

Traitlets

	Release:

	5.14.2

	Date:

	Mar 12, 2024

	home:

	https://github.com/ipython/traitlets

	pypi-repo:

	https://pypi.org/project/traitlets/

	docs:

	https://traitlets.readthedocs.io/

	license:

	Modified BSD License

Traitlets is a framework that lets Python classes have attributes with type
checking, dynamically calculated default values, and ‘on change’ callbacks.

The package also includes a mechanism to use traitlets for configuration,
loading values from files or from command line arguments. This is a distinct
layer on top of traitlets, so you can use traitlets in your code without using
the configuration machinery.

	Using Traitlets
	Default values, and checking type and value

	observe

	Validation and Coercion

	Custom Events

	Trait Types
	TraitType

	Numbers

	Strings

	Containers

	Classes and instances

	Miscellaneous

	Defining new trait types
	MyTrait

	Traitlets API reference
	HasTraits

	Dynamic default values

	Callbacks when trait attributes change

	Validating proposed changes

	Configurable objects with traitlets.config
	The main concepts

	Configuration objects and files

	Configuration files inheritance

	Class based configuration inheritance

	Command-line arguments

	Design requirements

	Traitlets config API reference
	Configurable

	SingletonConfigurable

	LoggingConfigurable

	JSONFileConfigLoader

	Application

	Config

	LazyConfigValue

	KVArgParseConfigLoader

	Utils
	import_item()

	signature_has_traits()

	Links

	Migration from Traitlets 4.0 to Traitlets 4.1
	Separation of metadata and keyword arguments in TraitType constructors

	Deprecation of on_trait_change

	The new @observe decorator

	dynamic defaults generation with decorators

	Deprecation of magic method for cross-validation

	Backward-compatible upgrades

	Changes in Traitlets
	5.14.2

	5.14.1

	5.14.0

	5.13.0

	5.12.0

	5.11.2

	5.11.1

	5.11.0

	5.10.1

	5.10.0

	5.9.0

	5.8.1

	5.8.0

	5.7.1

	5.7.0

	5.6.0

	5.5.0

	5.4.0

	5.3.0

	5.2.2

	5.2.1

	5.2.0

	5.1.1

	5.1.0

	5.0.5

	5.0.4

	5.0.3

	5.0.2

	5.0.0

	4.3

	4.3.2

	4.3.1

	4.3.0

	4.2

	4.2.2 - 2016-07-01

	4.2.1 - 2016-03-14

	4.2.0 - 2016-03-14

	4.1 - 2016-01-15

	4.0 - 2015-06-19

Using Traitlets

In short, traitlets let the user define classes that have

	Attributes (traits) with type checking and dynamically computed
default values

	Traits emit change events when attributes are modified

	Traitlets perform some validation and allow coercion of new trait
values on assignment. They also allow the user to define custom
validation logic for attributes based on the value of other
attributes.

Default values, and checking type and value

At its most basic, traitlets provides type checking, and dynamic default
value generation of attributes on traitlets.HasTraits
subclasses:

from traitlets import HasTraits, Int, Unicode, default
import getpass

class Identity(HasTraits):
 username = Unicode()

 @default("username")
 def _default_username(self):
 return getpass.getuser()

class Foo(HasTraits):
 bar = Int()

foo = Foo(bar="3") # raises a TraitError

TraitError: The 'bar' trait of a Foo instance must be an int,
but a value of '3' <class 'str'> was specified

observe

Traitlets implement the observer pattern

class Foo(HasTraits):
 bar = Int()
 baz = Unicode()

foo = Foo()

def func(change):
 print(change["old"])
 print(change["new"]) # as of traitlets 4.3, one should be able to
 # write print(change.new) instead

foo.observe(func, names=["bar"])
foo.bar = 1 # prints '0\n 1'
foo.baz = "abc" # prints nothing

When observers are methods of the class, a decorator syntax can be used.

class Foo(HasTraits):
 bar = Int()
 baz = Unicode()

 @observe("bar")
 def _observe_bar(self, change):
 print(change["old"])
 print(change["new"])

Validation and Coercion

Custom Cross-Validation

Each trait type (Int, Unicode, Dict etc.) may have its own
validation or coercion logic. In addition, we can register custom
cross-validators that may depend on the state of other attributes.

Basic Example: Validating the Parity of a Trait

from traitlets import HasTraits, TraitError, Int, Bool, validate

class Parity(HasTraits):
 data = Int()
 parity = Int()

 @validate("data")
 def _valid_data(self, proposal):
 if proposal["value"] % 2 != self.parity:
 raise TraitError("data and parity should be consistent")
 return proposal["value"]

 @validate("parity")
 def _valid_parity(self, proposal):
 parity = proposal["value"]
 if parity not in [0, 1]:
 raise TraitError("parity should be 0 or 1")
 if self.data % 2 != parity:
 raise TraitError("data and parity should be consistent")
 return proposal["value"]

parity_check = Parity(data=2)

Changing required parity and value together while holding cross validation
with parity_check.hold_trait_notifications():
 parity_check.data = 1
 parity_check.parity = 1

Notice how all of the examples above return
proposal['value']. Returning a value
is necessary for validation to work
properly, since the new value of the trait will be the
return value of the function decorated by @validate. If this
function does not have any return statement, then the returned
value will be None, instead of what we wanted (which is proposal['value']).

However, we recommend that custom cross-validators don’t modify the state of
the HasTraits instance.

Advanced Example: Validating the Schema

The List and Dict trait types allow the validation of nested
properties.

from traitlets import HasTraits, Dict, Bool, Unicode

class Nested(HasTraits):
 value = Dict(
 per_key_traits={"configuration": Dict(value_trait=Unicode()), "flag": Bool()}
)

n = Nested()
n.value = dict(flag=True, configuration={}) # OK
n.value = dict(flag=True, configuration="") # raises a TraitError.

However, for deeply nested properties it might be more appropriate to use an
external validator:

import jsonschema

value_schema = {
 "type": "object",
 "properties": {
 "price": {"type": "number"},
 "name": {"type": "string"},
 },
}

from traitlets import HasTraits, Dict, TraitError, validate, default

class Schema(HasTraits):
 value = Dict()

 @default("value")
 def _default_value(self):
 return dict(name="", price=1)

 @validate("value")
 def _validate_value(self, proposal):
 try:
 jsonschema.validate(proposal["value"], value_schema)
 except jsonschema.ValidationError as e:
 raise TraitError(e)
 return proposal["value"]

s = Schema()
s.value = dict(name="", price="1") # raises a TraitError

Holding Trait Cross-Validation and Notifications

Sometimes it may be impossible to transition between valid states for a
HasTraits instance by changing attributes one by one. The
hold_trait_notifications context manager can be used to hold the custom
cross validation until the context manager is released. If a validation error
occurs, changes are rolled back to the initial state.

Custom Events

Finally, trait types can emit other events types than trait changes. This
capability was added so as to enable notifications on change of values in
container classes. The items available in the dictionary passed to the observer
registered with observe depends on the event type.

Trait Types

	
class traitlets.TraitType

	The base class for all trait types.

	
__init__(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, allow_none: bool [https://docs.python.org/3/library/functions.html#bool] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Declare a traitlet.

If allow_none is True, None is a valid value in addition to any
values that are normally valid. The default is up to the subclass.
For most trait types, the default value for allow_none is False.

If read_only is True, attempts to directly modify a trait attribute raises a TraitError.

If help is a string, it documents the attribute’s purpose.

Extra metadata can be associated with the traitlet using the .tag() convenience method
or by using the traitlet instance’s .metadata dictionary.

	
from_string(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → G | None [https://docs.python.org/3/library/constants.html#None]

	Get a value from a config string

such as an environment variable or CLI arguments.

Traits can override this method to define their own
parsing of config strings.

See also

item_from_string

New in version 5.0.

Numbers

	
traitlets.Integer

	alias of Int

	
class traitlets.Int

	

	
class traitlets.Long

	On Python 2, these are traitlets for values where the int and long
types are not interchangeable. On Python 3, they are both aliases for
Integer.

In almost all situations, you should use Integer instead of these.

	
class traitlets.Float(default_value: float [https://docs.python.org/3/library/functions.html#float] | Sentinel = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Float(default_value: float [https://docs.python.org/3/library/functions.html#float] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A float trait.

	
class traitlets.Complex(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, allow_none: bool [https://docs.python.org/3/library/functions.html#bool] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait for complex numbers.

	
class traitlets.CInt

	
class traitlets.CLong

	
class traitlets.CFloat

	
class traitlets.CComplex

	Casting variants of the above. When a value is assigned to the attribute,
these will attempt to convert it by calling e.g. value = int(value).

Strings

	
class traitlets.Unicode(default_value: str [https://docs.python.org/3/library/stdtypes.html#str] | Sentinel = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Unicode(default_value: str [https://docs.python.org/3/library/stdtypes.html#str] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait for unicode strings.

	
class traitlets.Bytes(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, allow_none: bool [https://docs.python.org/3/library/functions.html#bool] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait for byte strings.

	
class traitlets.CUnicode

	
class traitlets.CBytes

	Casting variants. When a value is assigned to the attribute, these will
attempt to convert it to their type. They will not automatically encode/decode
between unicode and bytes, however.

	
class traitlets.ObjectName(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, allow_none: bool [https://docs.python.org/3/library/functions.html#bool] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A string holding a valid object name in this version of Python.

This does not check that the name exists in any scope.

	
class traitlets.DottedObjectName(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, allow_none: bool [https://docs.python.org/3/library/functions.html#bool] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A string holding a valid dotted object name in Python, such as A.b3._c

Containers

	
class traitlets.List(trait: List [https://docs.python.org/3/library/typing.html#typing.List][T] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][T] | Set [https://docs.python.org/3/library/typing.html#typing.Set][T] | Sentinel | TraitType[T, Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, default_value: List [https://docs.python.org/3/library/typing.html#typing.List][T] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][T] | Set [https://docs.python.org/3/library/typing.html#typing.Set][T] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = traitlets.Undefined, minlen: int [https://docs.python.org/3/library/functions.html#int] = 0, maxlen: int [https://docs.python.org/3/library/functions.html#int] = 9223372036854775807, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	An instance of a Python list.

	
__init__(trait: List [https://docs.python.org/3/library/typing.html#typing.List][T] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][T] | Set [https://docs.python.org/3/library/typing.html#typing.Set][T] | Sentinel | TraitType[T, Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, default_value: List [https://docs.python.org/3/library/typing.html#typing.List][T] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][T] | Set [https://docs.python.org/3/library/typing.html#typing.Set][T] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = traitlets.Undefined, minlen: int [https://docs.python.org/3/library/functions.html#int] = 0, maxlen: int [https://docs.python.org/3/library/functions.html#int] = 9223372036854775807, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Create a List trait type from a list, set, or tuple.

The default value is created by doing list(default_value),
which creates a copy of the default_value.

trait can be specified, which restricts the type of elements
in the container to that TraitType.

If only one arg is given and it is not a Trait, it is taken as
default_value:

c = List([1, 2, 3])

	Parameters:

	
	trait (TraitType [optional]) – the type for restricting the contents of the Container.
If unspecified, types are not checked.

	default_value (SequenceType [optional]) – The default value for the Trait. Must be list/tuple/set, and
will be cast to the container type.

	minlen (Int [default 0]) – The minimum length of the input list

	maxlen (Int [default sys.maxsize]) – The maximum length of the input list

	
from_string_list(s_list: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) → T | None [https://docs.python.org/3/library/constants.html#None]

	Return the value from a list of config strings

This is where we parse CLI configuration

	
item_from_string(s: str [https://docs.python.org/3/library/stdtypes.html#str], index: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → T | str [https://docs.python.org/3/library/stdtypes.html#str]

	Cast a single item from a string

Evaluated when parsing CLI configuration from a string

	
class traitlets.Set(trait: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, minlen: int [https://docs.python.org/3/library/functions.html#int] = 0, maxlen: int [https://docs.python.org/3/library/functions.html#int] = 9223372036854775807, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	An instance of a Python set.

	
__init__(trait: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, minlen: int [https://docs.python.org/3/library/functions.html#int] = 0, maxlen: int [https://docs.python.org/3/library/functions.html#int] = 9223372036854775807, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Create a Set trait type from a list, set, or tuple.

The default value is created by doing set(default_value),
which creates a copy of the default_value.

trait can be specified, which restricts the type of elements
in the container to that TraitType.

If only one arg is given and it is not a Trait, it is taken as
default_value:

c = Set({1, 2, 3})

	Parameters:

	
	trait (TraitType [optional]) – the type for restricting the contents of the Container.
If unspecified, types are not checked.

	default_value (SequenceType [optional]) – The default value for the Trait. Must be list/tuple/set, and
will be cast to the container type.

	minlen (Int [default 0]) – The minimum length of the input list

	maxlen (Int [default sys.maxsize]) – The maximum length of the input list

	
class traitlets.Tuple(*traits: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	An instance of a Python tuple.

	
__init__(*traits: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Create a tuple from a list, set, or tuple.

Create a fixed-type tuple with Traits:

t = Tuple(Int(), Str(), CStr())

would be length 3, with Int,Str,CStr for each element.

If only one arg is given and it is not a Trait, it is taken as
default_value:

t = Tuple((1, 2, 3))

Otherwise, default_value must be specified by keyword.

	Parameters:

	
	*traits (TraitTypes [optional]) – the types for restricting the contents of the Tuple. If unspecified,
types are not checked. If specified, then each positional argument
corresponds to an element of the tuple. Tuples defined with traits
are of fixed length.

	default_value (SequenceType [optional]) – The default value for the Tuple. Must be list/tuple/set, and
will be cast to a tuple. If traits are specified,
default_value must conform to the shape and type they specify.

	**kwargs – Other kwargs passed to Container

	
class traitlets.Dict(value_trait: TraitType[t.Any, t.Any] | dict [https://docs.python.org/3/library/stdtypes.html#dict][K, V] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = None, per_key_traits: t.Any = None, key_trait: TraitType[t.Any, t.Any] | None [https://docs.python.org/3/library/constants.html#None] = None, default_value: dict [https://docs.python.org/3/library/stdtypes.html#dict][K, V] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = traitlets.Undefined, **kwargs: t.Any)

	An instance of a Python dict.

One or more traits can be passed to the constructor
to validate the keys and/or values of the dict.
If you need more detailed validation,
you may use a custom validator method.

Changed in version 5.0: Added key_trait for validating dict keys.

Changed in version 5.0: Deprecated ambiguous trait, traits args in favor of value_trait, per_key_traits.

	
__init__(value_trait: TraitType[t.Any, t.Any] | dict [https://docs.python.org/3/library/stdtypes.html#dict][K, V] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = None, per_key_traits: t.Any = None, key_trait: TraitType[t.Any, t.Any] | None [https://docs.python.org/3/library/constants.html#None] = None, default_value: dict [https://docs.python.org/3/library/stdtypes.html#dict][K, V] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = traitlets.Undefined, **kwargs: t.Any) → None [https://docs.python.org/3/library/constants.html#None]

	Create a dict trait type from a Python dict.

The default value is created by doing dict(default_value),
which creates a copy of the default_value.

	Parameters:

	
	value_trait (TraitType [optional]) – The specified trait type to check and use to restrict the values of
the dict. If unspecified, values are not checked.

	per_key_traits (Dictionary of {keys:trait types} [optional, keyword-only]) – A Python dictionary containing the types that are valid for
restricting the values of the dict on a per-key basis.
Each value in this dict should be a Trait for validating

	key_trait (TraitType [optional, keyword-only]) – The type for restricting the keys of the dict. If
unspecified, the types of the keys are not checked.

	default_value (SequenceType [optional, keyword-only]) – The default value for the Dict. Must be dict, tuple, or None, and
will be cast to a dict if not None. If any key or value traits are specified,
the default_value must conform to the constraints.

Examples

a dict whose values must be text
>>> d = Dict(Unicode())

d2[‘n’] must be an integer
d2[‘s’] must be text
>>> d2 = Dict(per_key_traits={“n”: Integer(), “s”: Unicode()})

d3’s keys must be text
d3’s values must be integers
>>> d3 = Dict(value_trait=Integer(), key_trait=Unicode())

	
from_string_list(s_list: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Return a dict from a list of config strings.

