

TrueNTH Shared Services

API Documentation

Note

Please see Public API documentation [https://stg.us.truenth.org/dist] for all public and OAuth protected
endpoints.

Contents:

	README
	true_nth_usa_portal

	Configuration
	Flask Configuration Files

	Site Persistence

	AppText

	Interventions
	Roles

	Access

	Communication

	Organizations

	Timeouts
	Backend

	Frontend

	Intervention

	Provider Authentication
	OAuth Workflow

	Configuration

	Adding a new provider

	Sessions
	redis-cli

	Development
	Context

	System-specific text (app_text)

	System-specific pages

	Mapping URL’s to views

	Retrieving content from Liferay

	Use of front-end libs

	Internationalization
	Indicating Translatable Strings

	Updating Translation Files

	Initializing Translation Files

	External Documentation

	Code Documentation
	Portal

	Portal.Config

	Portal.Models

	Portal.Views

	Open API/Swagger

	Docker
	Background

	Getting Started

	Docker Images

	Advanced Usage

	Advanced Configuration

	Continuous Delivery

	Contributing
	Git Flow Workflow

	Work on New Feature

	Publish Feature

	Pull Request

	Rebase

	Testing
	Running Unit Tests

	Debugging Views

README

true_nth_usa_portal

Movember TrueNTH USA Shared Services

INSTALLATION

Pick any path for installation

$ export PROJECT_HOME=~/truenth_ss

Prerequisites (done one time)

Install required packages

$ sudo apt-get install postgresql python-virtualenv python-dev
$ sudo apt-get install libffi-dev libpq-dev build-essential redis-server

Clone the Project

$ git clone https://github.com/uwcirg/true_nth_usa_portal.git $PROJECT_HOME

Create a Virtual Environment

This critical step enables isolation of the project from system python,
making dependency maintenance easier and more stable. It does require
that you activate the virtual environment before you interact with
python or the installer scripts. The virtual environment can be
installed anywhere, using the nested ‘env’ pattern here.

$ virtualenv $PROJECT_HOME/env

Activate the Virtual Environment

Required to interact with the python installed in this virtual
environment. Forgetting this step will result in obvious warnings about
missing dependencies. This needs to be done in every shell session that
you work from.

$ cd $PROJECT_HOME
$ source env/bin/activate

Create the Database

To create the postgresql database that backs your Shared Services issue
the following commands:

$ sudo -u postgres createuser truenth-dev --pwprompt # enter password at prompt
$ sudo -u postgres createdb truenth-dev --owner truenth-dev

Building the schema and populating with basic configured values is done via
the flask sync command. See details below.

Update pip

The default version of pip provided in the virtual environment is often out
of date. Best to update first, for optimal results:

$ pip install --upgrade pip setuptools

CONFIGURE

Create the configuration file

Create a configuration file if one does not already exist

$ cp $PROJECT_HOME/instance/application.cfg{.default,}

Add Support For 3rd Party Logins

See OAuth Config

Install the Latest Package and Dependencies

Instruct pip to install the correct version of all dependencies into the
virtual environment. This idempotent step can be run anytime to confirm the
correct libraries are installed:

pip install --requirement requirements.txt

COMMAND LINE INTERFACE

A number of built in and custom extensions for command line interaction are
available via the click command line interface [http://click.pocoo.org/],
several of which are documented below.

To use or view the usage of the available commands:

	Activate the Virtual Environment

	Set FLASK_APP environment variable to point at manage.py

export FLASK_APP=manage.py

	Issue the flask --help or flask <cmd> --help commands for more details

flask sync --help

Note

All flask commands mentioned within this document require the
first two steps listed above.

Sync Database and Config Files

The idempotent sync function takes necessary steps to build tables,
upgrade the database schema and run seed to populate with static data.
Safe to run on existing or brand new databases.

flask sync

Add User

Especially useful in bootstrapping a new install, a user may be added and
blessed with the admin role from the command line. Be sure to use a secure
password.

flask add-user --email user@server.com --password reDacted! --role admin

Password Reset

Users who forget their passwords should be encouraged to use the forgot
password link from the login page. In rare instances when direct password
reset is necessary, an admin may perform the following:

flask password-reset --email forgotten_user@server.com --password newPassword --actor <admin's email>

Install the Latest Package, Dependencies and Synchronize DB (via script)

To update your Shared Services installation run the deploy.sh script
(this process wraps together pulling the latest from the repository, the
pip and flask sync commands listed above).

This script will:

	Update the project with the latest code

	Install any dependencies, if necessary

	Perform any database migrations, if necessary

	Seed any new data to the database, if necessary

$ cd $PROJECT_HOME
$./bin/deploy.sh

To see all available options run:

$./bin/deploy.sh -h

Run the Shared Services Server

To run the flask development server, run the below command from an activated virtual environment

$ flask run

By default the flask dev server will run without the debugger and listen on port 5000 of localhost. To override these defaults, call flask run as follows

$ FLASK_DEBUG=1 flask run --port 5001 --host 0.0.0.0

Run the Celery Worker

$ celery worker --app portal.celery_worker.celery --loglevel=info

Alternatively, install an init script and configure. See
Daemonizing Celery [http://docs.celeryproject.org/en/latest/tutorials/daemonizing.html]

Should the need ever arise to purge the queue of jobs, run the following
destructive command. All tasks should be idempotent by design, so doing
this is suggested, especially if the server is struggling.

$ celery purge --force --app portal.celery_worker.celery

Without running purge, celery will resume any unfinished tasks when it restarts

DATABASE

The value of SQLALCHEMY_DATABASE_URI defines which database engine
and database to use. Alternatively, the following environment
variables may be used (and if defined, will be preferred):

	PGDATABASE

	PGUSER

	PGPASSWORD

	PGHOST

At this time, only PostgreSQL is supported.

Migrations

Thanks to Alembic and Flask-Migrate, database migrations are easily
managed and run.

Note

Alembic tracks the current version of the database to determine which
migration scripts to apply. After the initial install, stamp the current
version for subsequent upgrades to succeed:

flask db stamp head

Note

The flask sync command covers this step automatically.

Upgrade

Anytime a database (might) need an upgrade, run the manage script with
the db upgrade arguments (or run the deployment
script)

This is idempotent process, meaning it’s safe to run again on a database
that already received the upgrade.

flask db upgrade

Note

The flask sync command covers this step automatically.

Schema Changes

Update the python source files containing table definitions (typically
classes derived from db.Model) and run the manage script to sniff out
the code changes and generate the necessary migration steps:

flask db migrate

Then execute the upgrade as previously mentioned:

flask db upgrade

Testing

To run the tests, repeat the
postgres createuser && postgres createdb commands as above with the
values for the {user, password, database} as defined in the
TestConfig class within portal\config\config.py

All test modules under the tests directory can be executed via
py.test (again from project root with the virtual environment
activated)

$ py.test

Alternatively, run a single modules worth of tests, telling py.test to not
suppress standard out (vital for debugging) and to stop on first error:

$ py.test tests/test_intervention.py

Tox

The test runner Tox [https://tox.readthedocs.io/en/latest/] is configured to run the portal test suite and test other parts of the build process, each configured as a separate Tox “environment”. To run all available environments, execute the following command:

$ tox

To run a specific tox environment, “docs” or the docgen environment in this case, invoke tox with the -e option eg:

$ tox -e docs

Tox will also run the environment specified by the TOXENV environment variable, as configured in the TravisCI integration.

Tox will pass any options after – to the test runner, py.test. To run tests only from a certain module (analogous the above py.test invocation):

$ tox -- tests/test_intervention.py

Continuous Integration

This project includes integration with the TravisCI continuous
integration
platform [https://docs.travis-ci.com/user/languages/python/]. The
full test suite (every Tox virtual environment) is automatically
run [https://travis-ci.org/uwcirg/true_nth_usa_portal] for the last
commit pushed to any branch, and for all pull requests. Results are
reported as passing with a ✔ and failing with a ✖.

UI/Integration (Selenium) Testing

UI integration/acceptance testing is performed by Selenium and is
included in the test suite and continuous integration setup.
Specifically, Sauce Labs
integration [https://docs.travis-ci.com/user/sauce-connect] with
TravisCI allows Selenium tests to be run with any number of browser/OS
combinations and captures video from running
tests [https://saucelabs.com/open_sauce/user/ivan-c].

UI tests can also be run locally (after installing xvfb and geckodriver) by passing
Tox the virtual environment that corresponds to the UI tests (ui).

Setup

	sudo apt-get install xvfb

	Install geckodriver from https://github.com/mozilla/geckodriver/releases. For example

$ wget https://github.com/mozilla/geckodriver/releases/download/v0.21.0/geckodriver-v0.21.0-linux64.tar.gz
$ tar -xvzf geckodriver-v0.21.0-linux64.tar.gz
$ rm geckodriver-v0.21.0-linux64.tar.gz
$ chmod +x geckdriver
$ sudo mv geckodriver /usr/local/bin/

Run Tests

$ tox -e ui

Dependency Management

Project dependencies are hard-coded to specific versions (see
requirements.txt) known to be compatible with Shared Services to
prevent dependency updates from breaking existing code.

If pyup.io integration is enabled the service will create pull requests
when individual dependencies are updated, allowing the project to track
the latest dependencies. These pull requests should be merged without
need for review, assuming they pass continuous integration.

Documentation

Docs are built separately via sphinx. Change to the docs directory and
use the contained Makefile to build - then view in browser starting with
the docs/build/html/index.html file

$ cd docs
$ make html

POSTGRESQL WINDOWS INSTALLATION GUIDE

Download

Download PostgreSQL via:
https://www.postgresql.org/download/windows/

Creating the Database and User

To create the postgresql database, in pgAdmin click “databases” and “create”
and enter the desired characteristics of the database, including the owner.
To create the user, similarly in pgAdmin, click “login roles” and “create”
and enter the desired characteristics of the user. Ensure that it has
permission to login.

Configuration

Installing requirements

Ensure that C++ is installed – if not, download from:
https://www.microsoft.com/en-us/download/details.aspx?id=44266

Ensure that setuptools is up-to-date by running:

$ python -m pip install --upgrade pip setuptools

Ensure that ez_setup is installed by running:

$ pip install ez_setup

Install requirements by running:

$ pip install --requirement requirements.txt

Configuration files

In $PATH\\data\pg_hba.conf , change the bottom few lines to read:

TYPE DATABASE USER ADDRESS METHOD

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

Copy the default configuration file to the named configuration file

$ copy $PROJECT_HOME/instance/application.cfg.default $PROJECT_HOME/instance/application.cfg

In application.cfg, (below), fill in the values for SQLALCHEMY_DATABASE_URI for user, password,
localhost, portnum, and dbname.

user, password, and dbname were setup earlier in pgAdmin.

portnum can also be found in pgAdmin.

localhost should be 127.0.0.1

SQLALCHEMY_DATABASE_URI = 'postgresql://user:password@localhost:portnum/dbname'

Testing

To test that the database is set up correctly, from a virtual environment run:

$ python ./bin/testconnection.py

Configuration

TruenNTH Shared Services can be configured in a number of fashions, to support
a variety of use cases.

Three primary mechanisms are in place to setup the system as desired:

	Flask Configuration Files

	Site Persistence

	AppText

Flask Configuration Files

Flask configuration files (.cfg) are simple python files used to set Flask configuration parameters.

application.cfg

This primary configuration file lives in the instance source directory.
See README for initial setup of application.cfg.

Only values unique to a particular install belong in application.cfg
including:

	passwords

	keys / secrets

	filesystem paths or local connection details

All others should likely be handled by Site Persistence.

Values with defaults are typically defined in the portal.config.BaseConfig
class. Most are self explanatory or include inline comments for clarification.

Of special note, the one used to control which set of values are pulled in
by Site Persistence.

PERSISTENCE_DIR:

See also Site Persistence, this controls which persistence directory the
`FLASK_APP=manage.py flask sync` command uses to load persistence data
and build the `site.cfg` file. The value is relative to the
`portal/config` directory.

For TrueNTH:

 PERSISTENCE_DIR='gil'

For ePROMs:

 PERSISTENCE_DIR='eproms'

site.cfg

This configuration file also lives in the instance source directory, but
unlike application.cfg, it is managed by Site Persistence. It houses
the configuration variables used to define the look of the site, such as
those use to differentiate ePROMs from TrueNTH.

A few worthy of special mention for the task of customizing Shared Services.

REQUIRED_CORE_DATA:

Set to control what portions of data are considered *required* prior
to allowing the user to transition beyond initial_queries. Expects
a list, with the following options:

REQUIRED_CORE_DATA = ['name', 'dob', 'role', 'org', 'clinical', 'tou']

PORTAL_STYLESHEET:

Define which stylesheet to include. Defaults to 'css/portal.css'

For ePROMs:

PORTAL_STYLESHEET = 'css/eproms.css'

To update the site.cfg file contents, edit the
site_persistence_file.json file or use the FLASK_APP=manage.py flask export-site
command and commit the changed site_persistence_file.json to the
appropriate repository.

base.cfg

An optional configuration file loaded before application.cfg, useful for setting infrastructure-specific defaults.

Site Persistence

In order to handle the migration of site specific data, one can generate or
import a persistence file, housing details such as:

	business rules defining when interventions should be presented to users

	customization of intervention text

	organizations and clinics on the site

The portal.SitePersistence class manages the import and export of
the site.cfg configuration file as well as a
number of database tables holding significant data required for a rich
experience. This should never include any patient or personal data, but
will include codified business rules and required data to support them.

Database tables included:

	AccessStrategies

	AppText

	CommunicationRequest

	Interventions

	Organizations

	Questionnaires

	QuestionnaireBanks

	ScheduledJobs

Both importing and exporting use the value of PERSISTENCE_DIR.
Its value is initially looked for as an environment variable, and if not
found, the configuration value of ‘GIL’ is used. (With ‘GIL’ set, the gil
configuration directory is used, otherwise, eproms).

