
Tribler Documentation
Release 6.6

Tribler devs

November 15, 2016

Contents

1 Tribler 3
1.1 Obtaining the latest release . 3
1.2 Obtaining support . 3
1.3 Contributing . 3
1.4 Setting up your development environment . 4
1.5 Running Tribler from the repository . 4
1.6 Packaging Tribler . 4
1.7 Submodule notes . 4

2 How to contribute to the Tribler project? 5
2.1 Checking out the Stabilization Branch . 5
2.2 Reporting bugs . 5
2.3 Pull requests . 6

3 Branching model and development methodology 7
3.1 Branching model . 7
3.2 Tags . 7
3.3 Setting up the local repo . 7
3.4 Working on new features or fixes . 8
3.5 Getting your changes merged upstream . 8
3.6 Misc guidelines . 9

4 Setting up your development environment 11
4.1 Windows . 11
4.2 OS X . 14
4.3 Linux . 17

5 Building Tribler 19
5.1 Windows . 19
5.2 OS X . 20
5.3 Debian and derivatives . 21
5.4 Other Unixes . 21

6 Architectural Structure 23
6.1 Modules . 24
6.2 Maintenance . 25

7 Tribler REST API 27
7.1 Overview . 27

i

7.2 Making requests . 27
7.3 Error handling . 27
7.4 Download states . 28
7.5 Endpoints . 28

8 Indices and tables 47

HTTP Routing Table 49

Python Module Index 51

ii

Tribler Documentation, Release 6.6

Contents:

Contents 1

Tribler Documentation, Release 6.6

2 Contents

CHAPTER 1

Tribler

Towards making Bittorrent anonymous and impossible to shut down.

Developers usually hang out in the official IRC channel #tribler @ FreeNode (click here for direct a webchat window)

We use our own dedicated Tor-like network for anonymous torrent downloading. We implemented
and enhanced the Tor protocol specifications plus merged them with Bittorrent streaming. More info:
https://github.com/Tribler/tribler/wiki Tribler includes our own Tor-like onion routing network with hidden ser-
vices based seeding and end-to-end encryption, detailed specs: https://github.com/Tribler/tribler/wiki/Anonymous-
Downloading-and-Streaming-specifications

The aim of Tribler is giving anonymous access to online (streaming) videos. We are trying to make privacy, strong
cryptography and authentication the Internet norm.

Tribler currently offers a Youtube-style service. For instance, Bittorrent-compatible streaming, fast search, thumbnail
previews and comments. For the past 9 years we have been building a very robust Peer-to-Peer system. Today Tribler
is robust: “the only way to take Tribler down is to take The Internet down” (but a single software bug could end
everything).

We make use of submodules, so remember using the –recursive argument when cloning this repo.

1.1 Obtaining the latest release

Just click here and download the latest package for your OS.

1.2 Obtaining support

If you found a bug or have a feature request, please make sure you read our contributing page and then open an issue.
We will have a look at it ASAP.

1.3 Contributing

Contributions are very welcome! If you are interested in contributing code or otherwise, please have a look at our
contributing page. Have a look at the issue tracker if you are looking for inspiration :).

3

http://webchat.freenode.net/?channels=tribler
https://github.com/Tribler/tribler/wiki
https://github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications
https://github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications
https://github.com/Tribler/tribler/releases/latest
http://tribler.readthedocs.io/en/devel/contributing.html
https://github.com/Tribler/tribler/issues/new
http://tribler.readthedocs.io/en/devel/contributing.html
http://tribler.readthedocs.io/en/devel/contributing.html
https://github.com/Tribler/tribler/issues

Tribler Documentation, Release 6.6

1.4 Setting up your development environment

We support development on Linux, OS X and Windows. We have written documentation that guides you through
installing the required packages when setting up a Tribler development environment. See our Linux development
guide for the guide on setting up a development environment on Linux distributions. See our Windows development
guide for setting everything up on Windows. See our OS X development guide for the guide to setup the development
environment on OS X. For German translations, see here.

1.5 Running Tribler from the repository

First clone the repository:

git clone --recursive git@github.com:Tribler/tribler.git

or, if you haven’t added your ssh key to your github account:

git clone --recursive https://github.com/Tribler/tribler.git

Second, install the dependencies.

Done! Now you can run tribler by executing the tribler.sh script on the root of the repository:

./tribler.sh

On Windows, you can use the following command to run Tribler:

python Tribler\Main\tribler.py

1.6 Packaging Tribler

We have written guides on how to package Tribler for distribution on various systems. Please take a look here.

1.7 Submodule notes

• As updated submodules are in detached head state, remember to check out a branch before commiting changes
on them.

• If you forgot to check out a branch before doing a commit, you should get a warning telling you about it. To get
the commit to a branch just check out the branch and do a git cherry-pick of the commit.

• Take care of not accidentally commiting a submodule revision change with git commit -a.

• Do not commit a submodule update without running all the tests first and making sure the new code is not
breaking Tribler.

4 Chapter 1. Tribler

http://tribler.readthedocs.io/en/devel/development/development_on_linux.html
http://tribler.readthedocs.io/en/devel/development/development_on_linux.html
http://tribler.readthedocs.io/en/devel/development/development_on_windows.html
http://tribler.readthedocs.io/en/devel/development/development_on_windows.html
http://tribler.readthedocs.io/en/devel/development/development_on_osx.html
http://tribler.readthedocs.io/de/devel
http://tribler.readthedocs.io/en/devel/building/building.html

CHAPTER 2

How to contribute to the Tribler project?

2.1 Checking out the Stabilization Branch

The stabilization branch next contains the most up to date bugfixes. If your issue cannot be reproduced there, it is
most likely already fixed.

To backup your Tribler installation and checkout the latest version of the stabilization branch, please perform the
following steps. * Copy the .Tribler folder to a safe location on your system (for instance the desktop) Make
sure to leave the original folder on its original location. This folder is located at ~/.Tribler/ (Linux/OS X) or
%APPDATA\.Tribler (Windows). * Remove the tribler installation folder. * Go to the latest tested version of
Tribler and under ‘Build Artifacts’, download the package appropriate to your operating system. * Install/unzip this
package.

To revert back to your original version of Tribler, download the installer again and install it. Afterwards you can
restore your backed up Tribler data folder.

2.2 Reporting bugs

• Make sure the issue/feature you want to report doesn’t already exist.

• If you want to report more than one bug or feature, create individual issues for each of them.

• Use a clear descriptive title.

• Provide at least the following information:

– The version of Tribler that you are using, if you are running from a branch, branch name and commit
ID.

– The OS and version you are running.

– Step by step instructions to reproduce the issue in case it’s a bug.

• Attach Tribler’s log file. On Windows, these are found in %APPDATA%. On Linux distributions, the log file is located in ~/.Tribler/. On OS X, the crash logs can be found in ~/Library/Logs/DiagnosticReports and logger output can be found in the syslog. The location of this log is /var/log/system.log. You can use the following command to extract Tribler-related lines from the syslog: syslog -C |grep -i tribler > ~/tribler.log. Please have a look at the content of the log files before posting it in case you want to edit out something.

– Does it still happen if you move %APPDATA\.Tribler away temporarily? (Do not delete it!)

– Do you have any other software installed that might interfere with Tribler?

5

https://jenkins.tribler.org/job/Publish_tribler_next/lastStableBuild/
https://jenkins.tribler.org/job/Publish_tribler_next/lastStableBuild/
https://github.com/Tribler/tribler/releases

Tribler Documentation, Release 6.6

2.3 Pull requests

When creating a new Pull request, please observe the following:

• Fixes go to next, features go to devel.

• Before starting to work on a feature or fix, check that nobody else is working on it by assigning yourself
the corresponding issue. Create one if it doesn’t exist. This is also useful to get feedback about if a given
feature would be accepted. If you are not a member of the project, just drop a comment saying that you
are working on that.

• Create one PR per feature/bugfix.

• Provide tests for any new features/fixes you implement and make sure they cover all methods and at least
the important branches in the new/updated code.

• If implementing a reasonably big or experimental feature, make it toggleable if possible (For instance for
a new community, new GUI stuff, etc.).

• Keep a clean and nice git history:

– Rebase instead of merging back from the base branch.

– Squash fixup commits together.

– Have nice and descriptive commit messages.

• Do not commit extraneous/auto-generated files.

• Use Unix style newlines for any new file created.

• No print statements if it’s not really justified (command line tools and such).

• Do an autopep8 pass before submiting the pull request.

• Do a pylint pass with the .pylintrc on the root of the repository and make sure you are not raising
the base branch violation count, it’s bad enough as it is :).

• For more PR etiquette have a look here.

6 Chapter 2. How to contribute to the Tribler project?

https://github.com/blog/1943-how-to-write-the-perfect-pull-request

CHAPTER 3

Branching model and development methodology

In this post we’ll explain the branching model and development metodology we use at TUDelft on the Tribler project.

This is mostly targeted at new students joining the team. However, it may give you some useful ideas if you are
working on a similar project type.

3.1 Branching model

Tribler is developed mainly by university students (mostly MSC and PHDs) that will work on Tribler for a relatively
short period of time. So pull requests usually require several review cycles and some of them take a long time to be
completed and merged (development of new features are usually part of Master thesis subjects or papers and suchlike).
This makes it rather hard to implement anything like traditional unsupervised continuous integration.

Our branching model is similar to the one described at length in Vincent Driessen’s post with some small differences.

Our main repository contains 3 branches:

• devel: The main development branch; all new features and fixes for them belong here. Every time a new release
cycle is started, the next branch gets replaced with a fork of devel.

• next: This is the stabilization branch where the next major release and subsequent maintenance releases will
be tagged from. Only bug fixes for released code are merged here. As you may have guessed there’s no bugfix
releases while a feature release is stabilized (simply due to lack of manpower on the project). All the changes
applied here here are regularly merged to devel.

• master: Contains the code of the latest stable release. It gets updated from next after every release.

3.2 Tags

Every revision that will result in a (pre)release gets tagged with a version number.

