mask temporary account email to avoid collision with registered

Temporary user accounts created for the purpose of invites get in the way of the user creating a registered
account. Add a hidden prefix to the email address in the temporary account to avoid collision.

merge_with(other_id)
merge details from other user into self

Primary usage stems from different account registration flows. For example, users are created when invited
by staff to participate, and when the same user later opts to register, a second account is generated during
the registration process (either by flask-user or other mechanisms like add_user).

NB - caller MUST manage email due to unique constraints

notifications

observations

48 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

org_coding_display_options
Collates all race/ethnicity/indigenous display options from the user’s orgs to establish which options to
display

organizations

password

password_verification_failures

phone

phone_id

practitioner_id

procedure_history(requestURL=None)

procedures

promote_to_registered(registered_user)
Promote a weakly authenticated account to a registered one

questionnaire_responses

races

reactivate_user(acting_user)
Reactivate a previously deleted user

This method clears the deleted status - by removing the link from the user to the audit recording the delete.
Audit itself is retained for tracking purposes, and a new one will be created for posterity

Parameters

• self – user to reactivate

• acting_user – individual executing the command, for audit trail

registered

relationships

reset_lockout()
resets variables that track lockout

We track when the user fails password verification to lockout users when they fail too many times. This
function resets those variables

reset_password_token

rolelist
Generate UI friendly string of user’s roles by name

roles

save_observation(codeable_concept, value_quantity, audit, status, issued)
Helper method for creating new observations

staff_html()
Helper used from templates to display any custom staff/provider text

Interventions can add personalized HTML for care staff to consume on the /patients list. Look up any
values for this user on all interventions.

subject_audits

timezone

2.10. Code Documentation 49



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

update_birthdate(fhir)

update_consents(consent_list, acting_user)
Update user’s consents

Adds the provided list of consent agreements to the user. If the user had pre-existing consent agreements
between the same organization_id, the new will replace the old

NB this will only modify/update consents between the user and the organizations named in the given
consent_list.

update_deceased(fhir)

update_from_fhir(fhir, acting_user=None)
Update the user’s demographics from the given FHIR

If a field is defined, it is the final definition for the respective field, resulting in a deletion of existing values
in said field that are not included.

Parameters

• fhir – JSON defining portions of the user demographics to change

• acting_user – user requesting the change, used in audit logs

update_orgs(org_list, acting_user, excuse_top_check=False)
Update user’s organizations

Uses given list of organizations as the definitive list for the user - meaning any current affiliations not
mentioned will be deleted.

Parameters

• org_list – list of organization objects for user’s orgs

• acting_user – user behind the request for permission checks

• excuse_top_check – Set True to excuse check for changes to top level orgs, say
during initial account creation

update_roles(role_list, acting_user)
Update user’s roles

Parameters

• role_list – list of role objects defining exactly what roles the user should have. Any
existing roles not mentioned will be deleted from user’s list

• acting_user – user performing action, for permissions, etc.

user_audits

username

valid_consents
Access to consents that have neither been deleted or expired

class portal.models.user.UserEthnicity(**kwargs)

coding_id

id

user_id

50 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

class portal.models.user.UserEthnicityExtension(user, extension)

children

extension_url = u'http://hl7.org/fhir/StructureDefinition/us-core-ethnicity'

class portal.models.user.UserIndigenous(**kwargs)

coding_id

id

user_id

class portal.models.user.UserIndigenousStatusExtension(user, extension)

children

extension_url = 'http://us.truenth.org/fhir/StructureDefinition/AU-NHHD-METeOR-id-291036'

class portal.models.user.UserRace(**kwargs)

coding_id

id

user_id

class portal.models.user.UserRaceExtension(user, extension)

children

extension_url = u'http://hl7.org/fhir/StructureDefinition/us-core-race'

class portal.models.user.UserRelationship(**kwargs)
SQLAlchemy class for user_relationships table

Relationship is assumed to be ordered such that: <user_id> has a <relationship.name> with
<other_user_id>

as_json()
serialize the relationship - used to preserve service users

classmethod from_json(data)

id

other_user

other_user_id

relationship

relationship_id

update_from_json(data)

user

user_id

class portal.models.user.UserRoles(**kwargs)

2.10. Code Documentation 51



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

id

role_id

user_id

portal.models.user.add_role(user, role_name)

portal.models.user.add_user(user_info)
Given the result from an external IdP, create a new user

portal.models.user.current_user()
Obtain the “current” user object

Works for both remote oauth sessions and locally logged in sessions.

returns current user object, or None if not logged in (local or remote)

portal.models.user.default_email(context=None)
Function to provide a unique, default email if none is provided

Parameters context – is populated by SQLAlchemy - see Context-Sensitive default functions in
http://docs.sqlalchemy.org/en/latest/core/defaults.html

Returns a unique email string to avoid unique constraints, if an email isn’t provided in the context

portal.models.user.flag_test()
Find all non-service users and flag as test

portal.models.user.get_user(uid)

portal.models.user.get_user_or_abort(uid, allow_deleted=False)
Wraps get_user and raises error if not found

Safe to call with path or parameter info. Confirms integer value before attempting lookup.

Parameters

• uid – integer value for user id to look up

• allow_deleted – set true to allow access to deleted users

:raises werkzeug.exceptions.BadRequest: w/o a uid

:raises werkzeug.exceptions.NotFound: if the given uid isn’t an integer, or if no matching user

:raises werkzeug.exceptions.Forbidden: if the named user has been deleted, unless allow_deleted
is set

Returns user if valid and found

portal.models.user.permanently_delete_user(username, user_id=None, acting_user=None,
actor=None)

Given a username (email), purge the user from the system

Includes wiping out audit rows, observations, etc. May pass either username or user_id. Will prompt for
acting_user if not provided.

Parameters

• username – username (email) for user to purge

• user_id – id of user in liew of username

• acting_user – user taking the action, for record keeping

52 Chapter 2. Contents:

http://docs.sqlalchemy.org/en/latest/core/defaults.html
http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.BadRequest
http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.NotFound
http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.Forbidden


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

portal.models.user.user_extension_map(user, extension)
Map the given extension to the User

FHIR uses extensions for elements beyond base set defined. Lookup an adapter to handle the given extension
for the user.

Parameters

• user – the user to apply to or read the extension from

• extension – a dictionary with at least a ‘url’ key defining the extension. Should include
a ‘valueCodeableConcept’ structure when being used in an apply context (i.e. direct FHIR
data)

Returns adapter implementing apply_fhir and as_fhir methods

:raises exceptions.ValueError: if the extension isn’t recognized

portal.models.user.validate_email(email)
Not done at model level, as there are exceptions

We allow for placeholders and masks on email, so not all emails are valid. This validation function is generally
only used when an end user changing an address or another use requires validation.

Furthermore, due to the complexity of valid email addresses, just look for some obvious signs - such as the ‘@’
symbol and at least 6 chars.

:raises werkzeug.exceptions.BadRequest: if obviously invalid

2.10.4 Portal.Views

Note: This does not include API endpoints documented via swagger, as the swagger syntax is incompatable with
restructuredText

Auth related view functions

portal.views.auth.deauthorized()
Callback URL configured on facebook when user deauthorizes

We receive POST data when a user deauthorizes the session between TrueNTH and Facebook. The POST
includes a signed_request, decoded as seen below.

Configuration set on Facebook Developer pages: app->settings->advanced->Deauthorize Callback URL

portal.views.auth.next_after_login()
Redirection to appropriate target depending on data and auth status

Multiple authorization paths in, some needing up front information before returning, this attempts to handle
such state decisions. In other words, this function represents the state machine to control initial flow.

