
Tripal Test Suite Documentation
Release 1.4.0

Abdullah Almsaeed, Bradford Condon

Feb 23, 2023

Contents:

1 Support 3

2 License 5
2.1 Installation . 5
2.2 Testing . 6
2.3 Database Operations . 10
2.4 Helper Methods . 16
2.5 Upgrading TripalTestSuite . 19
2.6 Training Videos . 19
2.7 Tips and Tricks for Writing Good Tests . 21
2.8 Contribution Guidelines . 22

i

ii

Tripal Test Suite Documentation, Release 1.4.0

TripalTestSuite is a composer package that handles common test practices such as bootstrapping Drupal before run-
ning the tests, creating test file, and creating and managing database seeders (files that seed the database with data for
use in testing).

Contents: 1

Tripal Test Suite Documentation, Release 1.4.0

2 Contents:

CHAPTER 1

Support

Please visit our issues queue on Github for any questions, issues or contributions.

3

https://github.com/statonlab/TripalTestSuite/issues

Tripal Test Suite Documentation, Release 1.4.0

4 Chapter 1. Support

CHAPTER 2

License

TripalTestSuite is licensed under GPLv3.

2.1 Installation

2.1.1 Adding Test Suite to a New Project

Within your Drupal module path (e.g. sites/all/modules/my_module), run the following.

composer require statonlab/tripal-test-suite --dev

2.1.2 Automatic Set Up

TestSuite can automatically configure your tests directory, PHPUnit bootstrap files, and travis continuous integration
file as well as provide an example test and an example database seeder to get you started.

From your module’s directory, execute:

You may specify the module name or leave it blank.
When left blank, the name of the current directory will be used as the module name.
./vendor/bin/tripaltest init [MODULE_NAME]

This will:

• Set up the testing framework by creating the tests directory, phpunit.xml and tests/bootstrap.php

• Create an example test in tests/ExampleTest.php

• Create a DatabaseSeeders folder and an example seeder in tests/DatabaseSeeders/
UsersTableSeeder.php

• Create DevSeedSeeder.php in DatabaseSeers. See the Database Seeders section to learn more about auto-
matically populating the database with biological data.

5

https://github.com/statonlab/TripalTestSuite/blob/master/LICENSE

Tripal Test Suite Documentation, Release 1.4.0

• Create an example .env file.

• Create .travis.yml configured to use a tripal3 docker container to run your tests

You can now write tests in your tests folder. To enable continuous integration testing, push your module to github
and enable Travis CI.

2.1.3 Environment Variables

When the init command is run (see: Automatic Set Up), an example.env file is created in tests/. This file
should be copied to tests/.env and modified to describe your specific Drupal environment.

tests/.env
BASE_URL=http://localhost
DRUPAL_ROOT=/var/www/html
FAKER_LOCALE=en_US

• BASE_URL: The URL of your site. This is where you point your browser to view your site.

• DRUPAL_ROOT: The absolute path to your Drupal site. On Unix machines, this is often /var/www/html,
but it may be different on your setup.

• FAKER_LOCALE: Test Suite uses the Faker package to create fake data in factories. You can change the locale
setting for the fake words used.

If the Drupal_ROOT variable is not set correctly, Drupal may not be bootstrapped correctly, and your tests may fail.

2.1.4 Forcing initialization

To force replacing files that tripaltest have perviously generated, you can use the --force flag. You will need to
confirm this flag by typing y and hitting enter.

./vendor/bin/tripaltest init --force

2.1.5 Joining an Existing Project

If Test Suite is already configured for a project (for example, if you clone Tripal and want to run tests), the composer.
json file already specifies what version of Test Suite is in use. To install it, execute the below command.

composer install

Warning: Before you can run tests, you’ll first need to configure your Environment Variables in the .env file.