3.3 Setting up the local repo

1. Fork Tribler’s upstream repository.

2. Make a local clone of it:

git clone -o MrStudent --recursive --recurse-submodules --single-branch \
git@github.com:MrStudent/tribler

7

http://www.ewi.tudelft.nl/en/
https://github.com/Tribler/tribler
https://en.wikipedia.org/wiki/Continuous_integration
http://nvie.com/posts/a-successful-git-branching-model/
https://github.com/Tribler/tribler#fork-destination-box

Tribler Documentation, Release 6.6

3. Add the upstream remote:

git remote add upstream https://github.com/Tribler/tribler

Note that an /HTTPS/ URL is used here instead of an /SSH/ one (git@github.com/yadayada). This is done in order
to prevent accidental pushes to the main repository. However, it will only work if you don’t set up /HTTPS/ auth for
github. Any attempt to push something there and git will ask you for credentials.

4. Profit!

3.4 Working on new features or fixes

1. Make sure there’s an issue for it and get it assigned to you. If there isn’t, create it yourself. Otherwise you risk
your changes not getting accepted upstream or wasting time on changes that are already being worked on by
other developers.

2. Create your feature or bugfix branch. New feature branches can be created like this:

git fetch --all && git checkout upstream/devel -b fix_2344_my_new_feature

For bug fixes:

git fetch --all && git checkout upstream/next -b fix_2344_my_new_bugfix

2344 would be the issue number this branch is dealing with. This makes it trivial to identify the purpose of a branch if
one hasn’t had been able to work on it for a while and can’t remember right away.

3. Create a Pull Request.

It is usually a good idea to create a pull request for a branch even if it’s a work in progress. Doing so will make our
Jenkins instance run all the checks, tests and experiments every time you push a change so you can have continuous
feedback on the state of your branch.

When creating a PR, always prepend the PR title with WIP until it’s ready for the final round of reviews. More about
this on the next section.

Notes:

• Always fork directly from upstream’s remote branches as opposed to your own (remote or local) devel or next
branches. Those are useless as they will quickly get out of date, so kill them with fire:

git branch -d next
git branch -d devel

• Once one of your branches has been merged upstream try to always delete them from your remote to avoid
cluttering other people’s remote listings (I’ve got around 15 remotes on my local Tribler repos and it can become
annoying to look for a particular branch among dozens and dozens of other people’s stale branches). This can be
done either from github’s PR web interface by clicking on the “delete branch” button after the merge has been
done or with:

git push MrStudent :fix_2344_my_new_bugfix

3.5 Getting your changes merged upstream

When you think your PR is complete you need to get at least one peer to review your proposed changes as many times
as necessary until it’s ready. If you can’t agree on something add another peer to the discussion to break the tie or talk
to the lead developer.

8 Chapter 3. Branching model and development methodology

mailto:git@github.com/yadayada
https://github.com/Tribler/tribler/compare
https://jenkins.tribler.org

Tribler Documentation, Release 6.6

All updates during the review/fix iteration cycles should be made with fixup commits to make it easier for the re-
viewer(s) to spot the new changes that need review on each iteration. (read the --fixup argument on the git-commit
manpage if you don’t know what a fixup commit is).

Once the reviewer gives the OK and the tests and checks are passing, the fixup commits can then be squashed and the
WIP prefix can be switched to READY. The lead developer will then do the final review round.

As mentioned before, any requested modifications should come in the form of fixup commits to ease reviewing.

Once the final OK is given, all fixup commits should be squashed and the branch will get merged.

3.6 Misc guidelines

• Keep an eye on the PRs you’ve reviewed You will probably learn something from other reviewers and find
out what you missed out during yours.

• Don’t send PR from your remote’s ~devel~ branch Use proper names for your branches. It will be more
informative and they become part of the merge commit message.

• Keep it small The smaller the PRs are, the less review cycles will be needed and the quicker they will get
merged.

• Try to write as many tests as you can before writing any code It will help you think about the problem you
are trying to solve and it usually helps to write code that’s easier to test.

• Have the right amount of commits on your PRs Don’t have a feature implementation spread across a gazil-
lion commits. For instance if a given feature requires some refactoring, your history could look like this:

– “Refactor foo class to allow for bar” (At this point, the code should still work)

– “Tests for feature $X”

– “Implement feature $X”

• Write clean and self contained commits Each commit should make sense and be reviewable by itself. It
doesn’t make sense to break something on one commit and fix it on another later on in the same PR.
It also makes reviews much harder.

• Avoid unrelated and/or unnecessary modifications If you are fixing a bug or implementing a feature, avoid
unnecessary refactoring, white space changes, cosmetic code reordering, etc. It will introduce gratuitous
merge conflicts to your and others’ branches and make it harder to track changes (for instance with git
blame).

• Don’t rename a file and modify it on the same commit If you need to rename and modify a file on the same
PR, do so in two commits. This way git will always know what’s going on and it will be easier to track
changes across file renames.

• Don’t send pull requests with merge commits on them Always rebase or cherry pick. If a commit on devel
introduces merge conflicts in your branch, fix your commits by rebasing not by back merging and creating
a conflict resolution commit.

• If one of your commits fixes an issue, mention it Add a “Closes #1234” line to the comment’s body section
(from line 3 onwards). This way a reference to this particular commit will be created on the issue itself
and once the commit hits the target branch the issue will be closed automatically. If a whole PR is needed
to close a particular issue, add the “Closes” comment on the PR body.

• Capitalize the commit’s subject We are civilized people after all :D

• Write concise commit messages If a particular commit deserves a longer explanation, write a short commit
message, leave a blank line after it and then go all Shakespeare from the third line (message body) onwards.

3.6. Misc guidelines 9

Tribler Documentation, Release 6.6

• Read this Really, do it.

10 Chapter 3. Branching model and development methodology

http://chris.beams.io/posts/git-commit

CHAPTER 4

Setting up your development environment

This page contains instructions on how to setup your development environment to run Tribler from source.

4.1 Windows

This section contains information about setting up a Tribler development environment on Windows. Unlike Linux
based systems where installing third-party libraries is often a single apt-get command, installing and configuring
the necessary libraries requires more attention on Windows. Moreover, the Windows environment has different file
stuctures. For instance, where Linux is working extensively with .so (shared object) files, Windows uses DLL files.

4.1.1 Introduction

In this guide, all required dependencies of Tribler will be explained. It presents how to install these dependencies.
Some dependencies have to be built from source whereas other dependencies can be installed using a .msi installer.
The guide targets Windows 10, 64-bit systems, however, it is probably not very hard to install 32-bit packages.

First, Python 2.7 should be installed. If you already have a Python version installed, please check whether this version
is 64 bit before proceeding.

python -c "import struct;print(8 * struct.calcsize('P'))"

This outputs whether your current installation is 32 or 64 bit.

Python can be downloaded from the official Python website. You should download the Windows x86-64 MSI Installer
which is an executable. During the setup, remember to install pip/setuptools and to add Python to the PATH
variable to access Python from the command line. The option to add Python to the PATH variable is unchecked
by default! You can verify whether Python is installed correctly by typing python in the command line. Also check
whether pip is working by typing pip in the command line. If they are not working, check whether the PATH variables
are correctly set.

If you did not change the default installation location, Python should be located at C:\\Python27\\. The third-
party libraries are located in C:\\Python27\\Lib\\site-packages. If you forgot to add Python to your
PATH during the setup, you should need to add the C:\\Python27\\ and C:\\Python27\\Scripts directo-
ries to your PATH variable.

In order to compile some of the dependencies of Tribler, you will need Visual Studio 2015 which can be downloaded
from here. You should select the community edition. Visual Studio ships with a command line interface that can
be used for building some of the Python packages. Moreover, it provides a nice IDE which can be used to work on
Python projects. After installation of Visual Studio, you should install the Visual C++ tools. This can be done from

11

https://www.python.org/downloads/release/python-2710/
https://www.visualstudio.com/downloads/download-visual-studio-vs

Tribler Documentation, Release 6.6

within Visual Studio by creating a new Visual C++ project. Visual Studio then gives an option to install the Visual
C++ developer tools.

In case importing one of the modules fail due to a DLL error, you can inspect if there are files missing by opening
it with Dependency Walker. It should show missing dependencies. In our case, we were missing MSVCR100.DLL
which belongs to the Microsoft Visual C++ 2010 SP1 Redistributable Package (x64). This package can be downloaded
from the Microsoft website. One other DLL that was missing was MSVCR110.DLL, which belongs to the Visual C++
Redistributable for Visual Studio 2012 Update 4. After installing these two pakets, there should be no more import
errors.

4.1.2 M2Crypto

The first package to be installed is M2Crypto which can be installed using pip (the M2Crypto binary is precompiled):

pip install --egg M2CryptoWin64 # use M2CryptoWin32 for the 32-bit version of M2Crypto
python -c "import M2Crypto" # test whether M2Crypto can be successfully imported

If the second statement does not raise an error, M2Crypto is successfully installed.

4.1.3 wxPython

The graphical interface of Tribler is built using wxPython. wxPython can be installed by using the official win64
installer for Python 2.7 from Sourceforge. At the time of writing, wx3 is not supported yet so you should install
wx2.8 (make sure to install the unicode version). You can test whether wx can be successfully imported by running:

python -c "import wx"

This statement should proceed without error.

4.1.4 pyWin32 Tools

In order to access some of the Windows API functions, pywin32 should be installed. The pywin32 installer can be
downloaded from Sourceforge and make sure to select the amd64 version and the version compatible with Python 2.7.

apsw The apsw (Another Python SQLite Wrapper) installer can be downloaded from GitHub. Again, make sure to
select the amd64 version that is compatible with Python 2.7. You can test whether it is installed correctly by running:

python -c "import apsw"

4.1.5 libtorrent

This package should be compiled from source. First, install Boost which can be downloaded from SourceForge. Make
sure to select the latest version and choose the version is compatible with your version of Visual C++ tools (probably
msvc-14).

After installation, you should set an environment variable to let libtorrent know where Boost can be found. You
can do this by going to Control Panel > System > Advanced > Environment Variables (more information about setting
environment variables can be found here). Now add a variable named BOOST_ROOT and with the value of your Boost
location. The default installation location for the Boost libraries is C:\\local\\boost_<BOOST VERSION>
where <BOOST VERSION> indicates the installed Boost version.