When client applications (interventions) request OAuth tokens, we sometimes need to postpone the action of
authorizing the client while the user logs in to TrueNTH.

After completing authentication with TrueNTH, additional data may need to be obtained, such as a TOU agree-
ment. In such a case, the user will be directed to initial_queries, then back here for redirection to the appropriate
‘next’.

Implemented as a view method for integration with flask-user config.

2.10. Code Documentation 53

https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError
http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.BadRequest
https://stg.us.truenth.org/dist


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

portal.views.auth.login(blueprint, token)
successful provider login callback

After successful authorization at the provider, control returns here. The blueprint and the oauth bearer token are
used to log the user into the portal

:return returns False to disable saving oauth token

portal.views.auth.logout(prevent_redirect=False, reason=None)
logout view function

Logs user out by requesting the previously granted permission to use authenticated resources be deleted from
the OAuth server, and clearing the browser session.

Parameters

• prevent_redirect – set only if calling this function during another process where
redirection after logout is not desired

• reason – set only if calling from another process where a driving reason should be noted
in the audit

Optional query string parameter timed_out should be set to clarify the logout request is the result of a stale
session

Cross Domain Decorators

portal.views.crossdomain.crossdomain(origin=None, methods=None, head-
ers=(’Authorization’, ’X-Requested-With’, ’X-
CSRFToken’, ’Content-Type’), max_age=21600,
automatic_options=True)

Decorator to add specified crossdomain headers to response

Parameters

• origin – ‘*’ to allow all origins, otherwise a string with a single origin or a list of origins
that might access the resource. If no origin is provided, use request.headers[‘Origin’], but
ONLY if it validates. If no origin is provided and the request doesn’t include an Origin
header, no CORS headers will be added.

• methods – Optionally a list of methods that are allowed for this view. If not provided it
will allow all methods that are implemented.

• headers – Optionally a list of headers that are allowed for this request.

• max_age – The number of seconds as integer or timedelta object for which the preflighted
request is valid.

• automatic_options – If enabled the decorator will use the default Flask OPTIONS
response and attach the headers there, otherwise the view function will be called to generate
an appropriate response.

:raises werkzeug.exceptions.Unauthorized: if no origin is provided and the one in re-
quest.headers[‘Origin’] doesn’t validate as one we know.

Intervention API view functions

portal.views.intervention.intervention_rule_list(*args, **kwargs)
Return the list of intervention rules for named intervention

NB - not documenting in swagger at this time, intended for internal use only. See http://
truenth-shared-services.readthedocs.io/en/latest/interventions.html#access

54 Chapter 2. Contents:

http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.Unauthorized


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

portal.views.intervention.intervention_rule_set(*args, **kwargs)
POST an access rule to the named intervention

Submit a JSON doc with the access strategy details to include for the named intervention.

Only available as a service account API - the named intervention must be associated with the service account
sponsor.

NB - interventions have a global ‘public_access’ setting. Only when unset are access rules consulted.

NB - not documenting in swagger at this time, intended for internal use only. See http://
truenth-shared-services.readthedocs.io/en/latest/interventions.html#access

Patient view functions (i.e. not part of the API or auth)

portal.views.patients.patient_profile(*args, **kwargs)
individual patient view function, intended for staff

portal.views.patients.patients_root(*args, **kwargs)
patients view function, intended for staff

Present the logged in staff the list of patients matching the staff’s organizations (and any descendant organiza-
tions)

Portal view functions (i.e. not part of the API or auth)

class portal.views.portal.ChallengeIdForm(formdata=<object object>, **kwargs)

class portal.views.portal.SettingsForm(formdata=<object object>, **kwargs)

class portal.views.portal.ShortcutAliasForm(formdata=<object object>, **kwargs)

static validate_shortcut_alias(field)
Custom validation to confirm an alias match

portal.views.portal.access_via_token(token, next_step=None)
Limited access users enter here with special token as auth

Tokens contain encrypted data including the user_id and timestamp from when it was generated.

If the token is found to be valid, and the user_id isn’t associated with a privilidged account, the behavior depends
on the roles assigned to the token’s user_id: * WRITE_ONLY users will be directly logged into the weak auth
account * others will be given a chance to prove their identity

Parameters next_step – if the user is to be redirected following validation and intial queries,
include a value. These come from a controlled vocabulary - see NextStep

portal.views.portal.admin(*args, **kwargs)
user admin view function

portal.views.portal.celery_test(x=16, y=16)
Simple view to test asynchronous tasks via celery

portal.views.portal.challenge_identity(user_id=None, next_url=None, merg-
ing_accounts=False, access_on_verify=False,
request_path=None)

Challenge the user to verify themselves

Can’t expose the parameters for security reasons - use the session, namespace each variable i.e. ses-
sion[‘challenge.user_id’] unless calling as a function.

Parameters

• user_id – the user_id to verify - invited user or the like

2.10. Code Documentation 55



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

• next_url – destination url on successful challenge completion

• merging_accounts – boolean value, set true IFF on success, the user account will be
merged into a new account, say from a weak authenicated WRITE_ONLY invite account

• access_on_verify – boolean value, set true IFF on success, the user should be logged
in once validated, i.e. w/o a password

• request_path – the requested url prior to redirection to here necessary in no cookie
situations, to redirect user back

portal.views.portal.communicate(*args, **kwargs)
Direct call to trigger communications to given user.

Typically handled by scheduled jobs, this API enables testing of communications without the wait.

Include a force=True query string parameter to first invalidate the cache and look for fresh messages before
triggering the send.

Include a purge=True query string parameter to throw out existing communications for the user first, thus forcing
a resend (implies a force)

Include a trace=True query string parameter to get details found during processing - like a debug trace.

portal.views.portal.communications_dashboard(*args, **kwargs)
Communications Dashboard

Displays a list of communication requests from the system; includes a preview mode for specific requests.

portal.views.portal.contact_sent(message_id)
show invite sent

portal.views.portal.get_all_tag_data(*allTags)
query LR based on all required tags

this is an AND condition; all required tags must be present

Parameters allTags – variable number of tags to be queried, e.g., ‘tag1’, ‘tag2’

portal.views.portal.get_any_tag_data(*anyTags)
query LR based on any tags

this is an OR condition; will match any tag specified

Parameters anyTag – a variable number of tags to be queried, e.g., ‘tag1’, ‘tag2’

portal.views.portal.initial_queries()
Initial consent terms, initial queries view function

portal.views.portal.invite(*args, **kwargs)
invite other users via form data

see also /api/user/{user_id}/invite

portal.views.portal.invite_sent(*args, **kwargs)
show invite sent

portal.views.portal.patient_invite_email(*args, **kwargs)
Patient Invite Email Content

portal.views.portal.patient_reminder_email(*args, **kwargs)
Patient Reminder Email Content

portal.views.portal.preview_communication(*args, **kwargs)
Communication message preview

56 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

portal.views.portal.profile(*args, **kwargs)
profile view function

portal.views.portal.report_error(*args, **kwargs)
Useful from front end, client-side to raise attention to problems

On occasion, an exception will be generated in the front end code worthy of gaining attention on the server side.
By making a GET request here, a server side error will be generated (encouraging the system to handle it as
configured, such as by producing error email).

OAuth protected to prevent abuse.

Any of the following query string arguments (and their values) will be included in the exception text, to better
capture the context. None are required.

