

libnacl: Python bindings to NaCl

Contents:

	Public Key Encryption
	SecretKey Object

	PublicKey Object

	Saving Keys to Disk

	Secret Key Encryption

	Signing and Verifying Messages
	Saving Keys to Disk

	Dual Key Management
	DualKey Object

	Saving Keys to Disk

	Utility Functions
	Loading Saved Keys

	Salsa Key

	Nonce Routines

	Raw Public Key Encryption

	Raw Secret Key Encryption

	Raw Message Signatures

	Raw Hash Functions

	Raw Generic Hash (Blake2b) Functions

	Release notes
	libnacl 1.0.0 Release Notes

	libnacl 1.1.0 Release Notes

	libnacl 1.2.0 Release Notes

	libnacl 1.3.0 Release Notes

	libnacl 1.3.1 Release Notes

	libnacl 1.3.2 Release Notes

	libnacl 1.3.3 Release Notes

	libnacl 1.3.4 Release Notes

	libnacl 1.4.0 Release Notes

Indices and tables

	Index

	Module Index

	Search Page

Public Key Encryption

Unlike traditional means for public key asymmetric encryption, the nacl
encryption systems are very high speed. The CurveCP network protocol for
instance only uses public key encryption for all transport.

Public key encryption is very simple, as is evidenced with this communication
between Alice and Bob:

import libnacl.public

Define a message to send
msg = b'You\'ve got two empty halves of coconut and you\'re bangin\' \'em together.'

Generate the key pairs for Alice and bob, if secret keys already exist
they can be passed in, otherwise new keys will be automatically generated
bob = libnacl.public.SecretKey()
alice = libnacl.public.SecretKey()

Create the boxes, this is an object which represents the combination of the
sender's secret key and the receiver's public key
bob_box = libnacl.public.Box(bob.sk, alice.pk)
alice_box = libnacl.public.Box(alice.sk, bob.pk)

Bob's box encrypts messages for Alice
bob_ctxt = bob_box.encrypt(msg)
Alice's box decrypts messages from Bob
bclear = alice_box.decrypt(bob_ctxt)
Alice can send encrypted messages which only Bob can decrypt
alice_ctxt = alice_box.encrypt(msg)
aclear = alice_box.decrypt(alice_ctxt)

Note

Every encryption routine requires a nonce. The nonce is a 24 char string
that must never be used twice with the same keypair. If no nonce is passed
in then a nonce is generated based on random data.
If it is desired to generate a nonce manually this can be done by passing
it into the encrypt method.

SecretKey Object

The SecretKey object is used to manage both public and secret keys, this object
contains a number of methods for both convenience and utility. The key data is
also available.

Keys

The raw public key is available as SecretKey.sk, to generate a hex encoded
version of the key the sk_hex method is available. The same items are
available for the public keys:

import libnacl.public

fred = libnacl.public.SecretKey()

raw_sk = fred.sk
hex_sk = fred.hex_sk()

raw_pk = fred.pk
hex_pk = fred.hex_pk()

By saving only the binary keys in memory libnacl ensures that the minimal
memory footprint is needed.

PublicKey Object

To manage only the public key end, a public key object exists:

import libnacl.public

tom = libnacl.public.PublicKey(tom_public_key_hex)

raw_pk = tom.pk
hex_pk = tom.hex_pk()

Saving Keys to Disk

All libnacl key objects can be safely saved to disk via the save method. This
method changes the umask before saving the key file to ensure that the saved
file can only be read by the user creating it and cannot be written to.

import libnacl.public

fred = libnacl.public.SecretKey()
fred.save('/etc/nacl/fred.key')

Secret Key Encryption

Secret key encryption is the method of using a single key for both encryption
and decryption of messages. One of the classic examples from history of secret
key, or symetric, encryption is the Enigma machine.