2.2 Testing

2.2.1 Creating Tests

Using tripaltest, you can create test files pre-populated with all the requirements. To create a new test, run the
following command from your module’s root directory:

6 Chapter 2. License

https://travis-ci.org/
https://github.com/fzaninotto/Faker

Tripal Test Suite Documentation, Release 1.4.0

Creates a test file called ExampleTest.php in the tests folder
./vendor/bin/tripaltest make:test ExampleTest

Creates a test file called ExampleTest.php in tests/Features/Entities
This will automatically detect and configure the namespace of your script
./vendor/bin/tripaltest make:test Features/Entities/ExampleTest

Warning: You should not include tests/ in your path, nor should you specify a file extension.

Warning: Test names should end with Test for phpunit to recognize them.

2.2.2 Running Tests

Tripal Test Suite auto installs PHPunit as part of it’s dependencies in composer.json. Therefore, running tests in Tripal
Test Suite is done via phpunit as such:

./vendor/bin/phpunit

The command above, will read your phpunit.xml and runs the tests accordingly.

2.2.3 TripalTestCase

Test classes should extend the TripalTestCase class. Once extended, bootstrapping Drupal and reading your .env file
is done automatically when the first test is run.

namespace Tests;

use StatonLab\TripalTestSuite\TripalTestCase;

class MyTest extends TripalTestCase {
}

Attention: If you define a setUp method within a test class, be sure to call parent::setUp!

2.2.4 Testing HTTP Requests

TripalTestSuite provides a comprehensive HTTP testing methods. It allows you to call site urls and check that your
Drupal menu items are working as expected.

For example, the following tests that the homepage is accessible and that the name of the website is present in the
response.

public function testHomePage() {
// Send a GET request
$response = $this->get('/')

// Verify the HTTP response code is "200 OK" and that the site name is visible

(continues on next page)

2.2. Testing 7

Tripal Test Suite Documentation, Release 1.4.0

(continued from previous page)

$response->assertStatus(200)
->assertSee('My Site');

}

Available HTTP Testing Methods

The following table describes all available HTTP methods in any test class that extends TripalTestSuite:

8 Chapter 2. License

Tripal Test Suite Documentation, Release 1.4.0

name parameters Description Return

• $this->get() • $url string The
url to call

• $params array
Query parameters.

• $headers array
Additional HTTP
headers

Sends a GET request TestResponse

$this->post()
• $url string The

url to call
• $params array

Form request
parameters.

• $headers array
Additional HTTP
headers

Sends a POST request TestResponse

$this->put()
• $url string The

url to call
• $params array

Query parameters.
• $headers array

Additional HTTP
headers

Sends a PUT request TestResponse

$this->patch()
• $url string The

url to call
• $params array

Query parameters.
• $headers array

Additional HTTP
headers

Sends a PATCH request TestResponse

$this->delete()
• $url string The

url to call
• $params array

Query parameters.
• $headers array

Additional HTTP
headers

Sends a DELETE request TestResponse

The TestResponse returned from the HTTP requests, provide the following set of assertion methods:

2.2. Testing 9

Tripal Test Suite Documentation, Release 1.4.0

name Parame-
ters

Description

$response->assertStatus()$code int Verify the returned HTTP status code is equal to $code
$response->assertSee()$content

string
Verify the given string is present in the returned response body (i,
e HTML, JSON, etc)

$response->assertJsonStructure()$structure
array

Verifies that the returned JSON matches the given structure (see
below for example)

$response->assertSuccessful()none Verify the returned HTTP status code is between 200 and 299,
which are HTTP’s successful response codes

2.2.5 User Authentication

Authenticating a user with TripalTestSuite is very simple using the actingAs method. When authenticating a user
with TripalTestSuite, the user is automatically signed out by the end of each test method, which guarantees that your
other tests are using the anonymous user unless you specifically tell it otherwise.

public function testExample() {
// Authenticate the superuser who has an id 1
$this->actingAs(1);

// Verify that the user is the admin user
global $user;
$this->assertTrue(1 === $user->uid);

}

Attention: The actingAs method can take a user id to authenticate or a Drupal user object.

