

	Introduction

	Basic Concepts

	Getting Started

	How to Configure

	Writing Celery Tasks

	Task Instance Status

	Inspecting State and Error Recovery

	Logging

	Testing Trigger Tasks

	Trigger Managers

	Storage Backends

	Task Runners

	Cookbook

Triggers

The Triggers framework is an implementation of the observer pattern, designed
for distributed stacks.

It allows you to configure and execute asynchronous tasks based on events that
are triggered by your application.

For example, suppose you have a survey application, and you want an asynchronous
task to run after the user completes steps 1 and 4.

However, you can’t guarantee…

	… that the same server will process both steps.

	… that both steps will arrive in the correct order.

	… whether both steps will arrive separately, or at the same time.

The Triggers framework provides a flexible solution that empowers you to
schedule an asynchronous task in such a way that you can guarantee it will be
executed after steps 1 and 4 are completed.

But, it doesn’t stop there! You can also:

	Configure tasks to wait until other asynchronous tasks have finished.

	Define conditions that will cause a task to run multiple times.

	Define conditions that will prevent a task from running.

	Write functional tests to verify that an entire workflow runs as expected.

	And more!

Prerequisites

The Triggers framework requires:

	Python 2.7, 3.5 or 3.6

	Django (any version, but >= 1.11 preferred)

	Celery (>= 3, but >= 4 preferred)

	django-redis-cache

	python-redis-lock==2.3.0

Currently, the Triggers framework requires Redis in order to function properly,
but we are working on removing this requirement in a future version of the
framework.

Note that you do not have to use Redis for your primary application cache; you
can continue to use your preferred cache backend for your default cache in
Django. You’ll just need to configure a separate cache connection for the
Triggers framework.

At the moment, python-redis-lock must be at v2.3.0; versions later than this
cause deadlocks. We are looking into why this is happening and will remove the
version requirement once the issue is resolved.

Installation

Install the Triggers framework using pip:

pip install triggers

You can also install from source using the following commands:

pip install -e git+https://github.com/eflglobal/triggers

Running Unit Tests

To run unit tests after installing from source, you will need to do a little
bit of one-time prep:

pip install -e '.[test-runner]'
cp tests/settings.py.dist tests/settings.py

Tip

By default, the unit tests expect a Redis server listening on
localhost:6379. If necessary, you can change this by editing
tests/settings.py.

Once you’ve set up the test environment, you can run the unit tests with the
following command:

python manage.py test

This project is also compatible with tox [https://tox.readthedocs.io/], which will run the unit tests in
different virtual environments (one for each supported version of Python).

To run the unit tests, it is recommended that you use the detox [https://pypi.python.org/pypi/detox] library.
detox speeds up the tests by running them in parallel.

Install the package with the test-runner extra to set up the necessary
dependencies, and then you can run the tests with the detox command:

pip install -e '.[test-runner]'
detox -v

Important

Currently, tox.ini uses tests/settings.py.dist for the test settings.
In particular, this means that all of the unit tests run by tox depend on
having a Redis server listening on localhost:6379, and there is currently
no way to change this (without voiding the warranty, that is).

This will be fixed in a future version of the library.

Documentation

The Triggers framework documentation is available on ReadTheDocs [http://triggers.readthedocs.io/].

If you are installing from source (see above), you
can also build the documentation locally:

	Install extra dependencies (you only have to do this once):

pip install '.[docs-builder]'

	Switch to the docs directory:

cd docs

	Build the documentation:

make html

Introduction

The Triggers framework is essentially a distributed implementation of the
Observer pattern [https://en.wikipedia.org/wiki/Observer_pattern]. It keeps track of “triggers” that your application fires,
and schedules asynchronous tasks to run in response.

On the surface, this seems simple enough, but what make the Triggers framework
so compelling (at least, in the eyes of the person writing this documentation)
are:

	It is designed for distributed applications. You can track events that occur
across multiple VMs.

	It uses a persistent storage backend to maintain state. It can schedule tasks
in response to events, even if they occur days, weeks, even months apart.

	It uses an intuitive JSON configuration schema, allowing administrators to
create complex workflows without having to write any (Python) code.

What Are Triggers Useful For

The Triggers framework may be a good fit for your application if:

	It needs to be able to schedule asynchronous tasks when sets of 2 or more
conditions are met, and

	You can’t predict when, what order, or even if each of the different
conditions will be met.

For example, suppose you have a survey application, and you want to schedule an
asynchronous task to run after modules 1 and 4 are received from the client.

However, because of the way the internet works, module 4 might never arrive, or
perhaps the two modules arrive out-of-order, or even at the same time.

The Triggers framework would be a good fit for this application.

What Are Triggers Not Useful For

If your application:

	Is not distributed (e.g., only has one application server), or

	Does not need to maintain state across requests,

then the Triggers framework might be overkill.

For example, using the survey application from the previous section, suppose
that the client always sent the data for modules 1 and 4 in the same web service
request.

In this case, you wouldn’t need to use the Triggers framework because your
application would not need to keep track of which modules were received across
multiple web service requests.

Configuration

Let’s go back to the example survey application, and see how we might configure
the Triggers framework to execute an asynchronous task after modules 1 and 4 are
received:

{
 // Give your task a name.
 "t_processStepData": {

 // This task runs after these two triggers are fired.
 // Note that order doesn't matter here.
 "after": ["module1Received", "module4Received"],

 // Specify the celery task to run when the above conditions are
 // met.
 "run": "my_app.tasks.ProcessStepData"
 }
}

That’s it! The Triggers framework will take it from there.

We’ll explore exactly what this configuration means, and how to set up more
complex workflows in the Configuration section.

Basic Concepts

The Triggers framework is loosely based on the Observer pattern [https://en.wikipedia.org/wiki/Observer_pattern], so many of
the concepts described here might look familiar.

Triggers

A trigger is very similar to an event in the Observer pattern [https://en.wikipedia.org/wiki/Observer_pattern]. Essentially,
it is just a string/identifier, with some optional metadata attached to it.

What makes triggers so important is that your application decides what they
are named, and when to fire them.

Here’s an example of how a survey application might fire a trigger in response
to receiving a payload containing data collected by a module:

def process_module_1(module_data):
 """
 Processes the data received from module 1.
 """
 #
 # ... process the module data, store results to DB, etc. ...
 #

 # Create a Trigger Manager instance (more on this later).
 trigger_manager = TriggerManager(...)

 # Fire a trigger.
 trigger_manager.fire('module1Received')

In this example, the module1Received trigger has meaning because your
application will only fire it once it finishes processing the data from module
1.

Trigger Kwargs

When your application fires a trigger, it can also attach some kwargs to it.
Any task that runs in response to this trigger will have access to these kwargs,
so you can use this to provide additional metadata that a task might need.

Using the above example, let’s imagine that your application stores the module
data to a document database, and you want to add the document ID to the trigger
kwargs.

The result might look something like this:

def process_module_1(module_data):
 """
 Processes the data received from module 1.
 """
 # Store the module data to a document database.
 document_id = db.store(module_data)

 # Create a Trigger Manager instance (more on this later).
 trigger_manager = TriggerManager(...)

 # Fire a trigger, with kwargs.
 trigger_manager.fire('module1Received', {'document_id': document_id})

When the application fires the module1Received trigger, it attaches a kwarg
for document_id. This value will be accessible to any task that runs in
response to this trigger, so that it can load the module data from the document
database.

Note

Celery schedules tasks by sending messages to a queue in a message broker, so
trigger kwargs must be serializable using Celery’s task_serializer [http://docs.celeryproject.org/en/latest/userguide/calling.html#serializers].

Tasks

Firing triggers is fun and all, but the whole point here is to execute Celery
tasks in response to those triggers!

This is where trigger tasks come into play.

A trigger task acts like a wrapper for a Celery task:

	The Celery task does the actual work.

	The trigger task defines the conditions that will cause the Celery task to
get executed.

Task Configurations

Here’s an example trigger configuration that defines two tasks, named
t_createApplicant and t_computeScore:

{
 "t_createApplicant": {
 "after": ["startSession", "observationsReceived"],
 "run": "applicant_journey.tasks.Import_CreateApplicant"
 },

 "t_computeScore": {
 "after": ["t_createApplicant", "sessionFinalized"],
 "run": "applicant_journey.tasks.Score_ComputePsychometric"
 }
}

We can translate the above configuration into English like this:

Trigger Task "t_createApplicant":
 After the "startSession" and "observationsReceived" triggers fire,
 Run the "Import_CreateApplicant" Celery task.

Trigger Task "t_computeScore":
 After the "t_createApplicant" and "sessionFinalized" triggers fire,
 Run the "Score_ComputePsychometric" Celery task.

We’ll explore what this all means in the How to Configure
section.

Note

Did you notice that one of the triggers for t_computeScore (inside its
after attribute) is the name of another trigger task
(t_createApplication)?

This takes advantage of a feature called cascading, where a trigger task
fires its own name as a trigger when its Celery task finishes successfully.

In this way, you can “chain” trigger tasks together.

We will cover cascading in more detail in Writing Celery Tasks.

Task Instances

In certain cases, a task may run multiple times. To accommodate this, the
Triggers framework creates a separate task instance for each execution of a
task.