This is where we parse CLI configuration.

Each item should have the form "key=value".

item parsing is done in item_from_string().

	
item_from_string(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict][K, V]

	Cast a single-key dict from a string.

Evaluated when parsing CLI configuration from a string.

Dicts expect strings of the form key=value.

Returns a one-key dictionary,
which will be merged in from_string_list().

Classes and instances

	
class traitlets.Instance(klass: type [https://docs.python.org/3/library/functions.html#type][T] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Instance(klass: type [https://docs.python.org/3/library/functions.html#type][T] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Instance(klass: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Instance(klass: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait whose value must be an instance of a specified class.

The value can also be an instance of a subclass of the specified class.

Subclasses can declare default classes by overriding the klass attribute

	
__init__(klass: type [https://docs.python.org/3/library/functions.html#type][T] = None, args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = None, kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, allow_none: Literal[False] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	
__init__(klass: type [https://docs.python.org/3/library/functions.html#type][T] = None, args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = None, kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, allow_none: Literal[True] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	
__init__(klass: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = None, kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, allow_none: Literal[False] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	
__init__(klass: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = None, kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, allow_none: Literal[True] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Construct an Instance trait.

This trait allows values that are instances of a particular
class or its subclasses. Our implementation is quite different
from that of enthough.traits as we don’t allow instances to be used
for klass and we handle the args and kw arguments differently.

	Parameters:

	
	klass (class, str [https://docs.python.org/3/library/stdtypes.html#str]) – The class that forms the basis for the trait. Class names
can also be specified as strings, like ‘foo.bar.Bar’.

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Positional arguments for generating the default value.

	kw (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for generating the default value.

	allow_none (bool [https://docs.python.org/3/library/functions.html#bool] [default False]) – Indicates whether None is allowed as a value.

	**kwargs – Extra kwargs passed to ClassBasedTraitType

Notes

If both args and kw are None, then the default value is None.
If args is a tuple and kw is a dict, then the default is
created as klass(*args, **kw). If exactly one of args or kw is
None, the None is replaced by () or {}, respectively.

	
class traitlets.Type(default_value: Sentinel | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., klass: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Type(default_value: Sentinel | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., klass: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Type(default_value: S = ..., klass: S = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Type(default_value: S | None [https://docs.python.org/3/library/constants.html#None] = ..., klass: S = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait whose value must be a subclass of a specified class.

	
__init__(default_value: Sentinel | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = traitlets.Undefined, klass: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = None, allow_none: Literal[False] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	
__init__(default_value: Sentinel | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = traitlets.Undefined, klass: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = None, allow_none: Literal[True] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	
__init__(default_value: S = traitlets.Undefined, klass: S = None, allow_none: Literal[False] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	
__init__(default_value: S | None [https://docs.python.org/3/library/constants.html#None] = traitlets.Undefined, klass: S = None, allow_none: Literal[True] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Construct a Type trait

A Type trait specifies that its values must be subclasses of
a particular class.

If only default_value is given, it is used for the klass as
well. If neither are given, both default to object.

	Parameters:

	
	default_value (class, str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The default value must be a subclass of klass. If an str,
the str must be a fully specified class name, like ‘foo.bar.Bah’.
The string is resolved into real class, when the parent
HasTraits class is instantiated.

	klass (class, str [https://docs.python.org/3/library/stdtypes.html#str] [default object]) – Values of this trait must be a subclass of klass. The klass
may be specified in a string like: ‘foo.bar.MyClass’.
The string is resolved into real class, when the parent
HasTraits class is instantiated.

	allow_none (bool [https://docs.python.org/3/library/functions.html#bool] [default False]) – Indicates whether None is allowed as an assignable value.

	**kwargs – extra kwargs passed to ClassBasedTraitType

	
class traitlets.This(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait for instances of the class containing this trait.

Because how how and when class bodies are executed, the This
trait can only have a default value of None. This, and because we
always validate default values, allow_none is always true.

	
class traitlets.ForwardDeclaredInstance(klass: type [https://docs.python.org/3/library/functions.html#type][T] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.ForwardDeclaredInstance(klass: type [https://docs.python.org/3/library/functions.html#type][T] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.ForwardDeclaredInstance(klass: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.ForwardDeclaredInstance(klass: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Any [https://docs.python.org/3/library/typing.html#typing.Any], ...] | None [https://docs.python.org/3/library/constants.html#None] = ..., kw: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Forward-declared version of Instance.

	
class traitlets.ForwardDeclaredType(default_value: Sentinel | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., klass: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.ForwardDeclaredType(default_value: Sentinel | None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., klass: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.ForwardDeclaredType(default_value: S = ..., klass: S = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.ForwardDeclaredType(default_value: S | None [https://docs.python.org/3/library/constants.html#None] = ..., klass: S = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Forward-declared version of Type.

Miscellaneous

	
class traitlets.Bool(default_value: bool [https://docs.python.org/3/library/functions.html#bool] | Sentinel = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Bool(default_value: bool [https://docs.python.org/3/library/functions.html#bool] | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A boolean (True, False) trait.

	
class traitlets.CBool

	Casting variant. When a value is assigned to the attribute, this will
attempt to convert it by calling value = bool(value).

	
class traitlets.Enum(values: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][G], default_value: G | Sentinel = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Enum(values: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][G] | None [https://docs.python.org/3/library/constants.html#None], default_value: G | Sentinel | None [https://docs.python.org/3/library/constants.html#None] = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	An enum whose value must be in a given sequence.

	
class traitlets.CaselessStrEnum(values: Any [https://docs.python.org/3/library/typing.html#typing.Any], default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	An enum of strings where the case should be ignored.

	
class traitlets.UseEnum(enum_class: type [https://docs.python.org/3/library/functions.html#type][Any [https://docs.python.org/3/library/typing.html#typing.Any]], default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Use a Enum class as model for the data type description.
Note that if no default-value is provided, the first enum-value is used
as default-value.

-- SINCE: Python 3.4 (or install backport: pip install enum34)
import enum
from traitlets import HasTraits, UseEnum

class Color(enum.Enum):
 red = 1 # -- IMPLICIT: default_value
 blue = 2
 green = 3

class MyEntity(HasTraits):
 color = UseEnum(Color, default_value=Color.blue)

entity = MyEntity(color=Color.red)
entity.color = Color.green # USE: Enum-value (preferred)
entity.color = "green" # USE: name (as string)
entity.color = "Color.green" # USE: scoped-name (as string)
entity.color = 3 # USE: number (as int)
assert entity.color is Color.green

	
class traitlets.TCPAddress(default_value: bool [https://docs.python.org/3/library/functions.html#bool] | Sentinel = ..., allow_none: Literal[False] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.TCPAddress(default_value: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] | Sentinel = ..., allow_none: Literal[True] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait for an (ip, port) tuple.

This allows for both IPv4 IP addresses as well as hostnames.

	
class traitlets.CRegExp(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, allow_none: bool [https://docs.python.org/3/library/functions.html#bool] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A casting compiled regular expression trait.

Accepts both strings and compiled regular expressions. The resulting
attribute will be a compiled regular expression.

	
class traitlets.Union(trait_types: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait type representing a Union type.

	
__init__(trait_types: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Construct a Union trait.

This trait allows values that are allowed by at least one of the
specified trait types. A Union traitlet cannot have metadata on
its own, besides the metadata of the listed types.

	Parameters:

	
	trait_types (sequence) – The list of trait types of length at least 1.

	**kwargs – Extra kwargs passed to TraitType

Notes

Union([Float(), Bool(), Int()]) attempts to validate the provided values
with the validation function of Float, then Bool, and finally Int.

Parsing from string is ambiguous for container types which accept other
collection-like literals (e.g. List accepting both [] and ()
precludes Union from ever parsing Union([List(), Tuple()]) as a tuple;
you can modify behaviour of too permissive container traits by overriding
_literal_from_string_pairs in subclasses.
Similarly, parsing unions of numeric types is only unambiguous if
types are provided in order of increasing permissiveness, e.g.
Union([Int(), Float()]) (since floats accept integer-looking values).

	
class traitlets.Callable(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = traitlets.Undefined, allow_none: bool [https://docs.python.org/3/library/functions.html#bool] = False, read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait which is callable.

Notes

Classes are callable, as are instances
with a __call__() method.

	
class traitlets.Any(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., *, allow_none: Literal[False], read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Any(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., *, allow_none: Literal[True], read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., config: Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None] = ..., **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
class traitlets.Any(default_value: Any [https://docs.python.org/3/library/typing.html#typing.Any] = ..., *, allow_none: Literal[True, False] = ..., help: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = ..., read_only: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = False, config: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A trait which allows any value.

Defining new trait types

To define a new trait type, subclass from TraitType. You can define the
following things:

	
class traitlets.MyTrait

	
	
info_text

	A short string describing what this trait should hold.

	
default_value

	A default value, if one makes sense for this trait type. If there is no
obvious default, don’t provide this.

	
validate(obj, value)

	Check whether a given value is valid. If it is, it should return the value
(coerced to the desired type, if necessary). If not, it should raise
TraitError. TraitType.error() is a convenient way to raise an
descriptive error saying that the given value is not of the required type.

obj is the object to which the trait belongs.

For instance, here’s the definition of the TCPAddress trait:

class TCPAddress(TraitType[G, S]):
 """A trait for an (ip, port) tuple.

 This allows for both IPv4 IP addresses as well as hostnames.
 """

 default_value = ("127.0.0.1", 0)
 info_text = "an (ip, port) tuple"

 if t.TYPE_CHECKING:

 @t.overload
 def __init__(
 self: TCPAddress[tuple[str, int], tuple[str, int]],
 default_value: bool | Sentinel = ...,
 allow_none: Literal[False] = ...,
 read_only: bool | None = ...,
 help: str | None = ...,
 config: t.Any = ...,
 **kwargs: t.Any,
) -> None:
 ...

 @t.overload
 def __init__(
 self: TCPAddress[tuple[str, int] | None, tuple[str, int] | None],
 default_value: bool | None | Sentinel = ...,
 allow_none: Literal[True] = ...,
 read_only: bool | None = ...,
 help: str | None = ...,
 config: t.Any = ...,
 **kwargs: t.Any,
) -> None:
 ...

 def __init__(
 self: TCPAddress[tuple[str, int] | None, tuple[str, int] | None]
 | TCPAddress[tuple[str, int], tuple[str, int]],
 default_value: bool | None | Sentinel = Undefined,
 allow_none: Literal[True, False] = False,
 read_only: bool | None = None,
 help: str | None = None,
 config: t.Any = None,
 **kwargs: t.Any,
) -> None:
 ...

 def validate(self, obj: t.Any, value: t.Any) -> G:
 if isinstance(value, tuple):
 if len(value) == 2:
 if isinstance(value[0], str) and isinstance(value[1], int):
 port = value[1]
 if port >= 0 and port <= 65535:
 return t.cast(G, value)
 self.error(obj, value)

 def from_string(self, s: str) -> G:
 if self.allow_none and s == "None":
 return t.cast(G, None)
 if ":" not in s:
 raise ValueError("Require `ip:port`, got %r" % s)
 ip, port_str = s.split(":", 1)
 port = int(port_str)
 return t.cast(G, (ip, port))

Traitlets API reference

Any class with trait attributes must inherit from HasTraits.

	
class traitlets.HasTraits(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	
has_trait(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if the object has a trait with the specified name.

	
trait_has_value(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Returns True if the specified trait has a value.

This will return false even if getattr would return a
dynamically generated default value. These default values
will be recognized as existing only after they have been
generated.

Example

class MyClass(HasTraits):
 i = Int()

mc = MyClass()
assert not mc.trait_has_value("i")
mc.i # generates a default value
assert mc.trait_has_value("i")

	
trait_names(**metadata: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of all the names of this class’ traits.

	
classmethod class_trait_names(**metadata: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of all the names of this class’ traits.

This method is just like the trait_names() method,
but is unbound.

	
traits(**metadata: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], TraitType[Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Get a dict of all the traits of this class. The dictionary
is keyed on the name and the values are the TraitType objects.

The TraitTypes returned don’t know anything about the values
that the various HasTrait’s instances are holding.

The metadata kwargs allow functions to be passed in which
filter traits based on metadata values. The functions should
take a single value as an argument and return a boolean. If
any function returns False, then the trait is not included in
the output. If a metadata key doesn’t exist, None will be passed
to the function.

	
classmethod class_traits(**metadata: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], TraitType[Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Get a dict of all the traits of this class. The dictionary
is keyed on the name and the values are the TraitType objects.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values
that the various HasTrait’s instances are holding.

The metadata kwargs allow functions to be passed in which
filter traits based on metadata values. The functions should
take a single value as an argument and return a boolean. If
any function returns False, then the trait is not included in
the output. If a metadata key doesn’t exist, None will be passed
to the function.

	
trait_metadata(traitname: str [https://docs.python.org/3/library/stdtypes.html#str], key: str [https://docs.python.org/3/library/stdtypes.html#str], default: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Get metadata values for trait by key.

	
add_traits(**traits: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Dynamically add trait attributes to the HasTraits instance.

You then declare the trait attributes on the class like this:

from traitlets import HasTraits, Int, Unicode

class Requester(HasTraits):
 url = Unicode()
 timeout = Int(30) # 30 will be the default value

For the available trait types and the arguments you can give them, see
Trait Types.

Dynamic default values

	
traitlets.default(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → DefaultHandler

	A decorator which assigns a dynamic default for a Trait on a HasTraits object.

	Parameters:

	name – The str name of the Trait on the object whose default should be generated.

Notes

Unlike observers and validators which are properties of the HasTraits
instance, default value generators are class-level properties.

Besides, default generators are only invoked if they are registered in
subclasses of this_type.

class A(HasTraits):
 bar = Int()

 @default('bar')
 def get_bar_default(self):
 return 11

class B(A):
 bar = Float() # This trait ignores the default generator defined in
 # the base class A

class C(B):

 @default('bar')
 def some_other_default(self): # This default generator should not be
 return 3.0 # ignored since it is defined in a
 # class derived from B.a.this_class.

To calculate a default value dynamically, decorate a method of your class with
@default({traitname}). This method will be called on the instance, and should
return the default value. For example:

import getpass

class Identity(HasTraits):
 username = Unicode()

 @default('username')
 def _username_default(self):
 return getpass.getuser()

Callbacks when trait attributes change

	
traitlets.observe(*names: Sentinel | str [https://docs.python.org/3/library/stdtypes.html#str], type: str [https://docs.python.org/3/library/stdtypes.html#str] = 'change') → ObserveHandler

	A decorator which can be used to observe Traits on a class.

The handler passed to the decorator will be called with one change
dict argument. The change dictionary at least holds a ‘type’ key and a
‘name’ key, corresponding respectively to the type of notification and the
name of the attribute that triggered the notification.

Other keys may be passed depending on the value of ‘type’. In the case
where type is ‘change’, we also have the following keys:
* owner : the HasTraits instance
* old : the old value of the modified trait attribute
* new : the new value of the modified trait attribute
* name : the name of the modified trait attribute.

	Parameters:

	
	*names – The str names of the Traits to observe on the object.

	type (str [https://docs.python.org/3/library/stdtypes.html#str], kwarg-only) – The type of event to observe (e.g. ‘change’)

To do something when a trait attribute is changed, decorate a method with traitlets.observe().
The method will be called with a single argument, a dictionary of the form:

{
 'owner': object, # The HasTraits instance
 'new': 6, # The new value
 'old': 5, # The old value
 'name': "foo", # The name of the changed trait
 'type': 'change', # The event type of the notification, usually 'change'
}

For example:

from traitlets import HasTraits, Integer, observe

class TraitletsExample(HasTraits):
 num = Integer(5, help="a number").tag(config=True)

 @observe('num')
 def _num_changed(self, change):
 print("{name} changed from {old} to {new}".format(**change))

Changed in version 4.1: The _{trait}_changed magic method-name approach is deprecated.