Subject_id User on which action is being attempted

Message Details of the error event

Page_url The page requested resulting in the error

actor_id need not be sent, and will always be included - the OAuth protection guarentees and defines a valid
current user.

portal.views.portal.report_slow_queries(response)
Log slow database queries

This will only function if BOTH values are set in the config: DATABASE_QUERY_TIMEOUT = 0.5 #
threshold in seconds SQLALCHEMY_RECORD_QUERIES = True

portal.views.portal.reporting_dashboard(*args, **kwargs)
Executive Reporting Dashboard

Only accessible to Admins, or those with the Analyst role (no PHI access).

Usage: graphs showing user registrations and logins per day; filterable by date and/or by intervention

User Stats: counts of users by role, intervention, etc.

Institution Stats: counts of users per org

Analytics: Usage stats from piwik (time on site, geographic usage, referral sources for new visitors, etc)

portal.views.portal.require_cookies()
give front end opportunity to verify cookies

Renders HTML including cookie check, then redirects back to target NB - query string ‘cookies_tested=True’
added to target for client to confirm this process happened.

portal.views.portal.research_dashboard(*args, **kwargs)
Research Dashboard

Only accessible to those with the Researcher role.

portal.views.portal.settings(*args, **kwargs)
settings panel for admins

portal.views.portal.spec(*args, **kwargs)
generate swagger friendly docs from code and comments

View function to generate swagger formatted JSON for API documentation. Pulls in a few high level values
from the package data (see setup.py) and via flask-swagger, makes use of any yaml comment syntax found in
application docstrings.

Point Swagger-UI to this view for rendering

2.10. Code Documentation 57



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

portal.views.portal.specific_clinic_entry()
Entry point with form to insert a coded clinic shortcut

Invited users may start here to obtain a specific clinic assignment, by entering the code or shortcut alias they
were given.

Store the clinic in the session for association with the user once registered and redirect to the standard landing
page.

NB if already logged in - this will bounce user to home

portal.views.portal.specific_clinic_landing(clinic_alias)
Invited users start here to obtain a specific clinic assignment

Store the clinic in the session for association with the user once registered and redirect to the standard landing
page.

portal.views.portal.stock_consent(org_name)
Simple view to render default consent with named organization

We generally store the unique URL pointing to the content of the agreement to which the user consents. Special
case for organizations without a custom consent agreement on file.

Parameters org_name – the org_name to include in the agreement text

2.10.5 Open API/Swagger

API endpoints are documented inline, in the function docstring following the Open API (formerly Swagger) specifi-
cation.

Examples

Schema Reuse

Open API schemas can be defined once and referenced by any other document. For example, the FHIRPatient
schema defined in the body of one request . . . :

operationId: setPatientDemographics
tags:

- Demographics
produces:

- application/json
parameters:

- name: patient_id
in: path
description: TrueNTH patient ID
required: true
type: integer
format: int64

- in: body
name: body
schema:

id: FHIRPatient
required:

- resourceType
properties:

resourceType:

(continues on next page)

58 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

(continued from previous page)

type: string
description: defines FHIR resource type, must be Patient

. . . can be referenced in the body of the response:

operationId: getPatientDemographics
produces:

- application/json
parameters:

- name: patient_id
in: path
description:

Optional TrueNTH patient ID, defaults to the authenticated user.
required: true
type: integer
format: int64

responses:
200:
description:

Returns demographics for requested portal user id as a FHIR
patient resource (http://www.hl7.org/fhir/patient.html) in JSON.
Defaults to logged-in user if `patient_id` is not provided.

schema:
$ref: "#/definitions/FHIRPatient"

2.11 Docker

• Background

• Getting Started

• Docker Images

– Building a Debian Package

– Building a Shared Services Docker Image

• Advanced Usage

– Running in Background

– Viewing Logs

– PostgreSQL Access

– Account Bootstrapping

• Advanced Configuration

• Continuous Delivery

– Configuration

2.11. Docker 59



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

2.11.1 Background

Docker is an open-source project that can be used to automate the deployment of applications inside software contain-
ers. Docker defines specifications and provides tools that can be used to automate building and deploying software
containers.

Dockerfiles declaratively define how to build a Docker image that is subsequently run as a container, any number
of times. Configuration in Dockerfiles is primarily driven by image build-time arguments (ARG) and environment
variables (ENV) that may be overridden.

Docker-compose (through docker-compose.yaml) defines the relationship (exposed ports, volume mappings)
between the Shared Services web container and the other services it depends on (redis, postgresql).

2.11.2 Getting Started

Install docker-compose as per environment. For example, from a debian system:

# add user to docker group
sudo usermod -aG docker $USER
sudo pip install docker_compose

Note: A clean environment and fresh git checkout are recommended, but not required

Copy and edit the default environment file (from the project root):

cp docker/portal.env.default docker/portal.env
# update SERVER_NAME to include port if not binding with 80/443
# SERVER_NAME=localhost:8080

Note: All docker-compose commands are run from the docker/ directory

Download and run the latest images:

docker-compose pull web
docker-compose up web

By default, the truenth_portal image with the latest tag is downloaded and used. To use an image with
another tag, set the DOCKER_IMAGE_TAG environment variable:

export DOCKER_IMAGE_TAG='stable'
docker-compose pull web
docker-compose up web

2.11.3 Docker Images

Two Dockerfiles (Dockerfile.build and Dockerfile) define how to build a docker image capable of creating
a Debian package from the portal codebase, and how to install and configure the package into a working Shared
Services instance.

60 Chapter 2. Contents:



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Building a Debian Package

To build a Debian package from the current branch of your local repo:

# Build debian package from current local branch
docker-compose -f docker-compose.build.yaml run builder

If you would like to create a package from a remote repository you can override the local repo as follows below:

# Override default with environment variable
export GIT_REPO='https://github.com/USERNAME/true_nth_usa_portal'

# Build the package from the above repo
docker-compose -f docker-compose.build.yaml run builder

Building a Shared Services Docker Image

If you would like to build a Shared Services image, follow the instructions in Building a Debian Package, and run the
following docker-compose commands:

# Override default (Artifactory) docker repo to differentiate locally-built images
export DOCKER_REPOSITORY=''

# Build the "web" image locally
docker-compose build web

docker-compose up web

2.11.4 Advanced Usage

Running in Background

Docker-compose services can be run in the background by adding the --detach option. Services started in detached
mode will run until stopped or killed.:

# Start the "web" service (and dependencies) in background
docker-compose up --detach web

Viewing Logs

Docker-compose will only show logs of the requested services (usually web), when not run in the background. To
view the logs of all running services:

# Tail and follow logs of all services
docker-compose logs --follow

# Tail and follow logs of a specific service
docker-compose logs --follow celerybeat

2.11. Docker 61



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

PostgreSQL Access

To interact with the running database container, started via the docker-compose instructions above, use docker
exec as follows below:

docker-compose exec db psql --username postgres --dbname portaldb

Account Bootstrapping

To bootstrap an admin account after a fresh install, run the below flask CLI command:

docker-compose exec web \
flask add-user \

--email 'admin_email@example.com' \
--password 'exampleP@$$W0RD' \
--role admin

2.11.5 Advanced Configuration

Environment variables defined in the portal.env environment file are only passed to the underlying containers.
However, some environment variables are used for configuration specific to docker-compose.

An additional environment file, specifically named .env, in the current working directory can define environment
variables available through the entire docker-compose file (including containers). These docker-compose-level envi-
ronment variables can also be set in the shell invoking docker-compose.

One use for environmental variables defined in the .env file is overriding the default COMPOSE_PROJECT_NAME
which can be used to namespace multiple deployments running on the same host. In production deployments
COMPOSE_PROJECT_NAME is set to correspond to the domain being served.

2.11.6 Continuous Delivery

Our continuous integration setup leverages TravisCI’s docker support and deployment integration to create and deploy
Debian packages and Docker images for every commit.

