

Welcome to treelib’s documentation!

Redistributed under Apache License (2.0) since version 1.3.0.

Tree data structure [http://en.wikipedia.org/wiki/Tree_%28data_structure%29]
is an important data structure in computer programming languages. It has
important applications where hierarchical data connections are present such as
computer folder structure and decision-tree algorithm in Machine Learning. Thus
treelib [https://github.com/caesar0301/pyTree] is created to provide an
efficient implementation of tree data structure in Python.

The main features of treelib includes:

	Simple to use in both python 2 and 3.

	Efficient operation of node indexing with the benefit of dictionary type.

	Support various tree operations like traversing, insertion, deletion, node moving, shallow/deep copying, subtree cutting etc.

	Support user-defined data payload to accelerate your model construction.

	Has pretty tree showing and text/json dump for pretty show and offline analysis.

Contents:

	Install

	Useful APIs
	Node Objects

	Tree Objects

	Examples
	Basic Usage

	API Examples

	Advanced Usage

Indices and tables

	Index

	Module Index

	Search Page

Install

The rapidest way to install treelib is using the package management tools like
easy_install or pip with command

$ sudo easy_install -U treelib

or the setup script

$ sudo python setup.py install

Note: With the package management tools, the hosted version may be falling
behind current development branch on Github [https://github.com/caesar0301/pyTree]. If you encounter some problems, try
the freshest version on Github or open issues [https://github.com/caesar0301/pyTree/issues] to let me know your problem.

Useful APIs

This treelib is a simple module containing only two classes: Node and
Tree. Tree is a self-contained structure with some nodes and connected by
branches. One tree has and only has one root, while a node (except root) has
several children and merely one parent.

Note: To solve the string compatibility between Python 2.x and 3.x, treelib
follows the way of porting Python 3.x to 2/3. That means, all strings are
manipulated as unicode and you do not need u’‘ prefix anymore. The impacted
functions include str(), show() and save2file() routines. But if your
data contains non-ascii characters and Python 2.x is used, you have to trigger
the compatibility by declaring unicode_literals in the code:

>>> from __future__ import unicode_literals

Node Objects

	
class treelib.Node([tag[, identifier[, expanded]]])

	A Node object contains basic properties such as node identifier,
node tag, parent node, children nodes etc., and some operations for a node.

Class attributes are:

	
Node.ADD

	Addition mode for method update_fpointer().

	
Node.DELETE

	Deletion mode for method update_fpointer().

	
Node.INSERT

	Behave in the same way with Node.ADD since version 1.1.

Instance attributes:

	
node.identifier

	The unique ID of a node within the scope of a tree. This attribute can be
accessed and modified with . and = operator respectively.

	
node.tag

	The readable node name for human. This attribute can be accessed and
modified with . and = operator respectively.

	
node.bpointer

	The parent ID of a node. This attribute can be
accessed and modified with . and = operator respectively.

	
node.fpointer

	With a getting operator, a list of IDs of node’s children is obtained. With
a setting operator, the value can be list, set, or dict. For list or set,
it is converted to a list type by the package; for dict, the keys are
treated as the node IDs.

Instance methods:

	
node.is_leaf()

	Check if the node has children. Return False if the fpointer is empty
or None.

	
node.is_root()

	Check if the node is the root of present tree.

	
node.update_bpointer(nid)

	Set the parent (indicated by the nid parameter) of a node.

	
node.update_fpointer(nid, mode=Node.ADD)

	Update the children list with different modes: addition (Node.ADD or
Node.INSERT) and deletion (Node.DELETE).

Tree Objects

	
class node.Tree(tree=None, deep=False)

	The Tree object defines the tree-like structure based on
Node objects. A new tree can be created from scratch without any
parameter or a shallow/deep copy of another tree. When deep=True, a
deepcopy operation is performed on feeding tree parameter and more
memory is required to create the tree.

Class attributes are:

	
Tree.ROOT

	Default value for the level parameter in tree’s methods.

	
Tree.DEPTH

	The depth-first search mode for tree.

	
Tree.WIDTH

	The width-first search mode for tree.

	
Tree.ZIGZAG

	The ZIGZAG search [http://en.wikipedia.org/wiki/Tree_%28data_structure%29] mode for tree.

Instance attributes:

	
tree.root

	Get or set the ID of the root. This attribute can be accessed and modified
with . and = operator respectively.