You can also add callbacks to a trait dynamically:

	
HasTraits.observe(handler: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Any [https://docs.python.org/3/library/typing.html#typing.Any]], names: Sentinel | str [https://docs.python.org/3/library/stdtypes.html#str] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Sentinel | str [https://docs.python.org/3/library/stdtypes.html#str]] = traitlets.All, type: Sentinel | str [https://docs.python.org/3/library/stdtypes.html#str] = 'change') → None [https://docs.python.org/3/library/constants.html#None]

	Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

	Parameters:

	
	handler (callable) – A callable that is called when a trait changes. Its
signature should be handler(change), where change is a
dictionary. The change dictionary at least holds a ‘type’ key.
* type: the type of notification.
Other keys may be passed depending on the value of ‘type’. In the
case where type is ‘change’, we also have the following keys:
* owner : the HasTraits instance
* old : the old value of the modified trait attribute
* new : the new value of the modified trait attribute
* name : the name of the modified trait attribute.

	names (list [https://docs.python.org/3/library/stdtypes.html#list], str [https://docs.python.org/3/library/stdtypes.html#str], All) – If names is All, the handler will apply to all traits. If a list
of str, handler will apply to all names in the list. If a
str, the handler will apply just to that name.

	type (str [https://docs.python.org/3/library/stdtypes.html#str], All (default: 'change')) – The type of notification to filter by. If equal to All, then all
notifications are passed to the observe handler.

Note

If a trait attribute with a dynamic default value has another value set
before it is used, the default will not be calculated.
Any callbacks on that trait will will fire, and old_value will be None.

Validating proposed changes

	
traitlets.validate(*names: Sentinel | str [https://docs.python.org/3/library/stdtypes.html#str]) → ValidateHandler

	A decorator to register cross validator of HasTraits object’s state
when a Trait is set.

The handler passed to the decorator must have one proposal dict argument.
The proposal dictionary must hold the following keys:

	owner : the HasTraits instance

	value : the proposed value for the modified trait attribute

	trait : the TraitType instance associated with the attribute

	Parameters:

	*names – The str names of the Traits to validate.

Notes

Since the owner has access to the HasTraits instance via the ‘owner’ key,
the registered cross validator could potentially make changes to attributes
of the HasTraits instance. However, we recommend not to do so. The reason
is that the cross-validation of attributes may run in arbitrary order when
exiting the hold_trait_notifications context, and such changes may not
commute.

Validator methods can be used to enforce certain aspects of a property.
These are called on proposed changes,
and can raise a TraitError if the change should be rejected,
or coerce the value if it should be accepted with some modification.
This can be useful for things such as ensuring a path string is always absolute,
or check if it points to an existing directory.

For example:

from traitlets import HasTraits, Unicode, validate, TraitError

class TraitletsExample(HasTraits):
 path = Unicode('', help="a path")

 @validate('path')
 def _check_prime(self, proposal):
 path = proposal['value']
 if not path.endswith('/'):
 # ensure path always has trailing /
 path = path + '/'
 if not os.path.exists(path):
 raise TraitError("path %r does not exist" % path)
 return path

Configurable objects with traitlets.config

This document describes traitlets.config,
the traitlets-based configuration system used by IPython and Jupyter.

The main concepts

There are a number of abstractions that the IPython configuration system uses.
Each of these abstractions is represented by a Python class.

	Configuration object: Config
	A configuration object is a simple dictionary-like class that holds
configuration attributes and sub-configuration objects. These classes
support dotted attribute style access (cfg.Foo.bar) in addition to the
regular dictionary style access (cfg['Foo']['bar']).
The Config object is a wrapper around a simple dictionary with some convenience methods,
such as merging and automatic section creation.

	Application: Application
	An application is a process that does a specific job. The most obvious
application is the ipython command line program. Each
application may read configuration files and a single set of
command line options
and then produces a master configuration object for the application. This
configuration object is then passed to the configurable objects that the
application creates, usually either via the config or parent constructor
arguments. These configurable objects implement the actual logic
of the application and know how to configure themselves given the
configuration object.

Applications always have a log attribute that is a configured Logger.
This allows centralized logging configuration per-application.

	Configurable: Configurable
	A configurable is a regular Python class that serves as a base class for
all main classes in an application. The
Configurable base class is
lightweight and only does one thing.

This Configurable is a subclass
of HasTraits that knows how to configure
itself. Class level traits with the metadata config=True become
values that can be configured from the command line and configuration
files.

Developers create Configurable
subclasses that implement all of the logic in the application. Each of
these subclasses has its own configuration information that controls how
instances are created. When constructing a Configurable,
the config or parent arguments can be passed to the constructor (respectively
a Config and a Configurable object with a .config).

	Singletons: SingletonConfigurable
	Any object for which there is a single canonical instance. These are
just like Configurables, except they have a class method
instance(),
that returns the current active instance (or creates one if it
does not exist). Application is a singleton.
This lets
objects easily connect to the current running Application without passing
objects around everywhere. For instance, to get the current running
Application instance, simply do: app = Application.instance().

Note

Singletons are not strictly enforced - you can have many instances
of a given singleton class, but the instance() method will always
return the same one.

Having described these main concepts, we can now state the main idea in our
configuration system: “configuration” allows the default values of class
attributes to be controlled on a class by class basis. Thus all instances of
a given class are configured in the same way. Furthermore, if two instances
need to be configured differently, they need to be instances of two different
classes. While this model may seem a bit restrictive, we have found that it
expresses most things that need to be configured extremely well. However, it
is possible to create two instances of the same class that have different
trait values. This is done by overriding the configuration.

Now, we show what our configuration objects and files look like.

Configuration objects and files

A configuration object is little more than a wrapper around a dictionary.
A configuration file is simply a mechanism for producing that object.
Configuration files currently can be a plain Python script or a JSON file.
The former has the benefit that it can perform extensive logic to populate
the config object, while the latter is just a direct JSON serialization of
the config dictionary and can be easily processed by external software.
When both Python and JSON configuration file are present, both will be loaded,
with JSON configuration having higher priority.

The configuration files can be loaded by calling Application.load_config_file(),
which takes the relative path to the config file (with or without file extension)
and the directories in which to search for the config file. All found configuration
files will be loaded in reverse order, so that configs in earlier directories will
have higher priority.

Python configuration Files

A Python configuration file is a pure Python file that populates a configuration object.
This configuration object is a Config instance.
It is available inside the config file as c, and you simply set
attributes on this. All you have to know is:

	The name of the class to configure.

	The name of the attribute.

	The type of each attribute.

The answers to these questions are provided by the various
Configurable subclasses that an
application uses. Let’s look at how this would work for a simple configurable
subclass

Sample configurable:
from traitlets.config.configurable import Configurable
from traitlets import Int, Float, Unicode, Bool

class School(Configurable):
 name = Unicode("defaultname", help="the name of the object").tag(config=True)
 ranking = Integer(0, help="the class's ranking").tag(config=True)
 value = Float(99.0)
 # The rest of the class implementation would go here..

Construct from config via School(config=..)

In this example, we see that School has three attributes, two
of which (name, ranking) can be configured. All of the attributes
are given types and default values. If a School is instantiated,
but not configured, these default values will be used. But let’s see how
to configure this class in a configuration file

Sample config file
c.School.name = "coolname"
c.School.ranking = 10

After this configuration file is loaded, the values set in it will override
the class defaults anytime a School is created. Furthermore,
these attributes will be type checked and validated anytime they are set.
This type checking is handled by the traitlets module,
which provides the Unicode, Integer and
Float types; see Trait Types for the full list.

It should be very clear at this point what the naming convention is for
configuration attributes:

c.ClassName.attribute_name = attribute_value

Here, ClassName is the name of the class whose configuration attribute you
want to set, attribute_name is the name of the attribute you want to set
and attribute_value the value you want it to have. The ClassName
attribute of c is not the actual class, but instead is another
Config instance.

Note

The careful reader may wonder how the ClassName (School in
the above example) attribute of the configuration object c gets
created. These attributes are created on the fly by the
Config instance, using a simple naming
convention. Any attribute of a Config
instance whose name begins with an uppercase character is assumed to be a
sub-configuration and a new empty Config
instance is dynamically created for that attribute. This allows deeply
hierarchical information created easily (c.Foo.Bar.value) on the fly.

JSON configuration Files

A JSON configuration file is simply a file that contains a
Config dictionary serialized to JSON.
A JSON configuration file has the same base name as a Python configuration file,
but with a .json extension.

Configuration described in previous section could be written as follows in a
JSON configuration file:

{
 "School": {
 "name": "coolname",
 "ranking": 10
 }
}

JSON configuration files can be more easily generated or processed by programs
or other languages.

Configuration files inheritance

Note

This section only applies to Python configuration files.

Let’s say you want to have different configuration files for various purposes.
Our configuration system makes it easy for one configuration file to inherit
the information in another configuration file. The load_subconfig()
command can be used in a configuration file for this purpose. Here is a simple
example that loads all of the values from the file base_config.py:

examples/docs/configs/base_config.py

c = get_config() # noqa
c.School.name = "Harvard"
c.School.ranking = 100

into the configuration file main_config.py:

examples/docs/configs/main_config.py

c = get_config() # noqa

Load everything from base_config.py
load_subconfig("base_config.py") # noqa

Now override one of the values
c.School.name = "bettername"

In a situation like this the load_subconfig() makes sure that the
search path for sub-configuration files is inherited from that of the parent.
Thus, you can typically put the two in the same directory and everything will
just work. An example app using these configuration files can be found at
examples/docs/load_config_app.py [https://github.com/ipython/traitlets/blob/main/examples/docs/load_config_app.py].

Class based configuration inheritance

There is another aspect of configuration where inheritance comes into play.
Sometimes, your classes will have an inheritance hierarchy that you want
to be reflected in the configuration system. Here is a simple example:

from traitlets.config import Application, Configurable
from traitlets import Integer, Float, Unicode, Bool

class Foo(Configurable):
 name = Unicode("fooname", config=True)
 value = Float(100.0, config=True)

class Bar(Foo):
 name = Unicode("barname", config=True)
 othervalue = Int(0, config=True)

construct Bar(config=..)

Now, we can create a configuration file to configure instances of Foo
and Bar:

config file
c = get_config() # noqa

c.Foo.name = "bestname"
c.Bar.othervalue = 10

This class hierarchy and configuration file accomplishes the following:

	The default value for Foo.name and Bar.name will be
'bestname'. Because Bar is a Foo subclass it also
picks up the configuration information for Foo.

	The default value for Foo.value and Bar.value will be
100.0, which is the value specified as the class default.

	The default value for Bar.othervalue will be 10 as set in the
configuration file. Because Foo is the parent of Bar
it doesn’t know anything about the othervalue attribute.

Command-line arguments

All configurable options can also be supplied at the command line when launching
the application. Internally, when Application.initialize() is called,
a KVArgParseConfigLoader instance is constructed
to load values into a Config object. (For advanced users,
this can be overridden in the helper method Application._create_loader().)

Most command-line scripts simply need to call Application.launch_instance(),
which will create the Application singleton, parse the command-line arguments, and
start the application:

from traitlets.config import Application

class MyApp(Application):
 def start(self):
 pass # app logic goes here

if __name__ == "__main__":
 MyApp.launch_instance()

By default, config values are assigned from command-line arguments in much the
same way as in a config file:

$ ipython --InteractiveShell.autoindent=False --BaseIPythonApplication.profile='myprofile'

is the same as adding:

c.InteractiveShell.autoindent = False
c.BaseIPythonApplication.profile = "myprofile"

to your configuration file. Command-line arguments take precedence over
values read from configuration files. (This is done in
Application.load_config_file() by merging Application.cli_config
over values read from configuration files.)

Note that even though Application is a SingletonConfigurable, multiple
applications could still be started and called from each other by constructing
them as one would with any other Configurable:

examples/docs/multiple_apps.py

from traitlets.config import Application

class OtherApp(Application):
 def start(self):
 print("other")

class MyApp(Application):
 classes = [OtherApp]

 def start(self):
 # similar to OtherApp.launch_instance(), but without singleton
 self.other_app = OtherApp(config=self.config)
 self.other_app.initialize(["--OtherApp.log_level", "INFO"])
 self.other_app.start()

if __name__ == "__main__":
 MyApp.launch_instance()

Changed in version 5.0: Prior to 5.0, fully specified --Class.trait=value arguments
required an equals sign and no space separating the key and value.
But after 5.0, these arguments can be separated by space as with aliases.

Changed in version 5.0: extra quotes around strings and literal prefixes are no longer required.

See also

Interpreting command-line strings

Changed in version 5.0: If a scalar (Unicode, Integer, etc.) is specified multiple times
on the command-line, this will now raise.
Prior to 5.0, all instances of the option before the last would be ignored.

Changed in version 5.0: In 5.0, positional extra arguments (typically a list of files) must be contiguous,
for example:

mycommand file1 file2 --flag

or:

mycommand --flag file1 file2

whereas prior to 5.0, these “extra arguments” be distributed among other arguments:

mycommand file1 --flag file2

Note

By default, an error in a configuration file will cause the configuration
file to be ignored and a warning logged. Application subclasses may specify
raise_config_file_errors = True to exit on failure to load config files instead.

New in version 4.3: The environment variable TRAITLETS_APPLICATION_RAISE_CONFIG_FILE_ERROR
to '1' or 'true' to change the default value of raise_config_file_errors.

Common Arguments

Since the strictness and verbosity of the full --Class.trait=value form are not ideal for everyday use,
common arguments can be specified as flags or aliases.

In general, flags and aliases are prefixed by --, except for those
that are single characters, in which case they can be specified with a single -, e.g.:

$ ipython -i -c "import numpy; x=numpy.linspace(0,1)" --profile testing --colors=lightbg

Flags and aliases are declared by specifying flags and aliases
attributes as dictionaries on subclasses of Application.

A key in both those dictionaries might be a string or tuple of strings.
One-character strings are converted into “short” options (like -v); longer strings
are “long” options (like --verbose).

Aliases

For convenience, applications have a mapping of commonly used traits, so you don’t have
to specify the whole class name:

$ ipython --profile myprofile
and
$ ipython --profile='myprofile'
are equivalent to
$ ipython --BaseIPythonApplication.profile='myprofile'

When specifying alias dictionary in code, the values might be the strings
like 'Class.trait' or two-tuples like ('Class.trait', "Some help message").
For example:

examples/docs/aliases.py

from traitlets import Bool
from traitlets.config import Application, Configurable

class Foo(Configurable):
 enabled = Bool(False, help="whether enabled").tag(config=True)

class App(Application):
 classes = [Foo]
 dry_run = Bool(False, help="dry run test").tag(config=True)
 aliases = {
 "dry-run": "App.dry_run",
 ("f", "foo-enabled"): ("Foo.enabled", "whether foo is enabled"),
 }

if __name__ == "__main__":
 App.launch_instance()

By default, the --log-level alias will be set up for Application.log_level.

Flags

Applications can also be passed flags. Flags are options that take no
arguments. They are simply wrappers for
setting one or more configurables with predefined values, often True/False.

For instance:

$ ipcontroller --debug
is equivalent to
$ ipcontroller --Application.log_level=DEBUG
and
$ ipython --matplotlib
is equivalent to
$ ipython --matplotlib auto
or
$ ipython --no-banner
is equivalent to
$ ipython --TerminalIPythonApp.display_banner=False

And a runnable code example:

examples/docs/flags.py

from traitlets import Bool
from traitlets.config import Application, Configurable

class Foo(Configurable):
 enabled = Bool(False, help="whether enabled").tag(config=True)

class App(Application):
 classes = [Foo]
 dry_run = Bool(False, help="dry run test").tag(config=True)
 flags = {
 "dry-run": ({"App": {"dry_run": True}}, dry_run.help),
 ("f", "enable-foo"): (
 {
 "Foo": {"enabled": True},
 },
 "Enable foo",
),
 ("disable-foo"): (
 {
 "Foo": {"enabled": False},
 },
 "Disable foo",
),
 }

if __name__ == "__main__":
 App.launch_instance()

Since flags are a bit more complicated to set up, there are a couple of common patterns
implemented in helper methods. For example, traitlets.config.boolean_flag() sets
up the flags --x and --no-x. By default, the following few flags are set up:
--debug (setting log_level=DEBUG), --show-config, and --show-config-json
(print config to stdout and exit).