Packages and images are built in a separate job (named build-artifacts) that corresponds with a tox environ-
ment that does nothing and that’s allowed to fail without delaying the build or affecting its status.

If credentials are configured, packages and images will be uploaded to their corresponding repository after the build
process. Otherwise, artifacts will only be built, but not uploaded or deployed.

Currently, our TravisCI setup uses packages locally-built on TravisCI instead of pushing, then pulling from our Debian
repository. This may lead to non-deterministic builds and should probably be reconciled at some point, ideally using
TravisCI build stages.

Configuration

Most if not all values needed to build and deploy Shared Services are available as environment variables with sane,
CIRG-specific defaults. Please see the global section of .travis.yml.

image Docker images are the basis of containers. An Image is an ordered collection of root filesystem changes and
the corresponding execution parameters for use within a container runtime. An image typically contains a union
of layered filesystems stacked on top of each other. An image does not have state and it never changes.

62 Chapter 2. Contents:

https://docs.docker.com/compose/environment-variables/#the-env-file
https://docs.travis-ci.com/user/build-stages
https://docs.travis-ci.com/user/environment-variables#global-variables


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

container A container is a runtime instance of a docker image. A Docker container consists of: * A Docker image *
Execution environment * A standard set of instructions

environment file A file for defining environment variables. One per line, no shell syntax (export etc).

build A group of TravisCI jobs tied to a single commit; initiated by a pull request or push

job A discrete unit of work that is part of a build. All jobs part of a build must pass for the build to pass (unless a job
is set as an allowed failure).

2.12 Contributing

• Git Flow Workflow

• Work on New Feature

• Publish Feature

• Pull Request

• Rebase

2.12.1 Git Flow Workflow

TrueNTH Shared Services attempts to conform to the guidelines established by the git-flow branching model.

For an introduction, see the excellent git-flow-cheatsheet.

To initialize on a debian system, install the git-flow package:

sudo apt-get install git-flow

Return to the root of your TrueNTH Shared Services checkout and initialize:

cd ~/true_nth_usa_portal
git-flow init

You should be able to accept all the defaults (caveat: in some cases “Branch name for production releases: []” won’t
have a default; in that case, use “master”). The results are written to the nested .git/config file, such as:

[gitflow "branch"]
master = master
develop = develop

[gitflow "prefix"]
feature = feature/
release = release/
hotfix = hotfix/
support = support/
versiontag =

2.12.2 Work on New Feature

Work on new feature takes place in a fresh branch off of develop. git-flow makes this easy:

2.12. Contributing 63

https://docs.travis-ci.com/user/customizing-the-build#rows-that-are-allowed-to-fail
http://danielkummer.github.io/git-flow-cheatsheet/


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

git flow feature start my-feature-name

2.12.3 Publish Feature

Once the feature is ready to share, and all changes have been committed locally, push the feature branch to github:

git flow feature publish

2.12.4 Pull Request

To bring the feature into the main develop branch, head over to github and trigger a pull request.

2.12.5 Rebase

Occasionally, it’s desirable or even necessary to bring commits on another branch into your feature branch prior to
publication.

For example, to bring changes into your branch that have been pushed to develop since your feature branch was cut:

git checkout develop
git pull
git checkout feature/<my-feature-name>
git flow feature rebase

2.13 Testing

• Running Unit Tests

• Debugging Views

– Communicate

– Assessment Status

– Invalidate Assessment Cache

2.13.1 Running Unit Tests

See Testing from the README

2.13.2 Debugging Views

A number of endpoints can be used to view details of a patient, or manually trigger an instant reminder, to simplify
testing and debugging.

All of these endpoints are restricted by the same rules as any API, namely the authenticated user must have appropriate
permissions to make the request, typically governed by user ROLE and shared organizations between the patient and
the current user. A user can also view their own data in most cases.

64 Chapter 2. Contents:

https://github.com/uwcirg/true_nth_usa_portal
readme_link.html#testing


TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

For all of the following, replace the variable name within the angle brackets with the appropriate value.

Communicate

Trigger an immediate lookup and transmission of any assessment reminder emails for a user, rather than wait for the
next scheduled job to handle.

Request /communicate/<patient_id>

Additional query string parameters supported:

trace=True
Shows details of the lookup process

purge=True
invalidates the assessment_cache for the patient
prior to executing the lookup

Assessment Status

Request /api/patient/<patient_id>/assessment-status to view current assessment status details:

assessment_status
The *overall* status for the patient's assessments.

completed_ids
A list of the named assessments for the current questionnaire bank which
the patient has already submitted.

outstanding_indefinite_work
The ``irondemog`` or ``irondemog3`` assessment is special, belonging to
the indefinite camp. If the user is eligible and still needs to complete
this assessment, this variable will be set to ``1``.

qb_name
The current Questionnaire Bank for the patient.

questionnaires_ids
The list of questionnaires the user needs to complete for the current
Questionnaire Bank (specifically those which haven't been previously
started and suspended).

resume_ids
The list of questionnaires the user has begun but not yet completed
for the current Questionnaire Bank.

Additional query string parameters supported:

trace=True
Shows details of the lookup process

Invalidate Assessment Cache

Although many URLs listed in this document also support the purge=True parameter, it’s also possible to invalidate
the cached assessment status of any given patient, which will then force a fresh lookup the next time it is needed.

2.13. Testing 65



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Request /api/invalidate/<patient_id> invalidates given user’s cache, and returns the patient data in FHIR
format.

66 Chapter 2. Contents:



Python Module Index

p
portal.audit, 25
portal.config.config, 25
portal.config.site_persistence, 26
portal.extensions, 25
portal.factories.app, 24
portal.models.address, 26
portal.models.audit, 27
portal.models.auth, 28
portal.models.fhir, 30
portal.models.flaskdanceprovider, 30
portal.models.identifier, 32
portal.models.intervention, 32
portal.models.intervention_strategies,

33
portal.models.lazy, 35
portal.models.message, 35
portal.models.organization, 36
portal.models.performer, 41
portal.models.procedure, 41
portal.models.reference, 42
portal.models.relationship, 43
portal.models.role, 43
portal.models.telecom, 43
portal.models.user, 44
portal.system_uri, 25
portal.views.auth, 53
portal.views.crossdomain, 54
portal.views.intervention, 54
portal.views.patients, 55
portal.views.portal, 55

67



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

68 Python Module Index



Index

A
access_token (portal.models.auth.Token attribute),

29
access_via_token() (in module por-

tal.views.portal), 55
AccessStrategy (class in por-

tal.models.intervention_strategies), 33
account (portal.models.audit.Context attribute), 27
active (portal.models.user.User attribute), 44
add_if_not_found() (por-

tal.models.identifier.Identifier method), 32
add_if_not_found() (por-

tal.models.performer.Performer method),
41

add_observation() (portal.models.user.User
method), 44

add_organization() (portal.models.user.User
method), 44

add_password_verification_failure()
(portal.models.user.User method), 44

add_relationship() (portal.models.user.User
method), 44

add_role() (in module portal.models.user), 52
add_roles() (portal.models.user.User method), 44
add_service_account() (portal.models.user.User

method), 44
add_static_interventions() (in module por-

tal.models.intervention), 33
add_static_organization() (in module por-

tal.models.organization), 40
add_static_relationships() (in module por-

tal.models.relationship), 43
add_static_roles() (in module por-

tal.models.role), 43
add_user() (in module portal.models.user), 52
Address (class in portal.models.address), 27
address_id (portal.models.organization.OrganizationAddress

attribute), 39
addresses (portal.models.organization.Organization

attribute), 38
admin() (in module portal.views.portal), 55
all_consents (portal.models.user.User attribute), 45
all_ids_with_rp() (por-

tal.models.organization.OrgTree static
method), 36

all_leaf_ids() (por-
tal.models.organization.OrgTree method),
36

all_leaves_below_id() (por-
tal.models.organization.OrgTree method),
37

all_top_level_ids() (por-
tal.models.organization.OrgTree method),
37

allow_if_not_in_intervention() (in module
portal.models.intervention_strategies), 33

alt_phone (portal.models.user.User attribute), 45
alt_phone_id (portal.models.user.User attribute), 45
apply_fhir() (por-

tal.models.organization.ResearchProtocolExtension
method), 40

as_fhir() (portal.models.address.Address method),
27

as_fhir() (portal.models.audit.Audit method), 27
as_fhir() (portal.models.auth.AuthProvider method),

