

 Navigation

 	
 index

 	
 next |

 	trollius_redis 0.1.4 documentation

trollius_redis

Asynchronous Redis client for Python trollius.

Port of .._asyncio-redis: https://github.com/jonathanslenders/asyncio-redis

This Redis library is a completely asynchronous, non-blocking client for a
Redis server.

It depends on the asyncio way of doing things (PEP 3156) but uses trollius so you can use Python 2.

If you’re new to asyncio, it can be helpful to check out
the asyncio documentation [http://docs.python.org/dev/library/asyncio.html] first.

Features

	Works for the trollius (PEP3156) event loop

	No dependencies except trollius

	Connection pooling and pipelining

	Automatic conversion from native Python types (unicode or bytes) to Redis types (bytes).

	Blocking calls and transactions supported

	Pubsub support

	Streaming of multi bulk replies

	Completely tested

Installation

pip install trollius-redis

Start by taking a look at some examples.

Author and License

The trollius_redis package is a port done by Ben Jolitz
of the asyncio_redis package originally written by Jonathan Slenders. It’s BSD
licensed and freely available. Feel free to improve this package and
send a pull request [https://github.com/benjolitz/trollius-redis].

Indices and tables

	Index

	Module Index

	Search Page

	Examples
	The Connection class

	Connection pooling

	Transactions

	Pubsub

	LUA Scripting

	Raw bytes or UTF-8

	Scanning for keys

	The RedisProtocol class

	Reference
	The Protocol

	Encoders

	Connection

	Connection pool

	Command replies

	Cursors

	Utils

	Exceptions

 Copyright 2015, Ben Jolitz.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	trollius_redis 0.1.4 documentation

Examples

The Connection class

A Connection instance will take care of the
connection and will automatically reconnect, using a new transport when the
connection drops. This connection class also acts as a proxy to at
RedisProtocol instance; any Redis
command of the protocol can be called directly at the connection.

import trollius
from trollius import From
import trollius_redis

@trollius.coroutine
def example():
 # Create Redis connection
 connection = yield From(trollius_redis.Connection.create(host=u'localhost', port=6379))

 # Set a key
 yield From(connection.set(u'my_key', u'my_value'))

 # When finished, close the connection.
 connection.close()

if __name__ == '__main__':
 loop = trollius.get_event_loop()
 loop.run_until_complete(example())

See the reference to learn more about the other Redis
commands.

Connection pooling

Requests will automatically be distributed among all connections in a
Pool. If a connection is blocking because of
–for instance– a blocking rpop, another connection will be used for new
commands.

Note

This is the recommended way to connect to the Redis server.

import trollius
from trollius import From
import trollius_redis

@trollius.coroutine
def example():
 # Create Redis connection
 connection = yield From(trollius_redis.Pool.create(
 host=u'localhost', port=6379, poolsize=10))

 # Set a key
 yield From(connection.set(u'my_key', u'my_value'))

 # When finished, close the connection pool.
 connection.close()

Transactions

A transaction can be started by calling multi. This returns a Transaction instance which is in fact just a proxy to the
RedisProtocol, except that every Redis
method of the protocol now became a coroutine that returns a future. The
results of these futures can be retrieved after the transaction is commited
with exec.

import trollius
from trollius import From
import trollius_redis

@trollius.coroutine
def example(loop):
 # Create Redis connection
 connection = yield From(trollius_redis.Pool.create(
 host=u'localhost', port=6379, poolsize=10))

 # Create transaction
 transaction = yield From(connection.multi())

 # Run commands in transaction (they return future objects)
 f1 = yield From(transaction.set(u'key', u'value'))
 f2 = yield From(transaction.set(u'another_key', u'another_value'))

 # Commit transaction
 yield From(transaction.exec())

 # Retrieve results
 result1 = yield From(f1)
 result2 = yield From(f2)

 # When finished, close the connection pool.
 connection.close()

It’s recommended to use a large enough poolsize. A connection will be occupied
as long as there’s a transaction running in there.