Instance methods:

	
tree.size()

	Get the number of nodes in this tree.

	
tree.contains(nid)

	Check if the tree contains given node.

	
tree.parent(nid)

	Obtain specific node’s parent (Node instance). Return None if the parent is
None or does not exist in the tree.

	
tree.all_nodes()

	Get the list of all the nodes randomly belonging to this tree.

	
tree.depth()

	Get depth of the tree.

	
tree.leaves(nid)

	Get leaves from given node.

	
tree.add_node(node[, parent])

	Add a new node object to the tree and make the parent as the root by
default.

	
tree.create_node(tag[, identifier[, parent]])

	Create a new node and add it to this tree.

	
tree.expand_tree([nid[, mode[, filter[, key[, reverse]]]]]])

	Traverse the tree nodes with different modes. nid refers to the
expanding point to start; mode refers to the search mode (Tree.DEPTH,
Tree.WIDTH); filter refers to the function of one variable to act on
the Node object; key, reverse are present to sort
:class:Node objects at the same level.

	
tree.get_node(nid)

	Get the object of the node with ID of nid An alternative way is using
‘[]’ operation on the tree. But small difference exists between them: the
get_node() will return None if nid is absent, whereas ‘[]’ will raise
KeyError.

	
tree.is_branch(nid)

	Get the children (only sons) list of the node with ID == nid.

	
tree.siblings(nid)

	Get all the siblings of given nid.

	
tree.move_node(source, destination)

	Move node (source) from its parent to another parent (destination).

	
tree.paste(nid, new_tree)

	Paste a new tree to an existing tree, with nid becoming the parent of the
root of this new tree.

	
tree.remove_node(nid)

	Remove a node and free the memory along with its successors.

	
tree.link_past_node(nid)

	Remove a node and link its children to its parent (root is not allowed).

	
tree.rsearch(nid[, filter])

	Search the tree from nid to the root along links reservedly. Parameter
filter refers to the function of one variable to act on the
Node object.

	
tree.show([nid[, level[, idhidden[, filter[, key[, reverse[, line_type]]]]]]]])

	Print the tree structure in hierarchy style. nid refers to the
expanding point to start; level refers to the node level in the tree
(root as level 0); idhidden refers to hiding the node ID when printing;
filter refers to the function of one variable to act on the
Node object; key, reverse are present to sort
Node object in the same level.

You have three ways to output your tree data, i.e., stdout with show(),
plain text file with save2file(), and json string with to_json(). The
former two use the same backend to generate a string of tree structure in a
text graph.

	Version >= 1.2.7a: you can also spicify the line_type parameter (now

	supporting ‘ascii’ [default], ‘ascii-ex’, ‘ascii-exr’, ‘ascii-em’,
‘ascii-emv’, ‘ascii-emh’) to the change graphical form.

	
tree.subtree(nid)

	Return a soft copy of the subtree with nid being the root. The softness
means all the nodes are shared between subtree and the original.

	
tree.remove_subtree(nid)

	Return a subtree with nid being the root, and remove all nodes in the
subtree from the original one.

	
tree.save2file(filename[, nid[, level[, idhidden[, filter[, key[, reverse]]]]]]])

	Save the tree into file for offline analysis.

	
tree.to_json()

	To format the tree in a JSON format.

Examples

Basic Usage

>>> from treelib import Node, Tree
>>> tree = Tree()
>>> tree.create_node("Harry", "harry") # root node
>>> tree.create_node("Jane", "jane", parent="harry")
>>> tree.create_node("Bill", "bill", parent="harry")
>>> tree.create_node("Diane", "diane", parent="jane")
>>> tree.create_node("Mary", "mary", parent="diane")
>>> tree.create_node("Mark", "mark", parent="jane")
>>> tree.show()
Harry
├── Bill
└── Jane
 ├── Diane
 │ └── Mary
 └── Mark

API Examples

Example 1: Expand a tree with specific mode (Tree.DEPTH [default],
Tree.WIDTH, Tree.ZIGZAG).

>>> print(','.join([tree[node].tag for node in \
 tree.expand_tree(mode=Tree.DEPTH)]))
Harry,Bill,Jane,Diane,Mary,Mark

Example 2: Expand tree with custom filter.

>>> print(','.join([tree[node].tag for node in \
 tree.expand_tree(filter = lambda x: \
 x.identifier != 'diane')]))
Harry,Bill,Jane,Mark

Example 3: Get a subtree with the root of ‘diane’.

>>> sub_t = tree.subtree('diane')
>>> sub_t.show()
Diane
└── Mary

Example 4: Paste a new tree to the original one.