Subcommands

Configurable applications can also have subcommands. Subcommands are modeled
after git, and are called with the form command subcommand
[...args]. For instance, the QtConsole is a subcommand of terminal IPython:

$ jupyter qtconsole --profile myprofile

Subcommands are specified as a dictionary assigned to a subcommands class member
of Application instances. This dictionary maps
subcommand names to two-tuples containing these:

	A subclass of Application to handle the subcommand.
This can be specified as:

	simply as a class, where its SingletonConfigurable.instance()
will be invoked (straight-forward, but loads subclasses on import time);

	as a string which can be imported to produce the above class;

	as a factory function accepting a single argument like that:

app_factory(parent_app: Application) -> Application

Note

The return value of the factory above is an instance, not a class,
so the SingletonConfigurable.instance() is not invoked
in this case.

In all cases, the instantiated app is stored in Application.subapp
and its Application.initialize() is invoked.

	A short description of the subcommand for use in help output.

For example (refer to examples/subcommands_app.py for a more complete example):

examples/docs/subcommands.py

from traitlets.config import Application

class SubApp1(Application):
 pass

class SubApp2(Application):
 @classmethod
 def get_subapp_instance(cls, app: Application) -> Application:
 app.clear_instance() # since Application is singleton, need to clear main app
 return cls.instance(parent=app)

class MainApp(Application):
 subcommands = {
 "subapp1": (SubApp1, "First subapp"),
 "subapp2": (SubApp2.get_subapp_instance, "Second subapp"),
 }

if __name__ == "__main__":
 MainApp.launch_instance()

To see a list of the available aliases, flags, and subcommands for a configurable
application, simply pass -h or --help. To see the full list of
configurable options (very long), pass --help-all.

For more complete examples
of setting up Application, refer to the
application examples [https://github.com/ipython/traitlets/tree/main/examples].

Other Application members

The following are typically set as class variables of Application
subclasses, but can also be set as instance variables.

	.classes: A list of Configurable classes. Similar to configs,
any class name can be used in --Class.trait=value arguments, including classes that the
Application might not know about. However, the
--help-all menu will only enumerate config traits of classes in Application.classes.
Similarly, .classes is used in other places where an application wants to list all
configurable traits; examples include Application.generate_config_file()
and the Command-line tab completion with argcomplete handling.

	.name, .description, .option_description, .keyvalue_description,
.subcommand_description, .examples, .version: Various strings used in the --help
menu and other messages

	.log_level, .log_datefmt, .log_format, .logging_config: Configurable options
to control application logging, which is emitted via the logger Application.log. For more
information about these, refer to their respective traits’ .help.

	.show_config, .show_config_json: Configurable boolean options, which if set to True,
will cause the application to print the config to stdout instead of calling
Application.start()

Additionally, the following are set by Application:

	.cli_config: The Config created from the command-line arguments.
This is saved to override any config values loaded from configuration files called by
Application.load_config_file().

	.extra_args: This is a list holding any positional arguments remaining from
the command-line arguments parsed during Application.initialize().
As noted earlier, these must be contiguous in the command-line.

Interpreting command-line strings

New in version 5.0: from_string(),
from_string_list(),
and item_from_string().

Prior to 5.0, we only had good support for Unicode or similar string types on the command-line.
Other types were supported via ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval],
which meant that simple types such as integers were well supported, too.

The downside of this implementation was that the literal_eval() happened
before the type of the target trait was known,
meaning that strings that could be interpreted as literals could end up with the wrong type,
famously:

$ ipython -c 1
...
[TerminalIPythonApp] CRITICAL | Bad config encountered during initialization:
[TerminalIPythonApp] CRITICAL | The 'code_to_run' trait of a TerminalIPythonApp instance must be a unicode string, but a value of 1 <class 'int'> was specified.

This resulted in requiring redundant “double-quoting” of strings in many cases.
That gets confusing when the shell also interprets quotes, so one had to:

$ ipython -c "'1'"

in order to set a string that looks like an integer.

traitlets 5.0 defers parsing of interpreting command-line strings to
from_string(),
which is an arbitrary function that will be called with the string given on the command-line.
This eliminates the need to ‘guess’ how to interpret strings before we know what they are configuring.

Backward compatibility

It is not feasible to be perfectly backward-compatible when fixing behavior as problematic as this.
However, we are doing our best to ensure that folks who had workarounds for this funky behavior
are disrupted as little as we can manage.
That means that we have kept what look like literals working wherever we could,
so if you were double-quoting strings to ensure the were interpreted as strings,
that will continue to work with warnings for the foreseeable future.

If you have an example command-line call that used to work with traitlets 4
but does not any more with traitlets 5, please let us know [https://github.com/ipython/traitlets/issues].

Custom traits

New in version 5.0.

Custom trait types can override from_string()
to specify how strings should be interpreted.
This could for example allow specifying hex-encoded bytes on the command-line:

examples/docs/from_string.py

from binascii import a2b_hex
from traitlets.config import Application
from traitlets import Bytes

class HexBytes(Bytes):
 def from_string(self, s):
 return a2b_hex(s)

class App(Application):
 aliases = {"key": "App.key"}
 key = HexBytes(
 help="""
 Key to be used.

 Specify as hex on the command-line.
 """,
 config=True,
)

 def start(self):
 print(f"key={self.key}")

if __name__ == "__main__":
 App.launch_instance()

$ examples/docs/from_string.py --key=a1b2
key=b'\xa2\xb2'

Container traits

In traitlets 5.0, items for container traits can be specified
by passing the key multiple times, e.g.:

myprogram -l a -l b

to produce the list ["a", "b"]

or for dictionaries use key=value:

myprogram -d a=5 -d b=10

to produce the dict {"a": 5, "b": 10}.

In traitlets prior to 5.0, container traits (List, Dict) could technically
be configured on the command-line by specifying a repr of a Python list or dict, e.g:

ipython --ScriptMagics.script_paths='{"perl": "/usr/bin/perl"}'

but that gets pretty tedious, especially with more than a couple of fields.
This still works with a FutureWarning,
but the new way allows container items to be specified by passing the argument multiple times:

ipython \
 --ScriptMagics.script_paths perl=/usr/bin/perl \
 --ScriptMagics.script_paths ruby=/usr/local/opt/bin/ruby

This handling is good enough that we can recommend defining aliases for container traits for the first time! For example:

examples/docs/container.py

from traitlets.config import Application
from traitlets import Dict, Integer, List, Unicode

class App(Application):
 aliases = {"x": "App.x", "y": "App.y"}
 x = List(Unicode(), config=True)
 y = Dict(Integer(), config=True)

 def start(self):
 print(f"x={self.x}")
 print(f"y={self.y}")

if __name__ == "__main__":
 App.launch_instance()

produces:

$ examples/docs/container.py -x a -x b -y a=10 -y b=5
x=['a', 'b']
y={'a': 10, 'b': 5}

Note

Specifying the value trait of Dict was necessary to cast the values in y to integers.
Otherwise, they values of y would have been the strings '10' and '5'.

For container types, List.from_string_list() is called with the list of all values
specified on the command-line and is responsible for turning the list of strings
into the appropriate type.
Each item is then passed to List.item_from_string() which is responsible
for handling the item,
such as casting to integer or parsing key=value in the case of a Dict.

The deprecated ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval] handling is preserved for backward-compatibility
in the event of a single item that ‘looks like’ a list or dict literal.

If you would prefer, you can also use custom container traits
which define :meth`~.TraitType.from_string` to expand a single string into a list,
for example:

class PathList(List):
 def from_string(self, s):
 return s.split(os.pathsep)

which would allow:

myprogram --path /bin:/usr/local/bin:/opt/bin

to set a PathList trait with ["/bin", "/usr/local/bin", "/opt/bin"].

Command-line tab completion with argcomplete

New in version 5.8.

traitlets has limited support for command-line tab completion for scripts
based on Application using
argcomplete [https://github.com/kislyuk/argcomplete]. To use this,
follow the instructions for setting up argcomplete;
you will likely want to
activate global completion [https://github.com/kislyuk/argcomplete#activating-global-completion]
by doing something alone the lines of:

pip install argcomplete
mkdir -p ~/.bash_completion.d/
activate-global-python-argcomplete --dest=~/.bash_completion.d/argcomplete
source ~/.bash_completion.d/argcomplete from your ~/.bashrc

(Follow relevant instructions for your shell.) For any script you want tab-completion
to work on, include the line:

PYTHON_ARGCOMPLETE_OK

in the first 1024 bytes of the script.

The following options can be tab-completed:

	Flags and aliases

	The classes in Application.classes, which can be initially completed as --Class.

	Once a completion is narrows to a single class, the individual config traits
of the class will be tab-completable, as --Class.trait.

	The available values for traitlets.Bool and traitlets.Enum will be completable,
as well as any other custom traitlets.TraitType which defines a argcompleter() method
returning a list of available string completions.

	Custom completer methods can be assigned to a trait by tagging an argcompleter metadata tag.
Refer to argcomplete’s documentation [https://github.com/kislyuk/argcomplete#specifying-completers]
for examples of creating custom completer methods.

Detailed examples of these can be found in the docstring of
examples/argcomplete_app.py [https://github.com/ipython/traitlets/blob/main/examples/argcomplete_app.py].

Caveats with argcomplete handling

The support for argcomplete is still relatively new and may not work with all ways in
which an Application is used. Some known caveats:

	argcomplete is called when any Application first constructs and uses a
KVArgParseConfigLoader instance, which constructs
a argparse.ArgumentParser instance.
We assume that this is usually first done in scripts when parsing the command-line arguments,
but technically a script can first call Application.initialize(["other", "args"]) for
some other reason.

	traitlets does not actually add "--Class.trait" options to the ArgumentParser,
but instead directly parses them from argv. In order to complete these, a custom
CompletionFinder is subclassed from
argcomplete.CompletionFinder, which dynamically inserts the "--Class."" and "--Class.trait"
completions when it thinks suitable. However, this handling may be a bit fragile.

	Because traitlets initializes configs from argv and not from ArgumentParser, it may be
more difficult to write custom completers which dynamically provide completions based on the
state of other parsed arguments.

	Subcommand handling is especially tricky. argcomplete libraries’ strategy is to call the python script
with no arguments e.g. len(sys.argv) == 1, run until argcomplete is called on an ArgumentParser
and determine what completions are available. On the other hand, the traitlet subcommand-handling
strategy is to check sys.argv[1] and see if it matches a subcommand, and if so then dynamically
load the subcommand app and initialize it with sys.argv[1:]. To reconcile these two different
approaches, some hacking was done to get traitlets to recognize the current command-line as seen
by argcomplete, and to get argcomplete to start parsing command-line arguments after subcommands
have been evaluated.

	Currently, completing subcommands themselves is not yet supported.

	Some applications like Jupyter have custom ways of constructing subcommands or parsing argv
which complicates matters even further.

More details about these caveats can be found in the original pull request [https://github.com/ipython/traitlets/pull/811].

Design requirements

Here are the main requirements we wanted our configuration system to have:

	Support for hierarchical configuration information.

	Full integration with command line option parsers. Often, you want to read
a configuration file, but then override some of the values with command line
options. Our configuration system automates this process and allows each
command line option to be linked to a particular attribute in the
configuration hierarchy that it will override.

	Configuration files that are themselves valid Python code. This accomplishes
many things. First, it becomes possible to put logic in your configuration
files that sets attributes based on your operating system, network setup,
Python version, etc. Second, Python has a super simple syntax for accessing
hierarchical data structures, namely regular attribute access
(Foo.Bar.Bam.name). Third, using Python makes it easy for users to
import configuration attributes from one configuration file to another.
Fourth, even though Python is dynamically typed, it does have types that can
be checked at runtime. Thus, a 1 in a config file is the integer ‘1’,
while a '1' is a string.

	A fully automated method for getting the configuration information to the
classes that need it at runtime. Writing code that walks a configuration
hierarchy to extract a particular attribute is painful. When you have
complex configuration information with hundreds of attributes, this makes
you want to cry.

	Type checking and validation that doesn’t require the entire configuration
hierarchy to be specified statically before runtime. Python is a very
dynamic language and you don’t always know everything that needs to be
configured when a program starts.

Traitlets config API reference

	
class traitlets.config.Configurable(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	
classmethod class_config_rst_doc() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Generate rST documentation for this class’ config options.

Excludes traits defined on parent classes.

	
classmethod class_config_section(classes: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][type [https://docs.python.org/3/library/functions.html#type][HasTraits]] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the config section for this class.

	Parameters:

	classes (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The list of other classes in the config file.
Used to reduce redundant information.

	
classmethod class_get_help(inst: HasTraits | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the help string for this class in ReST format.

If inst is given, its current trait values will be used in place of
class defaults.

	
classmethod class_get_trait_help(trait: TraitType[Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any]], inst: HasTraits | None [https://docs.python.org/3/library/constants.html#None] = None, helptext: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the helptext string for a single trait.

	Parameters:

	
	inst – If given, its current trait values will be used in place of
the class default.

	helptext – If not given, uses the help attribute of the current trait.

	
classmethod class_print_help(inst: HasTraits | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Get the help string for a single trait and print it.

	
classmethod section_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	return section names as a list

	
update_config(config: Config) → None [https://docs.python.org/3/library/constants.html#None]

	Update config and load the new values

	
class traitlets.config.SingletonConfigurable(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A configurable that only allows one instance.

This class is for classes that should only have one instance of itself
or any subclass. To create and retrieve such a class use the
SingletonConfigurable.instance() method.

	
classmethod clear_instance() → None [https://docs.python.org/3/library/constants.html#None]

	unset _instance for this class and singleton parents.

	
classmethod initialized() → bool [https://docs.python.org/3/library/functions.html#bool]

	Has an instance been created?

	
classmethod instance(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → CT

	Returns a global instance of this class.

This method create a new instance if none have previously been created
and returns a previously created instance is one already exists.

The arguments and keyword arguments passed to this method are passed
on to the __init__() method of the class upon instantiation.

Examples

Create a singleton class using instance, and retrieve it:

>>> from traitlets.config.configurable import SingletonConfigurable
>>> class Foo(SingletonConfigurable): pass
>>> foo = Foo.instance()
>>> foo == Foo.instance()
True

Create a subclass that is retrieved using the base class instance:

>>> class Bar(SingletonConfigurable): pass
>>> class Bam(Bar): pass
>>> bam = Bam.instance()
>>> bam == Bar.instance()
True

	
class traitlets.config.LoggingConfigurable(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A parent class for Configurables that log.

Subclasses have a log trait, and the default behavior
is to get the logger from the currently running Application.

	
log

	Logger or LoggerAdapter instance

	
class traitlets.config.JSONFileConfigLoader(filename: str [https://docs.python.org/3/library/stdtypes.html#str], path: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, **kw: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A JSON file loader for config

Can also act as a context manager that rewrite the configuration file to disk on exit.

Example:

with JSONFileConfigLoader('myapp.json','/home/jupyter/configurations/') as c:
 c.MyNewConfigurable.new_value = 'Updated'

	
load_config() → Config

	Load the config from a file and return it as a Config object.

	
class traitlets.config.Application(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A singleton application with full configuration support.

	
cli_config

	The subset of our configuration that came from the command-line

We re-load this configuration after loading config files,
to ensure that it maintains highest priority.

	
document_config_options() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Generate rST format documentation for the config options this application

Returns a multiline string.

	
emit_alias_help() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield the lines for alias part of the help.

	
emit_description() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield lines with the application description.

	
emit_examples() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield lines with the usage and examples.

This usage string goes at the end of the command line help string
and should contain examples of the application’s usage.

	
emit_flag_help() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield the lines for the flag part of the help.

	
emit_help(classes: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield the help-lines for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

	
emit_help_epilogue(classes: bool [https://docs.python.org/3/library/functions.html#bool]) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield the very bottom lines of the help message.

If classes=False (the default), print –help-all msg.

	
emit_options_help() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield the lines for the options part of the help.

	
emit_subcommands_help() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Yield the lines for the subcommand part of the help.

	
flatten_flags() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Flatten flags and aliases for loaders, so cl-args override as expected.