2.3 Database Operations

2.3.1 Database Seeders

Database seeders are also supported in TripalTestSuite. They give you the ability to create reusable seeders that can
be run using the tripaltest command line tool.

Example Seeders

Several example database seeders are provided in tests/DatabaseSeeders/examples. These will not run
unless they are copied to tests/DatabaseSeeders/.

Creating Database Seeders

DB seeders can also be created automatically using tripaltest:

./vendor/bin/tripaltest make:seeder ExampleTableSeeder

The above command will create ExampleTableSeeder.php in tests/DatabaseSeeders/ pre-populated
with the necessary namespace, methods and properties.

10 Chapter 2. License

Tripal Test Suite Documentation, Release 1.4.0

Using Database Seeders

DB seeders support an important method: up(). The up() method is used to insert data into the database when the
test class is initialized, making it available to all tests within the class. The following is an example of a Seeder class.

<?php

namespace Tests\DatabaseSeeders;

use StatonLab\TripalTestSuite\Database\Seeder;

class UsersTableSeeder extends Seeder
{

/**
* Seeds the database with users.

*/
public function up()
{

$new_user = [
'name' => 'test user',
'pass' => 'secret',
'mail' => 'test@example.com',
'status' => 1,
'init' => 'Email',
'roles' => [

DRUPAL_AUTHENTICATED_RID => 'authenticated user',
],

];

// The first parameter is sent blank so a new user is created.
user_save(new \stdClass(), $new_user);

}
}

Running Seeders

You can also run the seeder manually by using the static seed() method. For example, within a test class, you can
run $seeder = UsersTableSeeder::seed() which runs the up() method and returns an initialized seeder
object. If you are using the DBTransaction trait, the data will be automatically rolled at the end of each test
function.

Attention: Don’t forget to import your seeder at the top of the test file: use
Tests\DatabaseSeeders\UsersTableSeeder;

The other option is to run it using tripaltest as follows

run all available seeders
tripaltest db:seed

Run a specific seeder by providing the class name
tripaltest db:seed ExampleSeeder

2.3. Database Operations 11

Tripal Test Suite Documentation, Release 1.4.0

Attention: Running the seeder manually in a test function with DBTransaction enabled, means that the data
is available only to that function and nothing else. However, running it using tripaltest makes it always
available unless explicitly deleted.

Retrieving Seeder Data

If your seeder returns any data, you can obtain the returned record by manually running the seeder in your test. See
below for an example:

<?php
// Seeder Class
class MySeeder extends Seeder {

public function up() {
// Generate some data.
$data = db_query(...);

return $data;
}

}

// Test Class
class MyTest extends TripalTestCase {

public function testExample() {
$seeder = new MySeeder();
$data = $seeder->up();

// Run some tests using the generated data
// ...

}
}

Using DevSeed for Quick Biological Data Seeding

Tripal Test Suite ships with a default seeder called DevSeedSeeder. It is located at tests/
DatabaseSeeders/examples/: to use it, copy it to tests/DatabaseSeeders/. This seeder provides
a quick and automated way of seeding your database with biological data such as organisms, mRNAs, BLAST an-
notations and InterProScan annotations. The data in the default seeder is obtained from Tripal DevSeed, which is a
developer mini-set of biological data.

Attention: The DevSeed seeder must be copied from tests/DatabaseSeeders/examples/ to tests/
DatabaseSeeders/. Seeders in the examples folder will not run.

DevSeed uses factories and is therefore only appropriate for testing and development and should not be run on a
production site.

Attention: DevSeedSeeder.php becomes available after running tripaltest init. The init command will
not override existing files unless you specify the --force flag so it it’s safe to run it to get only the DevSeeder.