The SecretBox class in libnacl.secret makes this type of encryption very easy
to execute:

msg = b'But then of course African swallows are not migratory.'
Create a SecretBox object, if not passed in the secret key is
Generated purely from random data
box = libnacl.secret.SecretBox()
Messages can now be safely encrypted
ctxt = box.encrypt(msg)
An addition box can be created from the original box secret key
box2 = libnacl.secret.SecretBox(box.sk)
Messages can now be easily encrypted and decrypted
clear1 = box.decrypt(ctxt)
clear2 = box2.decrypt(ctxt)
ctxt2 = box2.encrypt(msg)
clear3 = box.decrypt(ctxt2)

Note

Every encryption routine requires a nonce. The nonce is a 24 char string
that must never be used twice with the same keypair. If no nonce is passed
in then a nonce is generated based on random data.
If it is desired to generate a nonce manually this can be done by passing
it into the encrypt method.

Signing and Verifying Messages

The nacl libs have the capability to sign and verify messages. Please be
advised that public key encrypted messages do not need to be signed, the
nacl box construct verifies the validity of the sender.

To sign and verify messages use the Signer and Verifier classes:

import libnacl.sign

msg = (b'Well, that\'s no ordinary rabbit. That\'s the most foul, '
 b'cruel, and bad-tempered rodent you ever set eyes on.')
Create a Signer Object, if the key seed value is not passed in the
signing keys will be automatically generated
signer = libnacl.sign.Signer()
Sign the message, the signed string is the message itself plus the
signature
signed = signer.sign(msg)
If only the signature is desired without the message:
signature = signer.signature(msg)
To create a verifier pass in the verify key:
veri = libnacl.sign.Verifier(signer.hex_vk())
Verify the message!
verified = veri.verify(signed)
verified2 = veri.verify(signature + msg)

Saving Keys to Disk

All libnacl key objects can be safely saved to disk via the save method. This
method changes the umask before saving the key file to ensure that the saved
file can only be read by the user creating it and cannot be written to.

import libnacl.sign

signer = libnacl.sign.Signer()
signer.save('/etc/nacl/signer.key')

Dual Key Management

The libnacl library abstracts a “Dual Key” model. The Dual Key creates a single
key management object that can be used for both signing and encrypting, it
generates and maintains a Curve25519 encryption key pair and an ED25519 signing
keypair. All methods for encryption and signing work with and from Dual Keys.

To encrypt messages using Dual Keys:

import libnacl.dual

Define a message to send
msg = b"You've got two empty halves of coconut and you're bangin' 'em together."

Generate the key pairs for Alice and bob, if secret keys already exist
they can be passed in, otherwise new keys will be automatically generated
bob = libnacl.dual.DualSecret()
alice = libnacl.dual.DualSecret()

Create the boxes, this is an object which represents the combination of the
sender's secret key and the receiver's public key
bob_box = libnacl.public.Box(bob.sk, alice.pk)
alice_box = libnacl.public.Box(alice.sk, bob.pk)

Bob's box encrypts messages for Alice
bob_ctxt = bob_box.encrypt(msg)
Alice's box decrypts messages from Bob
bclear = alice_box.decrypt(bob_ctxt)
Alice can send encrypted messages which only Bob can decrypt
alice_ctxt = alice_box.encrypt(msg)
aclear = alice_box.decrypt(alice_ctxt)

Note

Every encryption routine requires a nonce. The nonce is a 24 char string
that must never be used twice with the same keypair. If no nonce is passed
in then a nonce is generated based on random data.
If it is desired to generate a nonce manually this can be done by passing
it into the encrypt method.

DualKey Object

The DualKey object is used to manage both public and secret keys, this object
contains a number of methods for both convenience and utility. The key data is
also available.

Keys

The raw public key is available as DualKey.pk, to generate a hex encoded
version of the key the pk_hex method is available:

import libnacl.dual

fred = libnacl.dual.DualKey()

raw_sk = fred.sk
hex_sk = fred.hex_sk()

raw_pk = fred.pk
hex_pk = fred.hex_pk()

By saving only the binary keys in memory libnacl ensures that the minimal
memory footprint is needed.