This prevents issues such as an alias pointing to InteractiveShell,
but a config file setting the same trait in TerminalInteraciveShell
getting inappropriate priority over the command-line arg.
Also, loaders expect (key: longname) and not key: (longname, help) items.

Only aliases with exactly one descendent in the class list
will be promoted.

	
generate_config_file(classes: List [https://docs.python.org/3/library/typing.html#typing.List][Type [https://docs.python.org/3/library/typing.html#typing.Type][Configurable]] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	generate default config file from Configurables

	
get_default_logging_config() → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Return the base logging configuration.

The default is to log to stderr using a StreamHandler, if no default
handler already exists.

The log handler level starts at logging.WARN, but this can be adjusted
by setting the log_level attribute.

The logging_config trait is merged into this allowing for finer
control of logging.

	
initialize(argv: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Do the basic steps to configure me.

Override in subclasses.

	
initialize_subcommand(subc: str [https://docs.python.org/3/library/stdtypes.html#str], argv: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Initialize a subcommand with argv.

	
json_config_loader_class

	alias of JSONFileConfigLoader

	
classmethod launch_instance(argv: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Launch a global instance of this Application

If a global instance already exists, this reinitializes and starts it

	
load_config_environ() → None [https://docs.python.org/3/library/constants.html#None]

	Load config files by environment.

	
load_config_file(filename: str [https://docs.python.org/3/library/stdtypes.html#str], path: str [https://docs.python.org/3/library/stdtypes.html#str] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Load config files by filename and path.

	
property loaded_config_files: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Currently loaded configuration files

	
log_datefmt

	The date format used by logging formatters for %(asctime)s

	
log_format

	The Logging format template

	
log_level

	Set the log level by value or name.

	
logging_config

	Configure additional log handlers.

The default stderr logs handler is configured by the
log_level, log_datefmt and log_format settings.

This configuration can be used to configure additional handlers
(e.g. to output the log to a file) or for finer control over the
default handlers.

If provided this should be a logging configuration dictionary, for
more information see:
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

This dictionary is merged with the base logging configuration which
defines the following:

	A logging formatter intended for interactive use called
console.

	A logging handler that writes to stderr called
console which uses the formatter console.

	A logger with the name of this application set to DEBUG
level.

This example adds a new handler that writes to a file:

c.Application.logging_config = {
 "handlers": {
 "file": {
 "class": "logging.FileHandler",
 "level": "DEBUG",
 "filename": "<path/to/file>",
 }
 },
 "loggers": {
 "<application-name>": {
 "level": "DEBUG",
 # NOTE: if you don't list the default "console"
 # handler here then it will be disabled
 "handlers": ["console", "file"],
 },
 },
}

	
parse_command_line(argv: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Parse the command line arguments.

	
print_alias_help() → None [https://docs.python.org/3/library/constants.html#None]

	Print the alias parts of the help.

	
print_description() → None [https://docs.python.org/3/library/constants.html#None]

	Print the application description.

	
print_examples() → None [https://docs.python.org/3/library/constants.html#None]

	Print usage and examples (see emit_examples()).

	
print_flag_help() → None [https://docs.python.org/3/library/constants.html#None]

	Print the flag part of the help.

	
print_help(classes: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Print the help for each Configurable class in self.classes.

If classes=False (the default), only flags and aliases are printed.

	
print_options() → None [https://docs.python.org/3/library/constants.html#None]

	Print the options part of the help.

	
print_subcommands() → None [https://docs.python.org/3/library/constants.html#None]

	Print the subcommand part of the help.

	
print_version() → None [https://docs.python.org/3/library/constants.html#None]

	Print the version string.

	
python_config_loader_class

	alias of PyFileConfigLoader

	
show_config

	Instead of starting the Application, dump configuration to stdout

	
show_config_json

	Instead of starting the Application, dump configuration to stdout (as JSON)

	
start() → None [https://docs.python.org/3/library/constants.html#None]

	Start the app mainloop.

Override in subclasses.

	
start_show_config() → None [https://docs.python.org/3/library/constants.html#None]

	start function used when show_config is True

	
class traitlets.config.Config(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwds: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	An attribute-based dict that can do smart merges.

Accessing a field on a config object for the first time populates the key
with either a nested Config object for keys starting with capitals
or LazyConfigValue for lowercase keys,
allowing quick assignments such as:

c = Config()
c.Class.int_trait = 5
c.Class.list_trait.append("x")

	
collisions(other: Config) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Check for collisions between two config objects.

Returns a dict of the form {“Class”: {“trait”: “collision message”}}`,
indicating which values have been ignored.

An empty dict indicates no collisions.

	
copy() → a shallow copy of D

	

	
has_key(key: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → bool [https://docs.python.org/3/library/functions.html#bool]

	True if the dictionary has the specified key, else False.

	
merge(other: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	merge another config object into this one

	
class traitlets.config.loader.LazyConfigValue(**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Proxy object for exposing methods on configurable containers

These methods allow appending/extending/updating
to add to non-empty defaults instead of clobbering them.

Exposes:

	append, extend, insert on lists

	update on dicts

	update, add on sets

	
add(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Add an item to a set

	
append(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Append an item to a List

	
extend(other: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Extend a list

	
get_value(initial: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	construct the value from the initial one

after applying any insert / extend / update changes

	
merge_into(other: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Merge with another earlier LazyConfigValue or an earlier container.
This is useful when having global system-wide configuration files.

Self is expected to have higher precedence.

	Parameters:

	other (LazyConfigValue or container) –

	Returns:

	if other is also lazy, a reified container otherwise.

	Return type:

	LazyConfigValue

	
prepend(other: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	like list.extend, but for the front

	
to_dict() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	return JSONable dict form of my data

Currently update as dict or set, extend, prepend as lists, and inserts as list of tuples.

	
update(other: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Update either a set or dict

	
class traitlets.config.loader.KVArgParseConfigLoader(argv: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, aliases: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, flags: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, log: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, classes: list [https://docs.python.org/3/library/stdtypes.html#list][type [https://docs.python.org/3/library/functions.html#type][Any [https://docs.python.org/3/library/typing.html#typing.Any]]] | None [https://docs.python.org/3/library/constants.html#None] = None, subcommands: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, *parser_args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **parser_kw: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A config loader that loads aliases and flags with argparse,

as well as arbitrary –Class.trait value

	
__init__(argv: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, aliases: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, flags: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, log: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None, classes: list [https://docs.python.org/3/library/stdtypes.html#list][type [https://docs.python.org/3/library/functions.html#type][Any [https://docs.python.org/3/library/typing.html#typing.Any]]] | None [https://docs.python.org/3/library/constants.html#None] = None, subcommands: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None, *parser_args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **parser_kw: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Create a config loader for use with argparse.

	Parameters:

	
	classes (optional, list [https://docs.python.org/3/library/stdtypes.html#list]) – The classes to scan for container config-traits and decide
for their “multiplicity” when adding them as argparse arguments.

	argv (optional, list [https://docs.python.org/3/library/stdtypes.html#list]) – If given, used to read command-line arguments from, otherwise
sys.argv[1:] is used.

	*parser_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of positional arguments that will be passed to the
constructor of argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	**parser_kw (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A tuple of keyword arguments that will be passed to the
constructor of argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

	aliases (dict [https://docs.python.org/3/library/stdtypes.html#dict] of str to str) – Dict of aliases to full traitlets names for CLI parsing

	flags (dict [https://docs.python.org/3/library/stdtypes.html#dict] of str to str) – Dict of flags to full traitlets names for CLI parsing

	log – Passed to ConfigLoader

	Returns:

	config – The resulting Config object.

	Return type:

	Config

	
load_config(argv: list[str] | None = None, aliases: ~typing.Any = None, flags: ~typing.Any = <Sentinel deprecated>, classes: ~typing.Any = None) → Config

	Parse command line arguments and return as a Config object.

	Parameters:

	
	argv (optional, list [https://docs.python.org/3/library/stdtypes.html#list]) – If given, a list with the structure of sys.argv[1:] to parse
arguments from. If not given, the instance’s self.argv attribute
(given at construction time) is used.

	flags – Deprecated in traitlets 5.0, instantiate the config loader with the flags.

Utils

A simple utility to import something by its string name.

	
traitlets.import_item(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Import and return bar given the string foo.bar.

Calling bar = import_item("foo.bar") is the functional equivalent of
executing the code from foo import bar.

	Parameters:

	name (string) – The fully qualified name of the module/package being imported.

	Returns:

	mod – The module that was imported.

	Return type:

	module object

	
traitlets.signature_has_traits(cls: Type [https://docs.python.org/3/library/typing.html#typing.Type][T]) → Type [https://docs.python.org/3/library/typing.html#typing.Type][T]

	Return a decorated class with a constructor signature that contain Trait names as kwargs.

This is a way to expand the signature of the HasTraits class constructor. This
enables auto-completion of trait-names in IPython and xeus-python when having
Jedi>=0.15 by adding trait names with their default values in the constructor
signature.

Example:

from inspect import signature

from traitlets import HasTraits, Int, Unicode, signature_has_traits

@signature_has_traits
class Foo(HasTraits):
 number1 = Int()
 number2 = Int()
 value = Unicode('Hello')

 def __init__(self, arg1, **kwargs):
 self.arg1 = arg1

 super(Foo, self).__init__(**kwargs)

print(signature(Foo)) # <Signature (arg1, *, number1=0, number2=0, value='Hello', **kwargs)>

Links

	
class traitlets.link(source: Any [https://docs.python.org/3/library/typing.html#typing.Any], target: Any [https://docs.python.org/3/library/typing.html#typing.Any], transform: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None)

	Link traits from different objects together so they remain in sync.

	Parameters:

	
	source ((object / attribute name) pair) –

	target ((object / attribute name) pair) –

	transform (iterable with two callables (optional)) – Data transformation between source and target and target and source.

Examples

>>> class X(HasTraits):
... value = Int()

>>> src = X(value=1)
>>> tgt = X(value=42)
>>> c = link((src, "value"), (tgt, "value"))

Setting source updates target objects:
>>> src.value = 5
>>> tgt.value
5

	
class traitlets.directional_link(source: Any [https://docs.python.org/3/library/typing.html#typing.Any], target: Any [https://docs.python.org/3/library/typing.html#typing.Any], transform: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None)

	Link the trait of a source object with traits of target objects.

	Parameters:

	
	source ((object [https://docs.python.org/3/library/functions.html#object], attribute name) pair) –

	target ((object [https://docs.python.org/3/library/functions.html#object], attribute name) pair) –

	transform (callable (optional)) – Data transformation between source and target.

Examples

>>> class X(HasTraits):
... value = Int()

>>> src = X(value=1)
>>> tgt = X(value=42)
>>> c = directional_link((src, "value"), (tgt, "value"))

Setting source updates target objects:
>>> src.value = 5
>>> tgt.value
5

Setting target does not update source object:
>>> tgt.value = 6
>>> src.value
5

Migration from Traitlets 4.0 to Traitlets 4.1

Traitlets 4.1 introduces a totally new decorator-based API for
configuring traitlets and a couple of other changes.

However, it is a backward-compatible release and the deprecated APIs
will be supported for some time.

Separation of metadata and keyword arguments in TraitType constructors

In traitlets 4.0, trait types constructors used all unrecognized keyword
arguments passed to the constructor (like sync or config) to
populate the metadata dictionary.

In trailets 4.1, we deprecated this behavior. The preferred method to
populate the metadata for a trait type instance is to use the new
tag method.

x = Int(allow_none=True, sync=True) # deprecated
x = Int(allow_none=True).tag(sync=True) # ok

We also deprecated the get_metadata method. The metadata of a trait
type instance can directly be accessed via the metadata attribute.

Deprecation of on_trait_change

The most important change in this release is the deprecation of the
on_trait_change method.

Instead, we introduced two methods, observe and unobserve to
register and unregister handlers (instead of passing remove=True to
on_trait_change for the removal).

	The observe method takes one positional argument (the handler),
and two keyword arguments, names and type, which are used to
filter by notification type or by the names of the observed trait
attribute. The special value All corresponds to listening to all
the notification types or all notifications from the trait
attributes. The names argument can be a list of string, a string,
or All and type can be a string or All.

	The observe handler’s signature is different from the signature of
on_trait_change. It takes a single change dictionary argument,
containing

{"type": "<The type of notification.>"}

In the case where type is the string 'change', the following
additional attributes are provided:

{
 "owner": "<the HasTraits instance>",
 "old": "<the old trait attribute value>",
 "new": "<the new trait attribute value>",
 "name": "<the name of the changing attribute>",
}

The type key in the change dictionary is meant to enable protocols
for other notification types. By default, its value is equal to the
'change' string which corresponds to the change of a trait value.

Example:

from traitlets import HasTraits, Int, Unicode

class Foo(HasTraits):
 bar = Int()
 baz = Unicode()

def handle_change(change):
 print("{name} changed from {old} to {new}".format(**change))

foo = Foo()
foo.observe(handle_change, names="bar")

The new @observe decorator

The use of the magic methods _{trait}_changed as change handlers is
deprecated, in favor of a new @observe method decorator.

The @observe method decorator takes the names of traits to be observed as positional arguments and
has a type keyword-only argument (defaulting to 'change') to filter
by notification type.

Example:

class Foo(HasTraits):
 bar = Int()
 baz = EnventfulContainer() # hypothetical trait type emitting
 # other notifications types

 @observe("bar") # 'change' notifications for `bar`
 def handler_bar(self, change):
 pass

 @observe("baz ", type="element_change") # 'element_change' notifications for `baz`
 def handler_baz(self, change):
 pass

 @observe("bar", "baz", type=All) # all notifications for `bar` and `baz`
 def handler_all(self, change):
 pass

dynamic defaults generation with decorators

The use of the magic methods _{trait}_default for dynamic default
generation is not deprecated, but a new @default method decorator
is added.

Example:

Default generators should only be called if they are registered in
subclasses of trait.this_type.

from traitlets import HasTraits, Int, Float, default

class A(HasTraits):
 bar = Int()

 @default("bar")
 def get_bar_default(self):
 return 11

class B(A):
 bar = Float() # This ignores the default generator
 # defined in the base class A

class C(B):
 @default("bar")
 def some_other_default(self): # This should not be ignored since
 return 3.0 # it is defined in a class derived
 # from B.a.this_class.

Deprecation of magic method for cross-validation

traitlets enables custom cross validation between the different
attributes of a HasTraits instance. For example, a slider value
should remain bounded by the min and max attribute. This
validation occurs before the trait notification fires.

The use of the magic methods _{name}_validate for custom
cross-validation is deprecated, in favor of a new @validate method
decorator.

The method decorated with the @validate decorator take a single
proposal dictionary

{
 "trait": "<the trait type instance being validated>",
 "value": "<the proposed value>",
 "owner": "<the underlying HasTraits instance>",
}

Custom validators may raise TraitError exceptions in case of invalid
proposal, and should return the value that will be eventually assigned.

Example:

from traitlets import HasTraits, TraitError, Int, Bool, validate

class Parity(HasTraits):
 value = Int()
 parity = Int()

 @validate("value")
 def _valid_value(self, proposal):
 if proposal["value"] % 2 != self.parity:
 raise TraitError("value and parity should be consistent")
 return proposal["value"]

 @validate("parity")
 def _valid_parity(self, proposal):
 parity = proposal["value"]
 if parity not in [0, 1]:
 raise TraitError("parity should be 0 or 1")
 if self.value % 2 != parity:
 raise TraitError("value and parity should be consistent")
 return proposal["value"]

parity_check = Parity(value=2)

Changing required parity and value together while holding cross validation
with parity_check.hold_trait_notifications():
 parity_check.value = 1
 parity_check.parity = 1

The presence of the owner key in the proposal dictionary enable the
use of other attributes of the object in the cross validation logic.
However, we recommend that the custom cross validator don’t modify the
other attributes of the object but only coerce the proposed value.

Backward-compatible upgrades

One challenge in adoption of a changing API is how to adopt the new API
while maintaining backward compatibility for subclasses,
as event listeners methods are de facto public APIs.