By default, the DevSeed comes with all sub-loaders enabled. To configure the DevSeed seeder, comment out data types
you don’t need in the public static variables section. Then, you can run the seeder using tripaltest db:seed

12 Chapter 2. License

https://github.com/statonlab/tripal_dev_seed

Tripal Test Suite Documentation, Release 1.4.0

DevSeedSeeder.

1. If you haven’t already, copy the seeder from tests/DatabaseSeeders/examples to tests/
DatabaseSeeders/.

2. Open DatabaseSeeders/DevSeedSeeder.php

3. You’ll notice a few commented properties in the top of the file.

4. Uncomment and modify the properties to your need.

5. Carefully follow the instructions in this section. All loaders require an organism as well, but some are dependent
on previous loaders.

6. Next, run tripaltest db:seed DevSeedSeeder

7. If the seeder runs successfully, you’ll be able to see all the records in your Chado database.

The records provided by DevSeed are not published to your site as entities. You can do that by adding
$this->publish('CHADO_TABLE') at the end of the up() method of the DevSeedSeeder. Replace
CHADO_TABLE with the name of the table such as feature for mRNAs and analysis for analyses. Or, if
you prefer, you can use the Tripal admin interface to publish the records.

2.3.2 Factories

DB factories provide a method to populate the database with fake data. Using factories, you won’t have to run SQL
queries to populate the Database in every test. Since they are reusable, you can define one factory for each table and
use them across all tests. Usage example:

Generates 100 controlled vocabularies.
@return an array of vocabularies
$controlledVocabs = factory('chado.cv', 100)->create()

Factories should only be used for testing and development purposes.

Defining Factories

Factories live in tests/DataFactory.php. If you don’t have that file, create it. Note that this file is auto created
with tripaltest init.

Example DataFactory file:

<?php

use StatonLab\TripalTestSuite\Database\Factory;

Factory::define('chado.cv', function (Faker\Generator $faker) {
return [

'name' => $faker->name,
'definition' => $faker->text,

];
});

As shown in the example above, using Factory::define(), we can define new factories. The define method
takes the following parameters:

2.3. Database Operations 13

Tripal Test Suite Documentation, Release 1.4.0

Pa-
ram-
eter

Type Description Example

$table stringThe table name preceded with the schema name if the schema is not public chado.
cv or
node

$call-
back

callableThe function that generates the array. A Faker\Generator instance is automat-
ically passed to the callable

see above
for exam-
ple

$pri-
mary_key

stringOPTIONAL The primary key for the given table. Primary keys auto discovered
for CHADO tables only. If the factory wasn’t able to find the primary key, an
Exception will be thrown

nid or
cv_id

Checking if a Factory Exists

To determine whether a factory exists, you can use the Factory::exists($table) method:

<?php
// Import the Factory class
use StatonLab\TripalTestSuite\Database\Factory;

Factory::exists('user'); // true

// For chado tables always precede with `chado.`
Factory::exists('chado.feature'); // true

Using Factories

Once defined, factories can be used in test files directly or in database seeders. Usage:

Create a single CV record
$cv = factory('chado.cv')->create();
echo "$cv->name\n";

Create 100 CV records
$cvs = factory('chado.cv', 100)->create();

foreach ($cvs as $cv) {
echo "$cv->name\n";

}

Overriding Defaults

Sometimes you need to override a column to be a static predictable value. The create() method accepts an array
of values to override the faker data with. Example:

Let's make sure the cvterm has a specific cv id
$cv = factory('chado.cv')->create();
$cv_term = factory('chado.cvterm', 100)->create([

'cv_id' => $cv->cv_id,
])

14 Chapter 2. License

Tripal Test Suite Documentation, Release 1.4.0

The above example creates 100 cv terms that have the same cv_id.

Factories should only be used for testing and development purposes. This is because they are recursive and create
the records linked via foreign key. They do this even if you override the default for the linked record.