Each task instance is named after its task configuration, with an incrementing
sequence number (e.g., t_createApplicant#0,
t_computeScore#0, etc.).

Sessions

A session acts as a container for triggers and trigger task instances. This
allows you to maintain multiple states in isolation from each other.

For example, if you maintain a survey application, each survey would have its
own session. This way, any triggers fired while processing a particular survey
would not interfere with any other surveys.

Session UIDs

Each session should have a unique identifier (UID). This value is provided to
the storage backend at initialization, so that the trigger manager can load the
saved state for that session.

Trigger Managers

The trigger manager acts as the controller for the Triggers framework. It is
responsible for firing triggers, managing trigger task instances, and so on.

To interact with the Triggers framework in your application, create an instance
of the trigger manager class, like this:

from triggers import CacheStorageBackend, TriggerManager

Specify the session UID.
sessionUid = '...'

Create the trigger manager instance.
trigger_manager = TriggerManager(CacheStorageBackend(sessionUid))

Fire triggers.
trigger_manager.fire('ventCoreFrogBlasted')

Storage Backends

To maintain state across multiple processes, the trigger manager relies on a
storage backend.

The storage backend is responsible for loading and storing the session state.

The Triggers framework comes bundled with a cache storage backend, which stores
session state using Django’s cache. Additional backends will be added in future
versions of the library.

Getting Started

Getting started with the Triggers framework requires a bit of planning.

Step 1: Define Session UIDs

Sessions limit the context in which the Triggers framework operates. This
allows your application to maintain separate state for each user of your
application.

In order to integrate the Triggers framework into your application, you will
first need to decide what to use for session UIDs.

Depending on your application, you may want to maintain separate state per user
ID, or you might want to use the IDs of your application’s web sessions, etc.

For example, if we want to integrate the Triggers framework into a questionnaire
application, we might opt to create a new session UID each time a user starts a
new questionnaire.

Step 2: Design Your Workflows

Once you’ve defined the scope of each session, you’ll need to think about what
workflows you want to support over the course of each session:

	
	What tasks do you want to run?

	Figure out what Celery tasks you want to run when certain conditions are
met.

For example, our questionnaire application might have these Celery tasks:

	app.tasks.ImportSubject imports details about the user into a SQL
database.

	app.tasks.ImportResponses imports the user’s response data into a
document database.

	app.tasks.ImportBrowserMetadata sends a request to a 3rd-party web
service to download metadata about the user’s browser, based on their
user agent string.

	
	When do you want to run them?

	Decide what triggers have to fire in order for each of those tasks to run.
Your application will decide when these happen, so they can correspond to
any action or condition evaluated by your code.

Tip

You can also define triggers that will prevent certain tasks from
running.

Going back to the questionnaire application above, we might define our
triggers like this:

	We only want to import data for applicants who successfully complete the
questionnaire. ImportSubject needs information from the first page
of the questionnaire, but it shouldn’t run until the questionnaire
is completed.

	ImportResponses should run each time we receive a page of
questionnaire responses, but it requires a subject ID, so it can
only run once ImportSubject has finished successfully.

	ImportBrowserMetadata should run once after any single page of
responses are received, but it also requires a subject ID, so it can
only run after ImportSubject has finished successfully.

However, if the application detects that the user is completing the
questionnaire from an embedded application, then this task should
not run.

Tip

The Triggers framework works best when tasks have to wait for multiple
asynchronous/unpredictable events in order to run.

If you find yourself designing tasks that only require a single trigger
to run, or if you just want to ensure that tasks run in a specific order,
Celery already has you covered [http://docs.celeryproject.org/en/latest/userguide/canvas.html].

	Give each task and trigger a unique name and write them out like this:

{
 // Task that runs once.
 "<task name>": {
 "after": ["<trigger>", "<trigger>", ...],
 "run": "<celery task>"
 },

 // Task that can run multiple times:
 "<task name>": {
 "after": ["<trigger>", "<trigger>", ...],
 "andEvery": "<trigger>",
 "run": "<celery task>"
 },

 // Task that will run unless certain condition is met:
 "<task name>": {
 ...
 "unless": ["<trigger>", ...]
 },

 // etc.
}

This will form the starting point for your trigger configuration.

Here’s what the starting configuration looks like for the questionnaire
application:

{
 "t_importSubject": {
 // Imports data from the first page, but cannot run until
 // the questionnaire is completed.
 "after": ["firstPageReceived", "questionnaireComplete"],

 "run": "app.tasks.ImportSubject"
 },

 "t_importResponses": {
 // Imports response data from EVERY page, but cannot run
 // until the subject data are imported.
 "after": ["t_importSubject"],
 "andEvery": "pageReceived",

 "run": "app.tasks.ImportResponses"
 },

 "t_importBrowserMetadata": {
 // Loads the user agent string from any ONE page of
 // responses (we don't care which one), but cannot run
 // until the subject data are imported...
 "after": ["t_importSubject", "pageReceived"],

 // ... unless the application determines that the requests
 // are coming from an embedded app, in which case, this
 // task should NOT run.
 "unless": ["isEmbeddedApplication"],

 "run": "app.tasks.ImportBrowserMetadata"
 }
}

Notice in the above configuration that the trigger task names are distinct
from the Celery task names; in some cases, you may have multiple trigger
tasks that reference the same Celery task.

Tip

Note that you can also use the name of a trigger task itself as a trigger
(this is a technique known as “cascading”, which is described in more
detail later on). This allows you to specify that a particular task must
finish successfully before another task can run.

In the example configuration, the t_importResponses trigger task
cannot run until the t_importSubject trigger task has finished
successfully, so we added t_importSubject to
t_importResponses.after.

To make it easier to identify these cases (and to prevent conflicts in
the event that a trigger has the same name as a trigger task), a t_
prefix is added to trigger task names.

You are recommended to follow this convention, but it is not enforced in
the code. You may choose a different prefix, or (at your own risk)
eschew prefixes entirely in your configuration.

Step 3: Select a Storage Backend

In order for the Triggers framework to function, it has to store some state
information in a storage backend.

Currently, the only storage backend uses the Django cache. In the future,
additional backend will be added to provide more options (e.g., Django ORM,
document database, etc.).

Tip

If you use Redis as your cache backend, you can configure the Triggers
framework so that it stores values with no expiration time.

You can also write your own storage backend.

Step 4: Fire Triggers

Now it’s time to start writing some Python code!

Back in step 2, we defined a bunch of triggers. Now we’re going to write the
code that fires these triggers.

To fire a trigger, create a trigger manager instance, and provide a storage
backend instance, then call the trigger manager’s fire() method.

It looks like this:

from triggers import TriggerManager, CacheStorageBackend

storage_backend =\
 CacheStorageBackend(
 # Session UID (required)
 uid = session_uid,

 # Name of cache to use.
 cache = 'default',

 # TTL to use when setting values.
 # Depending on which cache you use (e.g., Redis), setting
 # ``timeout=None`` may store values permanently, or it
 # may use the cache's default timeout value.
 timeout = 3600,
)

trigger_manager = TriggerManager(storage_backend)

trigger_manager.fire(trigger_name)

In the above code, replace session_uid with the Session UID that you want to
use (see Step 1 above), and trigger_name with the trigger that you want to
fire.

Tip

Depending on the complexity of your application, you might opt to use a
function and/or Django settings to create the trigger manager instance.

See the Cookbook for a sample implementation.

Trigger Kwargs

When your application fires a trigger, it can also attach keyword arguments to
that trigger. These arguments will be made available to the Celery task when it
runs.

Here’s an example of how our questionnaire application might fire the
pageReceived trigger:

def responses(request):
 """
 Django view that processes a page of response data from
 the client.
 """
 responses_form = QuestionnaireResponsesForm(request.POST)
 if responses_form.is_valid():
 trigger_manager = TriggerManager(
 storage = CacheStorageBackend(
 uid = responses_form.cleaned_data['questionnaire_id'],
 cache = 'default',
 timeout = 3600,
),
)

 trigger_manager.fire(
 trigger_name = 'pageReceived',
 trigger_kwargs = {'responses': responses.cleaned_data},
)

 ...

Caution

Behind the scenes, the trigger kwargs will be provided to the Celery task via
the task’s kwargs, so any values that you use for trigger kwargs must be
compatible with Celery’s serializer [http://docs.celeryproject.org/en/latest/userguide/calling.html#serializers].

Step 5: Initialize Configuration

Next, you need to write the code that will initialize the configuration for each
new session.

This is accomplished by invoking TriggerManager.update_configuration():

trigger_manager.update_configuration({
 # Configuration from Step 2 goes here.
})

Here’s an example showing how we would initialize the trigger configuration at
the start of the questionnaire application:

def start_questionnaire(request):
 """
 Django view tha processes a request to start a new questionnaire.
 """
 # Create the new questionnaire instance.
 # For this example, we will use the PK value of the
 # new database record as the session UID.
 new_questionnaire = Questionnaire.objects.create()

 trigger_manager = TriggerManager(
 storage = CacheStorageBackend(
 # The session UID must be a string value.
 uid = str(new_questionnaire.pk),

 cache = 'default',
 timeout = 3600,
),
)

 trigger_manager.update_configuration({
 't_importSubject': {
 'after': ['firstPageReceived', 'questionnaireComplete'],
 'run': 'app.tasks.ImportSubject',
 },

 't_importResponses': {
 'after': ['t_importSubject'],
 'andEvery': 'pageReceived',
 'run': 'app.tasks.ImportResponses',
 },

 't_importBrowserMetadata': {
 'after': ['t_importSubject', 'pageReceived'],
 'unless': ['isEmbeddedApplication'],
 'run': 'app.tasks.ImportBrowserMetadata',
 },
 })

 ...