Export

Site persistence files can be generated in the PERSISTENCE_DIR. See
above for correct setting. To generate persistence files from current
database values, execute:

```FLASK_APP=manage.py flask export-site```








Import

As a final step in the seed process, site persistence brings the
respective database tables in sync, and generates the site.cfg config file:

`FLASK_APP=manage.py flask seed`

Detailed logging will inform the user of changes made.


Note

It may be wise to back up the existing database prior to running python
manage.py seed in the unlikely event of unwanted overwrites or deletes.








AppText

To avoid near duplication of templates needing only a few minor string changes,
the portal.models.AppText class (and its surrogate apptext database
table), provide a mechanism for customizing individual strings.

In a template, in place of a static string, insert a jinja2 variable string
calling the app_text function, including the unique name of the string
to be customized.  For example, in the portal.templates.layout.html file,
the value of the title string is imported via:

<title>{{ app_text('layout title') }}</title>





The value for such an AppText can be manually inserted in the database, or
added to the site persistence file.  Such an entry looks like:

{
  "custom_text": "Movember ePROMs",
  "name": "layout title",
  "resourceType": "AppText"
},





AppText can also handle positional arguments as well as references to
configuration values to fill in dynamic values within a string.  The
positional arguments are zero indexed, and must be defined when the template
is rendered (i.e. JavaScript variables will not be properly defined until
the script is evaluated within the browser, and will therefore not work).

For example, given the application has the configuration
value USER_APP_NAME set to TrueNTH and the following:

AppText(name='ex', custom_text='Welcome to {config[USER_APP_NAME]}, {0}. {1} {0}')





A template including:

<p>{{ app_text('ex', 'Bob', 'Goodbye') }}</p>





Would render:

<p>Welcome to TrueNTH, Bob. Goodbye Bob</p>











          

      

      

    

  

    
      
          
            
  
Interventions



	Roles


	Access


	Communication







Roles

Any client can assume the role of an intervention.  By doing so, the client
becomes the official implementation for said role.




Access

Controlling access to interventions deserves special mention.  On the
/client/<client_id> page, the application developer may view and
alter the value of public_accessible.


Note

With public_accessible set, the intervention will always be displayed.



When public_accessible is not set, two additional options exist for
enabling said intervention.


1. To control per user, the service account associated with the intervention
should make use of the /api/intervention/<intervention_name>/ endpoint [https://stg.us.truenth.org/dist/#!/Intervention/user_intervention_set].

2. Alternatively, any number of strategy functions can be added to an
intervention, to give access to any subgroup of users as defined by the
strategy itself.  The available strategies are defined in the
portal.models.intervention_strategies module, such as the allow_if_not_in_intervention
strategy.  Use the
/api/intervention/<intervention_name>/access_rule endpoint to view or modify.





Note

All of the checks above function as a short-circuited or.  That is,
the first check that evaluates as True grants the user access to the
intervention. See combine_strategies for a workaround.




Note

An optional rank setting (unique integer value sorted in ascending
order) may be included to control the order of evaluation when multiple
strategies are in use.  Strategies with a rank value will be evaluated
before those without a set rank.



For example, to add a rule that enables the care_plan intervention for
users registered with the UCSF clinic:

$ cat data
{"name": "UCSF Patients",
 "function_details": {
   "function": "limit_by_clinic_list",
   "kwargs': [{"name": "org_list",
             "value": ["UCSF",]},]
  }
}

$ curl -H 'Authorization: Bearer <valid-token>' \
  -H 'Content-Type: application/json' -X POST -d @data \
  https://stg.us.truenth.org/api/intervention/care_plan/access_rule





Sometimes it is necessary to combine multiple strategies into a logical
AND operation.  To do so, use the combine_strategies function,
passing the respective set of strategy_n and strategy_n_kwargs as so:

{
  "name": "not in sr AND in clinc uw",
  "function_details": {
    "function": "combine_strategies",
    "name": "not in sr AND in clinc uw",
    "kwargs": [{
      "name": "strategy_1",
      "value": "allow_if_not_in_intervention"
    }, {
      "name": "strategy_1_kwargs",
      "value": [{
        "name": "intervention_name",
        "value": "sexual_recovery"
      }]
    }, {
      "name": "strategy_2",
      "value": "limit_by_clinic_list"
    }, {
      "name": "strategy_2_kwargs",
      "value": [{
        "name": "org_list",
        "value": ["UW Medicine (University of Washington)",]
      }]
    }]
  }
}





The full list of strategies used for DECISION_SUPPORT_P3P:

{
  "name": "P3P Access Conditions",
  "description": "[strategy_1: (user NOT IN sexual_recovery)] AND [strategy_2 <a nested combined strategy>: ((user NOT IN list of clinics (including UCSF)) OR (user IN list of clinics including UCSF and UW))] AND [strategy_3: (user has NOT started TX)] AND [strategy_4: (user does NOT have PCaMETASTASIZE)]",
  "function_details": {
    "function": "combine_strategies",
    "kwargs": [
      {
        "name": "strategy_1",
        "value": "allow_if_not_in_intervention"
      },
      {
        "name": "strategy_1_kwargs",
        "value": [
          {
            "name": "intervention_name",
            "value": "sexual_recovery"
          }
        ]
      },
      {
        "name": "strategy_2",
        "value": "combine_strategies"
      },
      {
        "name": "strategy_2_kwargs",
        "value": [
          {
            "name": "combinator",
            "value": "any"
          },
          {
            "name": "strategy_1",
            "value": "not_in_clinic_list"
          },
          {
            "name": "strategy_1_kwargs",
            "value": [
              {
                "name": "org_list",
                "value": [
                  "UCSF Medical Center"
                ]
              }
            ]
          },
          {
            "name": "strategy_2",
            "value": "limit_by_clinic_list"
          },
          {
            "name": "strategy_2_kwargs",
            "value": [
              {
                "name": "org_list",
                "value": [
                  "UW Medicine (University of Washington)",
                  "UCSF Medical Center"
                ]
              }
            ]
          }
        ]
      },
      {
        "name": "strategy_3",
        "value": "observation_check"
      },
      {
        "name": "strategy_3_kwargs",
        "value": [
          {
            "name": "display",
            "value": "treatment begun"
          },
          {
            "name": "boolean_value",
            "value": "false"
          }
        ]
      },
      {
        "name": "strategy_4",
        "value": "observation_check"
      },
      {
        "name": "strategy_4_kwargs",
        "value": [
          {
            "name": "display",
            "value": "PCa localized diagnosis"
          },
          {
            "name": "boolean_value",
            "value": "true"
          }
        ]
      }
    ]
  }








Communication

Communicate from an intervention to any group of TrueNTH users via the
/api/intervention/<intervention_name>/communicate endpoint [https://stg.us.truenth.org/dist/#!/Intervention/intervention_communicate].

The groups API [https://stg.us.truenth.org/dist/#!/Group] is used to
view existing and create new groups.  Add existing users via the
/api/user/<user_id>/groups endpoint [https://stg.us.truenth.org/dist/#!/Group/set_user_groups].







          

      

      

    

  

    
      
          
            
  
Organizations

Organizations are used to name clinics and parent organizations.  Use
the /api/organization endpoint to view the list of organizations in the
system.

Add new organizations via POST to /api/organization with a JSON
document defining the organization compliant with the FHIR Organization [https://www.hl7.org/fhir/organization.html] resource.


Warning

The parent organization must exist in the system before a child
can name it in the partOf reference.



To enable use of the /go/<shortcut_alias> endpoint, to pre-select
clinics for new users, an identifier must be included in the FHIR resource.

For example, after looking up the correct ID, a PUT of the following document
adds a shortcut alias to the UCSF Urologic Surgical Oncology organization.


Note

For the shortcut alias to function, the added identifier must have
a system value of http://us.truenth.org/identity-codes/shortcut-alias



PUT to /api/organization/6

$ cat data
{
  "resourceType": "Organization",
  "identifier": [
      { "system": "http://us.truenth.org/identity-codes/shortcut-alias",
        "value": "ucsfurology"
      }
  ]
}

$ curl -H 'Authorization: Bearer <valid-token>' \
  -H 'Content-Type: application/json' -X PUT -d @data \
  https://stg.us.truenth.org/api/organization/6





Note that organizations now contain a set of ‘options’ fields, as follows:


	use_specific_codings : toggles whether or not the organization should use the subsequent custom options


	race_codings : toggles whether or not the organization should capture race information for its users


	ethnicity_codings : as above, but for ethnicity information


	indigenous_codings : as above, but for indigenous information




For each organization:


	If an org has a True value for use_specific_codings, then the r/e/i properties will use the r/e/i options from that org


	If an org has False value for use_specific_codings, and it has a parent, then the r/e/i properties will use the r/e/i options from the parent org. Note that this continues recursively, until either it hits either (a) an org with specific codings turned on, or (b) an org with no parent


	If an org has a False value for use_specific_codings, and it has NO parent, then it will return true for all r/e/i properties.




These settings are accessible/set-able through the API (via any endpoint that uses the as_fhir or update_from_fhir methods)

For each user:


	There’s a new property on the User model, org_coding_display_options. If the user has any orgs, then this property will iterate through all the user’s org. For each of the r/e/i options, if any of the orgs’ r/e/i properties return true (using the logic presented above), then that user’s r/e/i display setting will be set to true (otherwise, it’s false).


	If the user has no orgs, these display settings default to true.




When displaying the user profile, each r/e/i section will check the relevant r/e/i display settings for the profile user, and use that to decide whether or not to display the relevant section.





          

      

      

    

  

    
      
          
            
  
Timeouts

Session timeouts are handled slightly differently in the browser and on the server hosting Shared Services.


Backend

After authenticating with Shared Services, a cookie is set with an expiration time corresponding to the value of PERMANENT_SESSION_LIFETIME, in seconds. If no requests are made in that duration, the cookie and corresponding redis-backed session automatically expire (via TTL). Subsequent requests will be effectively be unauthenticated and force redirection to the login page.

The backend session (the cookie and corresponding redis entry) can be refreshed from the front-end by sending a POST request to /api/ping that will modify the current backend session, refreshing the timeout duration (to the value specified by PERMANENT_SESSION_LIFETIME).




Frontend

The browser is made aware of the session duration specified by PERMANENT_SESSION_LIFETIME and will prompt a user to refresh their session one minute before it expires, but cannot reliably determine the remaining time in the backend session because it may have been refreshed in another tab or browser window.




Intervention

After authenticating with Shared Services, interventions are granted access through a bearer token that expires after a duration set by OAUTH2_PROVIDER_TOKEN_EXPIRES_IN (defaults to 4 hours).

Subsequent requests with the same bearer token refresh its expiration each time.


	PERMANENT_SESSION_LIFETIME

	The lifetime of a permanent session, defaults to one hour. Configures session cookie and corresponding redis-backed session. Configuration value provided by Flask [http://flask.pocoo.org/docs/0.12/config/#builtin-configuration-values].



	OAUTH2_PROVIDER_TOKEN_EXPIRES_IN

	Bearer token expires time, defaults to four hours. Configuration value provided by Flask-OAuthlib [https://flask-oauthlib.readthedocs.io/en/latest/oauth2.html#configuration].











          

      

      

    

  

    
      
          
            
  
Provider Authentication



	OAuth Workflow


	Configuration


	Facebook


	Google


	activate






	Adding a new provider







OAuth Workflow

In order for a user to access authenticated portal pages they first need to login. When logging in through a 3rd party, such as Facebook or Google, the OAuth workflow is used. In this workflow, after the user clicks on the 3rd party’s login button they’re taken to the 3rd party’s login page where they enter their credentials. Upon successful login the 3rd party passes the portal an access token that allows us to fetch information from the third party on the user’s behalf which we use to update the user’s account and log them in to our system.

Underneath the hood we use Flask-Dance [https://github.com/singingwolfboy/flask-dance]. At a high level, Flask-Dance uses blueprints to authenticate with providers and returns control to our APIs when auth succeeds or fails. The blueprints and APIs are defined in portal/views/auth.py. Upon successful authentication the login() API is called with the user’s access/bearer token which we use to get info about the user. To get this info we create an instance of FacebookFlaskDanceProvider or GoogleFlaskDanceProvider, which both inherit from FlaskDanceProvider, and call get_user_info. This function uses the user’s access token to send an authenticated request to the provider. When the request returns with the user’s information we use create the user an account if they’ve never logged in before or update an existing account if they’ve logged in using a different provider, and finally log them in to the current session. All of this logic takes place in login_user_with_provider().




Configuration

In order to authenticate users the portal must know the public and private keys to each 3rd party application. If you haven’t already, you’ll need to create a third party app and copy its configuration values to instance/application.cfg by following the steps below:


Facebook

To enable Facebook OAuth, create a new app on Facebook’s App page [https://developers.facebook.com/apps] and copy the consumer_key and consumer_secret to application.cfg:

# application.cfg
[...]
FACEBOOK_OAUTH_CLIENT_ID = '<App ID From FB>'
FACEBOOK_OAUTH_CLIENT_SECRET = '<App Secret From FB>'






	Set the Authorized redirect URIs to exactly match the location of <scheme>://<hostname>/login/facebook/


	Set the deauthorize callback. Go to your app, then choose Products, then Facebook Login, and finally Settings. A text field is provided for the Deauthorize Callback URL. Enter <scheme>://<hostname>/deauthorized







Google

To enable Google OAuth, create a new app on Google’s API page [https://console.developers.google.com/project/_/apiui/credential?pli=1] and copy the consumer_key and consumer_secret to application.cfg:

# application.cfg
[...]
GOOGLE_OAUTH_CLIENT_ID = '<App ID From Google>'
GOOGLE_OAUTH_CLIENT_SECRET = '<App Secret From Google>'






	Under APIs Credentials, select OAuth 2.0 client ID


	Set the Authorized redirect URIs to exactly match the location of <scheme>://<hostname>/login/google/


	Enable the Google+ API







activate

In a non-production environment add the following to the bottom of env/bin/activate:

export OAUTHLIB_RELAX_TOKEN_SCOPE=1
export OAUTHLIB_INSECURE_TRANSPORT=1





In a production environment you should only add the following to the bottom of env/bin/activate:

export OAUTHLIB_RELAX_TOKEN_SCOPE=1





Explination [https://flask-dance.readthedocs.io/en/latest/quickstarts/google.html?highlight=OAUTHLIB_RELAX_TOKEN_SCOPE]






Adding a new provider

To add a new provider you’ll need to


	Create a new blueprint in portal/views/auth.py (see the google_blueprint and facebook_blueprint as examples and use Flask-Dance Documentation [https://flask-dance.readthedocs.io/en/latest/] as a reference)


	Update the existing callback API functions login() and provider_oauth_error to use your new blueprint (see examples from Google and Facebook blueprints in portal/views/auth.py)


	Create a new class in portal/models/flaskdanceprovider.py that inherits from FlaskDanceProvider and overrides send_get_user_json_request( to get user info from the provider (see FacebookFlaskDanceProvider and GoogleFlaskDanceProvider for examples)


	Import the class created in #3 into portal/views/auth.py and create a new instance of it when login() is called by the new provider (see how FacebookFlaskDanceProvider and GoogleFlaskDanceProvider are used in login() for reference)










          

      

      

    

  

    
      
          
            
  
Sessions

User session data is stored on the server via Flask-Session [https://pythonhosted.org/Flask-Session/], specifically in the same
redis server [http://redis.io] used to house the celery tasks.


redis-cli

To view sessions (or other key/values) stored in redis, fire up the command
line interface (CLI) and execute simple queries:

$ redis-cli
127.0.0.1:6379> keys session*
1) "session:0e17f42c-72d9-49c1-8066-195a1e770ad2"
2) "session:42c94702-f1cb-447d-a998-409dbd5a99b6"
3) "session:e116b0f1-2271-4473-97d0-6d910a4ff582"
4) "session:2483797a-4261-4c6e-a3d0-1d19d6db6446"
5) "session:3ae29547-943c-48e9-bc7e-b44b78c99551"
6) "session:2264efc6-eb5a-46c0-98c6-fb458b435256"
7) "session:1ac11b4b-bafc-41b5-9d93-b6fb90608054"
[...]
127.0.0.1:6379> ttl session:1ac11b4b-bafc-41b5-9d93-b6fb90608054
(integer) 2677441
127.0.0.1:6379> dump session:3e3ff4ed-2848-41e5-b78f-3ea909219d52
"\x00\xc3@\xd4@\xdf\x16(dp1\nS'_fresh'\np2\nI01\ns \x11\x01id \x0e\x003 \x1b\x1f892f7fec2c15835660cba1324da22125\x17e167e65bbe5de394d486a744 0\x1007be014719895f627 E\x1f58b1ab0de00d8e2b5bc9bb4e29a7e3c7\x108329d9d2051ec0e84 \x86\x004@\x91\x03user\x80\x95\x035\nV2@\x11`\xa2\x006\xa0\x0c\t_permanent 0\x007`\xc6\x01s.\x06\x00\xb2\xbd\xb0W\xf3d\x18\x0c"





ttl: Time To Live.  Once expired, redis will delete the respective session.

dump: The session data is a pickled python dictionary.







          

      

      

    

  

    
      
          
            
  
Development



	Context


	System-specific text (app_text)


	System-specific pages


	Mapping URL’s to views


	Retrieving content from Liferay


	Use of front-end libs







Context

This documentation is oriented towards supporting CHCR implementation of non-authenticated designs and content: mostly front-end. Note that one complexity is that this code base is used for two different systems/configuations (and more will be added): TrueNTH USA, and ePROMs.




System-specific text (app_text)

app_text




System-specific pages

For example, adding a link from the landing page to a “prostate cancer 101” page, but only for TrueNTH (not ePROMs).
Guidance: use SHOW_* configurations. See this example [https://github.com/uwcirg/ePROMs-site-config/blob/master/site_persistence_file.json#L372]




Mapping URL’s to views

Eg in views/patients.py:

@patients.route('/patient_profile/<int:patient_id>')








Retrieving content from Liferay

Note that one of the systems used for this is AppText
Information on managing content in Liferay is here [http://tiny.cc/truenth_liferay]




Use of front-end libs

LESS, jquery, bootstrap, and other


	CSS file - for truenth:

	
	css/portal.css


	less/portal.less









Note

CSS files are compiled from LESS, and that both the CSS and LESS files are managed in git.
Locally, do less portal/static/less/portal.less portal/static/css/portal.css
Compilation likely to be moved to deploy.sh, at which point we won’t need to manage css files in git.









          

      

      

    

  

    
      
          
            
  
Internationalization



	Indicating Translatable Strings


	Updating Translation Files


	Updating POT files


	Updating PO files






	Initializing Translation Files


	External Documentation







Indicating Translatable Strings

We use gettext for this within python files; we also use Liferay to manage content in different languages [http://tiny.cc/truenth_liferay#heading=h.ei0lyxrk4ix0].

Surround all strings with _( ) and it will automatically attempt to find a translation, like:



_(‘CELLPHONE’)