2.3.3 Using DB Transactions to Automatically Rollback Database Changes

Using DB transactions cleans up the database after every test by rolling back the database to the original state before
the test started. Therefore, anything added to the database in one test function will not be available for the next
function. If you’d like data to be available for all of the tests, see database seeders above.

To activate DB Transactions, simply add the DBTransaction trait to your test class:

namespace Tests;

use StatonLab\TripalTestSuite\TripalTestCase;
use StatonLab\TripalTestSuite\DBTransaction;

class MyTest extends TripalTestCase {
use DBTransaction;

}

The trait will automatically activate DB transactions and rollback the database when the test is finished.

Warning: Using @dataProvider does not honor database transactions. This means records will persist even
if the test class has use DBTransaction;! If your dataProvider creates database records, call it directly in the
test function instead of using @dataProvider in you doc block.

Warning: If the code you are testing requires a transaction, Postgres will fail since it does not support nested
transactions.

2.3.4 Publishing Tripal Entities

We provide an easy way to convert your chado records into entities. This is the equivalent of publishing Tripal content
using the GUI.

Publishing records is possible in both database seeders and directly in the test class.

The following publishes all features in chado.feature if they have not been published yet.

// Get the cvterm id of mRNA
$cvterm = chado_select_record('cvterm', ['cvterm_id'], ['name' => 'mRNA'])[0];

// Create 100 mRNA records
$features = factory('feature', 100)->create(['type_id' => $cvterm->cvterm_id]);

// Publish all features in chado.feature
$this->publish('feature');

The following publishes only the given feature ids:

2.3. Database Operations 15

https://github.com/statonlab/TripalTestSuite#database-seeders

Tripal Test Suite Documentation, Release 1.4.0

// Get the cvterm id of mRNA
$cvterm = chado_select_record('cvterm', ['cvterm_id'], ['name' => 'mRNA'])[0];

// Create 100 mRNA records
$features = factory('feature', 100)->create(['type_id' => $cvterm->cvterm_id]);

// Get the ids of our new features
$feature_ids = [];
foreach ($features as $feature) {

$feature_ids[] = $feature->feature_id;
}

// Publish only the given features
$this->publish('feature', $feature_ids);

The previous examples create mRNA entities.

Attention: An mRNA bundle must already be available before running this script.

2.4 Helper Methods

TripalTestSuite provides a set of helper methods to automate tedious aspects of testing.

2.4.1 Silently Testing Printed Output

Since tests should run “silently”, i.e. without printing output to the screen, we’d have to create an output buffer to
collect printed strings into a variable. In PHP, this can be done as such:

// Supress tripal errors
putenv("TRIPAL_SUPPRESS_ERRORS=TRUE");
ob_start();

// Run the call
echo "testing";
$output = ob_get_contents();

// Clean the buffer and unset tripal errors suppression
ob_end_clean();
putenv("TRIPAL_SUPPRESS_ERRORS");

However, TripalTestSuite provides a silent() method that automates this process, provides helpful assertions and
supports larger strings. Example usage:

$output = silent(function() {
echo "testing";

});
$output->assertSee('testing'); // true!

16 Chapter 2. License

Tripal Test Suite Documentation, Release 1.4.0

Warning: This method has a maximum string size to avoid memory leaks. The size is set in PHP’s ini file as
output_buffering, which by default is set to 4KB. If you would like to collect larger strings, you must adjust
your PHP settings.

2.4.2 Assertions and Methods

The silent method returns a SilentResponse which provides the following methods.