Saving Keys to Disk

All libnacl key objects can be safely saved to disk via the save method. This
method changes the umask before saving the key file to ensure that the saved
file can only be read by the user creating it and cannot be written to.
When using dual keys the encrypting and signing keys will be safed togather in
a single file.

import libnacl.dual

fred = libnacl.dual.DualKey()
fred.save('/etc/nacl/fred.key')

Utility Functions

The libnacl system comes with a number of utility functions, these functions
are made available to make some of the aspects of encryption and key management
easier. These range from nonce generation to loading saved keys.

Loading Saved Keys

After keys are saved using the key save method reloading the keys is easy. The
libnacl.utils.load_key function will detect what type of key object saved
said key and then create the object from the key and return it.

import libnacl.utils

key_obj = libnacl.utils.load_key('/etc/keys/bob.key')

The load_key and save routines also support inline key serialization. The
default is json but msgpack is also supported.

Salsa Key

A simple function that will return a random byte string suitable for use in
SecretKey encryption.

import libnacl.utils

key = libnacl.utils.salsa_key()

This routine is only required with the raw encryption functions, as the
libnacl.secret.SecretBox will generate the key automatically.

Nonce Routines

A few functions are available to help with creating nonce values, these
routines are available because there is some debate about what the best approach
is.

We recommend a pure random string for the nonce which is returned from
rand_nonce, but some have expressed a desire to create nonces which are
designed to avoid re-use by more than simply random data and therefore
the time_nonce function is also available.

Raw Public Key Encryption

Note

While these routines are perfectly safe, higher level convenience
wrappers are under development to make these routines easier.

Public key encryption inside the nacl library has been constructed to ensure
that all cryptographic routines are executed correctly and safely.

The public key encryption is executed via the functions which begin with
crypto_box and can be easily executed.

First generate a public key and secret key keypair for the two communicating
parties, who for tradition’s sake, will be referred to as Alice and Bob:

import libnacl

alice_pk, alice_sk = libnacl.crypto_keypair()
bob_pk, bob_sk = libnacl.crypto_keypair()

Once the keys have been generated a cryptographic box needs to be created. The
cryptographic box takes the party’s secret key and the receiving party’s public
key. These are used to create a message which is both signed and encrypted.

Before creating the box a nonce is required. The nonce is a 24 character
string which should only be used for this message, the nonce should never be
reused. This means that the nonce needs to be generated in such a way that
the probability of reusing the nonce string with the same keypair is very
low. The libnacl wrapper ships with a convenience function which generates a
nonce from random bytes:

import libnacl.utils
nonce = libnacl.utils.rand_nonce()

Now, with a nonce a cryptographic box can be created, Alice will send a
message:

msg = 'Quiet, quiet. Quiet! There are ways of telling whether she is a witch.'
box = libnacl.crypto_box(msg, nonce, bob_pk, alice_sk)

Now with a box in hand it can be decrypted by Bob:

clear_msg = libnacl.crypto_box_open(box, nonce, alice_pk, bob_sk)

The trick here is that the box AND the nonce need to be sent to Bob, so he can
decrypt the message. The nonce can be safely sent to Bob in the clear.

To bring it all together:

import libnacl
import libnacl.utils

alice_pk, alice_sk = libnacl.crypto_keypair()
bob_pk, bob_sk = libnacl.crypto_keypair()

nonce = libnacl.utils.rand_nonce()

msg = 'Quiet, quiet. Quiet! There are ways of telling whether she is a witch.'
box = libnacl.crypto_box(msg, nonce, bob_pk, alice_sk)

clear_msg = libnacl.crypto_box_open(box, nonce, alice_pk, bob_sk)

Raw Secret Key Encryption

Note

While these routines are perfectly safe, higher level convenience
wrappers are under development to make these routines easier.

Secret key encryption is high speed encryption based on a shared secret key.