This should automatically be available in any template file.


Note

we are moving to a model where en_US is used as the key here, with no
need to use an english .po file.*



For adding new translations, you need to add the blank translation to the .pot file:



# <optional comment pointing to where in the code the translation is used>

msgid “Cellphone”

msgstr “”









Updating Translation Files

GNU Gettext translation files consist of a single Portable Object Template file (POT file) and Portable Object (PO file) for each localization (language).


Updating POT files

To update the .pot file with all source strings from the apptext/interventions tables run the following command:

$ FLASK_APP=manage.py flask translations








Updating PO files

To update the PO files with the latest translations from Smartling, run the following command:

$ FLASK_APP=manage.py flask translation-download










Initializing Translation Files

You can create a new .pot file with all extracted translations from the code by running the following pybabel command:

$ pybabel extract -F instance/babel.cfg -o portal/translations/messages.pot portal/








External Documentation

jinja i18n-extension [http://jinja.pocoo.org/docs/dev/extensions/#i18n-extension]

gettext [https://docs.python.org/dev/library/gettext.html]







          

      

      

    

  

    
      
          
            
  
Code Documentation

All the project files contain some level of inline documentation.  Organized
below by module.


Note

This does not include API endpoints documented via swagger [https://stg.us.truenth.org/dist], as the swagger syntax is
incompatable with restructuredText





	Portal

	Portal.Config

	Portal.Models

	Portal.Views






Open API/Swagger

API endpoints are documented inline, in the function docstring following the Open API (formerly Swagger) specification.


Examples


Schema Reuse

Open API schemas can be defined once and referenced by any other document. For example, the FHIRPatient schema defined in the body of one request …:

operationId: setPatientDemographics
tags:
  - Demographics
produces:
  - application/json
parameters:
  - name: patient_id
    in: path
    description: TrueNTH patient ID
    required: true
    type: integer
    format: int64
  - in: body
    name: body
    schema:
      id: FHIRPatient
      required:
        - resourceType
      properties:
        resourceType:
          type: string
          description: defines FHIR resource type, must be Patient





… can be referenced in the body of the response:

operationId: getPatientDemographics
produces:
  - application/json
parameters:
  - name: patient_id
    in: path
    description:
      Optional TrueNTH patient ID, defaults to the authenticated user.
    required: true
    type: integer
    format: int64
responses:
  200:
    description:
      Returns demographics for requested portal user id as a FHIR
      patient resource (http://www.hl7.org/fhir/patient.html) in JSON.
      Defaults to logged-in user if `patient_id` is not provided.
    schema:
      $ref: "#/definitions/FHIRPatient"















          

      

      

    

  

    
      
          
            
  
Portal

Portal module


	
portal.factories.app.configure_app(app, config)

	Load successive configs - overriding defaults






	
portal.factories.app.configure_blueprints(app, blueprints)

	Register blueprints with application






	
portal.factories.app.configure_cache(app)

	Configure requests-cache






	
portal.factories.app.configure_csrf(app)

	Initialize CSRF protection

See csrf.csrf_protect() for implementation.  Not using default
as OAuth API use needs exclusion.






	
portal.factories.app.configure_dogpile(app)

	Initialize dogpile cache with config values






	
portal.factories.app.configure_extensions(app)

	Bind extensions to application






	
portal.factories.app.configure_healthcheck(app)

	Configure the API used to check the health of our dependencies






	
portal.factories.app.configure_logging(app)

	Configure logging.






	
portal.factories.app.configure_metadata(app)

	Add distribution metadata for display in templates






	
portal.factories.app.create_app(config=None, app_name=None, blueprints=None)

	Returns the configured flask app





AUDIT module

Maintain a log exclusively used for recording auditable events.

Any action deemed an auditable event should make a call to
auditable_event()

Audit data is also persisted in the database audit table.


	
portal.audit.auditable_event(message, user_id, subject_id, context=u'other')

	Record auditable event

message: The message to record, i.e. “log in via facebook”
user_id: The authenticated user id performing the action
subject_id: The user id upon which the action was performed






	
portal.audit.configure_audit_log(app)

	Configure audit logging.

The audit log is only active when running as a service (not during
database updates, etc.)  It should only received auditable events
and never be rotated out.





Extensions used at application level

Generally the objects instantiated here are needed for imports
throughout the system, but require factory pattern initialization
once the flask app comes to life.

Defined here to break the circular dependencies.  See app.py for
additional configuration of most objects defined herein.


	
class portal.extensions.OAuthOrAlternateAuth(app=None)

	Specialize OAuth2Provider with alternate authorization


	
require_oauth(*scopes)

	Specialze the superclass decorator with alternates

This method is intended to be in lock step with the
super class, with the following two exceptions:


	if actively “TESTING”, skip oauth and return
the function, effectively undecorated.


	if the user appears to be locally logged in (i.e. browser
session cookie with a valid user.id),
return the effecively undecorated function.












Namespace module to house system URIs for use in FHIR





          

      

      

    

  

    
      
          
            
  
Portal.Config

Configuration


	
class portal.config.config.BaseConfig

	Base configuration - override in subclasses






	
class portal.config.config.DefaultConfig

	Default configuration






	
class portal.config.config.TestConfig

	Testing configuration - used by unit tests






	
portal.config.config.best_sql_url()

	Return compliant sql url from available environment variables






	
portal.config.config.testing_sql_url()

	Return compliant sql url from available environment variables

If tests are being run with pytest-xdist workers,
a pre-existing database will be required for each worker,
suffixed with the worker index.





SitePersistence Module


	
class portal.config.site_persistence.ModelDetails(cls, sequence_name, lookup_field)

	
	
cls

	Alias for field number 0






	
lookup_field

	Alias for field number 2






	
sequence_name

	Alias for field number 1










	
class portal.config.site_persistence.SitePersistence(target_dir)

	Manage import and export of dynamic site data


	
export(staging_exclusion=False)

	Generate JSON files defining dynamic site objects


	Parameters

	staging_exclusion – set only if persisting exclusions to retain
on staging when pulling over production data





Export dynamic data, such as Organizations and Access Strategies for
import into other sites.  This does NOT export values expected
to live in the site config file or the static set generated by the seed
managment command.

To import the data, use the seed command as defined in manage.py






	
import_(keep_unmentioned, staging_exclusion=False)

	If persistence file is found, import the data


	Parameters

	
	keep_unmentioned – if True, unmentioned data, such as
an organization or intervention in the current database
but not in the persistence file, will be left in place.
if False, any unmentioned data will be purged as part of
the import process.


	staging_exclusion – set only if persisting exclusions to retain
on staging when pulling over production data




















          

      

      

    

  

    
      
          
            
  
Portal.Models

Address module

Address data lives in the ‘addresses’ table.  Several entities link
to address via foreign keys.


	
class portal.models.address.Address(**kwargs)

	SQLAlchemy class for addresses table


	
as_fhir()

	




	
city

	




	
country

	




	
district

	




	
classmethod from_fhir(data)

	




	
id

	




	
line1

	




	
line2

	




	
line3

	




	
lines

	




	
postalCode

	




	
state

	




	
type

	




	
use

	







Audit Module


	
class portal.models.audit.Audit(**kwargs)

	ORM class for audit data

Holds meta info about changes in other tables, such as when and
by whom the data was added.  Several other tables maintain foreign
keys to audit rows, such as Observation and Procedure.


	
as_fhir()

	Typically included as meta data in containing FHIR resource






	
comment

	




	
context

	




	
classmethod from_logentry(entry)

	Parse and create an Audit instance from audit log entry

Prior to version v16.5.12, audit entries only landed in log.
This may be used to convert old entries, but newer ones should
already be there.






	
id

	




	
subject_id

	




	
timestamp

	




	
user_id

	




	
version

	








	
class portal.models.audit.Context

	
	
account = 5

	




	
assessment = 2

	




	
authentication = 3

	




	
consent = 6

	




	
group = 10

	




	
intervention = 4

	




	
login = 1

	




	
observation = 8

	




	
organization = 9

	




	
other = 0

	




	
procedure = 11

	




	
relationship = 12

	




	
role = 13

	




	
tou = 14

	




	
user = 7

	








	
portal.models.audit.lookup_version()

	



Auth related model classes


	
class portal.models.auth.AuthProvider(**kwargs)

	
	
as_fhir()

	




	
created_at

	




	
id

	




	
provider

	




	
provider_id

	




	
token

	




	
user

	




	
user_id

	








	
class portal.models.auth.AuthProviderPersistable(**kwargs)

	For persistence to function, need instance serialization

The base class for AuthProvider implements a non persistence-compliant
version of as_fhir() as needed to show FHIR compliant identifiers
in demographics.

This subclass (adapter) exists solely to provide serialization methods
that work with persistence.


	
as_fhir()

	serialize the AuthProvider






	
created_at

	




	
classmethod from_fhir(data)

	




	
id

	




	
provider

	




	
provider_id

	




	
token

	




	
update_from_fhir(data)

	




	
user

	




	
user_id

	








	
class portal.models.auth.Grant(**kwargs)

	
	
client

	




	
client_id

	




	
code

	




	
delete()

	




	
expires

	




	
id

	




	
redirect_uri

	




	
scopes

	




	
user

	




	
user_id

	




	
validate_redirect_uri(redirect_uri)

	Validate the redirect_uri from the OAuth Grant request

The RFC requires exact match on the redirect_uri.  In practice
this is too great of a burden for the interventions.  Make
sure it’s from the same scheme:://host:port the client
registered with

http://tools.ietf.org/html/rfc6749#section-4.1.3










	
class portal.models.auth.Mock

	




	
class portal.models.auth.Token(**kwargs)

	
	
access_token

	




	
as_json()

	serialize the token - used to preserve service tokens






	
client

	




	
client_id

	




	
expires

	




	
classmethod from_json(data)

	




	
id

	




	
refresh_token

	




	
scopes

	




	
token_type

	




	
update_from_json(data)

	




	
user

	




	
user_id

	








	
portal.models.auth.create_service_token(client, user)

	Generate and return a bearer token for service calls

Partners need a mechanism for automated, authorized API access.  This
function returns a bearer token for subsequent authorized calls.

NB - as this opens a back door, it’s only offered to users with the single
role ‘service’.






	
portal.models.auth.load_grant(client_id, code)

	




	
portal.models.auth.load_token(access_token=None, refresh_token=None)

	




	
portal.models.auth.save_grant(client_id, code, request, *args, **kwargs)

	




	
portal.models.auth.save_token(token, request, *args, **kwargs)

	




	
portal.models.auth.token_janitor()

	Called by scheduled job to clean up and send alerts

No value in keeping around stale tokens, so we delete any that have expired.

For service tokens, trigger an email alert if they will be expiring soon.


	Returns

	list of unreachable email addresses









Model classes for retaining FHIR data


	
class portal.models.fhir.BundleType

	




	
portal.models.fhir.bundle_results(elements, bundle_type=<BundleType.searchset: 8>, links=None)

	Generate FHIR Bundle from element lists


	Parameters

	
	elements – iterable of FHIR Resources to bundle


	bundle_type – limited by FHIR to be of the
BundleType enum.


	links – links related to this bundle, such as API used to generate






	Returns

	a FHIR compliant bundle










	
portal.models.fhir.v_or_first(value, field_name)

	Return desired from list or scalar value


	Parameters

	
	value – the raw data, may be a single value (directly
returned) or a list from which the first element will be returned


	field_name – used in error text when multiple values
are found for a constrained item.








Some fields, such as name were assumed to always be a single
dictionary containing single values, whereas the FHIR spec
defines them to support 0..* meaning we must handle a list.

NB - as the datamodel still only expects one, a 400 will be
raised if given multiple values, using the field_name in the text.






	
portal.models.fhir.v_or_n(value)

	Return None unless the value contains data






	
class portal.models.flaskdanceprovider.FacebookFlaskDanceProvider(blueprint, token)

	fetches user info from Facebook after successfull auth

After the user successfully authenticates with Facebook
this class fetches the user’s info from Facebook


	
send_get_user_json_request()

	sends a GET request to Facebook for user data

This function is used to get user information from
Facebook that is encoded in json.

:return Response










	
class portal.models.flaskdanceprovider.FlaskDanceProvider(blueprint, token, standard_key_to_provider_key_map)

	base class for flask dance providers

When a new provider is added to the protal’s consumer oauth flow
a descendent of this class needs to be created to get the user’s
information from the provider after a successful auth


	
get_user_info()

	gets user info from the provider

This function parses json returned from the provider
and returns an instance of FlaskProviderUserInfo that is
filled with the user’s information

:return FlaskProviderUserInfo with the user’s info






	
parse_json(user_json)

	parses the user’s json and returns it in a standard format

Providers encode user information in json. This function parses
the json and stores values in an instance of FlaskProviderUserInfo


	Parameters

	user_json – info about the user encoded in json





:return instance of FlaskProviderUserInfo with the user’s info






	
send_get_user_json_request()

	sends a request to the provider to get user json

This function must be overriden in descendant classes
to return a response with the user’s json










	
class portal.models.flaskdanceprovider.FlaskProviderUserInfo

	a common format for user info fetched from providers

Each provider packages user info a litle differently.
Google, for example, uses “given_name” and the key for the user’s
first name, and Facebook uses “first_name”. To make it easier for
our code to parse responses in a common function this class provides a
common format to store the results from each provider.






	
class portal.models.flaskdanceprovider.GoogleFlaskDanceProvider(blueprint, token)

	fetches user info from Google after successfull auth

After the user successfully authenticates with Google
this class fetches the user’s info from Google


	
send_get_user_json_request()

	sends a GET request to Google for user data

This function is used to get user information from
Google that is encoded in json.

:return Response










	
class portal.models.flaskdanceprovider.MockFlaskDanceProvider(provider_name, token, user_json, fail_to_get_user_json)

	creates user info from test data to validate auth logic

This class should only be used during testing.
It simply mocks user json that is normally retrieved from
a provider which allows us to granularly test auth logic


	
send_get_user_json_request()

	return a mock request based on test data passed into the constructor

Normally a request is sent to a provider and user json is returned.
This function mocks out that request by returning a response
with the user json passed through the test backdoor










	
class portal.models.flaskdanceprovider.MockJsonResponse(ok, user_json)

	mocks a GET json response

During auth we send a request to providers that returns
user json. During tests we need to mock out providers
so we can test our auth logic. This class is used to mock out
requests that are normally sent to providers.


	
json()

	returns mock json









Identifier Model Module


	
class portal.models.identifier.Identifier(**kwargs)

	Identifier ORM, for FHIR Identifier resources


	
add_if_not_found(commit_immediately=False)

	Add self to database, or return existing

Queries for similar, matching on system and value alone.
Note the database unique constraint to match.

@return: the new or matched Identifier










	
class portal.models.identifier.UserIdentifier(**kwargs)

	ORM class for user_identifiers data

Holds links to any additional identifiers a user may have,
such as study participation.





Intervention Module


	
class portal.models.intervention.DisplayDetails(access, intervention, user_intervention)

	Simple abstraction to communicate display details to front end

To provide a custom experience, intevention access can be set at
several levels.  For a user, access is either available or not, and when
available, the link controls may be intentionally disabled for a reason the
intervention should note in the status_text field.


	Attributes::

	access: {True, False}
card_html: Text to display on the card
link_label: Text used to label the button or hyperlink
link_url: URL for the button or link - link to be disabled when null
status_text: Text to inform user of status, or why it’s disabled










	
class portal.models.intervention.Intervention(**kwargs)

	
	
as_json()

	Returns the ‘safe to export’ portions of an intervention

The client_id and link_url are non-portable between systems.
The id is also independent - return the rest of the not null
fields as a simple json dict.

NB for staging exclusions to function, link_url and client_id
are now included. Take care to remove it from persistence files
where it is NOT portable, for example, when generating persistence
files programmatically.






	
display_for_user(user)

	Return the intervention display details for the given user

Somewhat complicated method, depending on intervention configuration.
The following ordered steps are used to determine if a user
should have access to an intervention.  The first ‘true’ found
provides access, otherwise the intervention will not be displayed.


	call each strategy_function in intervention.access_strategies.
Note, on rare occasions, a strategy may alter the UserIntervention
attributes given the circumstances.


	check for a UserIntervention row defining access for the given
user on this intervention.


	check if the intervention has public_access set




@return DisplayDetails object defining ‘access’ and other details
for how to render the intervention.






	
fetch_strategies()

	Generator to return each registered strategy

Strategies need to be brought to life from their persisted
state.  This generator does so, and returns them in a call
ready fashion, ordered by the strategy’s rank.






	
quick_access_check(user)

	Return boolean representing given user’s access to intervention

Somewhat complicated method, depending on intervention configuration.
The following ordered steps are used to determine if a user
should have access to an intervention.  The first ‘true’ found
is returned (as to make the check as quick as possible).


	check if the intervention has public_access set


	check for a UserIntervention row defining access for the given
user on this intervention.


	call each strategy_function in intervention.access_strategies.




@return boolean representing ‘access’.










	
class portal.models.intervention.UserIntervention(**kwargs)

	
	
classmethod user_access_granted(intervention_id, user_id)

	Shortcut to query for specific (intervention, user) access










	
portal.models.intervention.add_static_interventions()

	Seed database with default static interventions

Idempotent - run anytime to push any new interventions into existing dbs





Module for intervention access strategy functions

Determining whether or not to provide access to a given intervention
for a user is occasionally tricky business.  By way of the access_strategies
property on all interventions, one can add additional criteria by defining a
function here (or elsewhere) and adding it to the desired intervention.

function signature: takes named parameters (intervention, user) and returns
a boolean - True grants access (and short circuits further access tests),