Method Arguments Description
assertSee() $value mixed Asserts that the given value is

present in the suppressed printed
output

assertReturnEquals() $value mixed
Asserts that the given
value equals the re-
turned value from the
called function

assertJsonStructure() $strcture array
‘‘$data‘‘ ar-
ray Optional

Asserts that the given stricture
matches that of the suppressed
printed output

getContent() None Get the suppressed printed content
as a string

getReturnValue() None Get the returned value from the
called function

Examples

$output = silent(function() {
drupal_json_output(['key' => 'value']);
return true;

});

$output->assertSee('value')
->assertJsonStructure(['key'])
->assertReturnEquals(true);

You can also call methods directly in the Callable function:

// Assume we have the following function
function tripal_print_message($message) {
echo $message;

}

$output = silent(function() {
tripal_print_message('tripal test suite');

});
$output->assertSee('test');

// Get the output as a string
$rawOtput = $output->getContent();

2.4. Helper Methods 17

Tripal Test Suite Documentation, Release 1.4.0

2.4.3 Access Private and Protected Properties and Methods of Objects

TripalTestSuite provides a reflect() method that accepts an object and makes all of the properties and methods
public and available for testing. Assume we have the following class:

class PrivateClass
{

private $private;

public function __construct($private = 'private')
{

$this->private = $private;
}

protected function myProtected()
{

return 'protected';
}

private function privateWithArgs($one, $two)
{

return $one.' '.$two;
}

}

Because of the functions and properties of the class are private or protected, we normally would not be able to access
any of them. However, we can force access using the reflect helper. See below for an examples.

2.4.4 Accessing Private and Protected Methods

// Pass an initialized class to the reflect method
$myObject = new PrivateClass();
$privateClass = reflect($myObject);

// Accessing protected methods
$value = $privateClass->myProtected();
$this->assertEquals('protected', $value);

// Accessing private methods with arguments
$value = $privateClass->privateWithArgs('one', 'two');
$this->assertEquals('one two', $value);

2.4.5 Accessing Properties

// Pass an initialized class to the reflect method
$myObject = new PrivateClass();
$privateClass = reflect($myObject);

$this->assertEquals('private', $privateClass->private);

18 Chapter 2. License

Tripal Test Suite Documentation, Release 1.4.0

2.5 Upgrading TripalTestSuite

Since we are using composer to manage releases, running composer update should update all your dependencies
to the latest version. However, you need to be aware of how composer deals with versioning.

Upgrading to a major versions (e.g, from 1.5.0 to 2.0.0), will require that you change the specified version in your
composer.json file. Upgrading minor version (e.g, 1.0.0 to 1.1.0) can be made automatic by specifying 1.* as your
tripal-test-suite version.

2.6 Training Videos

2.6.1 Creating and Running Basic Tests with Tripal Test Suite

2.5. Upgrading TripalTestSuite 19

https://getcomposer.org/doc/articles/versions.md
http://www.youtube.com/watch?v=hxuiDzRqs9U

Tripal Test Suite Documentation, Release 1.4.0

2.6.2 Factories and Database Transactions with Tripal Test Suite

20 Chapter 2. License

http://www.youtube.com/watch?v=PTJ1Dv8QAag

Tripal Test Suite Documentation, Release 1.4.0

2.6.3 Seeding and Publishing Data with Tripal Test Suite

2.7 Tips and Tricks for Writing Good Tests

2.7.1 Generating Fake Variables: Faker

Note: Are you creating fake values to insert into Chado? If so, check out Factories which will generate all the fake
values automatically. For example:

Generates 100 controlled vocabularies.
@return an array of vocabularies
$controlledVocabs = factory('chado.cv', 100)->create()

The recommended method to create fake values for use in testing is to use the PHP Faker library by @fzaninotto:
https://github.com/fzaninotto/Faker. To use this library in your Tripal tests, simply include it at the top of the class:

use StatonLab\TripalTestSuite\DBTransaction;
use StatonLab\TripalTestSuite\TripalTestCase;
use Faker\Factory;

(continues on next page)

2.7. Tips and Tricks for Writing Good Tests 21

http://www.youtube.com/watch?v=HE2B7YnWYfQ
https://github.com/fzaninotto/Faker

Tripal Test Suite Documentation, Release 1.4.0

(continued from previous page)

class ExampleTest extends TripalTestCase {
/**
* Stuff

*/
}

Then instantiate it in your test method and create fake data using one of the various methods available through the
library.

private function create_version() {

// Generate a fake version.
$faker = Factory::create();
$version = $faker->randomFloat(2, 1, 5);
return $version;

}

More more information on what is provided by the fake library, check out their documentation here:
github.com/fzaninotto/Faker

2.7.2 Test Guidelines

See also: The Tripal test guidelines. Tests you write that are included in the core Tripal repository should follow these
standards.