Step 6: Write Celery Tasks

The final step is writing the Celery tasks. These will look similar to normal
Celery tasks, with a couple of differences:

	The tasks must extend triggers.task.TriggerTask.

	Override the _run method instead of run (note the leading underscore).

For more information about see Writing Celery Tasks.

How to Configure

To configure a trigger manager instance, call its update_configuration
method and provide a dict with the following items:

	Each key is the name of a trigger task. These can be anything you want, but
the convention is to start each name with a t_ prefix.

	Each value is a dict containing that task’s configuration.

Here is an example showing how to add 3 tasks to the trigger manager’s
configuration.

trigger_manager.update_configuration({
 't_importSubject': {...},
 't_importResponses': {...},
 't_importDeviceMetadata': {...},
})

Task Configuration

There are many directives you can specify to customize the behavior of each
trigger task.

The directives are named and structured in such a way that you should be able to
“read” a trigger task configuration like an English sentence.

As an example, consider the following trigger task configuration:

trigger_manager.update_configuration({
 't_importResponses': {
 'after': ['t_importSubject'],
 'andEvery': 'pageReceived',
 'run': 'app.tasks.ImportResponses',
 },
})

You can “read” the configuration for the t_importResponses task as:

After t_importSubject fires, and every time pageReceived fires,
run the app.tasks.ImportResponses Celery task.

Required Directives

The following directives must be provided in each task’s configuration.

after

after is a list of strings that indicates which triggers must fire in order
for the task to be run.

Tip

Recall from Getting Started that triggers are fired by your
application logic, so you get to decide how triggers are named and what
events they represent.

As an example, suppose we want a task to process data from the first page of a
questionnaire, but we don’t want it to run until the user has completed the
questionnaire. We might configure the trigger task like this:

trigger_manager.update_configuration({
 't_importSubject': {
 'after': ['firstPageReceived', 'questionnaireComplete'],
 ...
 },
})

You can also use task names as triggers. These will fire each time the
corresponding task finishes successfully.

Here’s an example of a task that processes data from a single page of
questionnaire responses, but only after the t_importSubject task has
finished successfully.

trigger_manager.update_configuration({
 't_importDeviceMetadata': {
 'after': ['pageReceived', 't_importSubject'],
 ...
 },
})

Tip

The order of values in after do not matter.

For compatibility with serialization formats like JSON, after is
usually expressed as a list in Python code, but you can use a set if
you prefer.

run

run tells the trigger manager which Celery task to run once the trigger
task’s after condition is satisfied.

The value should match the name of a Celery task, exactly the same as if
you were configuring CELERYBEAT_SCHEDULE.

As an example, to configure a trigger task to run the
my_app.tasks.ImportSubject task, the configuration might look like this:

from my_app.tasks import ImportSubject

trigger_manager.update_configuration({
 't_importSubject': {
 ...
 'run': ImportSubject.name,
 },
})

Important

The trigger manager can only execute Celery tasks that extend the
triggers.task.TriggerTask class.

See Writing Celery Tasks for more information.

Optional Directives

The following optional directives allow you to further customize the behavior of
your trigger tasks.

andEvery

By default, every trigger task is “one shot”. That is, it will only run once,
even if the triggers in its after directive are fired multiple times.

If you would like a trigger task to run multiple times, you can add the
andEvery directive to the trigger configuration.

andEvery accepts a single trigger. Whenever this trigger fires, the
trigger manager will create a new “instance” of the trigger task.

For example, suppose we want to configure a trigger task to process data from
each page in a questionnaire, but it can only run once the t_importSubject
trigger task has finished successfully.

The configuration might look like this:

trigger_manager.update_configuration({
 't_importResponses': {
 'after': ['t_importSubject'],
 'andEvery': 'pageReceived',
 ...
 },
})

Using the above configuration, a new instance of t_importResponses will be
created, but they will only run after the t_importSubject task finishes.

unless

unless is the opposite of after. It defines a condition that will
prevent the trigger task from running.

Once a task’s unless condition is satisfied, the trigger manager will not
allow that task to run, even if its after condition is satisfied later.

Important

This only prevents the trigger manager from scheduling Celery tasks. It will
not recall a Celery task that has already been added to a Celery queue, nor
will it abort any task that is currently being executed by a Celery worker.

As an example, suppose you wanted to import metadata about the applicant’s
browser during a questionnaire, but only if the user is completing the
questionnaire in a web browser. If the backend detects that the questionnaire
is embedded in a mobile application, then this task should not run.

The configuration might look like this:

trigger_manager.update_configuration({
 't_importBrowserMetadata': {
 'after': ['t_importSubject', 'pageReceived'],
 'unless': ['isEmbeddedApplication'],
 ...
 },
})

If isEmbeddedApplication fires before t_importSubject and/or
pageReceived, then the trigger manager will not allow the
t_importBrowserMetadata task to run.

Caution

Watch out for race conditions!

withParams

When the trigger manager executes a task, it will provide the kwargs that were
provided when each of that task’s after triggers were fired (see
Writing Celery Tasks for more information).

But, what if you need to inject your own static kwargs?

This is what the withParams directive is for.

As an example, suppose you have a generic trigger task that you use to generate
a psychometric credit score at the end of a questionnaire, but you have to tell
it which model to use.

Using the withParams directive, you can inject the name of the model like
this:

from my_app.tasks import ComputeScore

trigger_manager.update_configuration({
 't_computePsychometricScore': {
 ...
 'run': ComputeScore.name,

 'withParams': {
 'scoring': {'model': 'Psych 01'},
 },
 },
})

When the my_app.tasks.ComputeScore Celery task runs, it will be provided
with the model name 'Psych 01' so that it knows which model to load.

Important

withParams must be a dict of dicts, so that it matches the structure of
trigger kwargs (see Writing Celery Tasks for more information).

For example, this configuration is not correct:

trigger_manager.update_configuration({
 't_computePsychometricScore': {
 ...
 'withParams': {
 'model': 'Psych 01',
 },
 },
})

using

By default, the trigger manager uses Celery to execute trigger tasks (except
during unit tests).

However, if you want to use a different task runner, you can
specify it via the using directive.

For example, suppose we created a custom task runner that executes tasks via
AWS Lambda. To tell the trigger manager to execute a task using the custom
task runner, we might use the following configuration:

from my_app.tasks import ComputeScore
from my_app.triggers.runners import AwsLambdaRunner

trigger_manager.update_configuration({
 't_computePsychometricScore': {
 ...
 'run': ComputeScore.name,
 'using': AwsLambdaRunner.name,
 },
})

Tip

To change the default task runner globally, override
triggers.runners.DEFAULT_TASK_RUNNER.

Custom Directives

You can add any additional directives that you want; each will be added to the
corresponding task’s extras attribute.

These aren’t used for anything by default, but if you write a
custom trigger manager, you can take advantage of custom
directives to satisfy your application’s requirements.

For an example of how to use custom directives, see the “Finalizing a Session”
recipe in the Cookbook

Writing Celery Tasks

The primary function of the Triggers framework is to execute Celery tasks.

For the most part, these look the same as any other Celery tasks, with two
notable differences:

	The tasks must extend triggers.task.TriggerTask.

	Override the _run method instead of run (note the leading underscore).

As an example, consider the following trigger task:

trigger_manager.update_configuration({
 't_importSubject': {
 'after': ['firstPageReceived', 'questionnaireComplete'],
 'run': 'app.tasks.ImportSubject',
 },
 ...
})

The idea here is that the ImportSubject Celery task takes data from the
first page of response data and creates a Subject record in the database.

The application will help the Celery task by attaching the response data to the
firstPageReceived trigger when it fires:

def first_page_responses(request):
 """
 Django view that processes the first page of response data
 from the client.
 """
 responses_form = QuestionnaireResponsesForm(request.POST)
 if responses.is_valid():
 ...

 trigger_manager.fire(
 trigger_name = 'firstPageReceived',
 trigger_kwargs = {'responses': responses.cleaned_data},
)

 ...

Note that when the firstpageReceived trigger is fired, the response data are
attached via trigger_kwargs.

Here’s what the ImportSubject Celery task might look like:

from my_app.models import Subject
from triggers.task import TaskContext, TriggerTask

class ImportSubject(TriggerTask):
 def _run(self, context):
 # type: (TaskContext) -> dict

 # Load kwargs provided when the ``firstPageReceived``
 # trigger was fired by the application.
 page_data =\
 context.trigger_kwargs['firstPageReceived']['responses']

 # Create a new ``subject`` record.
 new_subject =\
 Subject.objects.create(
 birthday = page_data['birthday'],
 name = page_data['name'],
)

 # Make the PK value accessible to tasks that are
 # waiting for a cascade.
 return {
 'subjectId': new_subject.pk,
 }

The ImportSubject task’s _run method (note the leading underscore) does
3 things:

	Load the response data from the firstPageReceived trigger kwargs.