False does not.

NB - several functions are closures returning access_strategy functions with
the parameters given to the closures.


	
class portal.models.intervention_strategies.AccessStrategy(**kwargs)

	ORM to persist access strategies on an intervention

The function_details field contains JSON defining which strategy to
use and how it should be instantiated by one of the closures implementing
the access_strategy interface.  Said closures must be defined in this
module (a security measure to keep unsanitized code out).


	
as_json()

	Return self in JSON friendly dictionary






	
instantiate()

	Bring the serialized access strategy function to life

Using the JSON in self.function_details, instantiate the
function and return it ready to use.










	
portal.models.intervention_strategies.allow_if_not_in_intervention(intervention_name)

	Strategy API checks user does not belong to named intervention






	
portal.models.intervention_strategies.combine_strategies(**kwargs)

	Make multiple strategies into a single statement

The nature of the access lookup returns True for the first
success in the list of strategies for an intervention.  Use
this method to chain multiple strategies together into a logical and
fashion rather than the built in locical or.

NB - kwargs must have keys such as ‘strategy_n’, ‘strategy_n_kwargs’
for every ‘n’ strategies being combined, starting at 1.  Set arbitrary
limit of 6 strategies for time being.

Nested strategies may actually want a logical ‘OR’.  Optional kwarg
combinator takes values {‘any’, ‘all’} - default ‘all’ means all
strategies must evaluate true.  ‘any’ means just one must eval true for a
positive result.






	
portal.models.intervention_strategies.in_role_list(role_list)

	Requires user is associated with any role in the list






	
portal.models.intervention_strategies.limit_by_clinic_w_id(identifier_value, identifier_system='http://us.truenth.org/identity-codes/decision-support-group', combinator=u'any', include_children=True)

	Requires user is associated with {any,all} clinics with identifier


	Parameters

	
	identifier_value – value string for identifer associated with org(s)


	identifier_system – system string for identifier, defaults to
DECISION_SUPPORT_GROUP


	combinator – determines if the user must be in ‘any’ (default) or
‘all’ of the clinics in the given list.  NB combining ‘all’ with
include_children=True would mean all orgs in the list AND all chidren of
all orgs in list must be associated with the user for a true result.


	include_children – include children in the organization tree if
set (default), otherwise, only include the organizations in the list













	
portal.models.intervention_strategies.not_in_clinic_w_id(identifier_value, identifier_system='http://us.truenth.org/identity-codes/decision-support-group', include_children=True)

	Requires user isn’t associated with any clinic in the list


	Parameters

	
	identifier_value – value string for identifer associated with org(s)


	identifier_system – system string for identifier, defaults to
DECISION_SUPPORT_GROUP


	include_children – include children in the organization tree if
set (default), otherwise, only include the organizations directly
associated with the identifier













	
portal.models.intervention_strategies.not_in_role_list(role_list)

	Requires user isn’t associated with any role in the list






	
portal.models.intervention_strategies.observation_check(display, boolean_value, invert_logic=False)

	Returns strategy function for a particular observation and logic value


	Parameters

	
	display – observation coding.display from
TRUENTH_CLINICAL_CODE_SYSTEM


	boolean_value – ValueQuantity boolean true or false expected


	invert_logic – Effective binary not to apply to test.  If set,
will return True only if given observation with boolean_value is NOT
defined for user








NB a history of observations is maintained, with the most recent taking
precedence.






	
portal.models.intervention_strategies.tx_begun(boolean_value)

	Returns strategy function testing if user is known to have started Tx


	Parameters

	boolean_value – true for known treatment started (i.e. procedure
indicating tx has begun), false to confirm a user doesn’t have
a procedure indicating tx has begun










	
portal.models.intervention_strategies.update_card_html_on_completion()

	Update description and card_html depending on state






	
portal.models.lazy.lazyprop(fn)

	Property decorator for lazy intialization (load on first request)

Useful on any expensive to load attribute on any class.  Simply
decorate the ‘getter’ with @lazyprop, where the function definition
loads the object to be assigned to the given attribute.

As the SQLAlchemy session is NOT thread safe and this tends to be
the primary use of the lazyprop decorator, we include the thread
identifier in the key






	
portal.models.lazy.query_by_name(cls, name)

	returns a lazy load function capable of caching object

Use this alternative for classes with dynamic attributes (names
not hardcoded in class definition), as property decorators
(i.e. @lazyprop) don’t function properly.

As the SQLAlchemy session is NOT thread safe, we include the thread
identifier in the key

NB - attribute instances must be unique over (cls.__name__, name)
within the containing class to avoid collisions.

@param cls: ORM class to query
@param name: name field in ORM class to uniquely define object





Model classes for message data


	
class portal.models.message.EmailMessage(**kwargs)

	
	
as_json()

	




	
body

	




	
id

	




	
recipients

	




	
send_message(cc_address=None)

	Send the message


	Parameters

	cc_address – include valid email address to send a carbon copy





NB the cc isn’t persisted with the rest of the record.






	
sender

	




	
sent_at

	




	
static style_message(body)

	Implicitly called on send, to wrap body with style tags






	
subject

	




	
user_id

	








	
portal.models.message.log_message(message, app)

	Configured to handle signals on email_dispatched - log the event





Model classes for organizations and related entities.

Designed around FHIR guidelines for representation of organizations, locations
and healthcare services which are used to describe hospitals and clinics.


	
class portal.models.organization.LocaleExtension(organization, extension)

	
	
children

	




	
extension_url = 'http://hl7.org/fhir/valueset/languages'

	








	
class portal.models.organization.OrgNode(id, parent=None, children=None)

	Node in tree of organizations - used by org tree

Simple tree implementation to house organizations in a hierarchical
structure.  One root - any number of nodes at each tier.  The organization
identifiers (integers referring to the database primary key) are used
as reference keys.


	
insert(id, partOf_id=None)

	Insert new nodes into the org tree

Designed for this special organizaion purpose, we expect the
tree is built from the top (root) down, so no rebalancing is
necessary.


	Parameters

	
	id – of organizaiton to insert


	partOf_id – if organization has a parent - its identifier






	Returns

	the newly inserted node










	
top_level()

	Lookup top_level organization id from the given node

Use OrgTree.find() to locate starter node, if necessary










	
class portal.models.organization.OrgTree

	In-memory organizations tree for hierarchy and structure

Organizations may define a ‘partOf’ in the database records to describe
where the organization fits in a hierarchy.  As there may be any
number of organization tiers, and the need exists to lookup where
an organiztion fits in this hiearchy.  For example, needing to lookup
the top level organization for any node, or all the organizations at or
below a level for permission issues. etc.

This singleton class will build up the tree when it’s first needed (i.e.
lazy load).

Note, the root of the tree is a dummy object, so the first tier can be
multiple top-level organizations.


	
static all_ids_with_rp(research_protocol)

	Returns set of org IDs that are associated with Research Protocol

As child orgs are considered to be associated if the parent org
is, this will return the full list for optimized comparisons.






	
all_leaf_ids()

	




	
all_leaves_below_id(organization_id)

	Given org at arbitrary level, return list of leaf nodes below it






	
all_top_level_ids()

	Return list of all top level organization identifiers






	
at_and_above_ids(organization_id)

	Returns list of ids from any point in tree and up the parent stack


	Parameters

	organization_id – node in tree, will be included in return list



	Returns

	list of organization ids from the one given on up including
every parent found in chain










	
at_or_below_ids(organization_id, other_organizations)

	Check if the other_organizations are at or below given organization


	Parameters

	
	organization_id – effective parent to check against


	other_organizations – iterable of organization_ids as potential
children.






	Returns

	True if any org in other_organizations is equal to the
given organization_id, or a child of it.










	
find(organization_id)

	Locates and returns node in OrgTree for given organization_id


	Parameters

	organization_id – primary key of organization to locate



	Returns

	OrgNode from OrgTree



	Raises

	ValueError if not found - unexpected










	
find_top_level_orgs(organizations, first=False)

	Returns top level organization(s) from those provided


	Parameters

	
	organizations – organizations against which top level
organization(s) will be queried


	first – if set, return the first org in the result list
rather than a set of orgs.






	Returns

	set of top level organization(s), or a single org if
first is set.










	
here_and_below_id(organization_id)

	Given org at arbitrary level, return list at and below






	
classmethod invalidate_cache()

	Invalidate cache on org changes






	
lookup_table = None

	




	
populate_tree()

	Recursively build tree from top down






	
root = None

	




	
top_level_names()

	Fetch org names for all_top_level_ids


	Returns

	list of top level org names










	
visible_patients(staff_user)

	Returns patient IDs for whom the current staff_user can view

Staff users can view all patients at or below their own org
level.

NB - no patients should ever have a consent on file with the special
organization ‘none of the above’ - said organization is ignored in the
search.










	
class portal.models.organization.Organization(**kwargs)

	Model representing a FHIR organization

Organizations represent a collection of people that have come together
to achieve an objective.  As an example, all the healthcare
services provided by the same university hospital will belong to
the organization representing said university hospital.

Organizations can reference other organizations via the ‘partOf_id’,
where children name their parent organization id.


	
addresses

	




	
as_fhir(include_empties=True)

	Return JSON representation of organization


	Parameters

	include_empties – if True, returns entire object definition;
if False, empty elements are removed from the result



	Returns

	JSON representation of a FHIR Organization resource










	
coding_options

	




	
static consent_agreements(locale_code)

	Return consent agreements for all top level organizations


	Parameters

	locale_code – preferred locale, typically user’s.



	Returns

	dictionary keyed by top level organization id containing
a VersionedResource for each organization IFF the organization
has a custom consent agreement on file.  The organization_name
is also added to the versioned resource to simplify UI code.










	
default_locale

	




	
default_locale_id

	




	
email

	




	
ethnicity_codings

	




	
classmethod from_fhir(data)

	




	
classmethod generate_bundle(limit_to_ids=None, include_empties=True)

	Generate a FHIR bundle of existing orgs ordered by ID


	Parameters

	
	limit_to_ids – if defined, only return the matching set,
otherwise all organizations found


	include_empties – set to include empty attributes






	Returns

	










	
id

	




	
identifiers

	




	
indigenous_codings

	




	
locales

	




	
name

	




	
organization_research_protocols

	




	
partOf_id

	




	
phone

	




	
phone_id

	




	
race_codings

	




	
research_protocol(as_of_date)

	Lookup research protocol for this org valid at as_of_date

Complicated scenario as it may only be defined on the parent or
further up the tree.  Secondly, we keep history of research protocols
in case backdated entry is necessary.


	Returns

	research protocol for org (or parent org) valid as_of_date










	
research_protocols

	A descriptor that presents a read/write view of an object attribute.






	
rps_w_retired(consider_parents=False)

	accessor to collate research protocols and retired_as_of values

The SQLAlchemy association proxy doesn’t provide easy access to
intermediary table data - i.e. columns in the link table between
a many:many association.  This accessor collates the value stored
in the intermediary table, retired_as_of with the research protocols
for this organization.


	Parameters

	consider_parents – if set and the org doesn’t have an
associated RP, continue up the org hiearchy till one is found.



	Returns

	ready query for use in iteration or count or other methods.
Query will produce a list of tuples (ResearchProtocol, retired_as_of)
associated with the organization, ordered by retired_as_of dates
with nulls last.










	
shortname

	Return shortname identifier if found, else the org name






	
timezone

	




	
type

	




	
type_id

	




	
update_from_fhir(data)

	




	
use_specific_codings

	




	
users

	








	
class portal.models.organization.OrganizationAddress(**kwargs)

	link table for organization : n addresses


	
address_id

	




	
id

	




	
organization_id

	








	
class portal.models.organization.OrganizationIdentifier(**kwargs)

	link table for organization : n identifiers


	
id

	




	
identifier_id

	




	
organization_id

	








	
class portal.models.organization.OrganizationLocale(**kwargs)

	
	
coding_id

	




	
id

	




	
organization_id

	








	
class portal.models.organization.OrganizationResearchProtocol(research_protocol=None, organization=None, retired_as_of=None)

	
	
id

	




	
organization

	




	
organization_id

	




	
research_protocol

	




	
research_protocol_id

	




	
retired_as_of

	








	
class portal.models.organization.ResearchProtocolExtension(organization, extension)

	
	
apply_fhir()

	




	
as_fhir(include_empties=True)

	




	
children

	




	
extension_url = 'http://us.truenth.org/identity-codes/research-protocol'

	








	
class portal.models.organization.UserOrganization(**kwargs)

	link table for users (n) : organizations (n)


	
id

	




	
organization

	




	
organization_id

	




	
user_id

	








	
portal.models.organization.add_static_organization()

	Insert special none of the above org at index 0






	
portal.models.organization.org_extension_map(organization, extension)

	Map the given extension to the Organization

FHIR uses extensions for elements beyond base set defined.  Lookup
an adapter to handle the given extension for the organization.


	Parameters

	
	organization – the org to apply to or read the extension from


	extension – a dictionary with at least a ‘url’ key defining
the extension.






	Returns

	adapter implementing apply_fhir and as_fhir methods





:raises exceptions.ValueError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError]: if the extension isn’t recognized





Performer module - encapsulate the FHIR Performer resource


	
class portal.models.performer.ObservationPerformer(**kwargs)

	Link table for observation to list of performers


	
id

	




	
observation_id

	




	
performer_id

	








	
class portal.models.performer.Performer(**kwargs)

	ORM for FHIR Performer - performers table


	
add_if_not_found(commit_immediately=False)

	Add self to database, or return existing

Queries for matching, existing Performer.
Populates self.id if found, adds to database first if not.






	
as_fhir()

	Return self in JSON FHIR formatted string

FHIR is not currently consistant in performer inclusion.  For example,
Observation.performer is simply a list of Reference resources,
whereas Procedure.performer is a list including the resource labeled
as an actor and a codable concept labeled as the role defining
the actor’s role.


	Returns

	the best JSON FHIR formatted string for the instance










	
codeable_concept

	




	
codeable_concept_id

	The codeable concept for performers including a role






	
classmethod from_fhir(fhir)

	Return performer instance from JSON FHIR formatted string

See note in as_fhir, the format of a performer depends on
context.  Populate self.codeable_concept only if it’s included
as a role.


	Returns

	new performer instance from values in given fhir










	
id

	




	
observations

	




	
reference_txt

	Text for performer (aka actor), i.e. {“reference”: “patient/12”}









Procedure Model


	
class portal.models.procedure.Procedure(**kwargs)

	ORM class for procedures

Similar to the profiles published by
SMART [http://docs.smarthealthit.org/profiles/]


	Each Procedure must haveProcedure must have

	
	1 patient

	in Procedure.subject (aka Procedure.user)



	1 code

	in Procedure.code (pointing to a CodeableConcept) with
system of http://snomed.info/sct



	1 performed datetime

	in Procedure.performedDateTime










	
as_fhir()

	produces FHIR representation of procedure in JSON format






	
audit

	tracks when and by whom the procedure was retained, included
as meta data in the FHIR output






	
code

	procedure.code (a CodeableConcept) defines the procedure.
coding.system is required to be http://snomed.info/sct






	
end_time

	when defined, produces a performedPeriod, otherwise
start_time is used alone as performedDateTime






	
classmethod from_fhir(data, audit)

	Parses FHIR data to produce a new procedure instance






	
start_time

	required whereas end_time is optional









Reference module - encapsulate FHIR Reference type


	
exception portal.models.reference.MissingReference

	Raised when FHIR references cannot be found






	
exception portal.models.reference.MultipleReference

	Raised when FHIR references retrieve multiple results






	
class portal.models.reference.Reference

	
	
as_fhir()

	Return FHIR compliant reference string

FHIR uses the Reference Resource within a number of other
resources to define things like who performed an observation
or what organization another is a partOf.


	Returns

	the appropriate JSON formatted reference string.










	
classmethod intervention(intervention_id)

	Create a reference object from given intervention

Intervention references maintained by name - lookup from given id.






	
classmethod organization(organization_id)

	Create a reference object from a known organization id






	
classmethod parse(reference_dict)

	Parse an organization from a FHIR Reference resource

Typical format: “{‘Reference’: ‘Organization/12’}”
or “{‘reference’: ‘api/patient/6’}”

FHIR is a little sloppy on upper/lower case, so this parser
is also flexible.


	Returns

	the referenced object - instantiated from the db






	:raises portal.models.reference.MissingReference: if

	the referenced object can not be found



	:raises portal.models.reference.MultipleReference: if

	the referenced object retrieves multiple results



	:raises exceptions.ValueError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError]: if the text format

	can’t be parsed










	
classmethod patient(patient_id)

	Create a reference object from a known patient id






	
classmethod practitioner(practitioner_id)

	Create a reference object from a known patient id






	
classmethod questionnaire(questionnaire_name)

	Create a reference object from a known questionnaire name






	
classmethod questionnaire_bank(questionnaire_bank_name)

	Create a reference object from a known questionnaire bank






	
classmethod research_protocol(research_protocol_name)

	Create a reference object from a known research protocol









Relationship module


	Relationship data lives in the relationships table, populated via:

	FLASK_APP=manage.py flask seed





To extend the list of roles, add name: description pairs to the
STATIC_RELATIONSHIPS dict within, and rerun the seed command above.


	
class portal.models.relationship.Relationship(**kwargs)

	SQLAlchemy class for relationships table


	
description

	




	
id

	




	
name

	








	
portal.models.relationship.add_static_relationships()

	Seed database with default static relationships

Idempotent - run anytime to pick up any new relationships in existing dbs





Role module


	Role data lives in the roles table, populated via:

	flask seed



	To restrict access to a given role, use the ROLE object:

	@roles_required(ROLE.ADMIN.value)





To extend the list of roles, add name: description pairs to the
STATIC_ROLES dict within.


	
class portal.models.role.Role(**kwargs)

	SQLAlchemy class for roles table


	
as_json()

	




	
description

	




	
display_name