2.8 Contribution Guidelines

Thank you for your interest in contributing to Tripal Test Suite! This guide should help you get setup quickly to start
contributing.

2.8.1 Creating a Development Environment

It is highly recommended to use Docker to create your development environment. This would guarantee that we share
identical environments and help reduce debugging efforts.

To get started:

• Fork this repository (see guide on GitHub)

• Clone your fork git clone https://github.com/USERNAME/TripalTestSuite.git (where
USERNAME is your Github username).

• Navigate to TripalTestSuite cd TripalTestSuite

• Install dependencies composer install

• Boot up Docker docker-compose up -d

• Finally, checkout a new branch and make your changes git checkout -b my-branch-name (please
make the branch name descriptive)

22 Chapter 2. License

https://github.com/tripal/tripal/blob/7.x-3.x/tests/README.md
https://help.github.com/articles/fork-a-repo/

Tripal Test Suite Documentation, Release 1.4.0

Attention: If introducing new features, please provide unit tests for the new features.

2.8.2 Performing Tests

We require that all new features and contributions are fully unit-tested. There are two types of tests:

• TripalTestSuite features that do not require Drupal (such as the reflect and silent helper methods)

• Features that depend on Drupal (such as factories)

If your feature doesn’t require Drupal, the tests should go to tests/Feature. If it does require to be part of a
module, you can use the test_module in tests/test_module. Within the module, there will be a tests folder
where you can test your contributions.

2.8.3 Structure

All code for this package should go in the src/ directory. In there, you’ll find:

• Concerns: Add-on features that must be PHP traits. Traits are ideal when a feature makes use of the main
class functionality or can be be chained. For example, the InteractsWithAuthSystem offers actingAs() method
that can be chained with HTTP requests as such: $this->actingAs(1)->get(‘/myform’);.

• Console: Any commands that tripaltest offers go here. Note that all commands must be registered in
kernel.php.

• Database: Any database related features such as support for factories, publishing entities and seeding.

• Exceptions: Any custom Exceptions.

• Helpers: Functions that perform simple operations or make classes easier to access. For example,
factory() is a helper method.

• Mocks: Objects that simulate the behavior of other (real) objects. Read more about mocks

• Services: Isolated classes that offer special functionality. Most classes that should be used within a test,
such as SilentResponse, should also offer a helper method. For example, the Factory class offers the
factory() helper.

2.8.4 Including PHP Files

Tripal Test Suite uses PSR-4 loading standards and therefore there is no need for you to manually include any file.

Warning: Namespaces matter in class/trait loading. The namespace must contain all sub di-
rectories. For example, the Concerns/PublishesData.php file must have the namespace
namespace StatonLab\TripalTestSuite\Concerns;. All namespaces should be preceded with
StatonLab\TripalTestSuite.

2.8.5 Code Style

We conform to PSR-2 code style

2.8. Contribution Guidelines 23

http://php.net/manual/en/language.oop5.traits.php
https://medium.com/@piraveenaparalogarajah/what-is-mocking-in-testing-d4b0f2dbe20a
https://www.php-fig.org/psr/psr-2/

	Support
	License
	Installation
	Testing
	Database Operations
	Helper Methods
	Upgrading TripalTestSuite
	Training Videos
	Tips and Tricks for Writing Good Tests
	Contribution Guidelines