	Import the data into a new Subject record.

	Return the resulting ID value so that when the task cascades, other tasks
will be able to use it (more on this later).

Task Context

The only argument passed to the _run method is a
triggers.task.TaskContext object.

The TaskContext provides everything that your task will need to
interact with the Triggers framework infrastructure:

Trigger Manager

context.manager is a trigger manager instance that you can leverage in your
task to interact with the Triggers framework. For example, you can use
context.manager to fire additional triggers as your task runs.

Trigger Kwargs

As noted above, whenever the application fires a trigger, it can attach optional
kwargs to that trigger.

These kwargs are then made available to your task in two ways:

	context.trigger_kwargs returns the raw kwargs for each trigger that caused
your task to run.

	context.filter_kwargs() uses the Filters library [https://filters.readthedocs.io/] to validate and
transform the trigger_kwargs.

The above example shows how to use context.trigger_kwargs. Here is an
alternate approach that uses context.filter_kwargs() instead:

import filters as f

 class ImportSubject(TriggerTask):
 def _run(self, context):
 # type: (TaskContext) -> dict

 filtered_kwargs =\
 context.filter_kwargs({
 'firstPageReceived': {
 'responses':
 f.Required
 | f.Type(dict)
 | f.FilterMapper({
 'birthday': f.Required | f.Date,
 'name': f.Required | f.Unicode,
 }),
 },
 })

 page_data = filtered_kwargs['firstPageReceived']['responses']

 ...

Note

If you have worked with FilterMappers [https://filters.readthedocs.io/en/latest/complex_filters.html#working-with-mappings] in the past, the above structure
should look very familiar.

Cascading

When the Celery task finishes successfully, the trigger manager will cause a
“cascade” by firing the corresponding trigger task’s name as a trigger.

For example, consider the trigger task from earlier:

trigger_manager.update_configuration({
 't_importSubject': {
 'after': ['firstPageReceived', 'questionnaireComplete'],
 'run': 'app.tasks.ImportSubject',
 },
 ...
})

The trigger task is named t_importSubject, so when the ImportSubject
Celery task finishes, the trigger manager will automatically fire a trigger
named t_importSubject.

But, what kwargs are attached to this trigger?

If the Celery task returns a mapping (e.g., dict), then that will be used as the
kwargs for the cascading trigger.

Going back to the ImportSubject example:

class ImportSubject(TriggerTask):
 def _run(self, context):
 ...

 # Make the PK value accessible to tasks that are
 # waiting for a cascade.
 return {
 'subjectId': new_subject.pk,
 }

When this task finishes, the trigger manager will cascade like this:

trigger_manager.fire(
 trigger_name = 't_importSubject',
 trigger_kwargs = {'subjectId': new_subject.pk},
)

Logging

If your Celery task needs to use a logger, consider using
context.get_logger_context().

The logger instance returned by this method includes a few features that
integrate closely with the trigger manager.

See Logging for more information.

Retrying

To retry a Celery task mid-execution, the method looks similar to a regular
Celery task:

class ImportBrowserMetadata(TriggerTask):
 # Specify the max number of retries allowed.
 max_retries = 3

 def _run(self, context):
 # type: (TaskContext) -> dict
 ...

 try:
 # Try to load data from 3rd-party API...
 metadata = api_client.post(...)
 except HttpError as e:
 # ... but if we are unable to connect,
 # retry after a delay.
 raise self.retry(exc=e, cooldown=10)

Note that this retry mechanism works a little differently from Celery’s retry:

	You must raise self.retry(); it won’t raise the exception for you.

	Use cooldown instead of countdown. eta is not supported.

	If desired, you can also specify replacement trigger kwargs to use when
retrying the task.

If the Celery task exceeds its max_retries, then it will raise a
triggers.task.MaxRetriesExceeded.

Task Instance Status

Each task instance has a status value associated with it
(TaskInstance.status).

These are the possible status values:

	abandoned

	The task instance will never run, because its unless clause was
satisfied.

	failed

	The Celery task failed due to an exception.

	finished

	The Celery task finished successfully.

	replayed

	The Celery task failed, and it was replayed.

When a failed instance is replayed, a new task instance is created to rerun
the Celery task. This provides a mechanism for recovering from exceptions,
while retaining the exception and traceback information for investigation.

	running

	A Celery worker is currently executing the task.

	scheduled

	The Celery task has been sent to the broker and is waiting for a worker to
execute it.

In rare cases, an instance may remain in “scheduled” status for some time
(for example, if no Celery workers are available to execute the task, or if
the broker becomes unavailable).

	skipped

	The Celery task failed, but it was marked as skipped (instead of retrying).

	unstarted

	The task instance has been created, but it is not ready to run yet.

This occurs when some – but not all – of the triggers in the task’s after
clause have fired. The instance will remain in “unstarted” status until the
remaining triggers have fired.

Meta-Statuses

TaskInstance also defines a few properties that can help your
application to make decisions based on an instance’s status:

	TaskInstance.can_abandon

	Indicates whether the task instance’s unless condition is satisfied.
Returns False if the instance already has “abandoned” status.

	TaskInstance.can_run

	Indicates whether the instance is ready to run (add a Celery task to the
queue).

	TaskInstance.can_schedule

	Indicates whether the instance is ready to be scheduled for execution.

This property is generally only used internally.

Important

This property does not indicate that the instance is ready to run;
use TaskInstance.can_run for that.

	TaskInstance.can_replay

	Indicates whether the instance can be replayed.

	TaskInstance.can_skip

	Indicates whether the instance can be skipped.

	TaskInstance.is_resolved

	Indicates whether this instance has a “final” status. Once an instance is
resolved, no further operations may be performed on it.

Examples of resolved instances include:

	Celery task finished successfully (nothing left to do).

	unless clause satisfied (task must not run).

	Celery task failed, but the failed instance was replayed (a new instance
was created for the replay).

	Celery task failed, but the failed instance was skipped (nothing left to
do).

If an instance’s is_resolved attribute is False, this means that it
is currently in progress and/or requires some kind of change before it can be
resolved. Some examples include:

	The instance hasn’t been run yet because it is waiting for additional
triggers (no action necessary).

	The instance has been scheduled for execution, but it is waiting for a
Celery worker to become available (no action necessary).

	The instance is currently being executed by a Celery worker (no action
necessary).

	The instance is in failed state (needs to be replayed or skipped).

Note that most of the time, an unresolved instance is not a bad thing.

Checking Instance Status

For more information about how to check an instance’s status, see
Inspecting State and Error Recovery.

Inspecting State and Error Recovery

Each time you create a trigger manager instance, you also assign a storage
backend. The storage backend is responsible for maintaining session state, but
it also provides a number of methods and attributes that your application can
inspect.

What’s In Session State?

Inside of a session’s state are 3 objects:

	tasks contains the configured trigger tasks.

	instances contains instances of each task.

	metadata contains internal metadata.

In general, you won’t need to interact with these objects directly, but they can
be useful for inspecting and troubleshooting sessions.

Inspecting Session State

To inspect a session’s state, your application will interact with the trigger
manager’s storage backend.

Tip

If you only want to inspect a session’s state (i.e., you don’t need to fire
triggers, change task instance status, etc.), you do not need to create a
trigger manager instance; you only need an instance of the storage backend.

Inspecting Task Configuration

To inspect a trigger task’s configuration, load it from tasks:

task = trigger_manager.storage.tasks['t_importSubject']

In the above example, task is an instance of
triggers.types.TaskConfig.

Inspecting Instance Configuration

To inspect a trigger instance configuration, load it from instances:

instance = trigger_manager.storage.instances['t_importSubject#0']

In the above example, instance is an instance of
triggers.types.TaskInstance.

Note

To get the instance, you must provide the name of the instance, not the
name of the task:

Using instance name:
>>> trigger_manager.storage.instances['t_importSubject#0']
TaskInstance(...)

Using task name:
>>> trigger_manager.storage.instances['t_importSubject']
KeyError: 't_importSubject'

Finding Instances By Trigger Task

If you want to find all the instances for a particular task, use the
instances_of_task method:

instances =\
 trigger_manager.storage.instances_of_task['t_importSubject']

In the above example, instances is a list of TaskInstance
objects.

Finding Unresolved Tasks and Instances

When inspecting the state of a session, one of the most critical pieces of
information that applications need is the list of tasks that haven’t been
finished yet.

The storage backend provides two methods to facilitate this:

	get_unresolved_tasks()

	Returns a list of all tasks that haven’t run yet, or have one or more
unresolved instances.

	get_unresolved_instances()

	Returns a list of all unresolved instances.

The difference between these methods is subtle but important.

It is best explained using an example:

>>> from uuid import uuid4
>>> from triggers import TriggerManager
>>> from triggers.storages.cache import CacheStorageBackend

>>> trigger_manager =\
... TriggerManager(CacheStorageBackend(uuid4().hex))
...

>>> trigger_manager.update_configuration({
... 't_importSubject': {
... 'after': ['firstPageReceived', 'questionnaireComplete'],
... 'run': '...',
... },
... })
...