	Generate and return ‘Title Case’ version of name ‘title_case’






	
id

	




	
name

	




	
users

	








	
portal.models.role.add_static_roles()

	Seed database with default static roles

Idempotent - run anytime to pick up any new roles in existing dbs





Telecom Module

FHIR uses a telecom structure for email, fax, phone, etc.


	
class portal.models.telecom.ContactPoint(**kwargs)

	ContactPoint model for storing FHIR telecom entries


	
as_fhir()

	




	
classmethod from_fhir(data)

	




	
id

	




	
rank

	




	
system

	




	
update_from_fhir(data)

	




	
use

	




	
value

	








	
class portal.models.telecom.Telecom(email=None, contact_points=None)

	Telecom model - not a formal db front at this time

Several FHIR resources include telecom entries.  This helper
class wraps common functions.


	
as_fhir()

	




	
cp_dict()

	




	
classmethod from_fhir(data)

	







User model


	
exception portal.models.user.RoleError

	




	
class portal.models.user.User(**kwargs)

	
	
active

	




	
add_observation(fhir, audit)

	




	
add_organization(organization_name)

	Shortcut to add a clinic/organization by name






	
add_password_verification_failure()

	remembers when a user fails password verification

Each time a user fails password verification
this function is called. Use user.is_locked_out
to tell whether this has been called enough times
to lock the user out of the system


	Returns

	total failures since last reset










	
add_relationship(other_user, relationship_name)

	




	
add_roles(role_list, acting_user)

	Add one or more roles to user’s existing roles


	Parameters

	
	role_list – list of role objects defining what roles to add


	acting_user – user performing action, for permissions, etc.






	Raises

	409 if any named roles are already assigned to the user










	
add_service_account()

	Service account generation.

For automated, authenticated access to protected API endpoints,
a service user can be created and used to generate a long-life
bearer token.  The account is a user with the service role,
attached to a sposor account - the (self) individual creating it.

Only a single service account is allowed per user.  If one is
found to exist for this user, simply return it.






	
all_consents

	Access to all consents including deleted and expired






	
alt_phone

	




	
alt_phone_id

	




	
as_fhir(include_empties=True)

	Return JSON representation of user


	Parameters

	include_empties – if True, returns entire object definition;
if False, empty elements are removed from the result



	Returns

	JSON representation of a FHIR Patient resource










	
auth_providers

	




	
birthdate

	




	
check_role(permission, other_id)

	check user for adequate role

if user is an admin or a service account, grant carte blanche
otherwise, must be self or have a relationship granting permission
to “verb” the other user.

returns true if permission should be granted, raises 404 if the
other_id can’t be found, otherwise raise a 401






	
clinical_history(requestURL=None, patch_dstu2=False)

	




	
classmethod column_names()

	




	
concept_value(codeable_concept)

	Look up logical value for given concept

Returns the most current setting for a given concept, by
interpreting the results of a matching
fetch_value_status_for_concept() call.

NB - as there are states beyond true/false, such as “unknown”
for a given concept, this does NOT return a boolean but a string.


	Returns

	a string, typically “true”, “false” or “unknown”










	
confirmed_at

	




	
current_encounter

	Shortcut to current encounter, if present

An encounter is typically bound to the logged in user, not
the subject, if a different user is performing the action.






	
deactivate_tous(acting_user, types=None)

	Mark user’s current active ToU agreements as inactive

Marks the user’s current active ToU agreements as inactive.
User must agree to ToUs again upon next login (per CoreData logic).
If types provided, only deactivates agreements of that ToU type.
Called when the ToU agreement language is updated.


	Parameters

	
	acting_user – user behind the request for permission checks


	types – ToU types for which to invalide agreements (optional)













	
deceased

	




	
deceased_id

	




	
delete_roles(role_list, acting_user)

	Delete one or more roles from user’s existing roles


	Parameters

	
	role_list – list of role objects defining what roles to remove


	acting_user – user performing action, for permissions, etc.






	Raises

	409 if any named roles are not currently assigned to the user










	
delete_user(acting_user)

	Mark user deleted from the system

Due to audit constraints, we do NOT actually delete the user, but
mark the user as deleted.  See permanently_delete_user for
more serious alternative.


	Parameters

	
	self – user to mark deleted


	acting_user – individual executing the command, for audit trail













	
deleted

	




	
deleted_id

	




	
display_name

	




	
documents

	




	
email

	




	
email_ready()

	Returns (True, None) IFF user has valid email & necessary criteria

As user’s frequently forget their passwords or start in a state
without a valid email address, the system should NOT email invites
or reminders unless adequate data is on file for the user to perform
a reset password loop.

NB exceptions exist for systems with the NO_CHALLENGE_WO_DATA
configuration set, as those systems allow for change of password
without the verification step, if the user doesn’t have a required
field set.


	Returns

	(Success, Failure message), such as (True, None) if the
user account is “email_ready” or (False, _”invalid email”) if
the reason for failure is a lack of valid email address.










	
encounters

	




	
ethnicities

	




	
external_study_id

	Return the value of the user’s external study identifier(s)

If more than one external study identifiers are found for the user,
values will be joined by ‘, ‘






	
failed_login_attempts_before_lockout

	Number of failed login attempts before lockout






	
fetch_datetime_for_concept(codeable_concept)

	Return newest issued timestamp from matching observation






	
fetch_value_status_for_concept(codeable_concept)

	Return matching ValueQuantity & status for this user

Given the possibility of multiple matching observations, returns
the most current info available.

See also concept_value()


	Returns

	(value_quantity, status) tuple for the observation
if found on the user, else (None, None)










	
first_name

	




	
first_top_organization()

	Return first top level organization for user

NB, none of the above doesn’t count and will not be retuned.

A user may have any number of organizations, but most business
decisions, assume there is only one.  Arbitrarily returning the
first from the matching query in case of multiple.


	Returns

	a single top level organization, or None










	
classmethod from_fhir(data)

	




	
fuzzy_match(first_name, last_name, birthdate)

	Returns probability score [0-100] of it being the same user






	
gender

	




	
groups

	




	
has_relationship(relationship_name, other_user)

	




	
has_role(role_name)

	Return True if the user has one of the specified roles. Return False otherwise.


	has_roles() accepts a 1 or more role name parameters

	has_role(role_name1, role_name2, role_name3).



	For example:

	has_roles(‘a’, ‘b’)



	Translates to:

	User has role ‘a’ OR role ‘b’










	
id

	




	
identifiers

	Return list of identifiers

Several identifiers are “implicit”, such as the primary key
from the user table, and any auth_providers associated with
this user.  These will be prepended to the existing identifiers
but should never be stored, as they’re generated from other
fields.


	Returns

	list of implicit and existing identifiers










	
image_url

	




	
implicit_identifiers()

	Generate and return the implicit identifiers

The primary key, email and auth providers are all visible in formats
such as demographics, but should never be stored as user_identifiers,
less problems of duplicate, out of sync data arise.

This method generates those on the fly for display purposes.


	Returns

	list of implicit identifiers










	
indigenous

	




	
interventions

	




	
is_locked_out

	tells if user is temporarily locked out

To slow down brute force password attacks we temporarily
lock users out of the system for a short period of time.
This property tells whether or not the user is locked out.






	
is_registered()

	Returns True if user has completed registration

Not to be confused with the registered column (which captures
the moment when the account was created), is_registered returns
true once the user has blessed their account with login credentials,
such as a password or auth_provider access.

Roles are considered in this check - special roles such as
access_on_verify and write_only should never exist on
registered users, and therefore this method will return False
for any users with these roles.






	
last_name

	




	
last_password_verification_failure

	




	
leaf_organizations()

	Return list of ‘leaf’ organization ids for user’s orgs

Users, especially staff, have arbitrary number of organization
associations, at any level of the organization hierarchy.  This
method looks up all child leaf nodes from the users existing orgs.






	
locale

	




	
locale_code

	




	
locale_display_options

	Collates all the locale options from the user’s orgs
to establish which should be visible to the user






	
locale_id

	




	
locale_name

	




	
lockout_period_minutes

	The lockout period in minutes






	
lockout_period_timedelta

	The lockout period as a timedelta






	
mask_email(prefix=u'__invite__')

	Mask temporary account email to avoid collision with registered

Temporary user accounts created for the purpose of invites get
in the way of the user creating a registered account.  Add a hidden
prefix to the email address in the temporary account to avoid
collision.






	
merge_with(other_id)

	merge details from other user into self

Primary usage stems from different account registration flows.
For example, users are created when invited by staff to participate,
and when the same user later opts to register, a second account
is generated during the registration process (either by flask-user
or other mechanisms like add_user).

NB - caller MUST manage email due to unique constraints






	
notifications

	




	
observations

	




	
org_coding_display_options

	Collates all race/ethnicity/indigenous display options
from the user’s orgs to establish which options to display






	
organizations

	




	
password

	




	
password_verification_failures

	




	
phone

	




	
phone_id

	




	
practitioner_id

	




	
procedure_history(requestURL=None)

	




	
procedures

	




	
promote_to_registered(registered_user)

	Promote a weakly authenticated account to a registered one






	
questionnaire_responses

	




	
races

	




	
reactivate_user(acting_user)

	Reactivate a previously deleted user

This method clears the deleted status - by removing the link from
the user to the audit recording the delete.  Audit itself is retained
for tracking purposes, and a new one will be created for posterity


	Parameters

	
	self – user to reactivate


	acting_user – individual executing the command, for audit trail













	
registered

	




	
relationships

	




	
reset_lockout()

	resets variables that track lockout

We track when the user fails password verification
to lockout users when they fail too many times.
This function resets those variables






	
reset_password_token

	




	
rolelist

	Generate UI friendly string of user’s roles by name






	
roles

	




	
save_observation(codeable_concept, value_quantity, audit, status, issued)

	Helper method for creating new observations






	
staff_html()

	Helper used from templates to display any custom staff/provider text

Interventions can add personalized HTML for care staff
to consume on the /patients list.  Look up any values for this user
on all interventions.






	
subject_audits

	




	
timezone

	




	
update_birthdate(fhir)

	




	
update_consents(consent_list, acting_user)

	Update user’s consents

Adds the provided list of consent agreements to the user.
If the user had pre-existing consent agreements between the
same organization_id, the new will replace the old

NB this will only modify/update consents between the user
and the organizations named in the given consent_list.






	
update_deceased(fhir)

	




	
update_from_fhir(fhir, acting_user=None)

	Update the user’s demographics from the given FHIR

If a field is defined, it is the final definition for the respective
field, resulting in a deletion of existing values in said field
that are not included.


	Parameters

	
	fhir – JSON defining portions of the user demographics to change


	acting_user – user requesting the change, used in audit logs













	
update_orgs(org_list, acting_user, excuse_top_check=False)

	Update user’s organizations

Uses given list of organizations as the definitive list for
the user - meaning any current affiliations not mentioned will
be deleted.


	Parameters

	
	org_list – list of organization objects for user’s orgs


	acting_user – user behind the request for permission checks


	excuse_top_check – Set True to excuse check for changes
to top level orgs, say during initial account creation













	
update_roles(role_list, acting_user)

	Update user’s roles


	Parameters

	
	role_list – list of role objects defining exactly what
roles the user should have.  Any existing roles not mentioned
will be deleted from user’s list


	acting_user – user performing action, for permissions, etc.













	
user_audits

	




	
username

	




	
valid_consents

	Access to consents that have neither been deleted or expired










	
class portal.models.user.UserEthnicity(**kwargs)

	
	
coding_id

	




	
id

	




	
user_id

	








	
class portal.models.user.UserEthnicityExtension(user, extension)

	
	
children

	




	
extension_url = u'http://hl7.org/fhir/StructureDefinition/us-core-ethnicity'

	








	
class portal.models.user.UserIndigenous(**kwargs)

	
	
coding_id

	




	
id

	




	
user_id

	








	
class portal.models.user.UserIndigenousStatusExtension(user, extension)

	
	
children

	




	
extension_url = 'http://us.truenth.org/fhir/StructureDefinition/AU-NHHD-METeOR-id-291036'

	








	
class portal.models.user.UserRace(**kwargs)

	
	
coding_id

	




	
id

	




	
user_id

	








	
class portal.models.user.UserRaceExtension(user, extension)

	
	
children

	




	
extension_url = u'http://hl7.org/fhir/StructureDefinition/us-core-race'

	








	
class portal.models.user.UserRelationship(**kwargs)

	SQLAlchemy class for user_relationships table


	Relationship is assumed to be ordered such that:

	<user_id> has a <relationship.name> with <other_user_id>






	
as_json()

	serialize the relationship - used to preserve service users






	
classmethod from_json(data)

	




	
id

	




	
other_user

	




	
other_user_id

	




	
relationship

	




	
relationship_id

	




	
update_from_json(data)

	




	
user

	




	
user_id

	








	
class portal.models.user.UserRoles(**kwargs)

	
	
id

	




	
role_id

	




	
user_id

	








	
portal.models.user.add_role(user, role_name)

	




	
portal.models.user.add_user(user_info)

	Given the result from an external IdP, create a new user






	
portal.models.user.current_user()

	Obtain the “current” user object

Works for both remote oauth sessions and locally logged in sessions.

returns current user object, or None if not logged in (local or remote)






	
portal.models.user.default_email(context=None)

	Function to provide a unique, default email if none is provided


	Parameters

	context – is populated by SQLAlchemy - see Context-Sensitive default
functions in http://docs.sqlalchemy.org/en/latest/core/defaults.html



	Returns

	a unique email string to avoid unique constraints, if an email
isn’t provided in the context










	
portal.models.user.flag_test()

	Find all non-service users and flag as test






	
portal.models.user.get_user(uid)

	




	
portal.models.user.get_user_or_abort(uid, allow_deleted=False)

	Wraps get_user and raises error if not found

Safe to call with path or parameter info.  Confirms integer value before
attempting lookup.


	Parameters

	
	uid – integer value for user id to look up


	allow_deleted – set true to allow access to deleted users








:raises werkzeug.exceptions.BadRequest [http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.BadRequest]: w/o a uid


	:raises werkzeug.exceptions.NotFound [http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.NotFound]: if the given uid isn’t

	an integer, or if no matching user



	:raises werkzeug.exceptions.Forbidden [http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.Forbidden]: if the named user has

	been deleted, unless allow_deleted is set






	Returns

	user if valid and found










	
portal.models.user.permanently_delete_user(username, user_id=None, acting_user=None, actor=None)

	Given a username (email), purge the user from the system

Includes wiping out audit rows, observations, etc.
May pass either username or user_id.  Will prompt for acting_user if not
provided.


	Parameters

	
	username – username (email) for user to purge


	user_id – id of user in liew of username


	acting_user – user taking the action, for record keeping













	
portal.models.user.user_extension_map(user, extension)

	Map the given extension to the User

FHIR uses extensions for elements beyond base set defined.  Lookup
an adapter to handle the given extension for the user.


	Parameters

	
	user – the user to apply to or read the extension from


	extension – a dictionary with at least a ‘url’ key defining
the extension.  Should include a ‘valueCodeableConcept’ structure
when being used in an apply context (i.e. direct FHIR data)






	Returns

	adapter implementing apply_fhir and as_fhir methods





:raises exceptions.ValueError [https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError]: if the extension isn’t recognized






	
portal.models.user.validate_email(email)

	Not done at model level, as there are exceptions

We allow for placeholders and masks on email, so not all emails are valid.
This validation function is generally only used when an end user changing
an address or another use requires validation.

Furthermore, due to the complexity of valid email addresses, just
look for some obvious signs - such as the ‘@’ symbol and at least 6 chars.

:raises werkzeug.exceptions.BadRequest [http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.BadRequest]: if obviously invalid









          

      

      

    

  

    
      
          
            
  
Portal.Views


Note

This does not include API endpoints documented via swagger [https://stg.us.truenth.org/dist], as the swagger syntax is
incompatable with restructuredText



Auth related view functions


	
portal.views.auth.deauthorized()

	Callback URL configured on facebook when user deauthorizes

We receive POST data when a user deauthorizes the session
between TrueNTH and Facebook.  The POST includes
a signed_request, decoded as seen below.


	Configuration set on Facebook Developer pages:

	app->settings->advanced->Deauthorize Callback URL










	
portal.views.auth.next_after_login()

	Redirection to appropriate target depending on data and auth status

Multiple authorization paths in, some needing up front information before
returning, this attempts to handle such state decisions.  In other words,
this function represents the state machine to control initial flow.

When client applications (interventions) request OAuth tokens, we sometimes
need to postpone the action of authorizing the client while the user logs
in to TrueNTH.

After completing authentication with TrueNTH, additional data may need to
be obtained, such as a TOU agreement.  In such a case, the user will be
directed to initial_queries, then back here for redirection to the
appropriate ‘next’.

Implemented as a view method for integration with flask-user config.






	
portal.views.auth.login(blueprint, token)

	successful provider login callback

After successful authorization at the provider, control
returns here. The blueprint and the oauth bearer
token are used to log the user into the portal

:return returns False to disable saving oauth token






	
portal.views.auth.logout(prevent_redirect=False, reason=None)

	logout view function

Logs user out by requesting the previously granted permission to
use authenticated resources be deleted from the OAuth server, and
clearing the browser session.


	Parameters

	
	prevent_redirect – set only if calling this function during
another process where redirection after logout is not desired


	reason – set only if calling from another process where a driving
reason should be noted in the audit








Optional query string parameter timed_out should be set to clarify the
logout request is the result of a stale session





Cross Domain Decorators


	
portal.views.crossdomain.crossdomain(origin=None, methods=None, headers=('Authorization', 'X-Requested-With', 'X-CSRFToken', 'Content-Type'), max_age=21600, automatic_options=True)