Next, you should build Boost.build. You can do this by opening the Visual Studio command prompt and navigating
to your Boost libraries. Navigate to tools\\build and execute bootstrap.bat. This will create the b2.exe

12 Chapter 4. Setting up your development environment

https://www.microsoft.com/en-us/download/details.aspx?id=13523
https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://www.microsoft.com/en-us/download/details.aspx?id=30679
http://sourceforge.net/projects/wxpython/files/wxPython
http://sourceforge.net/projects/pywin32/files/pywin32/
https://github.com/rogerbinns/apsw/releases
http://sourceforge.net/projects/boost/files/boost-binaries/
http://www.computerhope.com/issues/ch000549.htm

Tribler Documentation, Release 6.6

file. In order to invoke b2 from anywhere in your command line, you should add the Boost directory to your user
PATH environment variable. After modifying your PATH, you should reopen your command prompt.

Now, download the libtorrent source code from GitHub and extract it. It is advised to compile version 1.0.8. Note
that you if you have a 32-bit system, you can download the .msi installer so you do not have to compile libtorrent
yourself. Open the Developer Command Prompt shipped with Visual Studio (not the regular command prompt) and
navigate to the location where you extracted the libtorrent source. In the directory where the libtorrent source code
is located, navigate to bindings\\python and build libtorrent by executing the following command (this takes a
while so make sure to grab a coffee while waiting):

b2 boost=source libtorrent-link=static address-model=64

This command will build a static libtorrent 64-bit debug binary. You can also
build a release binary by appending release to the command given above. Af-
ter the build has been completed, the resulting libtorrent.pyd can be found in
LIBTORRENT_SOURCE\\bindings\\python\\bin\\msvc-14\\debug\\address-model-64\\boost-source\\link-static\\
where LIBTORRENT_SOURCE indicates the directory with the libtorrent source files. Copy libtorrent.pyd to
your site-packages location (the default location is C:\\Python27\\Lib\\site-packages) and test libtorrent
by executing:

python -c "import libtorrent"

4.1.6 libsodium

Libsodium can be download as precompiled binary from their website. Download the latest version, built with
msvc. Extract the archive to any location on your machine. Next, you should add the location of the dynamic li-
brary to your PATH variables (either as system variable or as user variable). These library files can be found in
LIBSODIUM_ROOT\\x64\\Release\\v140\\dynamic\\where LIBSODIUM_ROOT is the location of your
extracted libsodium files. After modifying your PATH, you should reopen your command prompt. You test whether
Python is able to load libsodium.dll by executing:

python -c "import ctypes; ctypes.cdll.LoadLibrary('libsodium')"

4.1.7 LevelDB

The next dependency to be installed is levelDB. LevelDB is a fast key-value storage written by Google. LevelDB itself
is written in C++ but there are several Python wrappers available. In this guide, you will compile leveldb from source.
First, download the source code from GitHub (either clone the repository or download the source code as zip). The
readme on this repo contains some basic instructions on how to compile leveldb.

Next, open the levedb_ext.sln file in Visual Studio. This guide is based on the x64 release configuration.
If you want to build a 32-bit leveldb project, change the configuration to win32 release.

You should edit the file paths of the include directories and the linker directories. These can be edited by right clicking
on the project and selecting properties. You will need to update additional include directories
(under C/C++ -> general) to point to your Python include directory (often located in C:\\Python27\\include).
This is needed for the compilation of the Python bindings. Also, make sure that the following preprocessor
definitions (found under C/C++ -> preprocessor) are defined: WIN32 and LEVELDB_PLATFORM_WINDOWS.

Next, additional library directories should be adjusted, found under Linker -> General. You should
add the directory where your Python libraries are residing, often in C:\\Python27\\libs.

Compile by pressing the build leveldb_ext in the build menu. If any errors are showing up during compilation,
please refer to the Visual Studio log file and check what’s going wrong. Often, this should be a missing include/linker
directory. If compilation is successful, a leveldb_ext.pyd file should have been created in the project directory.

4.1. Windows 13

https://github.com/arvidn/libtorrent/releases
https://download.libsodium.org/libsodium/releases/
https://github.com/happynear/py-leveldb-windows

Tribler Documentation, Release 6.6

Copy this file to your site-packages location and rename it to leveldb.pyd so Python is able to find it. You can test
whether your binary is working by using the following command which should execute without any errors:

python -c "import leveldb"

4.1.8 VLC

To install VLC, you can download the official installer from the VideoLAN website. Make sure to install the 64-bit
version of VLC.

4.1.9 Additional Packages

There are some additional packages which should be installed. They can easily be installed using pip:

pip install cherrypy chardet configobj cryptography decorator feedparser netifaces pillow twisted

4.1.10 Running Tribler

You should now be able to run Tribler from command line. Grab a copy of the Tribler source code and navigate in a
command line interface to the source code directory. Start Tribler by running:

python Tribler\Main\tribler.py

You might get errors about imports in the Tribler module. To fix this, you should add the location where the Tri-
bler directory is located to the PYTHONPATH user environment variables. Information about changing environment
variables can be found here.

If there are any problems with the guide above, please feel free to fix any errors or create an issue so we can look into
it.

4.2 OS X

This section contains information about setting up a Tribler development environment on OS X. Unlike Linux based
systems where installing third-party libraries is often a single apt-get command, installing and configuring the
necessary libraries requires more attention on OS X. This guide has been tested with OS X 10.10.5 (Yosemite) but
should also work for OS X 10.11 (El Capitan).

Note that the guide below assumes that Python is installed in the default location of Python (shipped with OS X).
This location is normally in /Library/Python/2.7. Writing to this location requires root acccess when using
easy_install or pip. To avoid root commands, you can install Python in a virtualenv. More information about setting
up Python in a virtualenv can be found here.

4.2.1 Introduction

Compilation of C/C++ libraries should be performed using Clang which is part of the Xcode Command Line Tools.
The Python version shipped with OS X can be used and this guide has been tested using Python 2.7. The current
installed version and binary of Python can be found by executing:

python --version # gets the python version
which python # prints the path of the Python executable

14 Chapter 4. Setting up your development environment

http://www.videolan.org/vlc/download-windows.html
http://www.computerhope.com/issues/ch000549.htm
https://github.com/Tribler/tribler/issues/new
http://www.marinamele.com/2014/05/install-python-virtualenv-virtualenvwrapper-mavericks.html

Tribler Documentation, Release 6.6

Note that the default location of third-party Python libraries (for example, installed with pip) can be found in
/Library/Python/2.7/site-packages.

Many packages can be installed by using the popular brew and pip executables. Brew and pip can be installed by
using:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
sudo easy_install pip

This should be done after accepting the Xcode license so open Xcode at least once before installing Brew.

4.2.2 Xcode Tools

The installation of Xcode is required in order to compile some C/C++ libraries. Xcode is an IDE developed by Apple
and can be downloaded for free from the Mac App Store. After installation, the Command Line Tools should be
installed by executing:

xcode-select --install

4.2.3 WxPython

WxPython is the Graphical User Interface manager and an installer can be downloaded from their website. Note that
at this point, Wx 2.8 should still be used but support for 2.8 will be dropped soon and the Wx 2.8 library should be
replaced by Wx 3.0. You probably need the Cocoa version of Wx.

Note: there is a bug on OS X 10.11 (El Capitan) where the installer gives an error that there is no software available
to install. A workaround for this is to install the required files manually. This can be done by opening the .pkg
file. First, you should run the preflight.sh script as root to clean up any old installation of wx. Next, unzip the
wxPython3.0-osx-cocoa-py2.7.pax.gz file. This will create a usr directory which should be copied to
/usr on the system. Note that you need root permissions to write to this directory (you can open a finder window with
the needed permissions by running sudo open /usr in terminal). To link wx so Python can find it, you should run
the postflight.sh as root.

4.2.4 M2Crypto

To install M2Crypto, Openssl has to be installed first. The shipped version of openssl by Apple gives errors when
compiling M2Crypto so a self-compiled version should be used. Start by downloading openssl 0.98 from here, extract
it and install it:

./config --prefix=/usr/local
make && make test
sudo make install
openssl version # this should be 0.98

Also Swig 3.0.4 is required for the compilation of the M2Crypto library. The easiest way to install it, it to download
Swig 3.0.4 from source here and compile it using:

./configure
make
sudo make install

Note: if you get an error about a missing PCRE library, install it with brew using brew install pcre.

Now we can install M2Crypto. First download the source (version 0.22.3 is confirmed to work on El Capitan and
Yosemite) and install it:

4.2. OS X 15

http://www.wxpython.org/download.php
https://www.openssl.org/source/
http://www.swig.org/download.html
http://chandlerproject.org/Projects/MeTooCrypto

Tribler Documentation, Release 6.6

python setup.py build build_ext --openssl=/usr/local
sudo python setup.py install build_ext --openssl=/usr/local

Reopen your terminal window and test it out by executing:

python -c "import M2Crypto"

4.2.5 Apsw

Apsw can be installed by brew but this does not seem to work to compile the last version (the Clang compiler uses
the sqlite.h include shipped with Xcode which is outdated). Instead, the source should be downloaded from their
Github repository (make sure to download a release version) and compiled using:

sudo python setup.py fetch --all build --enable-all-extensions install test
python -c "import apsw" # verify whether apsw is successfully installed

4.2.6 Libtorrent

An essential dependency of Tribler is libtorrent. libtorrent is dependent on Boost, a set of C++ libraries. Boost can be
installed with the following command:

brew install boost
brew install boost-python

Now we can install libtorrent:

brew install libtorrent-rasterbar --with-python

After the installation, we should add a pointer to the site-packages of Python so it can find the new libtorrent
library using the following command:

sudo echo 'import site; site.addsitedir("/usr/local/lib/python2.7/site-packages")' >> /Library/Python/2.7/site-packages/homebrew.pth

This command basically adds another location for the Python site-packages (the location where libtorrent-rasterbar
is installed). This command should be executed since the location where brew installs the Python packages is not in
sys.path. You can test whether libtorrent is correctly installed by executing:

python
>>> import libtorrent

4.2.7 Other Packages

There are a bunch of other packages that can easily be installed using pip and brew:

brew install homebrew/python/pillow gmp mpfr libmpc libsodium
pip install --user cherrypy cffi chardet configobj cryptography decorator feedparser gmpy2 idna leveldb netifaces numpy pillow pyasn1 pycparser twisted service_identity

If you encounter any error during the installation of Pillow, make sure that libjpeg and zlib are installed. They can be
installed using:

brew tap homebrew/dupes
brew install libjpeg zlib
brew link --force zlib

Tribler should now be able to startup without warnings by executing this command in the Tribler root directory:

16 Chapter 4. Setting up your development environment

https://github.com/rogerbinns/apsw

Tribler Documentation, Release 6.6

./tribler.sh

If there are any missing packages, they can often be installed by one pip or brew command. If there are any problems
with the guide above, please feel free to fix any errors or create an issue so we can look into it.