``t_importSubject`` hasn't run yet, so it is unresolved.
>>> trigger_manager.storage.get_unresolved_tasks()
[<TaskConfig 't_importSubject'>]

None of the triggers in ``t_importSubject.after`` have fired
yet, so no task instance has been created yet.
>>> trigger_manager.storage.get_unresolved_instances()
[]

>>> trigger_manager.fire('firstPageReceived')

After the trigger fires, the trigger manager creates an
instance for ``t_importSubject``, but it can't run yet, because
it's still waiting for the other trigger.
>>> [<TaskInstance 't_importSubject#0'>]

Getting the Full Picture

If you want to get a snapshot of the state of every task and instance,
invoke the debug_repr method:

from pprint import pprint
pprint(trigger_manager.storage.debug_repr())

Tip

As the name implies, this is intended to be used only for debugging purposes.

If you find yourself wanting to use it as part of normal operations, this
likely indicates a deficiency in the Trigger Manager’s feature set; please
post a feature request on the Triggers Framework Bug Tracker [https://github.com/eflglobal/triggers/issues] so that we
can take a look!

Error Recovery

On occasion, a trigger task instance may fail (e.g., due to an uncaught
exception).

When this happens, you can recover by replaying or skipping the failed
instance(s).

Tip

If the instance fails due to an uncaught exception, the exception and
traceback will be stored in the failed instance’s metadata so that you can
inspect them.

To access these values, find the TaskInstance and inspect its
metadata value:

failed_instance =\
 trigger_manager.storage.instances['t_importSubject#0']

pprint(failed_instance.metadata)

Replaying Failed Task Instances

To replay a failed task invoke the trigger manager’s
replay_failed_instance() method, e.g.:

trigger_manager.replay_failed_instance('t_importSubject#0')

Note that you must provide the name of the instance that failed, not the
task.

The trigger manager will clone the failed instance and schedule it for
execution immediately.

The failed instance’s status will be changed to “replayed” (see Task Instance Status),
but otherwise it remains unchanged. This allows you to trace the history of a
failed task, retain the original exception details, etc.

If necessary/desired, you may replay the instance with different trigger kwargs:

trigger_manager.replay_failed_instance(
 failed_instance = 't_importSubject#0',

 replacement_kwargs = {
 'firstPageReceived': {'responses': {...}},
 'questionnaireComplete': {},
 },
)

Important

The replacement kwargs will be used instead of the trigger kwargs provided
to the failed instance. If you only want to change some of the trigger
kwargs for the replayed instance, you will need to merge them manually.

Example:

failed_instance =\
 trigger_manager.storage.instances['t_importSubject#0']

Change the ``firstPageReceived`` trigger kwargs
for the replay, but keep the rest the same.
replacement_kwargs = failed_instance.kwargs
replacement_kwargs['firstPageReceived'] = {'responses': {...}}

trigger_manager.replay_failed_instance(
 failed_instance,
 replacement_kwargs,
)

Skipping Failed Task Instances

Sometimes there is just no way to recover a failed task instance, but you still
want to mark it as resolved, or to simulate a successful result so that other
tasks can still run (i.e., simulate a cascade).

To accomplish this, invoke the skip_failed_instance() method:

trigger_manager.skip_failed_instance('t_importSubject#0')

Note that you must provide the name of the instance that failed, not the
task.

The trigger manager will change the status of the instance from “failed” to
“skipped” (see Task Instance Status).

By default, marking a failed instance as skipped will not cause a cascade, so
any tasks that depend on the failed one won’t be able to run.

In many cases, this is actually the desired behavior, but if you would like to
force a cascade anyway, you can simulate a successful result:

trigger_manager.skip_failed_instance(
 failed_instance = 't_importSubject#0',

 # Trigger a cascade.
 cascade = True,

 # Simulate the result from ``t_importSubject#0``.
 result = {'subjectId': 42},
)

The above code has basically the same effect as if the t_importSubject#0
instance finished successfully and caused a cascade:

trigger_manager.fire(
 trigger_name = 't_importSubject',
 trigger_kwargs = {'subjectId': 42},
)

Logging

The trigger task’s Task Context provides a number of
objects and methods that are important to help a trigger task do its job
properly.

One of its most critical features is creating a logger, via its
get_logger_context() method.

Typically, get_logger_context() is the first statement in the task
body:

from triggers.task import TaskContext, TriggerTask

class ImportSubject(TriggerTask):
 def _run(self, context):
 # type: (TaskContext) -> dict
 with context.get_logger_context() as logger:
 ...

The resulting logger instance acts like a regular logging.Logger
object, with a couple of notable differences:

	You can attach “context” variables to the logger and log messages.

	The max log level emitted by this logger is recorded by the trigger manager
for later reference.

Context Variables

Oftentimes, it is difficult to convey all of the desired information in a log
message. Developers often have to resort to workarounds such as tacking reprs
of critical state values onto the end of the log message.

However, this results in long, unformatted text dumps that are a pain to sift
through and contribute significantly to warning fatigue [https://en.wikipedia.org/wiki/Alarm_fatigue].

get_logger_context() tackles this problem in a different way.

When emitting a log level, your task may optionally attach a “context” object to
the log message, like this:

from my_app.models import Subject
from triggers.task import TaskContext, TriggerTask

class ImportSubject(TriggerTask):
 def _run(self, context):
 # type: (TaskContext) -> dict
 with context.get_logger_context() as logger:
 page_data =\
 context.trigger_kwargs['firstPageReceived']['responses']

 given_names = page_data.get('givenNames')
 if not given_names:
 logger.warning(
 'Missing givenNames in response data.',

 # Attach the ``page_data`` to the log message via its context dict.
 extras={'context': {
 'page_data': page_data,
 }},
)

In the above example, a missing or empty givenNames value in the response
data is notable enough to warrant a warning message, but not an exception.

When troubleshooting this issue, it may be useful for a developer to have a full
readout of the page data. Rather than try to include this (potentially massive)
value in the log message itself, the code attaches it to the log’s context
dict.

Note

Depending on how your application processes log messages, you may need to
configure your log formatter(s) specifically to take advantage of this
feature.

Review the logging module documentation [https://docs.python.org/3/library/logging.html#logging.debug] for more information.

Tip

You can also provide a dict directly to get_logger_context(). These
context values will be attached automatically to every log message:

from my_app import __version__

class ImportSubject(TriggerTask):
 def _run(self, context):
 # type: (TaskContext) -> dict

 extra_context = {
 "app_version": __version__,
 }

 with context.get_logger_context(extra_context) as logger:
 # The application version number will be attached to every
 # log emitted by ``logger``.
 ...

Exception Context

As with log messages, you can also attach context values to exceptions that your
task raises.

To use this feature, pass the exception to
triggers.exceptions.with_context() before raising it.

As an example, suppose we wanted to add some kind of a spam filter to our
ImportSubject trigger task:

from triggers.exceptions import with_context
from triggers.task import TaskContext, TriggerTask

class ImportSubject(TriggerTask):
 def _run(self, context):
 # type: (TaskContext) -> dict
 with context.get_logger_context() as logger:
 ...
 spam_score = ...
 if spam_score < threshold:
 raise with_context(
 exc = ValueError("Response data failed spam check."),

 context = {
 'spam_score': spam_score,
 'threshold': threshold,
 },
)

The actual spam score and threshold are interesting information, but it might
not be that helpful to include them in the exception message itself (how often
do you check those values when your email application flags an email as spam)?

Still, it’s useful to attach them to the exception to assist with any
troubleshooting efforts.

with_context() facilitates this.

Important

The exception will only get logged if it is raised inside of the
get_logger_context() block!

Tracking Log Levels

The logger returned by get_logger_context() also keeps track of the
max log level emitted inside of that context.

This enables your application to track task instance failure/success with a
finer degree of granularity.

For example, if you integrate a custom trigger manager with logic to
“finalize” a session, you may opt to have it only
finalize the session only if none of the task instances emitted log messages
with WARNING or higher level.

Task Instance Log Level

Once a task instance has finished running (successfully or otherwise), the max
log level emitted is stored in its log_level property:

task_instance = trigger_manager.storage['t_importSubject#0']

task_instance.log_level # e.g.: logging.INFO
task_instance.log_level_name # e.g.: 'INFO'

Note

If the task instance hasn’t finished running yet, its log_level
will be NOTSET.

Resolving Logs

In some cases, it may be necessary to mark a task instance’s logs as “resolved”.

For example, a task instance may emit a WARNING or ERROR log, but the
application determines that these logs are no longer relevant (e.g., a user
reviewed them and addressed any issues manually).

To resolve an instance’s logs use the mark_instance_logs_resolved()
method:

trigger_manager.mark_instance_logs_resolved('t_importSubject#0')

Testing Trigger Tasks

Writing and running unit tests for trigger tasks can be a bit tricky because
they are designed to be executed by Celery.

Fortunately, the Triggers framework comes with a unit testing toolbox that makes
it super easy to write tests for your trigger tasks!