Note

The nacl library uses the salsa20 stream encryption cipher for secret key
encryption, more information about the salsa20 cipher can be found here:
http://cr.yp.to/salsa20.html

The means of encryption assumes that the two sides of the conversation both
have access to the same shared secret key. First generate a secret key, libnacl
provides a convenience function for the generation of this key called
libnacl.utils.salsa_key, then generate a nonce, a new nonce should be used
every time a new message is encrypted. A convenience function to create a unique
nonce based on random bytes:

import libnacl
import libnacl.utils

key = libnacl.utils.salsa_key()
nonce = libnacl.utils.rand_nonce()

With the key and nonce in hand, the cryptographic secret box can now be
generated:

msg = 'Who are you who are so wise in the ways of science?'
box = libnacl.crypto_secretbox(msg, nonce, key)

Now the message can be decrypted on the other end. The nonce and the key are
both required to decrypt:

clear_msg = libnacl.crypto_secretbox_open(box, nonce, key)

When placed all together the sequence looks like this:

import libnacl
import libnacl.utils

key = libnacl.utils.salsa_key()
nonce = libnacl.utils.rand_nonce()

msg = 'Who are you who are so wise in the ways of science?'
box = libnacl.crypto_secretbox(msg, nonce, key)

clear_msg = libnacl.crypto_secretbox_open(box, nonce, key)

Raw Message Signatures

Note

While these routines are perfectly safe, higher level convenience
wrappers are under development to make these routines easier.

Signing messages ensures that the message itself has not been tampered with.
The application of a signature to a message is something that is is
automatically applied when using the public key encryption and is not a
required step when sending encrypted messages. This document however is
intended to illustrate how to sign plain text messages.

The nacl libs use a separate keypair for signing then is used for
public key encryption, it is a high performance key signing algorithm
called ed25519, more information on ed25519 can be found here:
http://ed25519.cr.yp.to/

The sign messages first generate a signing keypair, this constitutes the
signing key which needs to be kept secret, and the verify key which is
made available to message recipients.

import libnacl

vk, sk = libnacl.crypto_sign_keypair()

With the signing keypair in hand a message can be signed:

msg = 'And that, my liege, is how we know the Earth to be banana-shaped.'
signed = libnacl.crypto_sign(msg, sk)

The signed message is really just the plain text of the message prepended with
the signature. The crypto_sign_open function will read the signed message
and return me original message without the signature:

orig = libnacl.crypto_sign_open(signed, vk)

Put all together:

import libnacl

vk, sk = libnacl.crypto_sign_keypair()

msg = 'And that, my liege, is how we know the Earth to be banana-shaped.'
signed = libnacl.crypto_sign(msg, sk)

orig = libnacl.crypto_sign_open(signed, vk)

Raw Hash Functions

The nacl library comes with sha256 and sha512 hashing libraries. They do not
seem to offer any benefit over python’s hashlib, but for completeness they are
included. Creating a hash of a message is very simple:

import libnacl

msg = 'Is there someone else up there we could talk to?'
h_msg = libnacl.crypto_hash(msg)

crypto_hash defaults to sha256, sha512 is also available:

import libnacl

msg = 'Is there someone else up there we could talk to?'
h_msg = libnacl.crypto_hash_sha512(msg)

Raw Generic Hash (Blake2b) Functions

The nacl library comes with blake hashing libraries.

More information on Blake can be found here:
https://blake2.net

The blake2b hashing algorithm is a keyed hashing algorithm, which allows
for a key to be associated with a hash. Blake can be executed with or without
a key.

With a key (they key can should be between 16 and 64 bytes):

import libnacl

msg = 'Is there someone else up there we could talk to?'
key = libnacl.randombytes(32)
h_msg = libnacl.crypto_generichash(msg, key)

Without a key:

import libnacl

msg = 'Is there someone else up there we could talk to?'
h_msg = libnacl.crypto_genrichash(msg)

Release notes

	libnacl 1.0.0 Release Notes

	libnacl 1.1.0 Release Notes

	libnacl 1.2.0 Release Notes

	libnacl 1.3.0 Release Notes

	libnacl 1.3.1 Release Notes

	libnacl 1.3.2 Release Notes

	libnacl 1.3.3 Release Notes

	libnacl 1.3.4 Release Notes

	libnacl 1.4.0 Release Notes

libnacl 1.0.0 Release Notes

This is the first stable release of libnacl, the python bindings for Daniel J.
Bernstein’s nacl library via libsodium or tweetnacl.