Take for instance the following class:

from traitlets import HasTraits, Unicode

class Parent(HasTraits):
 prefix = Unicode()
 path = Unicode()

 def _path_changed(self, name, old, new):
 self.prefix = os.path.dirname(new)

And you know another package has the subclass:

from parent import Parent

class Child(Parent):
 def _path_changed(self, name, old, new):
 super()._path_changed(name, old, new)
 if not os.path.exists(new):
 os.makedirs(new)

If the parent package wants to upgrade without breaking Child,
it needs to preserve the signature of _path_changed.
For this, we have provided an @observe_compat decorator,
which automatically shims the deprecated signature into the new signature:

from traitlets import HasTraits, Unicode, observe, observe_compat

class Parent(HasTraits):
 prefix = Unicode()
 path = Unicode()

 @observe("path")
 @observe_compat # <- this allows super()._path_changed in subclasses to work with the old signature.
 def _path_changed(self, change):
 self.prefix = os.path.dirname(change["value"])

Changes in Traitlets

5.14.2

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.14.1...2d0fb91f39a71c5528860e23bf9c2138e441b319])

Maintenance and upkeep improvements

	Update Release Scripts #900 [https://github.com/ipython/traitlets/pull/900] (@blink1073 [https://github.com/blink1073])

	chore: update pre-commit hooks #897 [https://github.com/ipython/traitlets/pull/897] (@pre-commit-ci [https://github.com/pre-commit-ci])

	Bump the actions group with 1 update #896 [https://github.com/ipython/traitlets/pull/896] (@dependabot [https://github.com/dependabot])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2024-01-02&to=2024-03-12&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2024-01-02..2024-03-12&type=Issues] | @dependabot [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Adependabot+updated%3A2024-01-02..2024-03-12&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2024-01-02..2024-03-12&type=Issues]

5.14.1

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.14.0...a1108c92013f9da56a9dccb79f7a5453ffe8d1db])

Bugs fixed

	FIX: map - to _ for environment variable prefix. #895 [https://github.com/ipython/traitlets/pull/895] (@Carreau [https://github.com/Carreau])

Maintenance and upkeep improvements

	chore: update pre-commit hooks #894 [https://github.com/ipython/traitlets/pull/894] (@pre-commit-ci [https://github.com/pre-commit-ci])

	Update ruff config #893 [https://github.com/ipython/traitlets/pull/893] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-11-27&to=2024-01-02&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-11-27..2024-01-02&type=Issues] | @Carreau [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3ACarreau+updated%3A2023-11-27..2024-01-02&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2023-11-27..2024-01-02&type=Issues]

5.14.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.13.0...4d7504601b9db9eb6f31dfc102b9c469c8517496])

Enhancements made

	Add option to load traitlets values from environment. #856 [https://github.com/ipython/traitlets/pull/856] (@Carreau [https://github.com/Carreau])

Maintenance and upkeep improvements

	Update types for mypy 1.7 #892 [https://github.com/ipython/traitlets/pull/892] (@blink1073 [https://github.com/blink1073])

	chore: update pre-commit hooks #890 [https://github.com/ipython/traitlets/pull/890] (@pre-commit-ci [https://github.com/pre-commit-ci])

	Clean up lint handling #888 [https://github.com/ipython/traitlets/pull/888] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-10-30&to=2023-11-27&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-10-30..2023-11-27&type=Issues] | @Carreau [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3ACarreau+updated%3A2023-10-30..2023-11-27&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2023-10-30..2023-11-27&type=Issues]

5.13.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.12.0...dacbf9b03ebecbd09604ab2fa41e088e3f60b403])

Bugs fixed

	Use passed-in info argument for TraitType.error() #884 [https://github.com/ipython/traitlets/pull/884] (@kylebarron [https://github.com/kylebarron])

Maintenance and upkeep improvements

	Improve generics handling #886 [https://github.com/ipython/traitlets/pull/886] (@blink1073 [https://github.com/blink1073])

	Finish Strict Typing #885 [https://github.com/ipython/traitlets/pull/885] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-10-25&to=2023-10-30&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-10-25..2023-10-30&type=Issues] | @kylebarron [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Akylebarron+updated%3A2023-10-25..2023-10-30&type=Issues]

5.12.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.11.2...b018581f0acd75844bbd7584e233c3ab3126501b])

Enhancements made

	Pass **kwds in MetaHasDescriptors new and init #881 [https://github.com/ipython/traitlets/pull/881] (@fleming79 [https://github.com/fleming79])

Maintenance and upkeep improvements

	Adopt sp-repo-review #883 [https://github.com/ipython/traitlets/pull/883] (@blink1073 [https://github.com/blink1073])

	Cleanup after remove Python 2 support #882 [https://github.com/ipython/traitlets/pull/882] (@shadchin [https://github.com/shadchin])

	Add more project URLs, trove classifiers #879 [https://github.com/ipython/traitlets/pull/879] (@bollwyvl [https://github.com/bollwyvl])

Documentation improvements

	Fix docs version #880 [https://github.com/ipython/traitlets/pull/880] (@bollwyvl [https://github.com/bollwyvl])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-10-03&to=2023-10-24&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-10-03..2023-10-24&type=Issues] | @bollwyvl [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Abollwyvl+updated%3A2023-10-03..2023-10-24&type=Issues] | @fleming79 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Afleming79+updated%3A2023-10-03..2023-10-24&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2023-10-03..2023-10-24&type=Issues] | @shadchin [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ashadchin+updated%3A2023-10-03..2023-10-24&type=Issues]

5.11.2

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.11.1...e238765a0ba28fc68318cff75e852958d5c65c93])

Maintenance and upkeep improvements

	More typing cleanup #877 [https://github.com/ipython/traitlets/pull/877] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-10-03&to=2023-10-03&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-10-03..2023-10-03&type=Issues]

5.11.1

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.11.0...292a699ad1a3a3ece760a8335cae73927cccd711])

Maintenance and upkeep improvements

	Typing fixups #875 [https://github.com/ipython/traitlets/pull/875] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-10-03&to=2023-10-03&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-10-03..2023-10-03&type=Issues]

5.11.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.10.1...24a24508260d501abd6bc8b42b59163c6c07d8c4])

Maintenance and upkeep improvements

	More Typing Adoption #873 [https://github.com/ipython/traitlets/pull/873] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-09-26&to=2023-10-03&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-09-26..2023-10-03&type=Issues]

5.10.1

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.10.0...c0a3afdb2dcb28bd7ade6dd730604df8f3fbfc78])

Maintenance and upkeep improvements

	Typing upgrades #868 [https://github.com/ipython/traitlets/pull/868] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-09-14&to=2023-09-26&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-09-14..2023-09-26&type=Issues]

5.10.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.9.0...6588680dc69be75676ca3835b4061b1784232600])

Enhancements made

	Added type hints to HasTraits.observe() and friends. (#834 #834 [https://github.com/ipython/traitlets/pull/834] (@scholer [https://github.com/scholer])

	feat: trait typing #818 [https://github.com/ipython/traitlets/pull/818] (@maartenbreddels [https://github.com/maartenbreddels])

Maintenance and upkeep improvements

	Fix mypy deps and support Python 3.8-3.12 #862 [https://github.com/ipython/traitlets/pull/862] (@blink1073 [https://github.com/blink1073])

	Update pytest requirement from <7.2,>=7.0 to >=7.0,<7.5 #861 [https://github.com/ipython/traitlets/pull/861] (@dependabot [https://github.com/dependabot])

	Bump actions/checkout from 3 to 4 #860 [https://github.com/ipython/traitlets/pull/860] (@dependabot [https://github.com/dependabot])

	Fix typing #848 [https://github.com/ipython/traitlets/pull/848] (@blink1073 [https://github.com/blink1073])

	Update docs config #843 [https://github.com/ipython/traitlets/pull/843] (@blink1073 [https://github.com/blink1073])

	Use local coverage #842 [https://github.com/ipython/traitlets/pull/842] (@blink1073 [https://github.com/blink1073])

	Adjust argcomplete typings #839 [https://github.com/ipython/traitlets/pull/839] (@blink1073 [https://github.com/blink1073])

	Better warnings #838 [https://github.com/ipython/traitlets/pull/838] (@NickCrews [https://github.com/NickCrews])

	Update typings (#836 #836 [https://github.com/ipython/traitlets/pull/836] (@blink1073 [https://github.com/blink1073])

Documentation improvements

	rename MyClass to School #858 [https://github.com/ipython/traitlets/pull/858] (@metaperl [https://github.com/metaperl])

	Even though returning a value from a validation method is ideal, by no means is proposal['value'] the only thing that can be returned #855 [https://github.com/ipython/traitlets/pull/855] (@metaperl [https://github.com/metaperl])

	Document help parameter of TraitType.init(). #847 [https://github.com/ipython/traitlets/pull/847] (@metaperl [https://github.com/metaperl])

Other merged PRs

	Clean up license (#832)Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> #832 [https://github.com/ipython/traitlets/pull/832] (@dcsaba89 [https://github.com/dcsaba89])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-01-30&to=2023-09-14&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-01-30..2023-09-14&type=Issues] | @dcsaba89 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Adcsaba89+updated%3A2023-01-30..2023-09-14&type=Issues] | @dependabot [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Adependabot+updated%3A2023-01-30..2023-09-14&type=Issues] | @maartenbreddels [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Amaartenbreddels+updated%3A2023-01-30..2023-09-14&type=Issues] | @metaperl [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ametaperl+updated%3A2023-01-30..2023-09-14&type=Issues] | @NickCrews [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3ANickCrews+updated%3A2023-01-30..2023-09-14&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2023-01-30..2023-09-14&type=Issues] | @rmorshea [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Armorshea+updated%3A2023-01-30..2023-09-14&type=Issues] | @saulshanabrook [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Asaulshanabrook+updated%3A2023-01-30..2023-09-14&type=Issues] | @scholer [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ascholer+updated%3A2023-01-30..2023-09-14&type=Issues]

5.9.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.8.1...c11a4d942b08df5c19be88b6cc81dfa8302fef9b])

Enhancements made

	Polishing argcomplete support #829 [https://github.com/ipython/traitlets/pull/829] (@azjps [https://github.com/azjps])

Maintenance and upkeep improvements

	Test that name and description can be set via constructor. #826 [https://github.com/ipython/traitlets/pull/826] (@Carreau [https://github.com/Carreau])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2023-01-09&to=2023-01-30&type=c])

@azjps [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Aazjps+updated%3A2023-01-09..2023-01-30&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2023-01-09..2023-01-30&type=Issues] | @Carreau [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3ACarreau+updated%3A2023-01-09..2023-01-30&type=Issues]

5.8.1

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.8.0...18814204c7e7987851cc1836a36863b4fab60165])

Bugs fixed

	fix: mro_trait can be unbound when the class is not in mro #824 [https://github.com/ipython/traitlets/pull/824] (@maartenbreddels [https://github.com/maartenbreddels])

Maintenance and upkeep improvements

Documentation improvements

	Add more api docs #821 [https://github.com/ipython/traitlets/pull/821] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2022-12-19&to=2023-01-09&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2022-12-19..2023-01-09&type=Issues] | @maartenbreddels [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Amaartenbreddels+updated%3A2022-12-19..2023-01-09&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2022-12-19..2023-01-09&type=Issues] | @rmorshea [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Armorshea+updated%3A2022-12-19..2023-01-09&type=Issues]

5.8.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.7.1...47e652f96aff54d1aa3b19337c9c8d80fe0fd4c4])

Enhancements made

-Shell command-line tab-completion via argcomplete #811 [https://github.com/ipython/traitlets/pull/811] (@azjps [https://github.com/azjps])

	Define trait.__doc__ = trait.help for better API Docs #816 [https://github.com/ipython/traitlets/pull/816] (@minrk [https://github.com/minrk])

Maintenance and upkeep improvements

	Expose more attributes for typing #817 [https://github.com/ipython/traitlets/pull/817] (@blink1073 [https://github.com/blink1073])

	Fix lint #814 [https://github.com/ipython/traitlets/pull/814] (@blink1073 [https://github.com/blink1073])

Documentation improvements

	Additional Application examples and docs #811 [https://github.com/ipython/traitlets/pull/811] (@azjps [https://github.com/azjps])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2022-12-12&to=2022-12-19&type=c])

@azjps [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Aazjps+updated%3A2022-12-12..2022-12-19&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2022-12-12..2022-12-19&type=Issues] | @minrk [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Aminrk+updated%3A2022-12-12..2022-12-19&type=Issues]

5.7.1

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.7.0...aa0d38bf02d34a6df788477da30eac6e58ffbda5])

Bugs fixed

	fix: some descriptors raise AttributeError #812 [https://github.com/ipython/traitlets/pull/812] (@maartenbreddels [https://github.com/maartenbreddels])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2022-12-08&to=2022-12-12&type=c])

@maartenbreddels [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Amaartenbreddels+updated%3A2022-12-08..2022-12-12&type=Issues]

5.7.0

(Full Changelog [https://github.com/ipython/traitlets/compare/v5.6.0...f07afea52cf6314bc20571c52409ff6cb115a709])

Enhancements made

	Performance: decrease runtime overhead for constructing HasTraits (up to 20x faster) #777 [https://github.com/ipython/traitlets/pull/777] (@maartenbreddels [https://github.com/maartenbreddels])

Maintenance and upkeep improvements

	Minor fixes for Application.aliases #810 [https://github.com/ipython/traitlets/pull/810] (@azjps [https://github.com/azjps])

	Adopt ruff and address lint #809 [https://github.com/ipython/traitlets/pull/809] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2022-11-29&to=2022-12-08&type=c])

@azjps [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Aazjps+updated%3A2022-11-29..2022-12-08&type=Issues] | @blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2022-11-29..2022-12-08&type=Issues] | @maartenbreddels [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Amaartenbreddels+updated%3A2022-11-29..2022-12-08&type=Issues] | @naterush [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Anaterush+updated%3A2022-11-29..2022-12-08&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2022-11-29..2022-12-08&type=Issues]

5.6.0

(Full Changelog [https://github.com/ipython/traitlets/compare/5.5.0...2c5188a3562f03c0703315b21df41ca7ace23dd3])

Maintenance and upkeep improvements

	Adopt jupyter releaser #806 [https://github.com/ipython/traitlets/pull/806] (@blink1073 [https://github.com/blink1073])

	Use base setup dependency type #805 [https://github.com/ipython/traitlets/pull/805] (@blink1073 [https://github.com/blink1073])

	More CI Cleanup #803 [https://github.com/ipython/traitlets/pull/803] (@blink1073 [https://github.com/blink1073])

	More maintenance cleanup #802 [https://github.com/ipython/traitlets/pull/802] (@blink1073 [https://github.com/blink1073])

	Add project description #801 [https://github.com/ipython/traitlets/pull/801] (@blink1073 [https://github.com/blink1073])

	Bump actions/setup-python from 2 to 4 #798 [https://github.com/ipython/traitlets/pull/798] (@dependabot [https://github.com/dependabot])

	Bump actions/checkout from 2 to 3 #797 [https://github.com/ipython/traitlets/pull/797] (@dependabot [https://github.com/dependabot])

	Bump pre-commit/action from 2.0.0 to 3.0.0 #796 [https://github.com/ipython/traitlets/pull/796] (@dependabot [https://github.com/dependabot])

	Bump actions/upload-artifact from 2 to 3 #795 [https://github.com/ipython/traitlets/pull/795] (@dependabot [https://github.com/dependabot])

	Add dependabot #794 [https://github.com/ipython/traitlets/pull/794] (@blink1073 [https://github.com/blink1073])

	Add more typings #791 [https://github.com/ipython/traitlets/pull/791] (@blink1073 [https://github.com/blink1073])

	Format changelog #789 [https://github.com/ipython/traitlets/pull/789] (@blink1073 [https://github.com/blink1073])

Contributors to this release

(GitHub contributors page for this release [https://github.com/ipython/traitlets/graphs/contributors?from=2022-10-18&to=2022-11-29&type=c])

@blink1073 [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Ablink1073+updated%3A2022-10-18..2022-11-29&type=Issues] | @dependabot [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Adependabot+updated%3A2022-10-18..2022-11-29&type=Issues] | @maartenbreddels [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Amaartenbreddels+updated%3A2022-10-18..2022-11-29&type=Issues] | @pre-commit-ci [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Apre-commit-ci+updated%3A2022-10-18..2022-11-29&type=Issues] | @rmorshea [https://github.com/search?q=repo%3Aipython%2Ftraitlets+involves%3Armorshea+updated%3A2022-10-18..2022-11-29&type=Issues]

5.5.0

	Clean up application typing

	Update tests and docs to use non-deprecated functions

	Clean up version handling

	Prep for jupyter releaser

	Format the changelog

5.4.0

	Fix version_info

	Make generated config files more lintable

	Fix union trait from string

	Add security.md, and tidelift badge

5.3.0

	Fix traitlet name in docstring

	Re-support multiple-alias key for ArgParseConfigLoader

5.2.2

	Make traitlets.__all__ explicit and validate in test.