Test Cases

When writing a test case for a trigger task, ensure that it:

	Derives from triggers.testing.TriggerManagerTestCaseMixin, and

	Initializes self.manager in its setUp() method.

from triggers.testing import TriggerManagerTestCaseMixin
from unittest import TestCase

class ImportSubjectTestCase(TriggerManagerTestCaseMixin, TestCase):
 def setUp(self):
 super(TriggerTaskTestCase, self).setUp()

 self.manager =\
 TriggerManager(CacheStorageBackend(self._testMethodName))

Tip

If you are using a persistent storage backend, make sure to clear it before
each test.

Tests

When writing individual tests, they should conform to the following structure:

	Configure trigger tasks.

	Fire triggers.

	Wait for tasks to complete.

	Perform assertions.

Here’s an example:

from my_app.models import Subject
from triggers.runners import ThreadingTaskRunner
from triggers.testing import TriggerManagerTestCaseMixin
from unittest import TestCase

class ImportSubjectTestCase(TriggerManagerTestCaseMixin, TestCase):
 def setUp(self):
 super(TriggerTaskTestCase, self).setUp()

 self.manager =\
 TriggerManager(CacheStorageBackend(self._testMethodName))

def test_successful_import(self):
 """
 Successfully importing a new subject record.
 """
 # Configure trigger tasks.
 self.manager.update_configuration({
 't_importSubject': {
 'after': ['firstPageReceived', 'questionnaireComplete'],
 'run': 'app.tasks.ImportSubject',
 },
 })

 responses = {
 'firstName': 'Marcus',
 # etc.
 }

 # Fire triggers (in this case, simulating successful
 # questionnaire completion).
 self.manager.fire(
 trigger_name = 'firstPageReceived',
 trigger_kwargs = {'responses': responses},
)

 self.manager.fire('questionnaireComplete')

 # Wait for tasks to complete.
 ThreadingTaskRunner.join_all()

 # Perform assertions.
 subject = Subject.objects.latest()

 self.assertInstanceFinished(
 't_importSubject#0',
 {'subjectId': subject.pk},
)

 self.assertEqual(subject.firstName, responses['firstName'])
 # etc.

1. Configure trigger tasks.

At the start of each test (or in your test case’s setUp() method),
configure the trigger task(s) that you want to execute during the test.

This is done using the trigger manager’s update_configuration() method.
For example:

self.manager.update_configuration({
 't_importSubject': {
 'after': ['firstPageReceived', 'questionnaireComplete'],
 'run': 'app.tasks.ImportSubject',
 },
})

Note that this is the same code that your application uses to
initialize a triggers session.

Tip

You can configure multiple trigger tasks in a single test.

This can be used to test entire workflows, not just individual trigger tasks.

2. Fire triggers.

Once the trigger manager has been configured, the next step is to fire triggers
that cause your trigger tasks to get run, exactly the same as the application
would under normal (or – depending on the test – abnormal) conditions.

For example:

self.manager.fire(
 trigger_name = 'firstPageReceived',
 trigger_kwargs = {'responses': responses},
)

self.manager.fire('questionnaireComplete')

3. Wait for tasks to complete.

During unit tests, the trigger manager will automatically use
ThreadingTaskRunner to execute unit tests. This means that your
trigger tasks will be run in separate threads instead of using Celery workers.

This process is still asynchronous, however, so it is very important that your
test waits until all of the tasks have finished running (including any tasks
that may have been executed as a result of cascading)
before it begins performing assertions.

To accomplish this, include a call to ThreadingTaskRunner.join_all()
immediately after firing triggers:

from triggers.runners import ThreadingTaskRunner

...

self.manager.fire(...)
self.manager.fire(...)
self.manager.fire(...)
ThreadingTaskRunner.join_all()

Tip

You can call ThreadingTaskRunner.join_all() multiple times in the
same test, if necessary.

4. Perform assertions.

Finally, once all of the trigger tasks have finished, you can begin adding
assertions to the test.

There are two things in particular that your test should check:

a. Trigger task instance state.

Because trigger tasks run asynchronously, it is important to first verify that
each task instance has the expected status.

For example, if a trigger task fails with an exception or if it didn’t get run,
it will be easiest to determine this by checking the task instance’s status.

To facilitate this, TriggerManagerTestCaseMixin provides several
custom assertions:

	assertInstanceAbandoned()

	Given an instance name, checks that the corresponding instance was abandoned
(i.e., its unless clause was satisfied before it could be run).

	assertInstanceFailed()

	Given an instance name and exception type, checks that the corresponding
instance failed with the specified exception type.

	assertInstanceFinished()

	Given an instance name and (optional) result dict, checks that the
corresponding instance finished successfully and returned the specified
result.

	assertInstanceMissing()

	Given an instance name, checks that the corresponding instance hasn’t been
created yet (i.e., none of its triggers have fired yet).

	assertInstanceReplayed()

	Given an instance name, checks that the corresponding instance was replayed.

	assertInstanceSkipped()

	Given an instance name, checks that the corresponding instance was skipped.

	assertInstanceUnstarted()

	Given an instance name, checks that the corresponding instance is in
unstarted state (i.e., not all of its triggers have fired yet).

	assertUnresolvedTasks()

	Given a list of trigger task (not instance!) names, asserts that the
corresponding tasks are unresolved:

	Have one or more instances in an unresolved state (e.g., unstarted, failed,
etc.), or

	None of its triggers have fired yet.

	assertUnresolvedInstances()

	Given a list of instance names, asserts that the corresponding instances are
unresolved.

Note

This method only checks instances where at least one of their triggers
have fired.

assertUnresolvedTasks() is better at detecting tasks that are
unresolved because none of their triggers have fired yet.

Tip

If an instance has the wrong status, the test failure message will include
additional information that will make it easier to figure out what went wrong
(e.g., traceback from the exception, etc.).

Some examples:

Check that the task instance finished successfully.
Note that we provide the name of the *instance*, not the *task*
(hence the ``#0`` suffix):
self.assertInstanceFinished(
 instance_name = 't_importSubject#0',
 expected_result = {'subjectId': 42},
)

Check that the task instance failed with the expected error:
from requests.exceptions import Timeout
self.assertInstanceFailed(
 instance_name = 't_importBrowserMetadata#0',
 exc_type = Timeout,
)

Check that an instance retried automatically on error (until it hit
``max_retries``):
self.assertInstanceReplayed('t_importBrowserMetadata#0')
self.assertInstanceReplayed('t_importBrowserMetadata#1')
self.assertInstanceFailed('t_importBrowserMetadata#2', Timeout)

b. Effects from the trigger tasks.

After checking that all of the trigger tasks finished (or failed) as expected,
then add assertions verifying the tasks’ effects.

These assertions include tasks such as checking for the presence of database
records, checking whether emails were sent, etc.

Trigger Managers

The trigger manager acts as the controller for the Triggers framework. Working
in conjunction with a storage backend, it provides an
interface for effecting changes on a triggers session.

From the Basic Concepts documentation, you can see that initializing a
trigger manager is fairly straightforward:

from triggers import TriggerManager

trigger_manager = TriggerManager(storage_backend)

Where storage_backend is a storage backend.

Interacting with Trigger Managers

Trigger managers provide the following methods:

	update_configuration(configuration)()

	Initializes or updates the trigger task configuration. See Writing Celery Tasks for
more information.

	fire(trigger_name, [trigger_kwargs])()

	Fires a trigger. See Getting Started for more information on how to
use this method.

	replay_failed_instance(failed_instance, [replacement_kwargs])()

	Given a failed task instance, creates a copy and attempts to
run it. If desired, you can provide replacement kwargs, if the original task
failed due to an invalid kwarg value.

See Replaying Failed Task Instances for more information.

Note

As the name implies, only failed instances can be replayed.

	skip_failed_instance(failed_instance, [cascade], [result])()

	Given a failed task instance, marks the instance as skipped,
so that it is considered to be resolved.

If desired, you may also specify a fake result for the task instance, to
trigger a cascade.

See Skipping Failed Task Instances for more information.

Note

As the name implies, only failed instances can be skipped.

	update_instance_status(task_instance, status, [metadata], [cascade], [cascade_kwargs])()

	Manually changes the status for a task instance. This method can also be used
to trigger a cascade.

	update_instance_metadata(task_instance, metadata)()

	Manually update the metadata for a task instance. This method can be used to
attach arbitrary data to a task instance for logging/troubleshooting purposes.

	mark_instance_logs_resolved(task_instance)()

	Given a task instance, updates its metadata so that its
log messages are resolved.

Writing Custom Trigger Managers

You can customize the behavior of the trigger manager(s) that your application
interacts with.

For example, you can write a custom trigger manager that contains additional
logic to finalize sessions.

Your trigger manager must extend the triggers.manager.TriggerManager
class.

There is only one attribute that must be implemented in order to create a
custom trigger manager:

	name: Text

	A unique identifier for your trigger manager.

Generally this matches the name of the trigger manager’s entry point in your
project’s setup.py file (see below).

Hooks

Whenever the base trigger manager completes certain actions, it invokes a
corresponding hook, which you can override in your custom trigger manager.

The following hooks are supported:

	_post_fire(trigger_name, tasks_scheduled)()

	Invoked after processing a call to fire(). It receives the name of
the trigger that was fired, and a list of any task instances that were
scheduled to run as a result.

	_post_replay(task_instance)()

	Invoked after processing a call to replay_failed_instance(). It
receives the replayed task instance.