4.2.8 System Integrity Protection on El Capitan

The new security system in place in El Capitan can prevent libsodium.dylib from being dynamically linked into
Tribler when running Python. If this library cannot be loaded, it gives an error that libsodium could not be found. This
is because the DYLD_LIBRARY_PATH cannot be set when Python starts. More information about this can be read
here.

There are two solutions for this problem. First, libsodium.dylib can symlinked into the Tribler root directory.
This can be done by executing the following command in the Tribler root directory:

ln -s /usr/local/lib/libsodium.dylib

Now the ctypes Python library will be able to find the libsodium.dylib file.

The second solution is to disable SIP. This is not recommended since it makes the system more vulnerable for attacks.
Information about disabling SIP can be found here.

4.3 Linux

This section contains information about setting up a Tribler development environment on Linux systems.

4.3.1 Debian/Ubuntu/Mint

Execute the following command in your terminal:

sudo apt-get install libav-tools libjs-excanvas libjs-mootools libsodium13 libx11-6 python-apsw python-cherrypy3 python-crypto python-cryptography python-feedparser python-leveldb python-libtorrent python-m2crypto python-netifaces python-pil python-pyasn1 python-twisted python-wxgtk2.8 python2.7 vlc python-pip python-chardet python-configobj
sudo pip install decorator libnacl

4.3.2 Experimental support for Ubuntu 16.04

Please try if the latest experimental build works for you.

bash
sudo apt-get install libsodium-dev python-nacl

Next, download the latest .deb file from here.

4.3.3 Installing libsodium13 and python-cryptography on Ubuntu 14.04

While installing libsodium13 and python-cryptography on a clean Ubuntu 14.04 install (possibly other versions as
well), the situation can occur where the Ubuntu terminal throws the following error when trying to install the depen-
dencies mentioned earlier in the README.rst:

E: Unable to locate package libsodium13 E: Unable to locate package python-cryptography

4.3. Linux 17

https://github.com/Tribler/tribler/issues/new
https://forums.developer.apple.com/thread/13161
http://www.imore.com/el-capitan-system-integrity-protection-helps-keep-malware-away
https://jenkins.tribler.org/job/Build-Tribler_Ubuntu-64_devel/lastStableBuild/

Tribler Documentation, Release 6.6

This means that the required packages are not directly in the available package list of Ubuntu 14.04.

To install the packages, the required files have to be downloaded from their respecive websites.

For libsodium13, download libsodium13_1.0.1-1_<ProcessorType\>.deb from
http://packages.ubuntu.com/vivid/libsodium13](http://packages.ubuntu.com/vivid/libsodium13

For python-cryptography, download python-cryptography_0.8-1ubuntu2_<ProcessorType\>.deb
from http://packages.ubuntu.com/vivid/python-cryptography.

Installing the files Through terminal

After downloading files go to the download folder and install the files through terminal:

For amd64:

cd ./Downloads
dpkg -i libsodium13_1.0.1-1_amd64.deb
dpkg -i python-cryptography_0.8-1ubuntu2_amd64.deb

For i386:

cd ./Downloads
dpkg -i libsodium13_1.0.1-1_i386.deb
dpkg -i python-cryptography_0.8-1ubuntu2_i386.deb

Through file navigator:

Using the file navigator to go to the download folder and by clicking on the .deb files to have the software installer
install the packages.

Now installing the list of dependencies should no longer throw an error.

If there are any problems with the guide above, please feel free to fix any errors or create an issue so we can look into
it.

4.3.4 Arch Linux

Execute the following command in your terminal:

sudo pacman -S libsodium libtorrent-rasterbar python2-apsw python2-cherrypy python2-cryptography python2-decorator python2-feedparser python2-gmpy2 python2-m2crypto python2-netifaces python2-pillow python2-plyvel python2-twisted wxpython2.8

18 Chapter 4. Setting up your development environment

http://packages.ubuntu.com/vivid/libsodium13{]}(http://packages.ubuntu.com/vivid/libsodium13
http://packages.ubuntu.com/vivid/python-cryptography
https://github.com/Tribler/tribler/issues/new

CHAPTER 5

Building Tribler

This page contains instructions on how to build and package Tribler.

5.1 Windows

This section contains information about building Tribler on Windows. In the end you should be left with a .exe file
which, when opened, enables users to install Tribler on their system. This guide installs a 64-bit version of Tribler and
has been tested on Windows 10 and Windows 2008 Server R2, 64-bit. It is recommended to create this builder on a
system that is already able to run Tribler from a git checkout (it means that all the required packages required by Tribler
are installed already). In case you want to build a 32 bit version, just install all the dependencies mentioned in 32 bit
version. Information about setting up a developer environment on Windows can be found on tribler_dev_windows.

When you have installed zope, an empty __init__.py file must be present in the zope folder. If this file is
missing, a No module named zope error will be thrown. Create this file in the site-packes/zope folder
if it does not exist.

5.1.1 Required packages

To build a Tribler installer, you’ll need some additional scripts and packages. The versions used as of writing this
guide are mentioned next to the package or script. * The git command tools (version 2.7.0) are required to fetch the
latest release information. These can be downloaded from here. * Py2Exe (0.6.9), a tool to create an executeable
from python files. Grab the latest version here. * The builder needs to find all packages that are required by Tribler
so make sure you can run Tribler on your machine and that there are no missing dependencies. * Nullsoft Scriptable
Install System (NSIS) (version 2.5.0) is a script-driven Installer authoring tool for Microsoft Windows with minimal
overhead. It can be downloaded here. We selected version 2.5 as the uninstall functions were not called properly in
3.03b. * Three plugins are required.The UAC plugin is the first. This can be downloaded from here (version 0.2.4c).
How to install a plugin can be found here. * The second plugin that is needed is AccessControl plug-in (version
1.0.8.1). It can be downloaded here. * The third plugin required is NSIS Simple Firewall Plugin (version 1.2.0). You
can download it here. * The fourth plugin needed is NSProcess (Version 1.6.7), which can be downloaded here. * A
version of Microsoft Visual Studio should be installed (we use 2012), but make sure you do not have the build-tools
only. The full (community) edition can be downloaded here.

5.1.2 Building & Packaging Tribler

Start by cloning Tribler if you haven’t done already (using the git clone --recursive command). Next, create
a build folder directly on your C:\ drive. Inside the build folder, put the following items:

19

https://git-scm.com/download/win
http://sourceforge.net/projects/py2exe/files/py2exe/
http://nsis.sourceforge.net/Download
http://nsis.sourceforge.net/UAC_plug-in
http://nsis.sourceforge.net/How_can_I_install_a_plugin
http://nsis.sourceforge.net/AccessControl_plug-in
http://nsis.sourceforge.net/NSIS_Simple_Firewall_Plugin
http://nsis.sourceforge.net/NsProcess_plugin
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

Tribler Documentation, Release 6.6

1. A static version (64 bit, git-1d8f9b7) of ffmpeg, available here. Place it in a folder called ffmpeg in the build
folder.

2. A folder certs containing a .pfx key. In our case it’s named swarmplayerprivatekey.pfx. Make
sure to rename paths in makedist_win.bat to match your file name.

3. A vlc folder containing a full instalation of vlc (Version 2.2.1).

4. vc_redist_90.exe (Microsoft Visual C++ 2008 Redistributable Package), which is available here. In case
you build 32 bit, get the x86 version here. Don’t forget to rename the file.

5. vc_redist_110.exe (Visual C++ Redistributable for Visual Studio 2012), which is available here. In case
you build 32 bit, get the x86 version. Once more, don’t forget to rename the file.

6. libsodium.dll which can be downloaded from libsodium.org (as of writing version 1.0.8).

Then, set a PASSWORD environment variable with its value set to the password matching the one set in your .pfx
file.

Finally, open a command prompt and enter the following commands (Change 11.0 depending on your version of
Microsoft Visual Studio): Note that for building 32 bit you need to pass anything but 64, i.e. 32 or 86 to the
update_version_from_git.py script.

setlocal enabledelayedexpansion
call "C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\vcvarsall.bat"
SET PATH=%PATH%;C:\Windows\system32;C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\bin
dir
cd tribler
python Tribler/Main/Build/update_version_from_git.py 64
xcopy C:\build\vlc vlc /E /I
win\makedist_win.bat

This builds an .exe installer which installs Tribler when ran.

5.2 OS X

This section contains information about building Tribler on OS X. The final result you should have is a .dmg file
which, when opened, allows Tribler.app to be copied to the Applications directory. This guide has been tested on
OS X 10.11 (El Capitan). It is recommended to run this builder on a system that is already able to run Tribler without
problems (it means that all the required packages required by Tribler are installed already). Information about setting
up a developer environment on OS X can be found here.

5.2.1 Required packages

To build and distribute Tribler, there are some required scripts and packages: * The git command tools are required to
fetch the latest release information. They are installed when you start Xcode for the first time but you can also install
it using brew or another package library. * Py2app. The built-in version of py2app does not function correctly when
System Integrity Protection (SIP) is turned on. You can either turn SIP off (instructions on how to do this can be found
here) or you can install a more recent version of py2app using PIP in your user-defined site-packages. Note that
you should place the site-packages directory with py2app in it higher in the PYTHONPATH environment variable
than the site-packages directory managed by the system. Otherwise, the builder will chooose the py2app package
installed by the system. * The builder needs to find all packages that are required by Tribler so make sure you can run
Tribler on your machine and that there are no missing dependencies. * In order to attach the EULA to the .dmg file,
we make use of the eulagise script. This script is written in PERL and is based on a more fully-featured script.
The script can be dowloaded from GitHub. The builder expects the script to be executable and added to the PATH
environment variable. This can be done with the following commands:

20 Chapter 5. Building Tribler

http://ffmpeg.zeranoe.com/builds/
https://www.microsoft.com/en-us/download/details.aspx?id=15336
https://www.microsoft.com/en-us/download/details.aspx?id=29
https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://download.libsodium.org/libsodium/releases/
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx?mfr=true
http://www.imore.com/el-capitan-system-integrity-protection-helps-keep-malware-away
https://github.com/CompoFX/compo/blob/master/tool/eulagise.pl

Tribler Documentation, Release 6.6

cp eulagise.pl /usr/local/bin/eulagise
chmod +x /usr/local/bin/eulagise
eulagise # to test it - it should show that you should add some flags

5.2.2 Building Tribler on OS X

Start by checking out the directory you want to clone (using git clone --recursive). Open a terminal and cd
to this new cloned directory (referenced to as tribler_source in this guide).