28
as_fhir() (portal.models.auth.AuthProviderPersistable

method), 28
as_fhir() (portal.models.organization.Organization

method), 38
as_fhir() (portal.models.organization.ResearchProtocolExtension

method), 40
as_fhir() (portal.models.performer.Performer

method), 41
as_fhir() (portal.models.procedure.Procedure

method), 41
as_fhir() (portal.models.reference.Reference

method), 42
as_fhir() (portal.models.telecom.ContactPoint

69



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

method), 44
as_fhir() (portal.models.telecom.Telecom method),

44
as_fhir() (portal.models.user.User method), 45
as_json() (portal.models.auth.Token method), 29
as_json() (portal.models.intervention.Intervention

method), 32
as_json() (portal.models.intervention_strategies.AccessStrategy

method), 33
as_json() (portal.models.message.EmailMessage

method), 35
as_json() (portal.models.role.Role method), 43
as_json() (portal.models.user.UserRelationship

method), 51
assessment (portal.models.audit.Context attribute),

27
at_and_above_ids() (por-

tal.models.organization.OrgTree method),
37

at_or_below_ids() (por-
tal.models.organization.OrgTree method),
37

Audit (class in portal.models.audit), 27
audit (portal.models.procedure.Procedure attribute),

42
auditable_event() (in module portal.audit), 25
auth_providers (portal.models.user.User attribute),

45
authentication (portal.models.audit.Context

attribute), 28
AuthProvider (class in portal.models.auth), 28
AuthProviderPersistable (class in por-

tal.models.auth), 28

B
BaseConfig (class in portal.config.config), 25
best_sql_url() (in module portal.config.config), 26
birthdate (portal.models.user.User attribute), 45
body (portal.models.message.EmailMessage attribute),

35
build, 63
bundle_results() (in module portal.models.fhir),

30
BundleType (class in portal.models.fhir), 30

C
celery_test() (in module portal.views.portal), 55
challenge_identity() (in module por-

tal.views.portal), 55
ChallengeIdForm (class in portal.views.portal), 55
check_role() (portal.models.user.User method), 45
children (portal.models.organization.LocaleExtension

attribute), 36

children (portal.models.organization.ResearchProtocolExtension
attribute), 40

children (portal.models.user.UserEthnicityExtension
attribute), 51

children (portal.models.user.UserIndigenousStatusExtension
attribute), 51

children (portal.models.user.UserRaceExtension at-
tribute), 51

city (portal.models.address.Address attribute), 27
client (portal.models.auth.Grant attribute), 29
client (portal.models.auth.Token attribute), 29
client_id (portal.models.auth.Grant attribute), 29
client_id (portal.models.auth.Token attribute), 29
clinical_history() (portal.models.user.User

method), 45
cls (portal.config.site_persistence.ModelDetails at-

tribute), 26
code (portal.models.auth.Grant attribute), 29
code (portal.models.procedure.Procedure attribute), 42
codeable_concept (por-

tal.models.performer.Performer attribute),
41

codeable_concept_id (por-
tal.models.performer.Performer attribute),
41

coding_id (portal.models.organization.OrganizationLocale
attribute), 40

coding_id (portal.models.user.UserEthnicity at-
tribute), 50

coding_id (portal.models.user.UserIndigenous at-
tribute), 51

coding_id (portal.models.user.UserRace attribute), 51
coding_options (por-

tal.models.organization.Organization at-
tribute), 38

column_names() (portal.models.user.User class
method), 45

combine_strategies() (in module por-
tal.models.intervention_strategies), 34

comment (portal.models.audit.Audit attribute), 27
communicate() (in module portal.views.portal), 56
communications_dashboard() (in module por-

tal.views.portal), 56
concept_value() (portal.models.user.User method),

45
configure_app() (in module portal.factories.app),

24
configure_audit_log() (in module portal.audit),

25
configure_blueprints() (in module por-

tal.factories.app), 24
configure_cache() (in module por-

tal.factories.app), 24
configure_csrf() (in module portal.factories.app),

70 Index



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

24
configure_dogpile() (in module por-

tal.factories.app), 24
configure_extensions() (in module por-

tal.factories.app), 25
configure_healthcheck() (in module por-

tal.factories.app), 25
configure_logging() (in module por-

tal.factories.app), 25
configure_metadata() (in module por-

tal.factories.app), 25
confirmed_at (portal.models.user.User attribute), 45
consent (portal.models.audit.Context attribute), 28
consent_agreements() (por-

tal.models.organization.Organization static
method), 38

contact_sent() (in module portal.views.portal), 56
ContactPoint (class in portal.models.telecom), 43
container, 63
Context (class in portal.models.audit), 27
context (portal.models.audit.Audit attribute), 27
country (portal.models.address.Address attribute), 27
cp_dict() (portal.models.telecom.Telecom method),

44
create_app() (in module portal.factories.app), 25
create_service_token() (in module por-

tal.models.auth), 30
created_at (portal.models.auth.AuthProvider at-

tribute), 28
created_at (portal.models.auth.AuthProviderPersistable

attribute), 28
crossdomain() (in module por-

tal.views.crossdomain), 54
current_encounter (portal.models.user.User at-

tribute), 45
current_user() (in module portal.models.user), 52

D
deactivate_tous() (portal.models.user.User

method), 45
deauthorized() (in module portal.views.auth), 53
deceased (portal.models.user.User attribute), 46
deceased_id (portal.models.user.User attribute), 46
default_email() (in module portal.models.user), 52
default_locale (por-

tal.models.organization.Organization at-
tribute), 38

default_locale_id (por-
tal.models.organization.Organization at-
tribute), 38

DefaultConfig (class in portal.config.config), 26
delete() (portal.models.auth.Grant method), 29
delete_roles() (portal.models.user.User method),