Tip

You can find the failed instance by inspecting the replayed instance’s
metadata and extracting the parent item:

def _post_replay(task_instance)
 # type: (TaskInstance) -> NoReturn
 parent_name = task_instance.metadata['parent'] # type: Text
 parent_instance = self.storage[parent_name] # type: TaskInstance

	_post_skip(task_instance, cascade)()

	Invoked after processing a call to skip_failed_instance(). It
receives the skipped task instance, and a boolean indicating whether a cascade
was simulated.

Note

This method gets invoked after the cascade happens (i.e., after
_post_fire() is invoked).

Registering Your Trigger Manager

Because of the way trigger tasks work, you must register your
custom trigger manager in order for it to work correctly.

To do this, you must create a custom entry point [https://www.eflglobal.com/setuptools-entry-points/].

In your project’s setup.py file, add a triggers.managers entry point
for your custom trigger manager.

For example, if you wanted to register app.triggers.CustomManager, you would
add the following to your project’s setup.py file:

from setuptools import setup

setup(
 ...

 entry_points = {
 'triggers.managers': [
 'custom_manager = app.triggers:CustomManager',
],
 },
)

Tip

Any time you make changes to setup.py, you must reinstall your project
(e.g., by running pip install -e . again) before the changes will take
effect.

Once you’ve registered your trigger manager, you can then use it in your
application:

from app.triggers import CustomManager
from triggers import CacheStorageBackend

trigger_manager =\
 CustomManager(CacheStorageBackend(session_uid))

Important

Make sure that your application always uses the same trigger manager (unless
you are 110% sure you know what you are doing).

Storage Backends

The storage backend’s job is to manage the state for a session and to load and
save data from a (usually) permanent storage medium, such as a database or
filesystem.

The Triggers framework ships with a single storage backend that uses the Django
cache to persist data. However, you can write and use your own storage backend
if desired.

Anatomy of a Storage Backend

A session state is comprised of 3 primary components:

	tasks: Dict[Text, TaskConfig]

	This is effectively the same dict that was provided to the trigger manager’s
update_configuration() method. Keys are the task names (e.g.,
t_importSubject), and values are triggers.types.TaskConfig
objects.

	instances: Dict[Text, TaskInstance]

	Contains all of the task instances
that have been created for this session. Keys are the instance names (e.g.,
t_importSubject#0), and values are
triggers.types.TaskInstance objects.

Note

Task instances may appear in this dict even if they haven’t run yet.

	metadata: Dict

	Contains any additional metadata that the trigger manager and/or storage
backend needs in order to function properly. For example,
metadata keep track of all of the triggers that have fired during
this session, so that the trigger manager can initialize instances for
tasks that run multiple times.

Working with Session State

The storage backend provides a number of methods for interacting with trigger
tasks and instances:

	__getitem__(task_instance)

	Returns the task instance with the specified name. For example:

task_instance = trigger_manager.storage['t_importSubject#0']

	__iter__(task_instance)

	Returns an iterator for the task instances. Order is undefined. For
example:

for task_instance in iter(trigger_manager.storage):
 ...

	create_instance(task_config, **kwargs)

	Creates a new instance of the specified trigger task.

Additional keyword arguments are passed directly to the
TaskInstance initializer.

	clone_instance(task_instance)

	Given a task instance name or TaskInstance object, creates and
installs a copy into the trigger session.

Tip

This method is used internally when
replaying a failed task.

	get_instances_with_unresolved_logs()

	Unsurprisingly, returns all task instances with
unresolved logs.

	get_unresolved_instances()

	Returns all task instances with unresolved status.

	get_unresolved_tasks()

	Returns all trigger tasks that either:

	Do not have any instances yet, or

	Have at least one task instance with unresolved status.

	instances_of_task(task_config)

	Returns all task instances that have been created for the specified trigger
task.

Note

The storage backend contains several more methods, but they are intended to
be used internally.

Writing Your Own Storage Backend

To create your own storage backend, you only need to define methods to load and
save the session data; the base class will take care of everything else for you.

Your backend must extend the
triggers.storages.base.BaseTriggerStorage class and implement the
following attributes/methods:

	name: Text

	A unique identifier for your storage backend.

Generally this matches the name of the storage’s entry point in your
project’s setup.py file (see below).

	_load_from_backend(self)

	Given self.uid, loads the corresponding session data from the persistence
medium.

This method should return a tuple with three values:

	Item 0 contains the trigger task configurations.

	Item 1 contains the task instances.

	Item 2 contains the session metadata.

Tip

These values do not have to be stored together, as long as the
_load_from_backend() method knows how to consolidate them.

	_save(self)

	Given self.uid, saves the corresponding session data to the persistence
medium.

This method should be sure to save the following values:

	self._configs: Trigger task configurations.

	self._instances: Trigger task instance.

	self._metas: Session metadata.

Note the leading underscore on each of these attributes.

Tip

To serialize values for storage, use the self._serialize()
method.

For more information and examples, look at the implementation of
triggers.storages.cache.CacheStorageBackend.

Registering Your Storage Backend

As with trigger managers, you must register your
custom storage backend before it can be used.

To do this, define a triggers.storages entry point [https://www.eflglobal.com/setuptools-entry-points/] in your project’s
setup.py file:

from setuptools import setup

setup(
 ...

 entry_points = {
 'triggers.storages': [
 'custom_storage = app.triggers:CustomStorageBackend',
],
 },
)

Tip

Any time you make changes to setup.py, you must reinstall your project
(e.g., by running pip install -e . again) before the changes will take
effect.

Once you’ve registered your trigger storage backend, you can then use it in your
application:

from app.triggers import CustomStorageBackend
from triggers import TriggerManager

trigger_manager =\
 TriggerManager(CustomStorageBackend(session_uid))

Important

Make sure that your application always uses the same storage backend (unless
you are 110% sure you know what you are doing).

Task Runners

When the trigger manager determines that a task instance is ready to run, it
instantiates a runner to handle the execution.

By default, this runner uses Celery
(triggers.runners.CeleryTaskRunner), but you can customize this.

For example, during unit tests, the trigger
manager will use triggers.runners.ThreadingTaskRunner instead.

CeleryTaskRunner

As the name implies, CeleryTaskRunner executes task instances using
Celery [http://www.celeryproject.org/].

Each trigger task is implemented as a Celery task, and when the
trigger manager schedules a task instance for execution, the
CeleryTaskRunner will schedule a matching Celery task for execution.

Tip

You can leverage Celery’s router [http://docs.celeryproject.org/en/latest/userguide/routing.html] to send tasks to different queues, just
like regular Celery tasks.

ThreadingTaskRunner

ThreadingTaskRunner operates completely independently from Celery.
Instead of sending tasks to the Celery broker, it executes each task in a
separate thread.

Generally, this runner is only used during testing, but in
certain cases, it may be useful to utilize this runner in other contexts.

Tip

If you need your application to wait for all running tasks to finish before
continuing, invoke ThreadingTaskRunner.join_all().

Note that this will wait for all running tasks to finish (including
any cascades that may occur).

It is not possible (nor in line with the philosophy of the triggers
framework) to wait for a particular task to finish before continuing. If you
need certain logic to run after a particular task finishes, it is recommended
that you implement that logic as a separate task that is triggered by a
cascade from the first task.

Writing Your Own Task Runner

As with Trigger Managers and Storage Backends, you can inject your own task
runners into the Triggers framework.

Anatomy of a Task Runner

A task runner must extend triggers.runners.BaseTaskRunner. The base
class declares the following attributes/methods that you must implement in your
custom task runner:

	name: Text

	A unique identifier for your task runner.

Generally this matches the name of the task runner’s entry point in your
project’s setup.py file (see below).

	run(self, manager: TriggerManager, task_instance: TaskInstance) -> NoReturn

	Given a trigger manager and task instance, finds the correct Celery task
(i.e., using the resolve() method) and executes it.

Tip

See ThreadingTaskRunner.run() for a sample implementation.

Registering Your Task Runner

As with trigger managers, you must register your
custom task runner before it can be used.

To do this, define a triggers.runners entry point [https://www.eflglobal.com/setuptools-entry-points/] in your project’s
setup.py file:

from setuptools import setup

setup(
 ...

 entry_points = {
 'triggers.runners': [
 'custom_runner = app.triggers:CustomRunner',
],
 },
)

Tip

Any time you make changes to setup.py, you must reinstall your project
(e.g., by running pip install -e . again) before the changes will take
effect.

Using Your Task Runner

Unlike Trigger Managers and Storage Backends, your application does not select the
task runner directly.

Instead, the task runner is configured via one of two methods (in descending
order of priority):

	In the trigger task’s using clause.

Add your custom task runner to each task’s configuration:

from app.triggers import CustomRunner

trigger_manager.update_configuration({
 't_importSubject': {
 ...
 'using': CustomRunner.name,
 },
 ...
})

Tip

This approach is useful if you only want some of your tasks to use
the custom task runner (whereas the rest should use e.g., the
default CeleryTaskRunner).

	Via the trigger manager’s default_task_runner_name property.

In order for this to work correctly, you must subclass
TriggerManager:

class CustomTriggerManager(TriggerManager):
 name = 'custom'
 default_task_runner_name = CustomRunner.name

trigger_manager = CustomTriggerManager(...)
tirgger_manager.fire(...)