	Decorator to add specified crossdomain headers to response


	Parameters

	
	origin – ‘*’ to allow all origins, otherwise a string with
a single origin or a list of origins that might
access the resource.  If no origin is provided, use
request.headers[‘Origin’], but ONLY if it validates.  If
no origin is provided and the request doesn’t include an
Origin header, no CORS headers will be added.


	methods – Optionally a list of methods that are allowed
for this view. If not provided it will allow
all methods that are implemented.


	headers – Optionally a list of headers that are allowed
for this request.


	max_age – The number of seconds as integer or timedelta
object for which the preflighted request is valid.


	automatic_options – If enabled the decorator will use the
default Flask OPTIONS response and attach the headers there,
otherwise the view function will be called to generate an
appropriate response.









	:raises werkzeug.exceptions.Unauthorized [http://werkzeug.pocoo.org/docs/latest/exceptions/#werkzeug.exceptions.Unauthorized]:

	if no origin is provided and the one in
request.headers[‘Origin’] doesn’t validate as one we know.









Intervention API view functions


	
portal.views.intervention.intervention_rule_list(*args, **kwargs)

	Return the list of intervention rules for named intervention

NB - not documenting in swagger at this time, intended for internal use
only.  See http://truenth-shared-services.readthedocs.io/en/latest/interventions.html#access






	
portal.views.intervention.intervention_rule_set(*args, **kwargs)

	POST an access rule to the named intervention

Submit a JSON doc with the access strategy details to include
for the named intervention.

Only available as a service account API - the named intervention
must be associated with the service account sponsor.

NB - interventions have a global ‘public_access’ setting.  Only
when unset are access rules consulted.

NB - not documenting in swagger at this time, intended for internal use
only.  See http://truenth-shared-services.readthedocs.io/en/latest/interventions.html#access





Patient view functions (i.e. not part of the API or auth)


	
portal.views.patients.patient_profile(*args, **kwargs)

	individual patient view function, intended for staff






	
portal.views.patients.patients_root(*args, **kwargs)

	patients view function, intended for staff

Present the logged in staff the list of patients matching
the staff’s organizations (and any descendant organizations)





Portal view functions (i.e. not part of the API or auth)


	
class portal.views.portal.ChallengeIdForm(formdata=<object object>, **kwargs)

	




	
class portal.views.portal.SettingsForm(formdata=<object object>, **kwargs)

	




	
class portal.views.portal.ShortcutAliasForm(formdata=<object object>, **kwargs)

	
	
static validate_shortcut_alias(field)

	Custom validation to confirm an alias match










	
portal.views.portal.access_via_token(token, next_step=None)

	Limited access users enter here with special token as auth

Tokens contain encrypted data including the user_id and timestamp
from when it was generated.

If the token is found to be valid, and the user_id isn’t associated
with a privilidged account, the behavior depends on the roles assigned
to the token’s user_id:
* WRITE_ONLY users will be directly logged into the weak auth account
* others will be given a chance to prove their identity


	Parameters

	next_step – if the user is to be redirected following validation
and intial queries, include a value.  These come from a controlled
vocabulary - see NextStep










	
portal.views.portal.admin(*args, **kwargs)

	user admin view function






	
portal.views.portal.celery_test(x=16, y=16)

	Simple view to test asynchronous tasks via celery






	
portal.views.portal.challenge_identity(user_id=None, next_url=None, merging_accounts=False, access_on_verify=False, request_path=None)

	Challenge the user to verify themselves

Can’t expose the parameters for security reasons - use the session,
namespace each variable i.e. session[‘challenge.user_id’] unless
calling as a function.


	Parameters

	
	user_id – the user_id to verify - invited user or the like


	next_url – destination url on successful challenge completion


	merging_accounts – boolean value, set true IFF on success, the
user account will be merged into a new account, say from a weak
authenicated WRITE_ONLY invite account


	access_on_verify – boolean value, set true IFF on success, the
user should be logged in once validated, i.e. w/o a password


	request_path – the requested url prior to redirection to here
necessary in no cookie situations, to redirect user back













	
portal.views.portal.communicate(*args, **kwargs)

	Direct call to trigger communications to given user.

Typically handled by scheduled jobs, this API enables testing of
communications without the wait.

Include a force=True query string parameter to first invalidate the cache
and look for fresh messages before triggering the send.

Include a purge=True query string parameter to throw out existing
communications for the user first, thus forcing a resend  (implies a force)

Include a trace=True query string parameter to get details found during
processing - like a debug trace.






	
portal.views.portal.communications_dashboard(*args, **kwargs)

	Communications Dashboard

Displays a list of communication requests from the system;
includes a preview mode for specific requests.






	
portal.views.portal.contact_sent(message_id)

	show invite sent






	
portal.views.portal.get_all_tag_data(*allTags)

	query LR based on all required tags

this is an AND condition; all required tags must be present


	Parameters

	allTags – variable number of tags to be queried,
e.g., ‘tag1’, ‘tag2’










	
portal.views.portal.get_any_tag_data(*anyTags)

	query LR based on any tags

this is an OR condition; will match any tag specified


	Parameters

	anyTag – a variable number of tags to be queried,
e.g., ‘tag1’, ‘tag2’










	
portal.views.portal.initial_queries()

	Initial consent terms, initial queries view function






	
portal.views.portal.invite(*args, **kwargs)

	invite other users via form data

see also /api/user/{user_id}/invite






	
portal.views.portal.invite_sent(*args, **kwargs)

	show invite sent






	
portal.views.portal.patient_invite_email(*args, **kwargs)

	Patient Invite Email Content






	
portal.views.portal.patient_reminder_email(*args, **kwargs)

	Patient Reminder Email Content






	
portal.views.portal.preview_communication(*args, **kwargs)

	Communication message preview






	
portal.views.portal.profile(*args, **kwargs)

	profile view function






	
portal.views.portal.report_error(*args, **kwargs)

	Useful from front end, client-side to raise attention to problems

On occasion, an exception will be generated in the front end code worthy of
gaining attention on the server side.  By making a GET request here, a
server side error will be generated (encouraging the system to handle it
as configured, such as by producing error email).

OAuth protected to prevent abuse.

Any of the following query string arguments (and their values) will be
included in the exception text, to better capture the context.  None are
required.


	Subject_id

	User on which action is being attempted



	Message

	Details of the error event



	Page_url

	The page requested resulting in the error





actor_id need not be sent, and will always be included - the OAuth
protection guarentees and defines a valid current user.






	
portal.views.portal.report_slow_queries(response)

	Log slow database queries


	This will only function if BOTH values are set in the config:

	DATABASE_QUERY_TIMEOUT = 0.5  # threshold in seconds
SQLALCHEMY_RECORD_QUERIES = True










	
portal.views.portal.reporting_dashboard(*args, **kwargs)

	Executive Reporting Dashboard

Only accessible to Admins, or those with the Analyst role (no PHI access).


	Usage: graphs showing user registrations and logins per day;

	filterable by date and/or by intervention





User Stats: counts of users by role, intervention, etc.

Institution Stats: counts of users per org


	Analytics: Usage stats from piwik (time on site, geographic usage,

	referral sources for new visitors, etc)










	
portal.views.portal.require_cookies()

	give front end opportunity to verify cookies

Renders HTML including cookie check, then redirects back to target
NB - query string ‘cookies_tested=True’ added to target for client
to confirm this process happened.






	
portal.views.portal.research_dashboard(*args, **kwargs)

	Research Dashboard

Only accessible to those with the Researcher role.






	
portal.views.portal.settings(*args, **kwargs)

	settings panel for admins






	
portal.views.portal.spec(*args, **kwargs)

	generate swagger friendly docs from code and comments

View function to generate swagger formatted JSON for API
documentation.  Pulls in a few high level values from the
package data (see setup.py) and via flask-swagger, makes
use of any yaml comment syntax found in application docstrings.

Point Swagger-UI to this view for rendering






	
portal.views.portal.specific_clinic_entry()

	Entry point with form to insert a coded clinic shortcut

Invited users may start here to obtain a specific clinic assignment,
by entering the code or shortcut alias they were given.

Store the clinic in the session for association with the user once
registered and redirect to the standard landing page.

NB if already logged in - this will bounce user to home






	
portal.views.portal.specific_clinic_landing(clinic_alias)

	Invited users start here to obtain a specific clinic assignment

Store the clinic in the session for association with the user once
registered and redirect to the standard landing page.






	
portal.views.portal.stock_consent(org_name)

	Simple view to render default consent with named organization

We generally store the unique URL pointing to the content of the agreement
to which the user consents.  Special case for organizations without a
custom consent agreement on file.


	Parameters

	org_name – the org_name to include in the agreement text













          

      

      

    

  

    
      
          
            
  
Docker



	Background


	Getting Started


	Docker Images


	Building a Debian Package


	Building a Shared Services Docker Image






	Advanced Usage


	Running in Background


	Viewing Logs


	PostgreSQL Access


	Account Bootstrapping






	Advanced Configuration


	Continuous Delivery


	Configuration











Background

Docker is an open-source project that can be used to automate the deployment of applications inside software containers. Docker defines specifications and provides tools that can be used to automate building and deploying software containers.

Dockerfiles declaratively define how to build a Docker image that is subsequently run as a container, any number of times. Configuration in Dockerfiles is primarily driven by image build-time arguments (ARG) and environment variables (ENV) that may be overridden.

Docker-compose (through docker-compose.yaml) defines the relationship (exposed ports, volume mappings) between the Shared Services web container and the other services it depends on (redis, postgresql).




Getting Started

Install docker-compose as per environment.  For example, from a debian system:

# add user to docker group
sudo usermod -aG docker $USER
sudo pip install docker_compose






Note

A clean environment and fresh git checkout are recommended, but not required



Copy and edit the default environment file (from the project root):

cp docker/portal.env.default docker/portal.env
# update SERVER_NAME to include port if not binding with 80/443
# SERVER_NAME=localhost:8080






Note

All docker-compose commands are run from the docker/ directory



Download and run the latest images:

docker-compose pull web
docker-compose up web





By default, the truenth_portal image with the latest tag is downloaded and used. To use an image with another tag, set the DOCKER_IMAGE_TAG environment variable:

export DOCKER_IMAGE_TAG='stable'
docker-compose pull web
docker-compose up web








Docker Images

Two Dockerfiles (Dockerfile.build and Dockerfile) define how to build a docker image capable of creating a Debian package from the portal codebase, and how to install and configure the package into a working Shared Services instance.


Building a Debian Package

To build a Debian package from the current branch of your local repo:

# Build debian package from current local branch
docker-compose -f docker-compose.build.yaml run builder





If you would like to create a package from a remote repository you can override the local repo as follows below:

# Override default with environment variable
export GIT_REPO='https://github.com/USERNAME/true_nth_usa_portal'

# Build the package from the above repo
docker-compose -f docker-compose.build.yaml run builder








Building a Shared Services Docker Image

If you would like to build a Shared Services image, follow the instructions in Building a Debian Package, and run the following docker-compose commands:

# Override default (Artifactory) docker repo to differentiate locally-built images
export DOCKER_REPOSITORY=''

# Build the "web" image locally
docker-compose build web

docker-compose up web










Advanced Usage


Running in Background

Docker-compose services can be run in the background by adding the --detach option. Services started in detached mode will run until stopped or killed.:

# Start the "web" service (and dependencies) in background
docker-compose up --detach web








Viewing Logs

Docker-compose will only show logs of the requested services (usually web), when not run in the background. To view the logs of all running services:

# Tail and follow logs of all services
docker-compose logs --follow

# Tail and follow logs of a specific service
docker-compose logs --follow celerybeat








PostgreSQL Access

To interact with the running database container, started via the docker-compose instructions above, use docker exec as follows below:

docker-compose exec db psql --username postgres --dbname portaldb








Account Bootstrapping

To bootstrap an admin account after a fresh install, run the below flask CLI command:

docker-compose exec web \
    flask add-user \
        --email 'admin_email@example.com' \
        --password 'exampleP@$$W0RD' \
        --role admin










Advanced Configuration

Environment variables defined in the portal.env environment file are only passed to the underlying containers. However, some environment variables are used for configuration specific to docker-compose.

An
additional environment file [https://docs.docker.com/compose/environment-variables/#the-env-file], specifically named .env, in the current working directory can define environment variables available through the entire docker-compose file (including containers). These docker-compose-level environment variables can also be set in the shell invoking docker-compose.

One use for environmental variables defined in the .env file is overriding the default COMPOSE_PROJECT_NAME which can be used to namespace multiple deployments running on the same host. In production deployments COMPOSE_PROJECT_NAME is set to correspond to the domain being served.




Continuous Delivery

Our continuous integration setup leverages TravisCI’s docker support and deployment integration to create and deploy Debian packages and Docker images for every commit.

Packages and images are built in a separate job (named build-artifacts) that corresponds with a tox environment that does nothing and that’s allowed to fail without delaying the build or affecting its status.

If credentials are configured, packages and images will be uploaded to their corresponding repository after the build process. Otherwise, artifacts will only be built, but not uploaded or deployed.

Currently, our TravisCI setup uses packages locally-built on TravisCI instead of pushing, then pulling from our Debian repository. This may lead to non-deterministic builds and should probably be reconciled at some point, ideally using
TravisCI build stages [https://docs.travis-ci.com/user/build-stages].


Configuration

Most if not all values needed to build and deploy Shared Services are available as environment variables with sane, CIRG-specific defaults. Please see the global section of .travis.yml [https://docs.travis-ci.com/user/environment-variables#global-variables].


	image

	Docker images are the basis of containers. An Image is an ordered collection of root filesystem changes and the corresponding execution parameters for use within a container runtime. An image typically contains a union of layered filesystems stacked on top of each other. An image does not have state and it never changes.



	container

	A container is a runtime instance of a docker image.
A Docker container consists of:
* A Docker image
* Execution environment
* A standard set of instructions



	environment file

	A file for defining environment variables. One per line, no shell syntax (export etc).



	build

	A group of TravisCI jobs tied to a single commit; initiated by a pull request or push



	job

	A discrete unit of work that is part of a build. All jobs part of a build must pass for the build to pass (unless a job is set as an allowed failure [https://docs.travis-ci.com/user/customizing-the-build#rows-that-are-allowed-to-fail]).













          

      

      

    

  

    
      
          
            
  
Contributing



	Git Flow Workflow


	Work on New Feature


	Publish Feature


	Pull Request


	Rebase







Git Flow Workflow

TrueNTH Shared Services attempts to conform to the guidelines established
by the git-flow branching model.

For an introduction, see the excellent git-flow-cheatsheet [http://danielkummer.github.io/git-flow-cheatsheet/].

To initialize on a debian system, install the git-flow package:

sudo apt-get install git-flow





Return to the root of your TrueNTH Shared Services checkout and initialize:

cd ~/true_nth_usa_portal
git-flow init





You should be able to accept all the defaults (caveat: in some cases “Branch name for production releases: []” won’t have a default; in that case, use “master”).  The results are written to the nested .git/config file, such as:

[gitflow "branch"]
        master = master
        develop = develop
[gitflow "prefix"]
        feature = feature/
        release = release/
        hotfix = hotfix/
        support = support/
        versiontag =








Work on New Feature

Work on new feature takes place in a fresh branch off of develop.  git-flow
makes this easy:

git flow feature start my-feature-name








Publish Feature

Once the feature is ready to share, and all changes have been committed
locally, push the feature branch to github:

git flow feature publish








Pull Request

To bring the feature into the main develop branch, head over to
github [https://github.com/uwcirg/true_nth_usa_portal] and trigger
a pull request.




Rebase

Occasionally, it’s desirable or even necessary to bring commits on another
branch into your feature branch prior to publication.

For example, to bring changes into your branch that have been pushed
to develop since your feature branch was cut:

git checkout develop
git pull
git checkout feature/<my-feature-name>
git flow feature rebase











          

      

      

    

  

    
      
          
            
  
Testing



	Running Unit Tests


	Debugging Views


	Communicate


	Assessment Status


	Invalidate Assessment Cache











Running Unit Tests

See Testing from the README




Debugging Views

A number of endpoints can be used to view details of a patient, or manually
trigger an instant reminder, to simplify testing and debugging.

All of these endpoints are restricted by the same rules as any API, namely
the authenticated user must have appropriate permissions to make the request,
typically governed by user ROLE and shared organizations between the patient
and the current user.  A user can also view their own data in most cases.

For all of the following, replace the variable name within the angle brackets
with the appropriate value.


Communicate

Trigger an immediate lookup and transmission of any assessment reminder emails
for a user, rather than wait for the next scheduled job to handle.

Request /communicate/<patient_id>

Additional query string parameters supported:

trace=True
  Shows details of the lookup process
purge=True
  invalidates the assessment_cache for the patient
  prior to executing the lookup








Assessment Status

Request /api/patient/<patient_id>/assessment-status to view current
assessment status details:

assessment_status
  The *overall* status for the patient's assessments.

completed_ids
  A list of the named assessments for the current questionnaire bank which
  the patient has already submitted.

outstanding_indefinite_work
  The ``irondemog`` or ``irondemog3`` assessment is special, belonging to
  the indefinite camp.  If the user is eligible and still needs to complete
  this assessment, this variable will be set to ``1``.

qb_name