First we need to copy the ffmpeg library to tribler_source. You can download this file from here. Next, create a
directory named vlc in tribler_source and copy the ffmpeg file to that directory. Make sure to name the file
ffmpeg, otherwise the builder cannot find it.

Next, we should inject version information into the files about the latest release. This is done by
the update_version_from_git.py script found in Tribler/Main/Build. Invoke it from the
tribler_source directory by executing:

Tribler/Main/Build/update_version_from_git.py

Before we can build the .dmg file, some environment variables need to be set:

export MACOSX_DEPLOYMENT_TARGET=10.11
export CFLAGS=' -mmacosx-version-min=10.6 -O -g '
export CXXFLAGS=' -mmacosx-version-min=10.6 -O -g '

If you are building on another environment, you should change MACOSX_DEPLOYMENT_TARGET to match your
version of OS X. The -mmacosx-version-min is required so the builder can optimize the build depending on the
minimum supported version.

Now execute the builder with the following command:

./mac/makedistmac_64bit.sh

This will create the .dmg file in the tribler_source/dist directory.

5.3 Debian and derivatives

Run the following commands in your terminal:

sudo apt-get install devscripts python-setuptools
cd tribler
Tribler/Main/Build/update_version_from_git.py
debuild -i -us -uc -b

5.4 Other Unixes

We don’t have a generic setup.py yet.

So for the time being, the easiest way to package Tribler is to put Tribler/ in /usr/share/tribler/ and
debian/bin/tribler in /usr/bin/. A good reference for the dependency list is debian/control.

5.3. Debian and derivatives 21

http://evermeet.cx/ffmpeg/

Tribler Documentation, Release 6.6

22 Chapter 5. Building Tribler

23

Tribler Documentation, Release 6.6

CHAPTER 6

Architectural Structure

6.1 Modules

24 Chapter 6. Architectural Structure

Tribler Documentation, Release 6.6

Tribler.Category
Tribler.Core The Core package contains the core functionalities of the Tribler project
Tribler.Core.APIImplementation The APIImplementation contains the API for torrents, creating them and maintaining them
Tribler.Core.CacheDB The CacheDB package contains the cachedDB for Tribler including a notifier and manages different versions
Tribler.Core.Config This package contains code for the configuration objects.
Tribler.Core.DecentralizedTracking The DecentralizedTracking package contains the pymdht library for profiling networkinformation.
Tribler.Core.Libtorrent The Libtorrent package contains code to manage the torrent library.
Tribler.Core.Modules The Modules package contains the tracker manager
Tribler.Core.Modules.channel
Tribler.Core.Modules.restapi This package contains code for the Tribler HTTP API.
Tribler.Core.TFTP Contains the the TFTP handler that should be registered at the thread pool to handle TFTP packets
Tribler.Core.TorrentChecker The TorrentChecker package contains code that checks and schedules torrents.
Tribler.Core.Upgrade The upgrade package contains information on how to update Tribler and its database to the new version.
Tribler.Core.Utilities The Utilities package contains different utility files that are used in the project
Tribler.Core.Video The Video package contains the VLCWrapper and code to stream live data in Tribler
Tribler.Main The Main package contains code for the GUI of Tribler.
Tribler.Main.Utility The Utility package contains different utility classes used in the Main package
Tribler.Test The Test package contains unit tests for tribler.
Tribler.Test.API The API package contains tests for the API.
Tribler.Test.Category
Tribler.Test.Core This package contains unit tests for the Tribler core.
Tribler.community.allchannel The allchannel package contains the AllChannel community which is used to collect votes for channels, and thereby discover which channels are most popular.
Tribler.community.bartercast4 The bartercast4 package TTTODO: what does this do?
Tribler.community.channel The channel package contains a Dispersy community which is used to implement Channels.
Tribler.community.demers The demers package contains a Dispersy community which can be used to verify the speed of message dissemination
Tribler.community.multichain
Tribler.community.search The search package contains a Dispersy community which is used to implement decentralized search in Tribler.
Tribler.community.template The template package contains Example files for communities
Tribler.community.tunnel The Tunnel community package

6.2 Maintenance

Inside the Resources folder, there is a .xml file that can be opened in Draw.io, where it can be adapted/altered as
needed.

6.2. Maintenance 25

https://www.draw.io

Tribler Documentation, Release 6.6

26 Chapter 6. Architectural Structure

CHAPTER 7

Tribler REST API

7.1 Overview

The Tribler REST API allows you to create your own applications with the channels, torrents and other data that
can be found in Tribler. Moreover, you can control Tribler and add data to Tribler using various endpoints. This
documentation explains the format and structure of the endpoints that can be found in this API. Note that this API is
currently under development and more endpoints will be added over time.

7.2 Making requests

The API has been built using Twisted Web. Requests go over HTTP where GET requests should be used when data
is fetched from the Tribler core and POST requests should be used if data in the core is manipulated (such as adding
a torrent or removing a download). Responses of the requests are in JSON format. Tribler should be running either
headless or with the GUI before you can use this API.

Some requests require one or more parameters. These parameters are passed using the JSON format. An example of
performing a request with parameters using the curl command line tool can be found below:

curl -X PUT http://localhost:8085/mychannel/rssfeeds/http%3A%2F%2Frssfeed.com%2Frss.xml

7.3 Error handling

If an unhandled exception occurs the response will have code HTTP 500 and look like this:

{
"error": {

"handled": False,
"code": "SomeException",
"message": "Human readable error message"

}
}

If a valid request of a client caused a recoverable error the response will have code HTTP 500 and look like this:

{
"error": {

"handled": True,
"code": "DuplicateChannelNameError",

27

http://twistedmatrix.com/trac/wiki/TwistedWeb

Tribler Documentation, Release 6.6

"message": "Channel name already exists: foo"
}

}

7.4 Download states

There are various download states possible which are returned when fetching downloads. These states are explained
in the table below.

DLSTA-
TUS_ALLOCATING_DISKSPACE

Libtorrent is allocating disk space for the download

DLSTA-
TUS_WAITING4HASHCHECK

The download is waiting for the hash check to be performed

DLSTA-
TUS_HASHCHECKING

Libtorrent is checking the hashes of the download

DLSTA-
TUS_DOWNLOADING

The torrent is being downloaded

DLSTATUS_SEEDING The torrent has been downloaded and is now being seeded to other peers
DLSTATUS_STOPPED The torrent has stopped downloading, either because the downloading has

completed or the user has stopped the download
DLSTA-
TUS_STOPPED_ON_ERROR

The torrent has stopped because an error occurred

DLSTATUS_METADATA The torrent information is being fetched from the DHT
DLSTATUS_CIRCUITS The (anonymous) download is building circuits

7.5 Endpoints

7.5.1 Discovered channels

class Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredEndpoint(session)
This class is responsible for requests regarding the discovered channels.

render_GET(_)

GET /channels/discovered

A GET request to this endpoint returns all channels discovered in Tribler.

Example request:

curl -X GET http://localhost:8085/channels/discovered

Example response:

{
"channels": [{

"id": 3,
"dispersy_cid": "da69aaad39ccf468aba2ab9177d5f8d8160135e6",
"name": "My fancy channel",
"description": "A description of this fancy channel",
"subscribed": False,
"votes": 23,

28 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

"torrents": 3,
"spam": 5,
"modified": 14598395,
"can_edit": True

}, ...]
}

render_PUT(request)

PUT /channels/discovered

Create your own new channel. The passed mode and descriptions are optional. Valid modes include:
‘open’, ‘semi-open’ or ‘closed’. By default, the mode of the new channel is ‘closed’.

Example request:

curl -X PUT http://localhost:8085/channels/discovered
--data "name=fancy name&description=fancy description&mode=open"

Example response:

{
"added": 23

}

statuscode 500 if a channel with the specified name already exists.

class Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredSpecificEndpoint(session,
cid)

This class is responsible for dispatching requests to perform operations in a specific discovered channel.

render_GET(request)

GET /channels/discovered/(string: channelid)

Return the name, description and identifier of a channel.

Example request:

curl -X GET http://localhost:8085/channels/discovered/4a9cfc7ca9d15617765f4151dd9fae94c8f3ba11

Example response:

{
"overview": {

"name": "My Tribler channel",
"description": "A great collection of open-source movies",
"identifier": "4a9cfc7ca9d15617765f4151dd9fae94c8f3ba11"

}
}

statuscode 404 if your channel has not been created (yet).

7.5. Endpoints 29

Tribler Documentation, Release 6.6

7.5.2 Subscribed channels

class Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsModifySubscriptionEndpoint(session,
cid)

This class is responsible for methods that modify the list of RSS feed URLs (adding/removing feeds).

render_DELETE(request)

DELETE /channels/subscribed/(string: channelid)

Unsubscribe from a specific channel. Returns error 404 if you are not subscribed to this channel.

Example request:

curl -X DELETE http://localhost:8085/channels/subscribed/da69aaad39ccf468aba2ab9177d5f8d8160135e6

Example response:

{
"unsubscribed" : True

}

statuscode 404 if you are not subscribed to the specified channel.

render_PUT(request)

PUT /channels/subscribed/(string: channelid)

Subscribe to a specific channel. Returns error 409 if you are already subscribed to this channel.

Example request:

curl -X PUT http://localhost:8085/channels/subscribed/da69aaad39ccf468aba2ab9177d5f8d8160135e6

Example response:

{
"subscribed" : True

}

statuscode 409 (conflict) if you are already subscribed to the specified channel.

class Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsSubscribedEndpoint(session)
This class is responsible for requests regarding the subscriptions to channels.

render_GET(_)

GET /channels/subscribed

Returns all the channels the user is subscribed to.