46

delete_user() (portal.models.user.User method), 46
deleted (portal.models.user.User attribute), 46
deleted_id (portal.models.user.User attribute), 46
description (portal.models.relationship.Relationship

attribute), 43
description (portal.models.role.Role attribute), 43
display_for_user() (por-

tal.models.intervention.Intervention method),
32

display_name (portal.models.role.Role attribute), 43
display_name (portal.models.user.User attribute), 46
DisplayDetails (class in por-

tal.models.intervention), 32
district (portal.models.address.Address attribute),

27
documents (portal.models.user.User attribute), 46

E
email (portal.models.organization.Organization at-

tribute), 38
email (portal.models.user.User attribute), 46
email_ready() (portal.models.user.User method), 46
EmailMessage (class in portal.models.message), 35
encounters (portal.models.user.User attribute), 46
end_time (portal.models.procedure.Procedure at-

tribute), 42
environment file, 63
ethnicities (portal.models.user.User attribute), 46
ethnicity_codings (por-

tal.models.organization.Organization at-
tribute), 38

expires (portal.models.auth.Grant attribute), 29
expires (portal.models.auth.Token attribute), 29
export() (portal.config.site_persistence.SitePersistence

method), 26
extension_url (por-

tal.models.organization.LocaleExtension
attribute), 36

extension_url (por-
tal.models.organization.ResearchProtocolExtension
attribute), 40

extension_url (por-
tal.models.user.UserEthnicityExtension at-
tribute), 51

extension_url (por-
tal.models.user.UserIndigenousStatusExtension
attribute), 51

extension_url (por-
tal.models.user.UserRaceExtension attribute),
51

external_study_id (portal.models.user.User at-
tribute), 46

Index 71



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

F
FacebookFlaskDanceProvider (class in por-

tal.models.flaskdanceprovider), 30
failed_login_attempts_before_lockout

(portal.models.user.User attribute), 46
fetch_datetime_for_concept() (por-

tal.models.user.User method), 46
fetch_strategies() (por-

tal.models.intervention.Intervention method),
33

fetch_value_status_for_concept() (por-
tal.models.user.User method), 47

find() (portal.models.organization.OrgTree method),
37

find_top_level_orgs() (por-
tal.models.organization.OrgTree method),
37

first_name (portal.models.user.User attribute), 47
first_top_organization() (por-

tal.models.user.User method), 47
flag_test() (in module portal.models.user), 52
FlaskDanceProvider (class in por-

tal.models.flaskdanceprovider), 31
FlaskProviderUserInfo (class in por-

tal.models.flaskdanceprovider), 31
from_fhir() (portal.models.address.Address class

method), 27
from_fhir() (portal.models.auth.AuthProviderPersistable

class method), 28
from_fhir() (portal.models.organization.Organization

class method), 38
from_fhir() (portal.models.performer.Performer

class method), 41
from_fhir() (portal.models.procedure.Procedure

class method), 42
from_fhir() (portal.models.telecom.ContactPoint

class method), 44
from_fhir() (portal.models.telecom.Telecom class

method), 44
from_fhir() (portal.models.user.User class method),

47
from_json() (portal.models.auth.Token class

method), 29
from_json() (portal.models.user.UserRelationship

class method), 51
from_logentry() (portal.models.audit.Audit class

method), 27
fuzzy_match() (portal.models.user.User method), 47

G
gender (portal.models.user.User attribute), 47
generate_bundle() (por-

tal.models.organization.Organization class
method), 38

get_all_tag_data() (in module por-
tal.views.portal), 56

get_any_tag_data() (in module por-
tal.views.portal), 56

get_user() (in module portal.models.user), 52
get_user_info() (por-

tal.models.flaskdanceprovider.FlaskDanceProvider
method), 31

get_user_or_abort() (in module por-
tal.models.user), 52

GoogleFlaskDanceProvider (class in por-
tal.models.flaskdanceprovider), 31

Grant (class in portal.models.auth), 29
group (portal.models.audit.Context attribute), 28
groups (portal.models.user.User attribute), 47

H
has_relationship() (portal.models.user.User

method), 47
has_role() (portal.models.user.User method), 47
here_and_below_id() (por-

tal.models.organization.OrgTree method),
37

I
id (portal.models.address.Address attribute), 27
id (portal.models.audit.Audit attribute), 27
id (portal.models.auth.AuthProvider attribute), 28
id (portal.models.auth.AuthProviderPersistable at-

tribute), 28
id (portal.models.auth.Grant attribute), 29
id (portal.models.auth.Token attribute), 29
id (portal.models.message.EmailMessage attribute), 35
id (portal.models.organization.Organization attribute),

38
id (portal.models.organization.OrganizationAddress at-

tribute), 39
id (portal.models.organization.OrganizationIdentifier

attribute), 39
id (portal.models.organization.OrganizationLocale at-

tribute), 40
id (portal.models.organization.OrganizationResearchProtocol

attribute), 40
id (portal.models.organization.UserOrganization

attribute), 40
id (portal.models.performer.ObservationPerformer at-

tribute), 41
id (portal.models.performer.Performer attribute), 41
id (portal.models.relationship.Relationship attribute),

43
id (portal.models.role.Role attribute), 43
id (portal.models.telecom.ContactPoint attribute), 44
id (portal.models.user.User attribute), 47
id (portal.models.user.UserEthnicity attribute), 50

72 Index



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

id (portal.models.user.UserIndigenous attribute), 51
id (portal.models.user.UserRace attribute), 51
id (portal.models.user.UserRelationship attribute), 51
id (portal.models.user.UserRoles attribute), 51
Identifier (class in portal.models.identifier), 32
identifier_id (por-

tal.models.organization.OrganizationIdentifier
attribute), 39

identifiers (portal.models.organization.Organization
attribute), 38

identifiers (portal.models.user.User attribute), 47
image, 62
image_url (portal.models.user.User attribute), 47
implicit_identifiers() (por-

tal.models.user.User method), 47
import_() (portal.config.site_persistence.SitePersistence

method), 26
in_role_list() (in module por-

tal.models.intervention_strategies), 34
indigenous (portal.models.user.User attribute), 47
indigenous_codings (por-

tal.models.organization.Organization at-
tribute), 38

initial_queries() (in module por-
tal.views.portal), 56

insert() (portal.models.organization.OrgNode
method), 36

instantiate() (por-
tal.models.intervention_strategies.AccessStrategy
method), 33

Intervention (class in portal.models.intervention),
32

intervention (portal.models.audit.Context at-
tribute), 28

intervention() (portal.models.reference.Reference
class method), 42

intervention_rule_list() (in module por-
tal.views.intervention), 54

intervention_rule_set() (in module por-
tal.views.intervention), 54

interventions (portal.models.user.User attribute),
48

invalidate_cache() (por-
tal.models.organization.OrgTree class method),
37

invite() (in module portal.views.portal), 56
invite_sent() (in module portal.views.portal), 56
is_locked_out (portal.models.user.User attribute),

48
is_registered() (portal.models.user.User method),

48

J
job, 63

json() (portal.models.flaskdanceprovider.MockJsonResponse
method), 32

L
last_name (portal.models.user.User attribute), 48
last_password_verification_failure (por-

tal.models.user.User attribute), 48
lazyprop() (in module portal.models.lazy), 35
leaf_organizations() (portal.models.user.User

method), 48
limit_by_clinic_w_id() (in module por-

tal.models.intervention_strategies), 34
line1 (portal.models.address.Address attribute), 27
line2 (portal.models.address.Address attribute), 27
line3 (portal.models.address.Address attribute), 27
lines (portal.models.address.Address attribute), 27
load_grant() (in module portal.models.auth), 30
load_token() (in module portal.models.auth), 30
locale (portal.models.user.User attribute), 48
locale_code (portal.models.user.User attribute), 48
locale_display_options (por-

tal.models.user.User attribute), 48
locale_id (portal.models.user.User attribute), 48
locale_name (portal.models.user.User attribute), 48
LocaleExtension (class in por-

tal.models.organization), 36
locales (portal.models.organization.Organization at-

tribute), 38
lockout_period_minutes (por-

tal.models.user.User attribute), 48
lockout_period_timedelta (por-

tal.models.user.User attribute), 48
log_message() (in module portal.models.message),