  The current Questionnaire Bank for the patient.

questionnaires_ids
  The list of questionnaires the user needs to complete for the current
  Questionnaire Bank (specifically those which haven't been previously
  started and suspended).

resume_ids
  The list of questionnaires the user has begun but not yet completed
  for the current Questionnaire Bank.





Additional query string parameters supported:

trace=True
  Shows details of the lookup process








Invalidate Assessment Cache

Although many URLs listed in this document also support the purge=True
parameter, it’s also possible to invalidate the cached assessment status
of any given patient, which will then force a fresh lookup the next time
it is needed.

Request /api/invalidate/<patient_id> invalidates given user’s cache,
and returns the patient data in FHIR format.









          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       portal	
       

     
       	
       	   
       portal.audit	
       

     
       	
       	   
       portal.config.config	
       

     
       	
       	   
       portal.config.site_persistence	
       

     
       	
       	   
       portal.extensions	
       

     
       	
       	   
       portal.factories.app	
       

     
       	
       	   
       portal.models.address	
       

     
       	
       	   
       portal.models.audit	
       

     
       	
       	   
       portal.models.auth	
       

     
       	
       	   
       portal.models.fhir	
       

     
       	
       	   
       portal.models.flaskdanceprovider	
       

     
       	
       	   
       portal.models.identifier	
       

     
       	
       	   
       portal.models.intervention	
       

     
       	
       	   
       portal.models.intervention_strategies	
       

     
       	
       	   
       portal.models.lazy	
       

     
       	
       	   
       portal.models.message	
       

     
       	
       	   
       portal.models.organization	
       

     
       	
       	   
       portal.models.performer	
       

     
       	
       	   
       portal.models.procedure	
       

     
       	
       	   
       portal.models.reference	
       

     
       	
       	   
       portal.models.relationship	
       

     
       	
       	   
       portal.models.role	
       

     
       	
       	   
       portal.models.telecom	
       

     
       	
       	   
       portal.models.user	
       

     
       	
       	   
       portal.system_uri	
       

     
       	
       	   
       portal.views.auth	
       

     
       	
       	   
       portal.views.crossdomain	
       

     
       	
       	   
       portal.views.intervention	
       

     
       	
       	   
       portal.views.patients	
       

     
       	
       	   
       portal.views.portal	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 


A


  	
      	access_token (portal.models.auth.Token attribute)


      	access_via_token() (in module portal.views.portal)


      	AccessStrategy (class in portal.models.intervention_strategies)


      	account (portal.models.audit.Context attribute)


      	active (portal.models.user.User attribute)


      	add_if_not_found() (portal.models.identifier.Identifier method)

      
        	(portal.models.performer.Performer method)


      


      	add_observation() (portal.models.user.User method)


      	add_organization() (portal.models.user.User method)


      	add_password_verification_failure() (portal.models.user.User method)


      	add_relationship() (portal.models.user.User method)


      	add_role() (in module portal.models.user)


      	add_roles() (portal.models.user.User method)


      	add_service_account() (portal.models.user.User method)


      	add_static_interventions() (in module portal.models.intervention)


      	add_static_organization() (in module portal.models.organization)


      	add_static_relationships() (in module portal.models.relationship)


      	add_static_roles() (in module portal.models.role)


      	add_user() (in module portal.models.user)


      	Address (class in portal.models.address)


      	address_id (portal.models.organization.OrganizationAddress attribute)


      	addresses (portal.models.organization.Organization attribute)


      	admin() (in module portal.views.portal)


      	all_consents (portal.models.user.User attribute)


      	all_ids_with_rp() (portal.models.organization.OrgTree static method)


      	all_leaf_ids() (portal.models.organization.OrgTree method)


      	all_leaves_below_id() (portal.models.organization.OrgTree method)


      	all_top_level_ids() (portal.models.organization.OrgTree method)


      	allow_if_not_in_intervention() (in module portal.models.intervention_strategies)


      	alt_phone (portal.models.user.User attribute)


  

  	
      	alt_phone_id (portal.models.user.User attribute)


      	apply_fhir() (portal.models.organization.ResearchProtocolExtension method)


      	as_fhir() (portal.models.address.Address method)

      
        	(portal.models.audit.Audit method)


        	(portal.models.auth.AuthProvider method)


        	(portal.models.auth.AuthProviderPersistable method)


        	(portal.models.organization.Organization method)


        	(portal.models.organization.ResearchProtocolExtension method)


        	(portal.models.performer.Performer method)


        	(portal.models.procedure.Procedure method)


        	(portal.models.reference.Reference method)


        	(portal.models.telecom.ContactPoint method)


        	(portal.models.telecom.Telecom method)


        	(portal.models.user.User method)


      


      	as_json() (portal.models.auth.Token method)

      
        	(portal.models.intervention.Intervention method)


        	(portal.models.intervention_strategies.AccessStrategy method)


        	(portal.models.message.EmailMessage method)


        	(portal.models.role.Role method)


        	(portal.models.user.UserRelationship method)


      


      	assessment (portal.models.audit.Context attribute)


      	at_and_above_ids() (portal.models.organization.OrgTree method)


      	at_or_below_ids() (portal.models.organization.OrgTree method)


      	Audit (class in portal.models.audit)


      	audit (portal.models.procedure.Procedure attribute)


      	auditable_event() (in module portal.audit)


      	auth_providers (portal.models.user.User attribute)


      	authentication (portal.models.audit.Context attribute)


      	AuthProvider (class in portal.models.auth)


      	AuthProviderPersistable (class in portal.models.auth)


  





B


  	
      	BaseConfig (class in portal.config.config)


      	best_sql_url() (in module portal.config.config)


      	birthdate (portal.models.user.User attribute)


  

  	
      	body (portal.models.message.EmailMessage attribute)


      	build


      	bundle_results() (in module portal.models.fhir)


      	BundleType (class in portal.models.fhir)


  





C


  	
      	celery_test() (in module portal.views.portal)


      	challenge_identity() (in module portal.views.portal)


      	ChallengeIdForm (class in portal.views.portal)


      	check_role() (portal.models.user.User method)


      	children (portal.models.organization.LocaleExtension attribute)

      
        	(portal.models.organization.ResearchProtocolExtension attribute)


        	(portal.models.user.UserEthnicityExtension attribute)


        	(portal.models.user.UserIndigenousStatusExtension attribute)


        	(portal.models.user.UserRaceExtension attribute)


      


      	city (portal.models.address.Address attribute)


      	client (portal.models.auth.Grant attribute)

      
        	(portal.models.auth.Token attribute)


      


      	client_id (portal.models.auth.Grant attribute)

      
        	(portal.models.auth.Token attribute)


      


      	clinical_history() (portal.models.user.User method)


      	cls (portal.config.site_persistence.ModelDetails attribute)


      	code (portal.models.auth.Grant attribute)

      
        	(portal.models.procedure.Procedure attribute)


      


      	codeable_concept (portal.models.performer.Performer attribute)


      	codeable_concept_id (portal.models.performer.Performer attribute)


      	coding_id (portal.models.organization.OrganizationLocale attribute)

      
        	(portal.models.user.UserEthnicity attribute)


        	(portal.models.user.UserIndigenous attribute)


        	(portal.models.user.UserRace attribute)


      


      	coding_options (portal.models.organization.Organization attribute)


      	column_names() (portal.models.user.User class method)


      	combine_strategies() (in module portal.models.intervention_strategies)


      	comment (portal.models.audit.Audit attribute)


      	communicate() (in module portal.views.portal)


  

  	
      	communications_dashboard() (in module portal.views.portal)


      	concept_value() (portal.models.user.User method)


      	configure_app() (in module portal.factories.app)


      	configure_audit_log() (in module portal.audit)


      	configure_blueprints() (in module portal.factories.app)


      	configure_cache() (in module portal.factories.app)


      	configure_csrf() (in module portal.factories.app)


      	configure_dogpile() (in module portal.factories.app)


      	configure_extensions() (in module portal.factories.app)


      	configure_healthcheck() (in module portal.factories.app)


      	configure_logging() (in module portal.factories.app)


      	configure_metadata() (in module portal.factories.app)


      	confirmed_at (portal.models.user.User attribute)


      	consent (portal.models.audit.Context attribute)


      	consent_agreements() (portal.models.organization.Organization static method)


      	contact_sent() (in module portal.views.portal)


      	ContactPoint (class in portal.models.telecom)


      	container


      	Context (class in portal.models.audit)


      	context (portal.models.audit.Audit attribute)


      	country (portal.models.address.Address attribute)


      	cp_dict() (portal.models.telecom.Telecom method)


      	create_app() (in module portal.factories.app)


      	create_service_token() (in module portal.models.auth)


      	created_at (portal.models.auth.AuthProvider attribute)

      
        	(portal.models.auth.AuthProviderPersistable attribute)


      


      	crossdomain() (in module portal.views.crossdomain)


      	current_encounter (portal.models.user.User attribute)


      	current_user() (in module portal.models.user)


  





D


  	
      	deactivate_tous() (portal.models.user.User method)


      	deauthorized() (in module portal.views.auth)


      	deceased (portal.models.user.User attribute)


      	deceased_id (portal.models.user.User attribute)


      	default_email() (in module portal.models.user)


      	default_locale (portal.models.organization.Organization attribute)


      	default_locale_id (portal.models.organization.Organization attribute)


      	DefaultConfig (class in portal.config.config)


      	delete() (portal.models.auth.Grant method)


      	delete_roles() (portal.models.user.User method)


  

  	
      	delete_user() (portal.models.user.User method)


      	deleted (portal.models.user.User attribute)


      	deleted_id (portal.models.user.User attribute)


      	description (portal.models.relationship.Relationship attribute)

      
        	(portal.models.role.Role attribute)


      


      	display_for_user() (portal.models.intervention.Intervention method)


      	display_name (portal.models.role.Role attribute)

      
        	(portal.models.user.User attribute)


      


      	DisplayDetails (class in portal.models.intervention)


      	district (portal.models.address.Address attribute)


      	documents (portal.models.user.User attribute)


  





E


  	
      	email (portal.models.organization.Organization attribute)

      
        	(portal.models.user.User attribute)


      


      	email_ready() (portal.models.user.User method)


      	EmailMessage (class in portal.models.message)


      	encounters (portal.models.user.User attribute)


      	end_time (portal.models.procedure.Procedure attribute)


      	environment file


      	ethnicities (portal.models.user.User attribute)


      	ethnicity_codings (portal.models.organization.Organization attribute)


  

  	
      	expires (portal.models.auth.Grant attribute)

      
        	(portal.models.auth.Token attribute)


      


      	export() (portal.config.site_persistence.SitePersistence method)


      	extension_url (portal.models.organization.LocaleExtension attribute)

      
        	(portal.models.organization.ResearchProtocolExtension attribute)


        	(portal.models.user.UserEthnicityExtension attribute)


        	(portal.models.user.UserIndigenousStatusExtension attribute)


        	(portal.models.user.UserRaceExtension attribute)


      


      	external_study_id (portal.models.user.User attribute)


  





F


  	
      	FacebookFlaskDanceProvider (class in portal.models.flaskdanceprovider)


      	failed_login_attempts_before_lockout (portal.models.user.User attribute)


      	fetch_datetime_for_concept() (portal.models.user.User method)


      	fetch_strategies() (portal.models.intervention.Intervention method)


      	fetch_value_status_for_concept() (portal.models.user.User method)


      	find() (portal.models.organization.OrgTree method)


      	find_top_level_orgs() (portal.models.organization.OrgTree method)


      	first_name (portal.models.user.User attribute)


      	first_top_organization() (portal.models.user.User method)


      	flag_test() (in module portal.models.user)


      	FlaskDanceProvider (class in portal.models.flaskdanceprovider)


      	FlaskProviderUserInfo (class in portal.models.flaskdanceprovider)


  

  	
      	from_fhir() (portal.models.address.Address class method)

      
        	(portal.models.auth.AuthProviderPersistable class method)


        	(portal.models.organization.Organization class method)


        	(portal.models.performer.Performer class method)


        	(portal.models.procedure.Procedure class method)


        	(portal.models.telecom.ContactPoint class method)


        	(portal.models.telecom.Telecom class method)


        	(portal.models.user.User class method)


      


      	from_json() (portal.models.auth.Token class method)

      
        	(portal.models.user.UserRelationship class method)


      


      	from_logentry() (portal.models.audit.Audit class method)


      	fuzzy_match() (portal.models.user.User method)


  





G


  	
      	gender (portal.models.user.User attribute)


      	generate_bundle() (portal.models.organization.Organization class method)


      	get_all_tag_data() (in module portal.views.portal)


      	get_any_tag_data() (in module portal.views.portal)


      	get_user() (in module portal.models.user)


  

  	
      	get_user_info() (portal.models.flaskdanceprovider.FlaskDanceProvider method)


      	get_user_or_abort() (in module portal.models.user)


      	GoogleFlaskDanceProvider (class in portal.models.flaskdanceprovider)


      	Grant (class in portal.models.auth)


      	group (portal.models.audit.Context attribute)


      	groups (portal.models.user.User attribute)


  





H


  	
      	has_relationship() (portal.models.user.User method)


  

  	
      	has_role() (portal.models.user.User method)


      	here_and_below_id() (portal.models.organization.OrgTree method)


  





I


  	
      	id (portal.models.address.Address attribute)

      
        	(portal.models.audit.Audit attribute)


        	(portal.models.auth.AuthProvider attribute)


        	(portal.models.auth.AuthProviderPersistable attribute)


        	(portal.models.auth.Grant attribute)


        	(portal.models.auth.Token attribute)


        	(portal.models.message.EmailMessage attribute)


        	(portal.models.organization.Organization attribute)


        	(portal.models.organization.OrganizationAddress attribute)


        	(portal.models.organization.OrganizationIdentifier attribute)


        	(portal.models.organization.OrganizationLocale attribute)


        	(portal.models.organization.OrganizationResearchProtocol attribute)


        	(portal.models.organization.UserOrganization attribute)


        	(portal.models.performer.ObservationPerformer attribute)


        	(portal.models.performer.Performer attribute)


        	(portal.models.relationship.Relationship attribute)


        	(portal.models.role.Role attribute)


        	(portal.models.telecom.ContactPoint attribute)


        	(portal.models.user.User attribute)


        	(portal.models.user.UserEthnicity attribute)


        	(portal.models.user.UserIndigenous attribute)


        	(portal.models.user.UserRace attribute)


        	(portal.models.user.UserRelationship attribute)


        	(portal.models.user.UserRoles attribute)


      


  

  	
      	Identifier (class in portal.models.identifier)


      	identifier_id (portal.models.organization.OrganizationIdentifier attribute)


      	identifiers (portal.models.organization.Organization attribute)

      
        	(portal.models.user.User attribute)


      


      	image


      	image_url (portal.models.user.User attribute)


      	implicit_identifiers() (portal.models.user.User method)


      	import_() (portal.config.site_persistence.SitePersistence method)


      	in_role_list() (in module portal.models.intervention_strategies)


      	indigenous (portal.models.user.User attribute)


      	indigenous_codings (portal.models.organization.Organization attribute)


      	initial_queries() (in module portal.views.portal)


      	insert() (portal.models.organization.OrgNode method)


      	instantiate() (portal.models.intervention_strategies.AccessStrategy method)


      	Intervention (class in portal.models.intervention)


      	intervention (portal.models.audit.Context attribute)


      	intervention() (portal.models.reference.Reference class method)


      	intervention_rule_list() (in module portal.views.intervention)


      	intervention_rule_set() (in module portal.views.intervention)


      	interventions (portal.models.user.User attribute)


      	invalidate_cache() (portal.models.organization.OrgTree class method)


      	invite() (in module portal.views.portal)


      	invite_sent() (in module portal.views.portal)


      	is_locked_out (portal.models.user.User attribute)


      	is_registered() (portal.models.user.User method)


  





J


  	
      	job


  

  	
      	json() (portal.models.flaskdanceprovider.MockJsonResponse method)


  





L


  	
      	last_name (portal.models.user.User attribute)


      	last_password_verification_failure (portal.models.user.User attribute)


      	lazyprop() (in module portal.models.lazy)


      	leaf_organizations() (portal.models.user.User method)


      	limit_by_clinic_w_id() (in module portal.models.intervention_strategies)


      	line1 (portal.models.address.Address attribute)


      	line2 (portal.models.address.Address attribute)


      	line3 (portal.models.address.Address attribute)


      	lines (portal.models.address.Address attribute)


      	load_grant() (in module portal.models.auth)


      	load_token() (in module portal.models.auth)


      	locale (portal.models.user.User attribute)


      	locale_code (portal.models.user.User attribute)


  

  	
      	locale_display_options (portal.models.user.User attribute)


      	locale_id (portal.models.user.User attribute)


      	locale_name (portal.models.user.User attribute)


      	LocaleExtension (class in portal.models.organization)


      	locales (portal.models.organization.Organization attribute)


      	lockout_period_minutes (portal.models.user.User attribute)


      	lockout_period_timedelta (portal.models.user.User attribute)


      	log_message() (in module portal.models.message)


      	login (portal.models.audit.Context attribute)


      	login() (in module portal.views.auth)


      	logout() (in module portal.views.auth)


      	lookup_field (portal.config.site_persistence.ModelDetails attribute)


      	lookup_table (portal.models.organization.OrgTree attribute)


      	lookup_version() (in module portal.models.audit)


  





M


  	
      	mask_email() (portal.models.user.User method)


      	merge_with() (portal.models.user.User method)


      	MissingReference


      	Mock (class in portal.models.auth)


  

  	
      	MockFlaskDanceProvider (class in portal.models.flaskdanceprovider)


      	MockJsonResponse (class in portal.models.flaskdanceprovider)


      	ModelDetails (class in portal.config.site_persistence)


      	MultipleReference


  





N


  	
      	name (portal.models.organization.Organization attribute)

      
        	(portal.models.relationship.Relationship attribute)


        	(portal.models.role.Role attribute)


      


  

  	
      	next_after_login() (in module portal.views.auth)


      	not_in_clinic_w_id() (in module portal.models.intervention_strategies)


      	not_in_role_list() (in module portal.models.intervention_strategies)


      	notifications (portal.models.user.User attribute)


  





O


  	