Example request:

curl -X GET http://localhost:8085/channels/subscribed

Example response:

30 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

{
"subscribed": [{

"id": 3,
"dispersy_cid": "da69aaad39ccf468aba2ab9177d5f8d8160135e6",
"name": "My fancy channel",
"description": "A description of this fancy channel",
"subscribed": True,
"votes": 23,
"torrents": 3,
"spam": 5,
"modified": 14598395,
"can_edit": True,

}, ...]
}

7.5.3 Popular channels

7.5.4 My channel

class Tribler.Core.Modules.restapi.channels.my_channel_endpoint.MyChannelEndpoint(session)
This class is responsible for managing requests regarding your channel.

render_GET(request)

GET /mychannel

Return the name, description and identifier of your channel. This endpoint returns a 404 HTTP response
if you have not created a channel (yet).

Example request:

curl -X GET http://localhost:8085/mychannel

Example response:

{
"overview": {

"name": "My Tribler channel",
"description": "A great collection of open-source movies",
"identifier": "4a9cfc7ca9d15617765f4151dd9fae94c8f3ba11"

}
}

statuscode 404 if your channel has not been created (yet).

render_POST(request)

POST /mychannel

Modify the name and/or the description of your channel. This endpoint returns a 404 HTTP response if
you have not created a channel (yet).

Example request:

7.5. Endpoints 31

Tribler Documentation, Release 6.6

curl -X POST http://localhost:8085/mychannel
--data "name=My fancy playlist&description=This playlist contains some random movies"

Example response:

{
"modified": True

}

statuscode 404 if your channel has not been created (yet).

7.5.5 RSS Feeds

class Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelModifyRssFeedEndpoint(session,
cid,
feed_url)

This class is responsible for methods that modify the list of RSS feed URLs (adding/removing feeds).

render_DELETE(request)

DELETE /channels/discovered/(string: channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml

Delete a RSS feed from your channel. Returns error 404 if the RSS feed that is being removed does not
exist. Note that the rss feed url should be URL-encoded.

Example request:

curl -X DELETE http://localhost:8085/channels/discovered/abcd/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml

Example response:

{
"removed": True

}

statuscode 404 if the specified RSS URL is not in your feed list.

render_PUT(request)

PUT /channels/discovered/(string: channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml

Add a RSS feed to your channel. Returns error 409 if the supplied RSS feed already exists. Note that the
rss feed url should be URL-encoded.

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcd/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml

Example response:

{
"added": True

}

32 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

statuscode 409 (conflict) if the specified RSS URL is already present in your feeds.

class Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRecheckFeedsEndpoint(session,
cid)

This class is responsible for handling requests regarding refreshing rss feeds in your channel.

render_POST(request)

POST /channels/discovered/(string: channelid)/recheckfeeds

Rechecks all rss feeds in your channel. Returns error 404 if you channel does not exist.

Example request:

curl -X POST http://localhost:8085/channels/discovered/recheckrssfeeds

Example response:

{
"rechecked": True

}

statuscode 404 if you have not created a channel.

class Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRssFeedsEndpoint(session,
cid)

This class is responsible for handling requests regarding rss feeds in a channel.

render_GET(request)

GET /channels/discovered/(string: channelid)/rssfeeds

Returns the RSS feeds in your channel.

curl -X GET http://localhost:8085/channels/discovered/abcd/rssfeeds

Example response:

{
"rssfeeds": [{

"url": "http://rssprovider.com/feed.xml",
}, ...]

}

7.5.6 Torrents

class Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelModifyTorrentEndpoint(session,
cid,
path)

This class is responsible for methods that modify the list of torrents (adding/removing torrents).

render_DELETE(request)

DELETE /channels/discovered/(string: channelid)/torrents/(string: torrent infohash)

Remove a torrent with a given infohash from a given channel.

7.5. Endpoints 33

Tribler Documentation, Release 6.6

Example request:

curl -X DELETE http://localhost:8085/channels/discovered/abcdefg/torrents/
97d2d8f5d37e56cfaeaae151d55f05b077074779

Example response:

{
"removed": True

}

statuscode 404 if the channel is not found or if the torrent is not found in the specified
channel

render_PUT(request)

PUT /channels/discovered/(string: channelid)/torrents/http%3A%2F%2Ftest.com%2Ftest.torrent

Add a torrent by magnet or url to your channel. Returns error 500 if something is wrong with the torrent
file and DuplicateTorrentFileError if already added to your channel (except with magnet links).

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcdefg/torrents/
http%3A%2F%2Ftest.com%2Ftest.torrent --data "description=nice video"

Example response:

{
"added": "http://test.com/test.torrent"

}

statuscode 404 if your channel does not exist.

statuscode 500 if the specified torrent is already in your channel.

class Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelsTorrentsEndpoint(session,
cid)

This class is responsible for managing requests regarding torrents in a channel.

render_GET(request)

GET /channels/discovered/(string: channelid)/torrents

A GET request to this endpoint returns all discovered torrents in a specific channel. The size of the torrent
is in number of bytes. The last_tracker_check value will be 0 if we did not check the tracker state of the
torrent yet. Optionally, we can disable the family filter for this particular request by passing the following
flag: - disable_filter: whether the family filter should be disabled for this request (1 = disabled)

Example request:

curl -X GET http://localhost:8085/channels/discovered/da69aaad39ccf468aba2ab9177d5f8d8160135e6/torrents

Example response:

34 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

{
"torrents": [{

"id": 4,
"infohash": "97d2d8f5d37e56cfaeaae151d55f05b077074779",
"name": "Ubuntu-16.04-desktop-amd64",
"size": 8592385,
"category": "other",
"num_seeders": 42,
"num_leechers": 184,
"last_tracker_check": 1463176959

}, ...]
}

statuscode 404 if the specified channel cannot be found.

render_PUT(request)

PUT /channels/discovered/(string: channelid)/torrents

Add a torrent file to your own channel. Returns error 500 if something is wrong with the torrent file and
DuplicateTorrentFileError if already added to your channel. The torrent data is passed as base-64 encoded
string. The description is optional.

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcd/torrents
--data "torrent=...&description=funny video"

Example response:

{
"added": True

}

statuscode 404 if your channel does not exist.

statuscode 500 if the passed torrent data is corrupt.

7.5.7 Torrent info

class Tribler.Core.Modules.restapi.torrentinfo_endpoint.TorrentInfoEndpoint(session)
This endpoint is responsible for handing all requests regarding torrent info in Tribler.

render_GET(request)

GET /torrentinfo

A GET request to this endpoint will return information from a torrent found at a provided URI. This URI
can either represent a file location, a magnet link or a HTTP(S) url. - torrent: the URI of the torrent file
that should be downloaded. This parameter is required.

Example request:

curl -X PUT http://localhost:8085/torrentinfo?torrent=file:/home/me/test.torrent

7.5. Endpoints 35

Tribler Documentation, Release 6.6

Example response:

{"metainfo": <torrent metainfo dictionary>}

7.5.8 Playlists

class Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsModifyPlaylistsEndpoint(session,
cid,
playlist_id)

This class is responsible for requests that are modifying a specific playlist in a channel.

render_DELETE(request)

DELETE /channels/discovered/(string: channelid)/playlists/(int: playlistid)

Remove a playlist with a specified playlist id.

Example request:

curl -X DELETE http://localhost:8085/channels/discovered/abcd/playlists/3

Example response:

{
"removed": True

}

statuscode 404 if the specified channel (community) or playlist does not exist

render_POST(request)

POST /channels/discovered/(string: channelid)/playlists/(int: playlistid)

Edit a specific playlist. The new name and description should be passed as parameter.

Example request:

curl -X POST http://localhost:8085/channels/discovered/abcd/playlists/3
--data "name=test&description=my test description"

Example response:

{
"modified": True

}

statuscode 404 if the specified channel (community) or playlist does not exist or if the

name and description parameters are missing.

class Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsPlaylistsEndpoint(session,
cid)

This class is responsible for handling requests regarding playlists in a channel.

render_GET(request)

36 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

GET /channels/discovered/(string: channelid)/playlists

Returns the playlists in your channel. Returns error 404 if you have not created a channel.

Example request:

curl -X GET http://localhost:8085/channels/discovered/abcd/playlists

Example response:

{
"playlists": [{

"id": 1,
"name": "My first playlist",
"description": "Funny movies",
"torrents": [{

"id": 4,
"infohash": "97d2d8f5d37e56cfaeaae151d55f05b077074779",
"name": "Ubuntu-16.04-desktop-amd64",
"size": 8592385,
"category": "other",
"num_seeders": 42,
"num_leechers": 184,
"last_tracker_check": 1463176959

}, ...]
}, ...]

}

statuscode 404 if you have not created a channel.

render_PUT(request)

PUT /channels/discovered/(string: channelid)/playlists

Create a new empty playlist with a given name and description. The name and description parameters are
mandatory.

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcd/playlists
--data "name=My fancy playlist&description=This playlist contains some random movies"

Example response:

{
"created": True

}

statuscode 400 if you are missing the name and/or description parameter

statuscode 404 if the specified channel does not exist

7.5. Endpoints 37

Tribler Documentation, Release 6.6

7.5.9 Downloads

class Tribler.Core.Modules.restapi.downloads_endpoint.DownloadExportTorrentEndpoint(session,
in-
fo-
hash)

This class is responsible for requests that are exporting a download to a .torrent file.

render_GET(request)

GET /download/(string: infohash)/torrent

A GET request to this endpoint returns the .torrent file associated with the specified download.

Example request:

curl -X GET http://localhost:8085/downloads/4344503b7e797ebf31582327a5baae35b11bda01/torrent

Example response:

The contents of the .torrent file.

class Tribler.Core.Modules.restapi.downloads_endpoint.DownloadsEndpoint(session)
This endpoint is responsible for all requests regarding downloads. Examples include getting all downloads,
starting, pausing and stopping downloads.

render_GET(request)

GET /downloads?get_peers=(boolean: get_peers)&get_pieces=(boolean: get_pieces)

A GET request to this endpoint returns all downloads in Tribler, both active and inactive. The progress is
a number ranging from 0 to 1, indicating the progress of the specific state (downloading, checking etc).
The download speeds have the unit bytes/sec. The size of the torrent is given in bytes. The estimated time
assumed is given in seconds. A description of the possible download statuses can be found in the REST
API documentation.