Important

Don’t forget to
register your custom trigger manager!

Cookbook

This page describes some strategies for customizing the behavior of the
Triggers framework, depending on the needs of your application.

Setting the Manager/Storage Type at Runtime

Internally, the Triggers framework uses a library called ClassRegistry [https://pypi.python.org/pypi/class-registry] to
manage the registered trigger managers and storage backends. ClassRegistry
works by assigning each class a unique key and adding it to a registry
(dict-like object).

You can leverage this feature in your application to make the manager and/or
storage type configurable at runtime, by storing the corresponding keys in
application settings (e.g., in a Django settings.py module).

Here’s an example:

First, we set some sensible defaults:

my_app/settings.py

TRIGGER_MANAGER_TYPE = 'default'
TRIGGER_STORAGE_TYPE = 'cache'

Tip

The values 'default' and 'cache' can be found in the entry point
definitions for TriggerManager and
CacheStorageBackend, respectively.

Entry point definitions are set in the library’s setup.py [https://github.com/eflglobal/triggers/blob/develop/setup.py]; look for the
entry_points configuration.

See Registering Your Trigger Manager for more information.

Next, we’ll define a function that will build the trigger manager object from
these settings:

my_app/triggers.py

from typing import Text
from triggers import TriggerManager
from triggers.manager import trigger_managers
from triggers.storages import storage_backends

from my_app.settings import TRIGGER_MANAGER_TYPE, \
 TRIGGER_STORAGE_TYPE

def get_trigger_manager(uid):
 # type: (Text) -> TriggerManager
 """
 Given a session UID, returns a configured trigger manager.
 """
 storage = storage_backends.get(TRIGGER_STORAGE_TYPE, uid)
 manager = trigger_managers.get(TRIGGER_MANAGER_TYPE, storage)

 return manager

Note the use of triggers.manager.trigger_managers and
triggers.storages.storage_backends. These are the registries of
trigger managers and storage backends, respectively.

The get() method retrieves the class corresponding to the identifier
(e.g., TRIGGER_STORAGE_TYPE — “cache” in this case) and instantiates it
using the remaining arguments (e.g., uid).

Finally, call get_trigger_manager() in your application wherever you need a
TriggerManager instance.

By changing the values of the TRIGGER_MANAGER_TYPE and/or
TRIGGER_STORAGE_TYPE settings, you can customize the trigger manager and/or
storage backend that your application uses, without having to rewrite any logic.

Finalizing a Session

In many cases, it is useful to schedule trigger tasks to run when everything
else is finished.

For example, we may want to have our questionnaire application set a status flag
in the database once the questionnaire is 100% complete and all of the other
trigger tasks have finished successfully.

To make this work, we will define a new trigger called sessionFinalized that
fires when all of the trigger tasks in a session have finished running.

We can detect that a trigger task has finished running by waiting for its
cascade; that is, we can perform the “is session
finalized” check after each trigger fires.

To accomplish this, we must create our own trigger manager and
override its _post_fire() hook.

We will also take advantage of the trigger manager’s ability to
find unresolved tasks, so that we can determine
if there are any tasks waiting to run.

The end result looks like this:

class FinalizingTriggerManager(TriggerManager):
 TRIGGER_SESSION_FINALIZED = "sessionFinalized"

 def _post_fire(self, trigger_name, tasks_scheduled):
 # Prevent infinite recursion.
 if trigger_name == self.TRIGGER_SESSION_FINALIZED:
 return

 # A session can only be finalized once.
 if self.TRIGGER_SESSION_FINALIZED in self.storage.latest_kwargs:
 return

 # Check for any unresolved tasks...
 for config in self.get_unresolved_tasks():
 # ... ignoring any that are waiting for session finalized.
 if self.TRIGGER_SESSION_FINALIZED not in config.after:
 return

 # If we get here, we are ready to finalize the session.
 self.fire(self.TRIGGER_SESSION_FINALIZED)

Important

Don’t forget to register your trigger manager!

Namespaced Session UIDs

Suppose you have a set of related triggers sessions, and you want to schedule
some tasks to run in a “super session” of sorts.

For example, let’s suppose that our questionnaire application has two different
questionnaires: “Flora” and “Fauna”. We would like to execute a trigger task
after the applicant completes page 3 of the Flora questionnaire and page 6 of
the Fauna questionnaire. But, we can’t predict what order these events will
occur.

To accomplish this, we can create a “namespaced session UID” for the applicant.
When the application is processing responses from the applicant’s questionnaire,
it will actually create two trigger managers, each with a separate UID:

from my_app.models import Questionnaire

def start_questionnaire(request):
 """
 Django view that is called when the user clicks the "start" button
 on a questionnaire.
 """
 questionnaire = get_object_or_404(
 klass = Questionnaire,
 pk = request.POST["questionnaire_id"],
)

 # Prepare our regular triggers session for the questionnaire.
 trigger_manager = TriggerManager(...)
 trigger_manager.update_configuration(...)

 # Prepare our "super session", which will maintain state across
 # multiple questionnaires.
 #
 # Note that the UID is tied to the applicant, not a particular
 # questionnaire. We also add a prefix, to avoid conflicts with
 # regular trigger session UIDs.
 super_trigger_manager = TriggerManager(
 storage = CacheStorageBackend(
 uid = 'applicant:{}'.format(request.session.applicant_id),
),
)

 super_trigger_manager.update_configuration({
 # This task will run after the applicant completes page 3 in the
 # Flora questionnaire, and page 6 in the Fauna questionnaire.
 't_compareResponses': {
 'after': ['flora_page3', 'fauna_page6'],
 'run': CompareResponses.name,
 },
 })

def responses(request):
 """
 Django view that processes a page of response data from
 the client.
 """
 questionnaire = get_object_or_404(
 klass = Questionnaire,
 pk = request.POST["questionnaire_id"],
)

 responses_form = QuestionnaireResponsesForm(request.POST)
 if responses_form.is_valid():
 # Regular triggers session for the questionnaire.
 trigger_manager = TriggerManager(...)
 trigger_manager.fire(...)

 # Fire triggers for "super session".
 super_trigger_manager = TriggerManager(
 storage = CacheStorageBackend(
 uid = 'applicant:{}'.format(request.session.applicant_id),
),
)

 super_trigger_manager.fire(
 # E.g., "fauna_page3", etc.
 trigger_name = '{}_page{}'.format(
 questionnaire.name,
 responses_form.cleaned_data['page_number'],
),

 trigger_kwargs = {'responses': responses_form.cleaned_data},
)

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Triggers

 		
 Introduction

 		
 What Are Triggers Useful For

 		
 What Are Triggers Not Useful For

 		
 Configuration

 		
 Basic Concepts

 		
 Triggers

 		
 Trigger Kwargs

 		
 Tasks

 		
 Task Configurations

 		
 Task Instances

 		
 Sessions

 		
 Session UIDs

 		
 Trigger Managers

 		
 Storage Backends

 		
 Getting Started

 		
 Step 1: Define Session UIDs

 		
 Step 2: Design Your Workflows

 		
 Step 3: Select a Storage Backend

 		
 Step 4: Fire Triggers

 		
 Trigger Kwargs

 		
 Step 5: Initialize Configuration

 		
 Step 6: Write Celery Tasks

 		
 How to Configure

 		
 Task Configuration

 		
 Required Directives

 		
 Optional Directives

 		
 Custom Directives

 		
 Writing Celery Tasks

 		
 Task Context

 		
 Trigger Manager

 		
 Trigger Kwargs

 		
 Cascading

 		
 Logging

 		
 Retrying

 		
 Task Instance Status

 		
 Meta-Statuses

 		
 Checking Instance Status

 		
 Inspecting State and Error Recovery

 		
 What’s In Session State?

 		
 Inspecting Session State

 		
 Inspecting Task Configuration

 		
 Inspecting Instance Configuration

 		
 Error Recovery

 		
 Replaying Failed Task Instances

 		
 Skipping Failed Task Instances

 		
 Logging

 		
 Context Variables

 		
 Exception Context

 		
 Tracking Log Levels

 		
 Task Instance Log Level

 		
 Resolving Logs

 		
 Testing Trigger Tasks

 		
 Test Cases

 		
 Tests

 		
 1. Configure trigger tasks.

 		
 2. Fire triggers.

 		
 3. Wait for tasks to complete.

 		
 4. Perform assertions.

 		
 Trigger Managers

 		
 Interacting with Trigger Managers

 		
 Writing Custom Trigger Managers

 		
 Hooks

 		
 Registering Your Trigger Manager

 		
 Storage Backends

 		
 Anatomy of a Storage Backend

 		
 Working with Session State

 		
 Writing Your Own Storage Backend

 		
 Registering Your Storage Backend

 		
 Task Runners

 		
 CeleryTaskRunner

 		
 ThreadingTaskRunner

 		
 Writing Your Own Task Runner

 		
 Anatomy of a Task Runner

 		
 Registering Your Task Runner

 		
 Using Your Task Runner

 		
 Cookbook

 		
 Setting the Manager/Storage Type at Runtime

 		
 Finalizing a Session

 		
 Namespaced Session UIDs

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