Pubsub

By calling start_subscribe (either on the protocol, through
the Connection class or through the Pool class), you can start a pubsub listener.

import trollius
from trollius import From
import trollius_redis

@trollius.coroutine
def example():
 # Create connection
 connection = yield From(trollius_redis.Connection.create(host=u'localhost', port=6379))

 # Create subscriber.
 subscriber = yield From(connection.start_subscribe())

 # Subscribe to channel.
 yield From(subscriber.subscribe([u'our-channel']))

 # Inside a while loop, wait for incoming events.
 while True:
 reply = yield From(subscriber.next_published())
 print(u'Received: ', repr(reply.value), u'on channel', reply.channel)

 # When finished, close the connection.
 connection.close()

LUA Scripting

The register_script
function – which can be used to register a LUA script – returns a
Script instance. You can call its run method to execute this script.

import trollius
from trollius import From
import trollius_redis

code = \
u"""
local value = redis.call('GET', KEYS[1])
value = tonumber(value)
return value * ARGV[1]
"""

@trollius.coroutine
def example():
 connection = yield From(trollius_redis.Connection.create(
 host=u'localhost', port=6379))

 # Set a key
 yield From(connection.set(u'my_key', u'2'))

 # Register script
 multiply = yield From(connection.register_script(code))

 # Run script
 script_reply = yield From(multiply.run(keys=[u'my_key'], args=[u'5']))
 result = yield From(script_reply.return_value())
 print(result) # prints 2 * 5

 # When finished, close the connection.
 connection.close()

Raw bytes or UTF-8

The redis protocol only knows about bytes, but normally you want to use strings
in your Python code. trollius_redis is helpful and installs an encoder that
does this conversion automatically, using the UTF-8 codec. However, sometimes
you want to access raw bytes. This is possible by passing a
BytesEncoder instance to the
connection, pool or protocol.

import trollius
from trollius import From
import trollius_redis

from trollius_redis.encoders import BytesEncoder

@trollius.coroutine
def example():
 # Create Redis connection
 connection = yield From(trollius_redis.Connection.create(
 host=u'localhost', port=6379, encoder=BytesEncoder()))

 # Set a key
 yield From(connection.set(b'my_key', b'my_value'))

 # When finished, close the connection.
 connection.close()

Scanning for keys

Redis has a few nice scanning utilities to discover keys in the database. They
are rather low-level, but trollius_redis exposes a simple
Cursor class that allows you to iterate over
all the keys matching a certain pattern. Each call of the
fetchone() coroutine will return the next
match. You don’t have have to worry about accessing the server every x pages.

The following example will print all the keys in the database:

import trollius
from trollius import From
import trollius_redis

from trollius_redis.encoders import BytesEncoder

@trollius.coroutine
def example():
 cursor = yield From(protocol.scan(match=u'*'))
 while True:
 item = yield From(cursor.fetchone())
 if item is None:
 break
 else:
 print(item)

See the scanning utilities: scan(),
sscan(),
hscan() and
zscan()

The RedisProtocol class

The most low level way of accessing the redis server through this library is
probably by creating a connection with the RedisProtocol yourself. You can do
it as follows:

import trollius
from trollius import From
import trollius_redis

@trollius.coroutine
def example():
 loop = trollius.get_event_loop()

 # Create Redis connection
 transport, protocol = yield From(loop.create_connection(
 trollius_redis.RedisProtocol, u'localhost', 6379))

 # Set a key
 yield From(protocol.set(u'my_key', u'my_value'))

 # Get a key
 result = yield From(protocol.get(u'my_key'))
 print(result)

if __name__ == '__main__':
 trollius.get_event_loop().run_until_complete(example())

Note

It is not recommended to use the Protocol class directly, because the
low-level Redis implementation could change. Prefer the
Connection or Pool class as demonstrated above if possible.

 Copyright 2015, Ben Jolitz.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	trollius_redis 0.1.4 documentation

Reference

You can either use the RedisProtocol
class directly, use the Connection class,
or use the Pool wrapper which also offers
connection pooling.

The Protocol

Encoders

Connection

Connection pool

Command replies

Cursors

Utils

Exceptions

 Copyright 2015, Ben Jolitz.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	trollius_redis 0.1.4 documentation

Index

 Copyright 2015, Ben Jolitz.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		trollius_redis 0.1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Ben Jolitz.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