      	OAUTH2_PROVIDER_TOKEN_EXPIRES_IN


      	OAuthOrAlternateAuth (class in portal.extensions)


      	observation (portal.models.audit.Context attribute)


      	observation_check() (in module portal.models.intervention_strategies)


      	observation_id (portal.models.performer.ObservationPerformer attribute)


      	ObservationPerformer (class in portal.models.performer)


      	observations (portal.models.performer.Performer attribute)

      
        	(portal.models.user.User attribute)


      


      	org_coding_display_options (portal.models.user.User attribute)


      	org_extension_map() (in module portal.models.organization)


      	Organization (class in portal.models.organization)


      	organization (portal.models.audit.Context attribute)

      
        	(portal.models.organization.OrganizationResearchProtocol attribute)


        	(portal.models.organization.UserOrganization attribute)


      


      	organization() (portal.models.reference.Reference class method)


  

  	
      	organization_id (portal.models.organization.OrganizationAddress attribute)

      
        	(portal.models.organization.OrganizationIdentifier attribute)


        	(portal.models.organization.OrganizationLocale attribute)


        	(portal.models.organization.OrganizationResearchProtocol attribute)


        	(portal.models.organization.UserOrganization attribute)


      


      	organization_research_protocols (portal.models.organization.Organization attribute)


      	OrganizationAddress (class in portal.models.organization)


      	OrganizationIdentifier (class in portal.models.organization)


      	OrganizationLocale (class in portal.models.organization)


      	OrganizationResearchProtocol (class in portal.models.organization)


      	organizations (portal.models.user.User attribute)


      	OrgNode (class in portal.models.organization)


      	OrgTree (class in portal.models.organization)


      	other (portal.models.audit.Context attribute)


      	other_user (portal.models.user.UserRelationship attribute)


      	other_user_id (portal.models.user.UserRelationship attribute)


  





P


  	
      	parse() (portal.models.reference.Reference class method)


      	parse_json() (portal.models.flaskdanceprovider.FlaskDanceProvider method)


      	partOf_id (portal.models.organization.Organization attribute)


      	password (portal.models.user.User attribute)


      	password_verification_failures (portal.models.user.User attribute)


      	patient() (portal.models.reference.Reference class method)


      	patient_invite_email() (in module portal.views.portal)


      	patient_profile() (in module portal.views.patients)


      	patient_reminder_email() (in module portal.views.portal)


      	patients_root() (in module portal.views.patients)


      	Performer (class in portal.models.performer)


      	performer_id (portal.models.performer.ObservationPerformer attribute)


      	PERMANENT_SESSION_LIFETIME


      	permanently_delete_user() (in module portal.models.user)


      	phone (portal.models.organization.Organization attribute)

      
        	(portal.models.user.User attribute)


      


      	phone_id (portal.models.organization.Organization attribute)

      
        	(portal.models.user.User attribute)


      


      	populate_tree() (portal.models.organization.OrgTree method)


      	portal.audit (module)


      	portal.config.config (module)


      	portal.config.site_persistence (module)


      	portal.extensions (module)


      	portal.factories.app (module)


      	portal.models.address (module)


      	portal.models.audit (module)


      	portal.models.auth (module)


      	portal.models.fhir (module)


      	portal.models.flaskdanceprovider (module)


      	portal.models.identifier (module)


      	portal.models.intervention (module)


  

  	
      	portal.models.intervention_strategies (module)


      	portal.models.lazy (module)


      	portal.models.message (module)


      	portal.models.organization (module)


      	portal.models.performer (module)


      	portal.models.procedure (module)


      	portal.models.reference (module)


      	portal.models.relationship (module)


      	portal.models.role (module)


      	portal.models.telecom (module)


      	portal.models.user (module)


      	portal.system_uri (module)


      	portal.views.auth (module)


      	portal.views.crossdomain (module)


      	portal.views.intervention (module)


      	portal.views.patients (module)


      	portal.views.portal (module)


      	postalCode (portal.models.address.Address attribute)


      	practitioner() (portal.models.reference.Reference class method)


      	practitioner_id (portal.models.user.User attribute)


      	preview_communication() (in module portal.views.portal)


      	Procedure (class in portal.models.procedure)


      	procedure (portal.models.audit.Context attribute)


      	procedure_history() (portal.models.user.User method)


      	procedures (portal.models.user.User attribute)


      	profile() (in module portal.views.portal)


      	promote_to_registered() (portal.models.user.User method)


      	provider (portal.models.auth.AuthProvider attribute)

      
        	(portal.models.auth.AuthProviderPersistable attribute)


      


      	provider_id (portal.models.auth.AuthProvider attribute)

      
        	(portal.models.auth.AuthProviderPersistable attribute)


      


  





Q


  	
      	query_by_name() (in module portal.models.lazy)


      	questionnaire() (portal.models.reference.Reference class method)


  

  	
      	questionnaire_bank() (portal.models.reference.Reference class method)


      	questionnaire_responses (portal.models.user.User attribute)


      	quick_access_check() (portal.models.intervention.Intervention method)


  





R


  	
      	race_codings (portal.models.organization.Organization attribute)


      	races (portal.models.user.User attribute)


      	rank (portal.models.telecom.ContactPoint attribute)


      	reactivate_user() (portal.models.user.User method)


      	recipients (portal.models.message.EmailMessage attribute)


      	redirect_uri (portal.models.auth.Grant attribute)


      	Reference (class in portal.models.reference)


      	reference_txt (portal.models.performer.Performer attribute)


      	refresh_token (portal.models.auth.Token attribute)


      	registered (portal.models.user.User attribute)


      	Relationship (class in portal.models.relationship)


      	relationship (portal.models.audit.Context attribute)

      
        	(portal.models.user.UserRelationship attribute)


      


      	relationship_id (portal.models.user.UserRelationship attribute)


      	relationships (portal.models.user.User attribute)


      	report_error() (in module portal.views.portal)


      	report_slow_queries() (in module portal.views.portal)


      	reporting_dashboard() (in module portal.views.portal)


      	require_cookies() (in module portal.views.portal)


  

  	
      	require_oauth() (portal.extensions.OAuthOrAlternateAuth method)


      	research_dashboard() (in module portal.views.portal)


      	research_protocol (portal.models.organization.OrganizationResearchProtocol attribute)


      	research_protocol() (portal.models.organization.Organization method)

      
        	(portal.models.reference.Reference class method)


      


      	research_protocol_id (portal.models.organization.OrganizationResearchProtocol attribute)


      	research_protocols (portal.models.organization.Organization attribute)


      	ResearchProtocolExtension (class in portal.models.organization)


      	reset_lockout() (portal.models.user.User method)


      	reset_password_token (portal.models.user.User attribute)


      	retired_as_of (portal.models.organization.OrganizationResearchProtocol attribute)


      	Role (class in portal.models.role)


      	role (portal.models.audit.Context attribute)


      	role_id (portal.models.user.UserRoles attribute)


      	RoleError


      	rolelist (portal.models.user.User attribute)


      	roles (portal.models.user.User attribute)


      	root (portal.models.organization.OrgTree attribute)


      	rps_w_retired() (portal.models.organization.Organization method)


  





S


  	
      	save_grant() (in module portal.models.auth)


      	save_observation() (portal.models.user.User method)


      	save_token() (in module portal.models.auth)


      	scopes (portal.models.auth.Grant attribute)

      
        	(portal.models.auth.Token attribute)


      


      	send_get_user_json_request() (portal.models.flaskdanceprovider.FacebookFlaskDanceProvider method)

      
        	(portal.models.flaskdanceprovider.FlaskDanceProvider method)


        	(portal.models.flaskdanceprovider.GoogleFlaskDanceProvider method)


        	(portal.models.flaskdanceprovider.MockFlaskDanceProvider method)


      


      	send_message() (portal.models.message.EmailMessage method)


      	sender (portal.models.message.EmailMessage attribute)


      	sent_at (portal.models.message.EmailMessage attribute)


      	sequence_name (portal.config.site_persistence.ModelDetails attribute)


      	settings() (in module portal.views.portal)


      	SettingsForm (class in portal.views.portal)


  

  	
      	ShortcutAliasForm (class in portal.views.portal)


      	shortname (portal.models.organization.Organization attribute)


      	SitePersistence (class in portal.config.site_persistence)


      	spec() (in module portal.views.portal)


      	specific_clinic_entry() (in module portal.views.portal)


      	specific_clinic_landing() (in module portal.views.portal)


      	staff_html() (portal.models.user.User method)


      	start_time (portal.models.procedure.Procedure attribute)


      	state (portal.models.address.Address attribute)


      	stock_consent() (in module portal.views.portal)


      	style_message() (portal.models.message.EmailMessage static method)


      	subject (portal.models.message.EmailMessage attribute)


      	subject_audits (portal.models.user.User attribute)


      	subject_id (portal.models.audit.Audit attribute)


      	system (portal.models.telecom.ContactPoint attribute)


  





T


  	
      	Telecom (class in portal.models.telecom)


      	TestConfig (class in portal.config.config)


      	testing_sql_url() (in module portal.config.config)


      	timestamp (portal.models.audit.Audit attribute)


      	timezone (portal.models.organization.Organization attribute)

      
        	(portal.models.user.User attribute)


      


      	Token (class in portal.models.auth)


      	token (portal.models.auth.AuthProvider attribute)

      
        	(portal.models.auth.AuthProviderPersistable attribute)


      


  

  	
      	token_janitor() (in module portal.models.auth)


      	token_type (portal.models.auth.Token attribute)


      	top_level() (portal.models.organization.OrgNode method)


      	top_level_names() (portal.models.organization.OrgTree method)


      	tou (portal.models.audit.Context attribute)


      	tx_begun() (in module portal.models.intervention_strategies)


      	type (portal.models.address.Address attribute)

      
        	(portal.models.organization.Organization attribute)


      


      	type_id (portal.models.organization.Organization attribute)


  





U


  	
      	update_birthdate() (portal.models.user.User method)


      	update_card_html_on_completion() (in module portal.models.intervention_strategies)


      	update_consents() (portal.models.user.User method)


      	update_deceased() (portal.models.user.User method)


      	update_from_fhir() (portal.models.auth.AuthProviderPersistable method)

      
        	(portal.models.organization.Organization method)


        	(portal.models.telecom.ContactPoint method)


        	(portal.models.user.User method)


      


      	update_from_json() (portal.models.auth.Token method)

      
        	(portal.models.user.UserRelationship method)


      


      	update_orgs() (portal.models.user.User method)


      	update_roles() (portal.models.user.User method)


      	use (portal.models.address.Address attribute)

      
        	(portal.models.telecom.ContactPoint attribute)


      


      	use_specific_codings (portal.models.organization.Organization attribute)


      	User (class in portal.models.user)


      	user (portal.models.audit.Context attribute)

      
        	(portal.models.auth.AuthProvider attribute)


        	(portal.models.auth.AuthProviderPersistable attribute)


        	(portal.models.auth.Grant attribute)


        	(portal.models.auth.Token attribute)


        	(portal.models.user.UserRelationship attribute)


      


      	user_access_granted() (portal.models.intervention.UserIntervention class method)


      	user_audits (portal.models.user.User attribute)


      	user_extension_map() (in module portal.models.user)


  

  	
      	user_id (portal.models.audit.Audit attribute)

      
        	(portal.models.auth.AuthProvider attribute)


        	(portal.models.auth.AuthProviderPersistable attribute)


        	(portal.models.auth.Grant attribute)


        	(portal.models.auth.Token attribute)


        	(portal.models.message.EmailMessage attribute)


        	(portal.models.organization.UserOrganization attribute)


        	(portal.models.user.UserEthnicity attribute)


        	(portal.models.user.UserIndigenous attribute)


        	(portal.models.user.UserRace attribute)


        	(portal.models.user.UserRelationship attribute)


        	(portal.models.user.UserRoles attribute)


      


      	UserEthnicity (class in portal.models.user)


      	UserEthnicityExtension (class in portal.models.user)


      	UserIdentifier (class in portal.models.identifier)


      	UserIndigenous (class in portal.models.user)


      	UserIndigenousStatusExtension (class in portal.models.user)


      	UserIntervention (class in portal.models.intervention)


      	username (portal.models.user.User attribute)


      	UserOrganization (class in portal.models.organization)


      	UserRace (class in portal.models.user)


      	UserRaceExtension (class in portal.models.user)


      	UserRelationship (class in portal.models.user)


      	UserRoles (class in portal.models.user)


      	users (portal.models.organization.Organization attribute)

      
        	(portal.models.role.Role attribute)


      


  





V


  	
      	v_or_first() (in module portal.models.fhir)


      	v_or_n() (in module portal.models.fhir)


      	valid_consents (portal.models.user.User attribute)


      	validate_email() (in module portal.models.user)


  

  	
      	validate_redirect_uri() (portal.models.auth.Grant method)


      	validate_shortcut_alias() (portal.views.portal.ShortcutAliasForm static method)


      	value (portal.models.telecom.ContactPoint attribute)


      	version (portal.models.audit.Audit attribute)


      	visible_patients() (portal.models.organization.OrgTree method)


  







          

      

      

    

  _static/plus.png





_static/up-pressed.png





_static/up.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          TrueNTH Shared Services
        


        		
          README
          
            		
              true_nth_usa_portal
              
                		
                  INSTALLATION
                


                		
                  CONFIGURE
                


                		
                  COMMAND LINE INTERFACE
                


                		
                  Run the Shared Services Server
                


                		
                  Run the Celery Worker
                


                		
                  DATABASE
                


                		
                  Testing
                


                		
                  Dependency Management
                


                		
                  Documentation
                


                		
                  POSTGRESQL WINDOWS INSTALLATION GUIDE
                


              


            


          


        


        		
          Configuration
          
            		
              Flask Configuration Files
              
                		
                  application.cfg
                


                		
                  site.cfg
                


                		
                  base.cfg
                


              


            


            		
              Site Persistence
              
                		
                  Export
                


                		
                  Import
                


              


            


            		
              AppText
            


          


        


        		
          Interventions
          
            		
              Roles
            


            		
              Access
            


            		
              Communication
            


          


        


        		
          Organizations
        


        		
          Timeouts
          
            		
              Backend
            


            		
              Frontend
            


            		
              Intervention
            


          


        


        		
          Provider Authentication
          
            		
              OAuth Workflow
            


            		
              Configuration
              
                		
                  Facebook
                


                		
                  Google
                


                		
                  activate
                


              


            


            		
              Adding a new provider
            


          


        


        		
          Sessions
          
            		
              redis-cli
            


          


        


        		
          Development
          
            		
              Context
            


            		
              System-specific text (app_text)
            


            		
              System-specific pages
            


            		
              Mapping URL’s to views
            


            		
              Retrieving content from Liferay
            


            		
              Use of front-end libs
            


          


        


        		
          Internationalization
          
            		
              Indicating Translatable Strings
            


            		
              Updating Translation Files
              
                		
                  Updating POT files
                


                		
                  Updating PO files
                


              


            


            		
              Initializing Translation Files
            


            		
              External Documentation
            


          


        


        		
          Code Documentation
          
            		
              Portal
            


            		
              Portal.Config
            


            		
              Portal.Models
            


            		
              Portal.Views
            


            		
              Open API/Swagger
              
                		
                  Examples
                


              


            


          


        


        		
          Docker
          
            		
              Background
            


            		
              Getting Started
            


            		
              Docker Images
              
                		
                  Building a Debian Package
                


                		
                  Building a Shared Services Docker Image
                


              


            


            		
              Advanced Usage
              
                		
                  Running in Background
                


                		
                  Viewing Logs
                


                		
                  PostgreSQL Access
                


                		
                  Account Bootstrapping
                


              


            


            		
              Advanced Configuration
            


            		
              Continuous Delivery
              
                		
                  Configuration
                


              


            


          


        


        		
          Contributing
          
            		
              Git Flow Workflow
            


            		
              Work on New Feature
            


            		
              Publish Feature
            


            		
              Pull Request
            


            		
              Rebase
            


          


        


        		
          Testing
          
            		
              Running Unit Tests
            


            		
              Debugging Views
              
                		
                  Communicate
                


                		
                  Assessment Status
                


                		
                  Invalidate Assessment Cache
                


              


            


          


        


      


    
  

_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