	Fix KeyError in Application.get_default_logging_config.

5.2.1

	logging: Don’t attempt to close handlers unless they have been
opened. Fixes ValueError: Unable to configure formatter 'console' traceback.

5.2.0

Traitlets 5.2 brings a couple of updates and changes to traitlets, and
is recommended for all users. What follows is a non-exhaustive list of
changes:

	Application: add logging_config trait.

	Disambiguate the use of the term value in the example.

	Add mypy typing support.

	DOC: Add log example.

	Internal cleanup: linters, autoformatters, CI.

5.1.1

5.1.1 fixes compatibility issues with Python 3.10 (rc2).

5.1.0

Traitlets 5.1 brings a couple of updates and changes to traitlets, and
is recommended for all users. What follow is a non-exhaustive list of
changes:

	Removal of the ipython_genutils dependency, this should remove
any direct and indirect reliance on nose and prepare traitlets
5.1 for Python 3.10 and above compatibility, some test suite
changes also accommodate Python 3.10 changes. If you package
traitlets downstream, make sure to remove this dependency.

	Removal of ipython_genutils may have change the default encoding
detected for the command line argument parsing when not utf-8. We
expect this to affect a small portion of older windows version. If
you encounter issue let us know.

	Stop recommendation of CUnicode in some circumstances as it’s
deprecated.

	Our test suite is now using GitHub action instead of travis CI. If
you are packaging downstream using the git repository, you may
have to exclude the .github folder now, and can remove exclusion
of

	It fixes a parsing issue for list of one single element on the
CLI.

	We reserve the right to remove official support for Python 3.7 in
subsequent minor revisions.

5.0.5

	Support deprecated literals for sets, tuples on the command-line:
nbconvert --TagRemovePreprocessor.remove_cell_tags='{"tag"}'

	Fix from_string_list for Tuples in general

	Fix support for List(default_value=None, allow_none=True) and
other Container traits

	Fix help output for nested aliases and tuple traits

5.0.4

	Support deprecated use of byte-literals for bytes on the
command-line: ipython kernel --Session.key="b'abc'". The
b prefix is no longer needed in traitlets 5.0, but is
supported for backward-compatibility

	Improve output of configuration errors, especially when help output
would make it hard to find the helpful error message

5.0.3

	Fix regression in handling --opt=None on the CLI for
configurable traits with allow_none=True

5.0.2

	Fix casting bytes to unicode

5.0.0

(This is an in-progress changelog, please let us know if something is
missing/or could be phrased better)

Traitlets 5.0 is a new version of traitlets that accumulate changes over
a period of more close to four years; A number of internal refactoring
made the internal code structure cleaner and simpler, and greatly
improved the diagnostic error messages as well has help and
documentation generation.

We expect no code change needed for any consumer of the Python API
(ipywidgets, and alike), though CLI argument parsing have seen a
complete rewrite, so if you have an application that does use the
parsing logic of traitlets you may see changes in behavior, and now have
access to more features. There was also a cleanup of what was considered
a part of the public API, certain previously exposed utility functions
and types are no longer available. Please see an exhaustive list below.

::: seealso
commandline docs for details about
command-line parsing and the changes in 5.0.

Please let us know [https://github.com/ipython/traitlets/issues] if you
find issues with the new command-line parsing changes.
:::

We also want to thanks in particular a number of regular contributor
through the years that have patiently waited for their often large
contribution to be available, if rough order of number of
contribution:

	Ryan Morshead - @rmorshea - For serving as a maintainer of the
4.x branch and providing a number of bug fix through the years.

	Kostis Anagnostopoulos - @ankostis - Who push a major refactor of
the CLI paring, as well as many help-generating function.

	Benjamin Ragan-Kelley – @minrk – for reviewing and help fixing
edge case in most of the above

	Matthias Bussonnier – @carreau

	Sylvain Corlay

	Francisco de la Peña

	Martin Renou

	Yves Delley

	Thomas Kluyver

	hristian Clauss

	maartenbreddels

	Aliaksei Urbanski

	Kevin Bates

	David Brochart

As well as many of the passer-by, and less frequent contributors:

	Tim Paine

	Jake VanderPlas

	Frédéric Chapoton

	Dan Allan

	Adam Chainz

	William Krinsman

	Travis DePrato

	Todd

	Thomas Aarholt

	Lumir Balhar

	Leonardo Uieda

	Leo Gallucci

	Kyle Kelley

	Jeroen Demeyer

	Jason Grout

	Hans Moritz Günther

	FredInChina

	Conner Cowling

	Carol Willing

	Albert Zeyer

Major changes are:

	Removal of Python 2 support,

	Removal of Python 3.0-3.6 support

	we now follow NEP 29, and are thus Python 3.7+ only.

	remove six as a dependency

	remove funcsig as a dependency.

	no longer exposes the following functions / types:

	ClassTypes

	DefaultHandler

	EventHandler

	ForwardDeclaredMixin

	ObserveHandler

	SequenceTypes

	ValidateHandler

	add_article

	class_of

	getargspec

	getmembers

	is_trait

	isidentifier

	repr_type

Here is a list of most Pull requests that went into 5.0 and a short
description.

	#362 [https://github.com/ipython/traitlets/pull/362] , #361 [https://github.com/ipython/traitlets/pull/361] introduces:

	help for aliases , aliases dict values can now be a tuple with
(‘target’, ‘help string’)

	subcommands can now be arbitrary callable and do not need to be
subclass of Application

	#306 [https://github.com/ipython/traitlets/pull/306] Add compatibility with the
trait package for Dictionaries and add the key_trait parameters
allowing to restrict the type of the key of a mapping. The
constructor parameters trait and traits are renamed to
value_trait and per_key_traits.

	#319 [https://github.com/ipython/traitlets/pull/319] adds ability to introduce
both shot and long version of aliases, allowing for short and long
options - and --.

	#322 [https://github.com/ipython/traitlets/pull/322] rewrite command line argument
parsing to use argparse, and allow more flexibility in assigning
literals without quoting.

	#332 [https://github.com/ipython/traitlets/pull/332] Make it easier to redefined
default values of parents classes.

	#333 [https://github.com/ipython/traitlets/pull/333] introduces a
Callable trait.

	#340 [https://github.com/ipython/traitlets/pull/340] Old way of passing containers
in the command line is now deprecated, and will emit warning on the
command line.

	#341 [https://github.com/ipython/traitlets/pull/341] introduces
--Application.show_config=True which will make by default any
application show it configuration, all the files it loaded
configuration from, and exit.

	#349 [https://github.com/ipython/traitlets/pull/349] unify ability to declare
default values across traitlets with a singular method default
method, and #525 [https://github.com/ipython/traitlets/pull/525] adds a warning
that Undefinedis deprecated.

	#355 [https://github.com/ipython/traitlets/pull/355] fix a random ordering issues
in command lines flags.

	#356 [https://github.com/ipython/traitlets/pull/356] allow both self and cls
in __new__ method for genericity.

	#360 [https://github.com/ipython/traitlets/pull/360] Simplify overwriting and
extending the command line argument parser.

	#371 [https://github.com/ipython/traitlets/pull/371] introduces a
FuzzyEnum trait that allow case
insensitive and unique prefix matching.

	#384 [https://github.com/ipython/traitlets/pull/384] Ass a
trait_values method to extra a mapping of trait and
their values.

	#393 [https://github.com/ipython/traitlets/pull/393] Link now have a
transform attribute (taking two functions inverse of each other),
that affect how a value is mapped between a source and a target.

	#394 [https://github.com/ipython/traitlets/pull/394] Link now have a
link method to re-link object after
unlink has been called.

	#402 [https://github.com/ipython/traitlets/pull/402] rewrite handling of error
messages for nested traits.

	#405 [https://github.com/ipython/traitlets/pull/405] all function that use to
print help now have an equivalent that yields the help lines.

	#413 [https://github.com/ipython/traitlets/pull/413] traits now have a method
trait_has_value, returning a boolean to know if a
value has been assigned to a trait (excluding the default), in order
to help avoiding circular validation at initialisation.

	#416 [https://github.com/ipython/traitlets/pull/416] Explicitly export traitlets
in __all__ to avoid exposing implementation details.

	#438 [https://github.com/ipython/traitlets/pull/438] introduces .info_rst() to
let traitlets overwrite the automatically generated rst
documentation.

	#458 [https://github.com/ipython/traitlets/pull/458] Add a sphinx extension to
automatically document options of Application instance
in projects using traitlets.

	#509 [https://github.com/ipython/traitlets/pull/509] remove all base except:
meaning traitlets will not catch a number of
BaseException s anymore.

	#515 [https://github.com/ipython/traitlets/pull/515] Add a class decorator to
enable tab completion of keyword arguments in signature.

	#516 [https://github.com/ipython/traitlets/pull/516] a Sentinel Traitlets was
made public by mistake and is now deprecated.

	#517 [https://github.com/ipython/traitlets/pull/517] use parent Logger within
logggin configurable when possible.

	#522 [https://github.com/ipython/traitlets/pull/522] Make loading config files
idempotent and expose the list of loaded config files for long
running services.

API changes

This list is auto-generated by frappuccino, comparing with traitlets
4.3.3 API and edited for shortness:

The following items are new:
 + traitlets.Sentinel
 + traitlets.config.application.Application.emit_alias_help(self)
 + traitlets.config.application.Application.emit_description(self)
 + traitlets.config.application.Application.emit_examples(self)
 + traitlets.config.application.Application.emit_flag_help(self)
 + traitlets.config.application.Application.emit_help(self, classes=False)
 + traitlets.config.application.Application.emit_help_epilogue(self, classes)
 + traitlets.config.application.Application.emit_options_help(self)
 + traitlets.config.application.Application.emit_subcommands_help(self)
 + traitlets.config.application.Application.start_show_config(self)
 + traitlets.config.application.default_aliases
 + traitlets.config.application.default_flags
 + traitlets.config.default_aliases
 + traitlets.config.default_flags
 + traitlets.config.loader.DeferredConfig
 + traitlets.config.loader.DeferredConfig.get_value(self, trait)
 + traitlets.config.loader.DeferredConfigList
 + traitlets.config.loader.DeferredConfigList.get_value(self, trait)
 + traitlets.config.loader.DeferredConfigString
 + traitlets.config.loader.DeferredConfigString.get_value(self, trait)
 + traitlets.config.loader.LazyConfigValue.merge_into(self, other)
 + traitlets.config.loader.Undefined
 + traitlets.config.loader.class_trait_opt_pattern
 + traitlets.traitlets.BaseDescriptor.subclass_init(self, cls)
 + traitlets.traitlets.Bool.from_string(self, s)
 + traitlets.traitlets.Bytes.from_string(self, s)
 + traitlets.traitlets.Callable
 + traitlets.traitlets.Callable.validate(self, obj, value)
 + traitlets.traitlets.CaselessStrEnum.info(self)
 + traitlets.traitlets.CaselessStrEnum.info_rst(self)
 + traitlets.traitlets.Complex.from_string(self, s)
 + traitlets.traitlets.Container.from_string(self, s)
 + traitlets.traitlets.Container.from_string_list(self, s_list)
 + traitlets.traitlets.Container.item_from_string(self, s)
 + traitlets.traitlets.Dict.from_string(self, s)
 + traitlets.traitlets.Dict.from_string_list(self, s_list)
 + traitlets.traitlets.Dict.item_from_string(self, s)
 + traitlets.traitlets.Enum.from_string(self, s)
 + traitlets.traitlets.Enum.info_rst(self)
 + traitlets.traitlets.Float.from_string(self, s)
 + traitlets.traitlets.FuzzyEnum
 + traitlets.traitlets.FuzzyEnum.info(self)
 + traitlets.traitlets.FuzzyEnum.info_rst(self)
 + traitlets.traitlets.FuzzyEnum.validate(self, obj, value)
 + traitlets.traitlets.HasTraits.trait_defaults(self, *names, **metadata)
 + traitlets.traitlets.HasTraits.trait_has_value(self, name)
 + traitlets.traitlets.HasTraits.trait_values(self, **metadata)
 + traitlets.traitlets.Instance.from_string(self, s)
 + traitlets.traitlets.Int.from_string(self, s)
 + traitlets.traitlets.ObjectName.from_string(self, s)
 + traitlets.traitlets.TCPAddress.from_string(self, s)
 + traitlets.traitlets.TraitType.default(self, obj='None')
 + traitlets.traitlets.TraitType.from_string(self, s)
 + traitlets.traitlets.Unicode.from_string(self, s)
 + traitlets.traitlets.Union.default(self, obj='None')
 + traitlets.traitlets.UseEnum.info_rst(self)
 + traitlets.traitlets.directional_link.link(self)
 + traitlets.traitlets.link.link(self)
 + traitlets.utils.cast_unicode(s, encoding='None')
 + traitlets.utils.decorators
 + traitlets.utils.decorators.Undefined
 + traitlets.utils.decorators.signature_has_traits(cls)
 + traitlets.utils.descriptions
 + traitlets.utils.descriptions.add_article(name, definite=False, capital=False)
 + traitlets.utils.descriptions.class_of(value)
 + traitlets.utils.descriptions.describe(article, value, name='None', verbose=False, capital=False)
 + traitlets.utils.descriptions.repr_type(obj)

The following items have been removed (or moved to superclass):
 - traitlets.ClassTypes
 - traitlets.SequenceTypes
 - traitlets.config.absolute_import
 - traitlets.config.application.print_function
 - traitlets.config.configurable.absolute_import
 - traitlets.config.configurable.print_function
 - traitlets.config.loader.KeyValueConfigLoader.clear
 - traitlets.config.loader.KeyValueConfigLoader.load_config
 - traitlets.config.loader.flag_pattern
 - traitlets.config.loader.kv_pattern
 - traitlets.config.print_function
 - traitlets.traitlets.ClassBasedTraitType.error
 - traitlets.traitlets.Container.element_error
 - traitlets.traitlets.List.validate
 - traitlets.traitlets.TraitType.instance_init
 - traitlets.traitlets.Union.make_dynamic_default
 - traitlets.traitlets.add_article
 - traitlets.traitlets.class_of
 - traitlets.traitlets.repr_type
 - traitlets.utils.getargspec.PY3
 - traitlets.utils.importstring.string_types
 - traitlets.warn_explicit

The following signatures differ between versions:

 - traitlets.config.application.Application.generate_config_file(self)
 + traitlets.config.application.Application.generate_config_file(self, classes='None')

 - traitlets.config.application.catch_config_error(method, app, *args, **kwargs)
 + traitlets.config.application.catch_config_error(method)

 - traitlets.config.configurable.Configurable.class_config_section()
 + traitlets.config.configurable.Configurable.class_config_section(classes='None')

 - traitlets.config.configurable.Configurable.class_get_trait_help(trait, inst='None')
 + traitlets.config.configurable.Configurable.class_get_trait_help(trait, inst='None', helptext='None')

 - traitlets.config.loader.ArgParseConfigLoader.load_config(self, argv='None', aliases='None', flags='None')
 + traitlets.config.loader.ArgParseConfigLoader.load_config(self, argv='None', aliases='None', flags='<deprecated>', classes='None')

 - traitlets.traitlets.Dict.element_error(self, obj, element, validator)
 + traitlets.traitlets.Dict.element_error(self, obj, element, validator, side='Values')

 - traitlets.traitlets.HasDescriptors.setup_instance(self, *args, **kwargs)
 + traitlets.traitlets.HasDescriptors.setup_instance(*args, **kwargs)

 - traitlets.traitlets.HasTraits.setup_instance(self, *args, **kwargs)
 + traitlets.traitlets.HasTraits.setup_instance(*args, **kwargs)

 - traitlets.traitlets.TraitType.error(self, obj, value)
 + traitlets.traitlets.TraitType.error(self, obj, value, error='None', info='None')

4.3

4.3.2

4.3.2 on GitHub [https://github.com/ipython/traitlets/milestones/4.3.2]

4.3.2 is a tiny release, relaxing some of the deprecations introduced in
4.3.1:

	using _traitname_default() without
the @default decorator is no longer deprecated.