36
login (portal.models.audit.Context attribute), 28
login() (in module portal.views.auth), 53
logout() (in module portal.views.auth), 54
lookup_field (por-

tal.config.site_persistence.ModelDetails
attribute), 26

lookup_table (portal.models.organization.OrgTree
attribute), 37

lookup_version() (in module portal.models.audit),
28

M
mask_email() (portal.models.user.User method), 48
merge_with() (portal.models.user.User method), 48
MissingReference, 42
Mock (class in portal.models.auth), 29
MockFlaskDanceProvider (class in por-

tal.models.flaskdanceprovider), 31
MockJsonResponse (class in por-

tal.models.flaskdanceprovider), 32

Index 73



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

ModelDetails (class in por-
tal.config.site_persistence), 26

MultipleReference, 42

N
name (portal.models.organization.Organization at-

tribute), 39
name (portal.models.relationship.Relationship at-

tribute), 43
name (portal.models.role.Role attribute), 43
next_after_login() (in module portal.views.auth),

53
not_in_clinic_w_id() (in module por-

tal.models.intervention_strategies), 34
not_in_role_list() (in module por-

tal.models.intervention_strategies), 34
notifications (portal.models.user.User attribute),

48

O
OAUTH2_PROVIDER_TOKEN_EXPIRES_IN, 19
OAuthOrAlternateAuth (class in por-

tal.extensions), 25
observation (portal.models.audit.Context attribute),

28
observation_check() (in module por-

tal.models.intervention_strategies), 34
observation_id (por-

tal.models.performer.ObservationPerformer
attribute), 41

ObservationPerformer (class in por-
tal.models.performer), 41

observations (portal.models.performer.Performer
attribute), 41

observations (portal.models.user.User attribute), 48
org_coding_display_options (por-

tal.models.user.User attribute), 48
org_extension_map() (in module por-

tal.models.organization), 40
Organization (class in portal.models.organization),

38
organization (portal.models.audit.Context at-

tribute), 28
organization (por-

tal.models.organization.OrganizationResearchProtocol
attribute), 40

organization (por-
tal.models.organization.UserOrganization
attribute), 40

organization() (portal.models.reference.Reference
class method), 42

organization_id (por-
tal.models.organization.OrganizationAddress
attribute), 39

organization_id (por-
tal.models.organization.OrganizationIdentifier
attribute), 40

organization_id (por-
tal.models.organization.OrganizationLocale
attribute), 40

organization_id (por-
tal.models.organization.OrganizationResearchProtocol
attribute), 40

organization_id (por-
tal.models.organization.UserOrganization
attribute), 40

organization_research_protocols (por-
tal.models.organization.Organization at-
tribute), 39

OrganizationAddress (class in por-
tal.models.organization), 39

OrganizationIdentifier (class in por-
tal.models.organization), 39

OrganizationLocale (class in por-
tal.models.organization), 40

OrganizationResearchProtocol (class in por-
tal.models.organization), 40

organizations (portal.models.user.User attribute),
49

OrgNode (class in portal.models.organization), 36
OrgTree (class in portal.models.organization), 36
other (portal.models.audit.Context attribute), 28
other_user (portal.models.user.UserRelationship at-

tribute), 51
other_user_id (portal.models.user.UserRelationship

attribute), 51

P
parse() (portal.models.reference.Reference class

method), 42
parse_json() (por-

tal.models.flaskdanceprovider.FlaskDanceProvider
method), 31

partOf_id (portal.models.organization.Organization
attribute), 39

password (portal.models.user.User attribute), 49
password_verification_failures (por-

tal.models.user.User attribute), 49
patient() (portal.models.reference.Reference class

method), 42
patient_invite_email() (in module por-

tal.views.portal), 56
patient_profile() (in module por-

tal.views.patients), 55
patient_reminder_email() (in module por-

tal.views.portal), 56
patients_root() (in module portal.views.patients),

55

74 Index



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

Performer (class in portal.models.performer), 41
performer_id (por-

tal.models.performer.ObservationPerformer
attribute), 41

PERMANENT_SESSION_LIFETIME, 19
permanently_delete_user() (in module por-

tal.models.user), 52
phone (portal.models.organization.Organization at-

tribute), 39
phone (portal.models.user.User attribute), 49
phone_id (portal.models.organization.Organization

attribute), 39
phone_id (portal.models.user.User attribute), 49
populate_tree() (por-

tal.models.organization.OrgTree method),
37

portal.audit (module), 25
portal.config.config (module), 25
portal.config.site_persistence (module),

26
portal.extensions (module), 25
portal.factories.app (module), 24
portal.models.address (module), 26
portal.models.audit (module), 27
portal.models.auth (module), 28
portal.models.fhir (module), 30
portal.models.flaskdanceprovider (mod-

ule), 30
portal.models.identifier (module), 32
portal.models.intervention (module), 32
portal.models.intervention_strategies

(module), 33
portal.models.lazy (module), 35
portal.models.message (module), 35
portal.models.organization (module), 36
portal.models.performer (module), 41
portal.models.procedure (module), 41
portal.models.reference (module), 42
portal.models.relationship (module), 43
portal.models.role (module), 43
portal.models.telecom (module), 43
portal.models.user (module), 44
portal.system_uri (module), 25
portal.views.auth (module), 53
portal.views.crossdomain (module), 54
portal.views.intervention (module), 54
portal.views.patients (module), 55
portal.views.portal (module), 55
postalCode (portal.models.address.Address at-

tribute), 27
practitioner() (portal.models.reference.Reference

class method), 43
practitioner_id (portal.models.user.User at-

tribute), 49

preview_communication() (in module por-
tal.views.portal), 56

Procedure (class in portal.models.procedure), 41
procedure (portal.models.audit.Context attribute), 28
procedure_history() (portal.models.user.User

method), 49
procedures (portal.models.user.User attribute), 49
profile() (in module portal.views.portal), 56
promote_to_registered() (por-

tal.models.user.User method), 49
provider (portal.models.auth.AuthProvider attribute),

28
provider (portal.models.auth.AuthProviderPersistable

attribute), 28
provider_id (portal.models.auth.AuthProvider at-

tribute), 28
provider_id (portal.models.auth.AuthProviderPersistable

attribute), 28

Q
query_by_name() (in module portal.models.lazy), 35
questionnaire() (por-

tal.models.reference.Reference class method),
43

questionnaire_bank() (por-
tal.models.reference.Reference class method),
43

questionnaire_responses (por-
tal.models.user.User attribute), 49

quick_access_check() (por-
tal.models.intervention.Intervention method),
33

R
race_codings (por-

tal.models.organization.Organization at-
tribute), 39

races (portal.models.user.User attribute), 49
rank (portal.models.telecom.ContactPoint attribute), 44
reactivate_user() (portal.models.user.User

method), 49
recipients (portal.models.message.EmailMessage

attribute), 35
redirect_uri (portal.models.auth.Grant attribute),

29
Reference (class in portal.models.reference), 42
reference_txt (portal.models.performer.Performer

attribute), 41
refresh_token (portal.models.auth.Token attribute),

29
registered (portal.models.user.User attribute), 49
Relationship (class in portal.models.relationship),

43

Index 75



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

relationship (portal.models.audit.Context at-
tribute), 28

relationship (portal.models.user.UserRelationship
attribute), 51

relationship_id (por-
tal.models.user.UserRelationship attribute),
51

relationships (portal.models.user.User attribute),
49

report_error() (in module portal.views.portal), 57
report_slow_queries() (in module por-

tal.views.portal), 57
reporting_dashboard() (in module por-

tal.views.portal), 57
require_cookies() (in module por-

tal.views.portal), 57
require_oauth() (por-

tal.extensions.OAuthOrAlternateAuth method),
25

research_dashboard() (in module por-
tal.views.portal), 57

research_protocol (por-
tal.models.organization.OrganizationResearchProtocol
attribute), 40

research_protocol() (por-
tal.models.organization.Organization method),
39

research_protocol() (por-
tal.models.reference.Reference class method),
43

research_protocol_id (por-
tal.models.organization.OrganizationResearchProtocol
attribute), 40

research_protocols (por-
tal.models.organization.Organization at-
tribute), 39

ResearchProtocolExtension (class in por-
tal.models.organization), 40

reset_lockout() (portal.models.user.User method),
49

reset_password_token (portal.models.user.User
attribute), 49

retired_as_of (por-
tal.models.organization.OrganizationResearchProtocol
attribute), 40