Detailed information about peers and pieces is only requested when the get_peers and/or get_pieces flag is
set. Note that setting this flag has a negative impact on performance and should only be used in situations
where this data is required.

Example request:

curl -X GET http://localhost:8085/downloads?get_peers=1&get_pieces=1

Example response:

{
"downloads": [{

"name": "Ubuntu-16.04-desktop-amd64",
"progress": 0.31459265,
"infohash": "4344503b7e797ebf31582327a5baae35b11bda01",
"speed_down": 4938.83,
"speed_up": 321.84,
"status": "DLSTATUS_DOWNLOADING",
"size": 89432483,
"eta": 38493,
"num_peers": 53,
"num_seeds": 93,
"files": [{

38 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

"index": 0,
"name": "ubuntu.iso",
"size": 89432483,
"included": True

}, ...],
"trackers": [{

"url": "http://ipv6.torrent.ubuntu.com:6969/announce",
"status": "Working",
"peers": 42

}, ...],
"hops": 1,
"anon_download": True,
"safe_seeding": True,
"max_upload_speed": 0,
"max_download_speed": 0,
"destination": "/home/user/file.txt",
"availability": 1.234,
"peers": [{

"ip": "123.456.789.987",
"dtotal": 23,
"downrate": 0,
"uinterested": False,
"wstate": "\",
"optimistic": False,
...

}, ...],
"total_pieces": 420,
"vod_mod": True,
"vod_prebuffering_progress": 0.89,
"vod_prebuffering_progress_consec": 0.86

}
}, ...]

render_PUT(request)

PUT /downloads

A PUT request to this endpoint will start a download from a provided URI. This URI can either represent
a file location, a magnet link or a HTTP(S) url. - anon_hops: the number of hops for the anonymous
download. 0 hops is equivalent to a plain download - safe_seeding: whether the seeding of the download
should be anonymous or not (0 = off, 1 = on) - destination: the download destination path of the torrent -
torrent: the URI of the torrent file that should be downloaded. This parameter is required.

Example request:

curl -X PUT http://localhost:8085/downloads
--data "anon_hops=2&safe_seeding=1&destination=/my/dest/on/disk/&uri=file:/home/me/test.torrent

Example response:

{"started": True, "infohash": "4344503b7e797ebf31582327a5baae35b11bda01"}

7.5.10 Search

class Tribler.Core.Modules.restapi.search_endpoint.SearchCompletionsEndpoint(session)
This class is responsible for managing requests regarding the search completions terms of a query.

7.5. Endpoints 39

Tribler Documentation, Release 6.6

render_GET(request)

GET /search/completions?q=(string: query)

A GET request to this endpoint will return autocompletion suggestions for the given query. For instance,
when searching for “pioneer”, this endpoint might return “pioneer one” if that torrent is present in the local
database. This endpoint can be used to suggest terms to users while they type their search query.

Example request:

curl -X GET http://localhost:8085/search/completions?q=pioneer

Example response:

{
"completions": ["pioneer one", "pioneer movie"]

}

class Tribler.Core.Modules.restapi.search_endpoint.SearchEndpoint(session)
This endpoint is responsible for searching in channels and torrents present in the local Tribler database. It also
fires a remote search in the Dispersy communities.

render_GET(request)

GET /search?q=(string: query)

A GET request to this endpoint will create a search. Results are returned over the events endpoint, one by
one. First, the results available in the local database will be pushed. After that, incoming Dispersy results
are pushed. The query to this endpoint is passed using the url, i.e. /search?q=pioneer.

Example request:

curl -X GET http://localhost:8085/search?q=tribler

Example response:

{
"type": "search_result_channel",
"query": "test",
"result": {

"id": 3,
"dispersy_cid": "da69aaad39ccf468aba2ab9177d5f8d8160135e6",
"name": "My fancy channel",
"description": "A description of this fancy channel",
"subscribed": True,
"votes": 23,
"torrents": 3,
"spam": 5,
"modified": 14598395,
"can_edit": False

}
}

40 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

7.5.11 State info

class Tribler.Core.Modules.restapi.state_endpoint.StateEndpoint(session)
This endpoint is responsible for handing all requests regarding the state of Tribler.

render_GET(request)

GET /state

A GET request to this endpoint returns the current state of the Tribler core. There are three states: -
STARTING: The core of Tribler is starting - UPGRADING: The upgrader is active - STARTED: The
Tribler core has started

Example request:

curl -X GET http://localhost:8085/state

Example response:

{
"state": "STARTED",
"last_exception": None

}

7.5.12 Variables

class Tribler.Core.Modules.restapi.variables_endpoint.VariablesEndpoint(session)
This endpoint is responsible for handing all requests regarding runtime-defined variables in Tribler such as ports.

render_GET(request)

GET /variables

A GET request to this endpoint returns all the runtime-defined variables in Tribler.

Example request:

curl -X GET http://localhost:8085/variables

Example response:

{
"variables": {

"ports": {
"video~port": 1234,
"tunnel_community~socks5_listen_ports~1": 1235,
...

},
...

}
}

7.5. Endpoints 41

Tribler Documentation, Release 6.6

7.5.13 Settings

class Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint(session)
This endpoint is reponsible for handing all requests regarding settings and configuration.

parse_setting(section, option, value)
Set a specific Tribler setting. Throw a ValueError if this setting is not available.

parse_settings_dict(settings_dict, depth=1, root_key=None)
Parse the settings dictionary. Throws an error if the options dictionary seems to be invalid (i.e. there are
keys not available in the configuration or the depth of the dictionary is too high.

render_GET(request)

GET /settings

A GET request to this endpoint returns all the session settings that can be found in Tribler. Please note that
a port with a value of -1 means that the port is randomly assigned at startup.

Example request:

curl -X GET http://localhost:8085/settings

Example response:

{
"settings": {

"barter_community": {
"enabled": false

},
"libtorrent": {

"anon_listen_port": -1,
...

},
...

}
}

render_POST(request)

POST /settings

A POST request to this endpoint will update Tribler settings. A JSON-dictionary should be passed as body
contents.

Example request:

curl -X POST http://localhost:8085/settings --data "{"

Example response:

{
"modified": True

}

42 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

7.5.14 Events

class Tribler.Core.Modules.restapi.events_endpoint.EventsEndpoint(session)

Important events in Tribler are returned over the events endpoint. This connection is held open. Each
event is pushed over this endpoint in the form of a JSON dictionary. Each JSON dictionary contains
a type field that indicates the type of the event. Individual events are separated by a newline character
(

).

Currently, the following events are implemented:

•events_start: An indication that the event socket is opened and that the server is ready to push
events. This includes information about whether Tribler has started already or not and the version
of Tribler used.

•search_result_channel: This event dictionary contains a search result with a channel that has
been found.

•search_result_torrent: This event dictionary contains a search result with a torrent that has been
found.

•upgrader_started: An indication that the Tribler upgrader has started.

•upgrader_finished: An indication that the Tribler upgrader has finished.

•upgrader_tick: An indication that the state of the upgrader has changed. The dictionary contains
a human-readable string with the new state.

•watch_folder_corrupt_torrent: This event is emitted when a corrupt .torrent file in the watch
folder is found. The dictionary contains the name of the corrupt torrent file.

•new_version_available: This event is emitted when a new version of Tribler is available.

•tribler_started: An indicator that Tribler has completed the startup procedure and is ready to use.

•channel_discovered: An indicator that Tribler has discovered a new channel. The event contains
the name, description and dispersy community id of the discovered channel.

•torrent_discovered: An indicator that Tribler has discovered a new torrent. The event contains
the infohash, name, list of trackers, list of files with name and size, and the dispersy community
id of the discovered torrent.

•torrent_finished: A specific torrent has finished downloading. The event includes the infohash
and name of the torrent that has finished downloading.

•torrent_error: An error has occurred during the download process of a specific torrent. The event
includes the infohash and a readable string of the error message.

•tribler_exception: An exception has occurred in Tribler. The event includes a readable string of
the error.

render_GET(request)

GET /events

A GET request to this endpoint will open the event connection.

Example request:

curl -X GET http://localhost:8085/events

7.5. Endpoints 43

Tribler Documentation, Release 6.6

7.5.15 Debug

7.5.16 Statistics

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsCommunitiesEndpoint(session)
This class handles requests regarding Dispersy communities statistics.

render_GET(request)

GET /statistics/communities

A GET request to this endpoint returns general statistics of active Dispersy communities.

Example request:

curl -X GET http://localhost:8085/statistics/communities

Example response:

{
"community_statistics": [{

"identifier": "48d04e922dec4430daf22400c9d4cc5a3a53b27d",
"member": "a66ebac9d88a239ef348a030d5ed3837868fc06d",
"candidates": 43,
"global_time": 42,
"classification", "ChannelCommunity",
"packets_sent": 43,
"packets_received": 89,
...

}, { ... }]
}

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsDispersyEndpoint(session)
This class handles requests regarding Dispersy statistics.

render_GET(request)

GET /statistics/dispersy

A GET request to this endpoint returns general statistics in Dispersy. The returned runtime is the amount
of seconds that Dispersy is active. The total uploaded and total downloaded statistics are in bytes.

Example request:

curl -X GET http://localhost:8085/statistics/dispersy

Example response:

{
"dispersy_statistics": {

"wan_address": "123.321.456.654:1234",
"lan_address": "192.168.1.2:1435",
"connection": "unknown",
"runtime": 859.34,
"total_downloaded": 538.53,
"total_uploaded": 983.24,
"packets_sent": 43,

44 Chapter 7. Tribler REST API

Tribler Documentation, Release 6.6

"packets_received": 89,
...

}
}

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsEndpoint(session)
This endpoint is responsible for handing requests regarding statistics in Tribler.

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsTriblerEndpoint(session)
This class handles requests regarding Tribler statistics.

render_GET(request)

GET /statistics/tribler

A GET request to this endpoint returns general statistics in Tribler. The size of the Tribler database is in
bytes.