NaCl Base Functions

This release features direct access to the underlying functions from nacl
exposed via importing libnacl. These functions are fully documented and can
be safely used directly.

libnacl 1.1.0 Release Notes

This release introduces the addition of high level classes that make using
NaCl even easier.

High level NaCl

The addition of the high level classes give a more pythonic abstraction to
using the underlying NaCl cryptography.

These classes can be found in libnacl.public, libnacl.sign and libnacl.secret.

Easy Nonce Generation

The new classes will automatically generate a nonce value per encrypted
message. The default nonce which is generated can be found in
libnacl.utils.time_nonce.

libnacl 1.2.0 Release Notes

This release introduces the DualKey class, secure key saving and loading, as
well as enhancements to the time_nonce function.

Dual Key Class

Dual Keys are classes which can encrypt and sign data. These classes generate
and maintain both Curve25519 and Ed25519 keys, as well as all methods for both
encryption and signing.

Time Nonce Improvements

The original time nonce routine used the first 20 chars of the 24 char nonce
for the microsecond timestamp (based on salt’s jid), leaving 4 chars for random
data. This new nonce uses far fewer chars for the timestamp by hex encoding the
float of microseconds into just 13 chars, leaving 11 chars of random data. This
makes the default nonce safer and more secure.

libnacl 1.3.0 Release Notes

This release removes the time_nonce function and replaces it with the
rand_nonce function.

libnacl 1.3.1 Release Notes

Bring back a safe time_nonce function.

libnacl 1.3.2 Release Notes

Add detection of the libsodium.so.10 lib created by libsodium 0.6

libnacl 1.3.3 Release Notes

Fix issue and add tests for bug where saving and loading a signing key caused
a stack trace, se issue #18

libnacl 1.3.4 Release Notes

	Change the default ctype values to be more accurate and efficient

	Update soname detection on Linux for libsodium 0.7.0

	Make soname detection a little more future proof

libnacl 1.4.0 Release Notes

Blake Hash Support

Initial support has been added for the blake2b hash algorithm

Misc Fixes

	Fix issue with keyfile saves on windows

	Fix libsodium detection for Ubuntu manual installs and Windows dll detection

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 libnacl: Python bindings to NaCl

 		
 Public Key Encryption

 		
 SecretKey Object

 		
 Keys

 		
 PublicKey Object

 		
 Saving Keys to Disk

 		
 Secret Key Encryption

 		
 Signing and Verifying Messages

 		
 Saving Keys to Disk

 		
 Dual Key Management

 		
 DualKey Object

 		
 Keys

 		
 Saving Keys to Disk

 		
 Utility Functions

 		
 Loading Saved Keys

 		
 Salsa Key

 		
 Nonce Routines

 		
 Raw Public Key Encryption

 		
 Raw Secret Key Encryption

 		
 Raw Message Signatures

 		
 Raw Hash Functions

 		
 Raw Generic Hash (Blake2b) Functions

 		
 Release notes

 		
 libnacl 1.0.0 Release Notes

 		
 NaCl Base Functions

 		
 libnacl 1.1.0 Release Notes

 		
 High level NaCl

 		
 Easy Nonce Generation

 		
 libnacl 1.2.0 Release Notes

 		
 Dual Key Class

 		
 Time Nonce Improvements

 		
 libnacl 1.3.0 Release Notes

 		
 libnacl 1.3.1 Release Notes

 		
 libnacl 1.3.2 Release Notes

 		
 libnacl 1.3.3 Release Notes

 		
 libnacl 1.3.4 Release Notes

 		
 libnacl 1.4.0 Release Notes

 		
 Blake Hash Support

 		
 Misc Fixes

_static/comment-bright.png

_static/ajax-loader.gif