Role (class in portal.models.role), 43
role (portal.models.audit.Context attribute), 28
role_id (portal.models.user.UserRoles attribute), 52
RoleError, 44
rolelist (portal.models.user.User attribute), 49
roles (portal.models.user.User attribute), 49
root (portal.models.organization.OrgTree attribute), 37
rps_w_retired() (por-

tal.models.organization.Organization method),

39

S
save_grant() (in module portal.models.auth), 30
save_observation() (portal.models.user.User

method), 49
save_token() (in module portal.models.auth), 30
scopes (portal.models.auth.Grant attribute), 29
scopes (portal.models.auth.Token attribute), 29
send_get_user_json_request() (por-

tal.models.flaskdanceprovider.FacebookFlaskDanceProvider
method), 31

send_get_user_json_request() (por-
tal.models.flaskdanceprovider.FlaskDanceProvider
method), 31

send_get_user_json_request() (por-
tal.models.flaskdanceprovider.GoogleFlaskDanceProvider
method), 31

send_get_user_json_request() (por-
tal.models.flaskdanceprovider.MockFlaskDanceProvider
method), 31

send_message() (por-
tal.models.message.EmailMessage method),
35

sender (portal.models.message.EmailMessage at-
tribute), 35

sent_at (portal.models.message.EmailMessage at-
tribute), 35

sequence_name (por-
tal.config.site_persistence.ModelDetails
attribute), 26

settings() (in module portal.views.portal), 57
SettingsForm (class in portal.views.portal), 55
ShortcutAliasForm (class in portal.views.portal),

55
shortname (portal.models.organization.Organization

attribute), 39
SitePersistence (class in por-

tal.config.site_persistence), 26
spec() (in module portal.views.portal), 57
specific_clinic_entry() (in module por-

tal.views.portal), 57
specific_clinic_landing() (in module por-

tal.views.portal), 58
staff_html() (portal.models.user.User method), 49
start_time (portal.models.procedure.Procedure at-

tribute), 42
state (portal.models.address.Address attribute), 27
stock_consent() (in module portal.views.portal),

58
style_message() (por-

tal.models.message.EmailMessage static
method), 35

76 Index



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

subject (portal.models.message.EmailMessage at-
tribute), 36

subject_audits (portal.models.user.User attribute),
49

subject_id (portal.models.audit.Audit attribute), 27
system (portal.models.telecom.ContactPoint attribute),

44

T
Telecom (class in portal.models.telecom), 44
TestConfig (class in portal.config.config), 26
testing_sql_url() (in module por-

tal.config.config), 26
timestamp (portal.models.audit.Audit attribute), 27
timezone (portal.models.organization.Organization

attribute), 39
timezone (portal.models.user.User attribute), 49
Token (class in portal.models.auth), 29
token (portal.models.auth.AuthProvider attribute), 28
token (portal.models.auth.AuthProviderPersistable at-

tribute), 29
token_janitor() (in module portal.models.auth), 30
token_type (portal.models.auth.Token attribute), 29
top_level() (portal.models.organization.OrgNode

method), 36
top_level_names() (por-

tal.models.organization.OrgTree method),
37

tou (portal.models.audit.Context attribute), 28
tx_begun() (in module por-

tal.models.intervention_strategies), 35
type (portal.models.address.Address attribute), 27
type (portal.models.organization.Organization at-

tribute), 39
type_id (portal.models.organization.Organization at-

tribute), 39

U
update_birthdate() (portal.models.user.User

method), 49
update_card_html_on_completion() (in mod-

ule portal.models.intervention_strategies), 35
update_consents() (portal.models.user.User

method), 50
update_deceased() (portal.models.user.User

method), 50
update_from_fhir() (por-

tal.models.auth.AuthProviderPersistable
method), 29

update_from_fhir() (por-
tal.models.organization.Organization method),
39

update_from_fhir() (por-
tal.models.telecom.ContactPoint method),

44
update_from_fhir() (portal.models.user.User

method), 50
update_from_json() (portal.models.auth.Token

method), 29
update_from_json() (por-

tal.models.user.UserRelationship method),
51

update_orgs() (portal.models.user.User method), 50
update_roles() (portal.models.user.User method),

50
use (portal.models.address.Address attribute), 27
use (portal.models.telecom.ContactPoint attribute), 44
use_specific_codings (por-

tal.models.organization.Organization at-
tribute), 39

User (class in portal.models.user), 44
user (portal.models.audit.Context attribute), 28
user (portal.models.auth.AuthProvider attribute), 28
user (portal.models.auth.AuthProviderPersistable at-

tribute), 29
user (portal.models.auth.Grant attribute), 29
user (portal.models.auth.Token attribute), 29
user (portal.models.user.UserRelationship attribute), 51
user_access_granted() (por-

tal.models.intervention.UserIntervention
class method), 33

user_audits (portal.models.user.User attribute), 50
user_extension_map() (in module por-

tal.models.user), 52
user_id (portal.models.audit.Audit attribute), 27
user_id (portal.models.auth.AuthProvider attribute),

28
user_id (portal.models.auth.AuthProviderPersistable

attribute), 29
user_id (portal.models.auth.Grant attribute), 29
user_id (portal.models.auth.Token attribute), 29
user_id (portal.models.message.EmailMessage at-

tribute), 36
user_id (portal.models.organization.UserOrganization

attribute), 40
user_id (portal.models.user.UserEthnicity attribute),

50
user_id (portal.models.user.UserIndigenous attribute),

51
user_id (portal.models.user.UserRace attribute), 51
user_id (portal.models.user.UserRelationship at-

tribute), 51
user_id (portal.models.user.UserRoles attribute), 52
UserEthnicity (class in portal.models.user), 50
UserEthnicityExtension (class in por-

tal.models.user), 50
UserIdentifier (class in portal.models.identifier),

32

Index 77



TrueNTH Shared Services Documentation, Release 18.11.14.dev43+g80e99d0

UserIndigenous (class in portal.models.user), 51
UserIndigenousStatusExtension (class in por-

tal.models.user), 51
UserIntervention (class in por-

tal.models.intervention), 33
username (portal.models.user.User attribute), 50
UserOrganization (class in por-

tal.models.organization), 40
UserRace (class in portal.models.user), 51
UserRaceExtension (class in portal.models.user),

51
UserRelationship (class in portal.models.user), 51
UserRoles (class in portal.models.user), 51
users (portal.models.organization.Organization at-

tribute), 39
users (portal.models.role.Role attribute), 43

V
v_or_first() (in module portal.models.fhir), 30
v_or_n() (in module portal.models.fhir), 30
valid_consents (portal.models.user.User attribute),

50
validate_email() (in module portal.models.user),

53
validate_redirect_uri() (por-

tal.models.auth.Grant method), 29
validate_shortcut_alias() (por-

tal.views.portal.ShortcutAliasForm static
method), 55

value (portal.models.telecom.ContactPoint attribute),
44

version (portal.models.audit.Audit attribute), 27
visible_patients() (por-

tal.models.organization.OrgTree method),
37

78 Index


	API Documentation
	Contents:
	README
	Configuration
	Interventions
	Organizations
	Timeouts
	Provider Authentication
	Sessions
	Development
	Internationalization
	Code Documentation
	Docker
	Contributing
	Testing

	Python Module Index