Example request:

curl -X GET http://localhost:8085/statistics/tribler

Example response:

{
"tribler_statistics": {

"num_channels": 1234,
"database_size": 384923,
"torrent_queue_stats": [{

"failed": 2,
"total": 9,
"type": "TFTP",
"pending": 1,
"success": 6

}, ...]
}

}

7.5. Endpoints 45

Tribler Documentation, Release 6.6

46 Chapter 7. Tribler REST API

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

47

Tribler Documentation, Release 6.6

48 Chapter 8. Indices and tables

HTTP Routing Table

/channels
GET /channels/discovered, 28
GET /channels/discovered/(string:

channelid), 29
GET /channels/discovered/(string:

channelid)/playlists, 36
GET /channels/discovered/(string:

channelid)/rssfeeds, 33
GET /channels/discovered/(string:

channelid)/torrents, 34
GET /channels/subscribed, 30
POST /channels/discovered/(string:

channelid)/playlists/(int:
playlistid), 36

POST /channels/discovered/(string:
channelid)/recheckfeeds, 33

PUT /channels/discovered, 29
PUT /channels/discovered/(string:

channelid)/playlists, 37
PUT /channels/discovered/(string:

channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml,
32

PUT /channels/discovered/(string:
channelid)/torrents, 35

PUT /channels/discovered/(string:
channelid)/torrents/http%3A%2F%2Ftest.com%2Ftest.torrent,
34

PUT /channels/subscribed/(string:
channelid), 30

DELETE /channels/discovered/(string:
channelid)/playlists/(int:
playlistid), 36

DELETE /channels/discovered/(string:
channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml,
32

DELETE /channels/discovered/(string:
channelid)/torrents/(string:
torrent infohash), 33

DELETE /channels/subscribed/(string:
channelid), 30

/download
GET /download/(string:

infohash)/torrent, 38

/downloads
PUT /downloads, 39

/downloads?get_peers=(boolean:
get_peers)&get_pieces=(boolean:
get_pieces)
GET /downloads?get_peers=(boolean:

get_peers)&get_pieces=(boolean:
get_pieces), 38

/events
GET /events, 43

/mychannel
GET /mychannel, 31
POST /mychannel, 31

/search
GET /search/completions?q=(string:query),

40

/search?q=(string:query)
GET /search?q=(string:query), 40

/settings
GET /settings, 42
POST /settings, 42

/state
GET /state, 41

/statistics
GET /statistics/communities, 44
GET /statistics/dispersy, 44
GET /statistics/tribler, 45

49

Tribler Documentation, Release 6.6

/torrentinfo
GET /torrentinfo, 35

/variables
GET /variables, 41

50 HTTP Routing Table

Python Module Index

t
Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint,

28
Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint,

36
Tribler.Core.Modules.restapi.channels.channels_popular_endpoint,

31
Tribler.Core.Modules.restapi.channels.channels_rss_endpoint,

32
Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint,

30
Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint,

33
Tribler.Core.Modules.restapi.channels.my_channel_endpoint,

31
Tribler.Core.Modules.restapi.downloads_endpoint,

38
Tribler.Core.Modules.restapi.events_endpoint,

43
Tribler.Core.Modules.restapi.search_endpoint,

39
Tribler.Core.Modules.restapi.settings_endpoint,

42
Tribler.Core.Modules.restapi.state_endpoint,

41
Tribler.Core.Modules.restapi.statistics_endpoint,

44
Tribler.Core.Modules.restapi.torrentinfo_endpoint,

35
Tribler.Core.Modules.restapi.variables_endpoint,

41

51

Tribler Documentation, Release 6.6

52 Python Module Index

Index

C
ChannelModifyRssFeedEndpoint (class in Tri-

bler.Core.Modules.restapi.channels.channels_rss_endpoint),
32

ChannelModifyTorrentEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_torrents_endpoint),
33

ChannelsDiscoveredEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_discovered_endpoint),
28

ChannelsDiscoveredSpecificEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_discovered_endpoint),
29

ChannelsModifyPlaylistsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_playlists_endpoint),
36

ChannelsModifySubscriptionEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_subscription_endpoint),
30

ChannelsPlaylistsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_playlists_endpoint),
36

ChannelsRecheckFeedsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_rss_endpoint),
33

ChannelsRssFeedsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_rss_endpoint),
33

ChannelsSubscribedEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_subscription_endpoint),
30

ChannelsTorrentsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_torrents_endpoint),
34

D
DownloadExportTorrentEndpoint (class in Tri-

bler.Core.Modules.restapi.downloads_endpoint),
38

DownloadsEndpoint (class in Tri-
bler.Core.Modules.restapi.downloads_endpoint),
38

E
EventsEndpoint (class in Tri-

bler.Core.Modules.restapi.events_endpoint),
43

M
MyChannelEndpoint (class in Tri-

bler.Core.Modules.restapi.channels.my_channel_endpoint),
31

P
parse_setting() (Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint

method), 42
parse_settings_dict() (Tri-

bler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint
method), 42

R
render_DELETE() (Tri-

bler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsModifyPlaylistsEndpoint
method), 36

render_DELETE() (Tri-
bler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelModifyRssFeedEndpoint
method), 32

render_DELETE() (Tri-
bler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsModifySubscriptionEndpoint
method), 30

render_DELETE() (Tri-
bler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelModifyTorrentEndpoint
method), 33

render_GET() (Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredEndpoint
method), 28

render_GET() (Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredSpecificEndpoint
method), 29

render_GET() (Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsPlaylistsEndpoint
method), 36

53

Tribler Documentation, Release 6.6

render_GET() (Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRssFeedsEndpoint
method), 33

render_GET() (Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsSubscribedEndpoint
method), 30

render_GET() (Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelsTorrentsEndpoint
method), 34

render_GET() (Tribler.Core.Modules.restapi.channels.my_channel_endpoint.MyChannelEndpoint
method), 31

render_GET() (Tribler.Core.Modules.restapi.downloads_endpoint.DownloadExportTorrentEndpoint
method), 38

render_GET() (Tribler.Core.Modules.restapi.downloads_endpoint.DownloadsEndpoint
method), 38

render_GET() (Tribler.Core.Modules.restapi.events_endpoint.EventsEndpoint
method), 43

render_GET() (Tribler.Core.Modules.restapi.search_endpoint.SearchCompletionsEndpoint
method), 39

render_GET() (Tribler.Core.Modules.restapi.search_endpoint.SearchEndpoint
method), 40

render_GET() (Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint
method), 42

render_GET() (Tribler.Core.Modules.restapi.state_endpoint.StateEndpoint
method), 41

render_GET() (Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsCommunitiesEndpoint
method), 44

render_GET() (Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsDispersyEndpoint
method), 44

render_GET() (Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsTriblerEndpoint
method), 45

render_GET() (Tribler.Core.Modules.restapi.torrentinfo_endpoint.TorrentInfoEndpoint
method), 35

render_GET() (Tribler.Core.Modules.restapi.variables_endpoint.VariablesEndpoint
method), 41

render_POST() (Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsModifyPlaylistsEndpoint
method), 36

render_POST() (Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRecheckFeedsEndpoint
method), 33

render_POST() (Tribler.Core.Modules.restapi.channels.my_channel_endpoint.MyChannelEndpoint
method), 31

render_POST() (Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint
method), 42

render_PUT() (Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredEndpoint
method), 29

render_PUT() (Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsPlaylistsEndpoint
method), 37

render_PUT() (Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelModifyRssFeedEndpoint
method), 32

render_PUT() (Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsModifySubscriptionEndpoint
method), 30

render_PUT() (Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelModifyTorrentEndpoint
method), 34

render_PUT() (Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelsTorrentsEndpoint
method), 35

render_PUT() (Tribler.Core.Modules.restapi.downloads_endpoint.DownloadsEndpoint
method), 39

S
SearchCompletionsEndpoint (class in Tri-

bler.Core.Modules.restapi.search_endpoint),
39

SearchEndpoint (class in Tri-
bler.Core.Modules.restapi.search_endpoint),
40

SettingsEndpoint (class in Tri-
bler.Core.Modules.restapi.settings_endpoint),
42

StateEndpoint (class in Tri-
bler.Core.Modules.restapi.state_endpoint),
41

StatisticsCommunitiesEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
44

StatisticsDispersyEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
44

StatisticsEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
45

StatisticsTriblerEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
45

T
TorrentInfoEndpoint (class in Tri-

bler.Core.Modules.restapi.torrentinfo_endpoint),
35

Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint
(module), 28

Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint
(module), 36

Tribler.Core.Modules.restapi.channels.channels_popular_endpoint
(module), 31

Tribler.Core.Modules.restapi.channels.channels_rss_endpoint
(module), 32

Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint
(module), 30

Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint
(module), 33

Tribler.Core.Modules.restapi.channels.my_channel_endpoint
(module), 31

Tribler.Core.Modules.restapi.downloads_endpoint (mod-
ule), 38

Tribler.Core.Modules.restapi.events_endpoint (module),
43

Tribler.Core.Modules.restapi.search_endpoint (module),
39

Tribler.Core.Modules.restapi.settings_endpoint (module),
42

Tribler.Core.Modules.restapi.state_endpoint (module), 41

54 Index

Tribler Documentation, Release 6.6

Tribler.Core.Modules.restapi.statistics_endpoint (mod-
ule), 44

Tribler.Core.Modules.restapi.torrentinfo_endpoint (mod-
ule), 35

Tribler.Core.Modules.restapi.variables_endpoint (mod-
ule), 41

V
VariablesEndpoint (class in Tri-

bler.Core.Modules.restapi.variables_endpoint),
41

Index 55

	Tribler
	Obtaining the latest release
	Obtaining support
	Contributing
	Setting up your development environment
	Running Tribler from the repository
	Packaging Tribler
	Submodule notes

	How to contribute to the Tribler project?
	Checking out the Stabilization Branch
	Reporting bugs
	Pull requests

	Branching model and development methodology
	Branching model
	Tags
	Setting up the local repo
	Working on new features or fixes
	Getting your changes merged upstream
	Misc guidelines

	Setting up your development environment
	Windows
	OS X
	Linux

	Building Tribler
	Windows
	OS X
	Debian and derivatives
	Other Unixes

	Architectural Structure
	Modules
	Maintenance

	Tribler REST API
	Overview
	Making requests
	Error handling
	Download states
	Endpoints

	Indices and tables
	HTTP Routing Table
	Python Module Index