>>> new_tree = Tree()
>>> new_tree.create_node("n1", 1) # root node
>>> new_tree.create_node("n2", 2, parent=1)
>>> new_tree.create_node("n3", 3, parent=1)
>>> tree.paste('bill', new_tree)
>>> tree.show()
Harry
├── Bill
│ └── n1
│ ├── n2
│ └── n3
└── Jane
 ├── Diane
 │ └── Mary
 └── Mark

Example 5: Remove the existing node from the tree

>>> tree.remove_node(1)
>>> tree.show()
Harry
├── Bill
└── Jane
 ├── Diane
 │ └── Mary
 └── Mark

Example 6: Move a node to another parent.

>>> tree.move_node('mary', 'harry')
>>> tree.show()
Harry
├── Bill
├── Jane
│ ├── Diane
│ └── Mark
└── Mary

Example 7: Get the height of the tree.

>>> tree.depth()
2

Example 8: Get the level of a node.

>>> node = tree.get_node("bill")
>>> tree.depth(node)
1

	Example 9: Print or dump tree structure. For example, the same tree in

	basic example can be printed with ‘ascii-em’:

>>> tree.show(line_type="ascii-em")
Harry
╠══ Bill
╠══ Jane
║ ╠══ Diane
║ ╚══ Mark
╚══ Mary

In the JSON form, to_json() takes optional parameter with_data to trigger if
the data field is appended into JSON string. For example,

>>> print(tree.to_json(with_data=True))
{"Harry": {"data": null, "children": [{"Bill": {"data": null}}, {"Jane": {"data": null, "children": [{"Diane": {"data": null}}, {"Mark": {"data": null}}]}}, {"Mary": {"data": null}}]}}

Advanced Usage

Sometimes, you need trees to store your own data. The newsest version of
treelib supports .data variable to store whatever you want. For
example, to define a flower tree with your own data:

>>> class Flower(object): \
 def __init__(self, color): \
 self.color = color

You can create a flower tree now:

>>> ftree = Tree()
>>> ftree.create_node("Root", "root")
>>> ftree.create_node("F1", "f1", parent='root', data=Flower("white"))
>>> ftree.create_node("F2", "f2", parent='root', data=Flower("red"))

Notes: Before version 1.2.5, you may need to inherit and modify the behaviors of tree. Both are supported since then. For flower example,

>>> class FlowerNode(treelib.Node): \
 def __init__(self, color): \
 self.color = color
>>> # create a new node
>>> fnode = FlowerNode("white")

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 treelib	
 Tree data structure in Python.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

A

 	
 	ADD (treelib.Node attribute)

 	
 	add_node() (in module tree)

 	all_nodes() (in module tree)

B

 	
 	bpointer (in module node)

C

 	
 	contains() (in module tree)

 	
 	create_node() (in module tree)

D

 	
 	DELETE (treelib.Node attribute)

 	
 	DEPTH (node.Tree attribute)

 	depth() (in module tree)

E

 	
 	expand_tree() (in module tree)

F

 	
 	fpointer (in module node)

G

 	
 	get_node() (in module tree)

I

 	
 	identifier (in module node)

 	INSERT (treelib.Node attribute)

 	
 	is_branch() (in module tree)

 	is_leaf() (in module node)

 	is_root() (in module node)

L

 	
 	leaves() (in module tree)

 	
 	link_past_node() (in module tree)

M

 	
 	move_node() (in module tree)

N

 	
 	Node (class in treelib)

P

 	
 	parent() (in module tree)

 	
 	paste() (in module tree)

R

 	
 	remove_node() (in module tree)

 	remove_subtree() (in module tree)

 	
 	root (in module tree)

 	ROOT (node.Tree attribute)

 	rsearch() (in module tree)

S

 	
 	save2file() (in module tree)

 	show() (in module tree)

 	
 	siblings() (in module tree)

 	size() (in module tree)

 	subtree() (in module tree)

T

 	
 	tag (in module node)

 	to_json() (in module tree)

 	
 	Tree (class in node)

 	treelib (module)

U

 	
 	update_bpointer() (in module node)

 	
 	update_fpointer() (in module node)

W

 	
 	WIDTH (node.Tree attribute)

Z

 	
 	ZIGZAG (node.Tree attribute)

treelib

	treelib package
	Submodules

	treelib.node module

	treelib.tree module

	Module contents

treelib package

Submodules

treelib.node module

treelib.tree module

Module contents

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to treelib’s documentation!

 		
 Install

 		
 Useful APIs

 		
 Node Objects

 		
 Tree Objects

 		
 Examples

 		
 Basic Usage

 		
 API Examples

 		
 Advanced Usage

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