	Passing config=True in traitlets constructors is no longer
deprecated.

4.3.1

4.3.1 on GitHub [https://github.com/ipython/traitlets/milestones/4.3.1]

	Compatibility fix for Python 3.6a1

	Fix bug in Application.classes getting extra entries when multiple
Applications are instantiated in the same process.

4.3.0

4.3.0 on GitHub [https://github.com/ipython/traitlets/milestones/4.3]

	Improve the generated config file output.

	Allow TRAITLETS_APPLICATION_RAISE_CONFIG_FILE_ERROR env to override
Application.raise_config_file_errors, so that config file errors can
result in exiting immediately.

	Avoid using root logger. If no application logger is registered, the
'traitlets' logger will be used instead of the root logger.

	Change/Validation arguments are now Bunch objects, allowing
attribute-access, in addition to dictionary access.

	Reduce number of common deprecation messages in certain cases.

	Ensure command-line options always have higher priority than config
files.

	Add bounds on numeric traits.

	Improves various error messages.

4.2

4.2.2 - 2016-07-01

4.2.2 on GitHub [https://github.com/ipython/traitlets/milestones/4.2.2]

Partially revert a change in 4.1 that prevented IPython’s command-line
options from taking priority over config files.

4.2.1 - 2016-03-14

4.2.1 on GitHub [https://github.com/ipython/traitlets/milestones/4.2.1]

Demotes warning about unused arguments in HasTraits.__init__
introduced in 4.2.0 to DeprecationWarning.

4.2.0 - 2016-03-14

4.2 on GitHub [https://github.com/ipython/traitlets/milestones/4.2]

	JSONFileConfigLoader can be used
as a context manager for updating configuration.

	If a value in config does not map onto a configurable trait, a
message is displayed that the value will have no effect.

	Unused arguments are passed to super() in HasTraits.__init__,
improving support for multiple inheritance.

	Various bugfixes and improvements in the new API introduced in 4.1.

	Application subclasses may specify raise_config_file_errors = True
to exit on failure to load config files, instead of the default of
logging the failures.

4.1 - 2016-01-15

4.1 on GitHub [https://github.com/ipython/traitlets/milestones/4.1]

Traitlets 4.1 introduces a totally new decorator-based API for
configuring traitlets. Highlights:

	Decorators are used, rather than magic method names, for registering
trait-related methods. See using_traitlets and migration for more
info.

	Deprecate Trait(config=True) in favor of
Trait().tag(config=True). In general, metadata is added via tag
instead of the constructor.

Other changes:

	Trait attributes initialized with read_only=True can only be set
with the set_trait method. Attempts to directly modify a read-only
trait attribute raises a TraitError.

	The directional link now takes an optional transform
attribute allowing the modification of the value.

	Various fixes and improvements to config-file generation (fixed
ordering, Undefined showing up, etc.)

	Warn on unrecognized traits that aren’t configurable, to avoid
silently ignoring mistyped config.

4.0 - 2015-06-19

4.0 on GitHub [https://github.com/ipython/traitlets/milestones/4.0]

First release of traitlets as a standalone package.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 traitlets	

 	
 	
 traitlets.config	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | O
 | P
 | S
 | T
 | U
 | V

_

 	
 	__init__() (traitlets.config.loader.KVArgParseConfigLoader method)

 	(traitlets.Dict method)

 	(traitlets.Instance method)

 	(traitlets.List method)

 	(traitlets.Set method)

 	(traitlets.TraitType method)

 	(traitlets.Tuple method)

 	(traitlets.Type method)

 	(traitlets.Union method)

A

 	
 	add() (traitlets.config.loader.LazyConfigValue method)

 	add_traits() (traitlets.HasTraits method)

 	
 	Any (class in traitlets)

 	append() (traitlets.config.loader.LazyConfigValue method)

 	Application (class in traitlets.config)

B

 	
 	Bool (class in traitlets)

 	
 	Bytes (class in traitlets)

C

 	
 	Callable (class in traitlets)

 	CaselessStrEnum (class in traitlets)

 	CBool (class in traitlets)

 	CBytes (class in traitlets)

 	CComplex (class in traitlets)

 	CFloat (class in traitlets)

 	CInt (class in traitlets)

 	class_config_rst_doc() (traitlets.config.Configurable class method)

 	class_config_section() (traitlets.config.Configurable class method)

 	class_get_help() (traitlets.config.Configurable class method)

 	class_get_trait_help() (traitlets.config.Configurable class method)

 	class_print_help() (traitlets.config.Configurable class method)

 	
 	class_trait_names() (traitlets.HasTraits class method)

 	class_traits() (traitlets.HasTraits class method)

 	clear_instance() (traitlets.config.SingletonConfigurable class method)

 	cli_config (traitlets.config.Application attribute)

 	CLong (class in traitlets)

 	collisions() (traitlets.config.Config method)

 	Complex (class in traitlets)

 	Config (class in traitlets.config)

 	Configurable (class in traitlets.config)

 	copy() (traitlets.config.Config method)

 	CRegExp (class in traitlets)

 	CUnicode (class in traitlets)

D

 	
 	default() (in module traitlets)

 	default_value (traitlets.MyTrait attribute)

 	Dict (class in traitlets)

 	
 	directional_link (class in traitlets)

 	document_config_options() (traitlets.config.Application method)

 	DottedObjectName (class in traitlets)

E

 	
 	emit_alias_help() (traitlets.config.Application method)

 	emit_description() (traitlets.config.Application method)

 	emit_examples() (traitlets.config.Application method)

 	emit_flag_help() (traitlets.config.Application method)

 	emit_help() (traitlets.config.Application method)

 	
 	emit_help_epilogue() (traitlets.config.Application method)

 	emit_options_help() (traitlets.config.Application method)

 	emit_subcommands_help() (traitlets.config.Application method)

 	Enum (class in traitlets)

 	extend() (traitlets.config.loader.LazyConfigValue method)

F

 	
 	flatten_flags() (traitlets.config.Application method)

 	Float (class in traitlets)

 	ForwardDeclaredInstance (class in traitlets)

 	
 	ForwardDeclaredType (class in traitlets)

 	from_string() (traitlets.TraitType method)

 	from_string_list() (traitlets.Dict method)

 	(traitlets.List method)

G

 	
 	generate_config_file() (traitlets.config.Application method)

 	
 	get_default_logging_config() (traitlets.config.Application method)

 	get_value() (traitlets.config.loader.LazyConfigValue method)

H

 	
 	has_key() (traitlets.config.Config method)

 	
 	has_trait() (traitlets.HasTraits method)

 	HasTraits (class in traitlets)

I

 	
 	import_item() (in module traitlets)

 	info_text (traitlets.MyTrait attribute)

 	initialize() (traitlets.config.Application method)

 	initialize_subcommand() (traitlets.config.Application method)

 	initialized() (traitlets.config.SingletonConfigurable class method)

 	
 	Instance (class in traitlets)

 	instance() (traitlets.config.SingletonConfigurable class method)

 	Int (class in traitlets)

 	Integer (in module traitlets)

 	item_from_string() (traitlets.Dict method)

 	(traitlets.List method)

J

 	
 	json_config_loader_class (traitlets.config.Application attribute)

 	
 	JSONFileConfigLoader (class in traitlets.config)

K

 	
 	KVArgParseConfigLoader (class in traitlets.config.loader)

L

 	
 	launch_instance() (traitlets.config.Application class method)

 	LazyConfigValue (class in traitlets.config.loader)

 	link (class in traitlets)

 	List (class in traitlets)

 	load_config() (traitlets.config.JSONFileConfigLoader method)

 	(traitlets.config.loader.KVArgParseConfigLoader method)

 	load_config_environ() (traitlets.config.Application method)

 	load_config_file() (traitlets.config.Application method)

 	
 	loaded_config_files (traitlets.config.Application property)

 	log (traitlets.config.LoggingConfigurable attribute)

 	log_datefmt (traitlets.config.Application attribute)

 	log_format (traitlets.config.Application attribute)

 	log_level (traitlets.config.Application attribute)

 	logging_config (traitlets.config.Application attribute)

 	LoggingConfigurable (class in traitlets.config)

 	Long (class in traitlets)

M

 	
 	merge() (traitlets.config.Config method)

 	merge_into() (traitlets.config.loader.LazyConfigValue method)

 	
 module

 	traitlets

 	traitlets.config

 	
 	MyTrait (class in traitlets)

O

 	
 	ObjectName (class in traitlets)

 	
 	observe() (in module traitlets)

 	(traitlets.HasTraits method)

P

 	
 	parse_command_line() (traitlets.config.Application method)

 	prepend() (traitlets.config.loader.LazyConfigValue method)

 	print_alias_help() (traitlets.config.Application method)

 	print_description() (traitlets.config.Application method)

 	print_examples() (traitlets.config.Application method)

 	
 	print_flag_help() (traitlets.config.Application method)

 	print_help() (traitlets.config.Application method)

 	print_options() (traitlets.config.Application method)

 	print_subcommands() (traitlets.config.Application method)

 	print_version() (traitlets.config.Application method)

 	python_config_loader_class (traitlets.config.Application attribute)

S

 	
 	section_names() (traitlets.config.Configurable class method)

 	Set (class in traitlets)

 	show_config (traitlets.config.Application attribute)

 	show_config_json (traitlets.config.Application attribute)

 	
 	signature_has_traits() (in module traitlets)

 	SingletonConfigurable (class in traitlets.config)

 	start() (traitlets.config.Application method)

 	start_show_config() (traitlets.config.Application method)

T

 	
 	TCPAddress (class in traitlets)

 	This (class in traitlets)

 	to_dict() (traitlets.config.loader.LazyConfigValue method)

 	trait_has_value() (traitlets.HasTraits method)

 	trait_metadata() (traitlets.HasTraits method)

 	trait_names() (traitlets.HasTraits method)

 	
 traitlets

 	module

 	
 	
 traitlets.config

 	module

 	traits() (traitlets.HasTraits method)

 	TraitType (class in traitlets)

 	Tuple (class in traitlets)

 	Type (class in traitlets)

U

 	
 	Unicode (class in traitlets)

 	Union (class in traitlets)

 	
 	update() (traitlets.config.loader.LazyConfigValue method)

 	update_config() (traitlets.config.Configurable method)

 	UseEnum (class in traitlets)

V

 	
 	validate() (in module traitlets)

 	(traitlets.MyTrait method)

 nav.xhtml

 Table of Contents

 		
 Traitlets

 		
 Using Traitlets

 		
 Default values, and checking type and value

 		
 observe

 		
 Validation and Coercion

 		
 Custom Cross-Validation

 		
 Holding Trait Cross-Validation and Notifications

 		
 Custom Events

 		
 Trait Types

 		
 TraitType

 		
 TraitType.__init__()

 		
 TraitType.from_string()

 		
 Numbers

 		
 Integer

 		
 Int

 		
 Long

 		
 Float

 		
 Complex

 		
 CInt

 		
 CLong

 		
 CFloat

 		
 CComplex

 		
 Strings

 		
 Unicode

 		
 Bytes

 		
 CUnicode

 		
 CBytes

 		
 ObjectName

 		
 DottedObjectName

 		
 Containers

 		
 List

 		
 Set

 		
 Tuple

 		
 Dict

 		
 Classes and instances

 		
 Instance

 		
 Type

 		
 This

 		
 ForwardDeclaredInstance

 		
 ForwardDeclaredType

 		
 Miscellaneous

 		
 Bool

 		
 CBool

 		
 Enum

 		
 CaselessStrEnum

 		
 UseEnum

 		
 TCPAddress

 		
 CRegExp

 		
 Union

 		
 Callable

 		
 Any

 		
 Defining new trait types

 		
 MyTrait

 		
 MyTrait.info_text

 		
 MyTrait.default_value

 		
 MyTrait.validate()

 		
 Traitlets API reference

 		
 HasTraits

 		
 HasTraits.has_trait()

 		
 HasTraits.trait_has_value()

 		
 HasTraits.trait_names()

 		
 HasTraits.class_trait_names()

 		
 HasTraits.traits()

 		
 HasTraits.class_traits()

 		
 HasTraits.trait_metadata()

 		
 HasTraits.add_traits()

 		
 Dynamic default values

 		
 default()

 		
 Callbacks when trait attributes change

 		
 observe()

 		
 HasTraits.observe()

 		
 Validating proposed changes

 		
 validate()

 		
 Configurable objects with traitlets.config

 		
 The main concepts

 		
 Configuration objects and files

 		
 Python configuration Files

 		
 JSON configuration Files

 		
 Configuration files inheritance

 		
 Class based configuration inheritance

 		
 Command-line arguments

 		
 Common Arguments

 		
 Subcommands

 		
 Other Application members

 		
 Interpreting command-line strings

 		
 Container traits

 		
 Command-line tab completion with argcomplete

 		
 Design requirements

 		
 Traitlets config API reference

 		
 Configurable

 		
 Configurable.class_config_rst_doc()

 		
 Configurable.class_config_section()

 		
 Configurable.class_get_help()

 		
 Configurable.class_get_trait_help()

 		
 Configurable.class_print_help()

 		
 Configurable.section_names()

 		
 Configurable.update_config()

 		
 SingletonConfigurable

 		
 SingletonConfigurable.clear_instance()

 		
 SingletonConfigurable.initialized()

 		
 SingletonConfigurable.instance()

 		
 LoggingConfigurable

 		
 LoggingConfigurable.log

 		
 JSONFileConfigLoader

 		
 JSONFileConfigLoader.load_config()

 		
 Application

 		
 Application.cli_config

 		
 Application.document_config_options()

 		
 Application.emit_alias_help()

 		
 Application.emit_description()

 		
 Application.emit_examples()

 		
 Application.emit_flag_help()

 		
 Application.emit_help()

 		
 Application.emit_help_epilogue()

 		
 Application.emit_options_help()

 		
 Application.emit_subcommands_help()

 		
 Application.flatten_flags()

 		
 Application.generate_config_file()

 		
 Application.get_default_logging_config()

 		
 Application.initialize()

 		
 Application.initialize_subcommand()

 		
 Application.json_config_loader_class

 		
 Application.launch_instance()

 		
 Application.load_config_environ()

 		
 Application.load_config_file()

 		
 Application.loaded_config_files

 		
 Application.log_datefmt

 		
 Application.log_format

 		
 Application.log_level

 		
 Application.logging_config

 		
 Application.parse_command_line()

 		
 Application.print_alias_help()

 		
 Application.print_description()

 		
 Application.print_examples()

 		
 Application.print_flag_help()

 		
 Application.print_help()

 		
 Application.print_options()

 		
 Application.print_subcommands()

 		
 Application.print_version()

 		
 Application.python_config_loader_class

 		
 Application.show_config

 		
 Application.show_config_json

 		
 Application.start()

 		
 Application.start_show_config()

 		
 Config

 		
 Config.collisions()

 		
 Config.copy()

 		
 Config.has_key()

 		
 Config.merge()

 		
 LazyConfigValue

 		
 LazyConfigValue.add()

 		
 LazyConfigValue.append()

 		
 LazyConfigValue.extend()

 		
 LazyConfigValue.get_value()

 		
 LazyConfigValue.merge_into()

 		
 LazyConfigValue.prepend()

 		
 LazyConfigValue.to_dict()

 		
 LazyConfigValue.update()

 		
 KVArgParseConfigLoader

 		
 KVArgParseConfigLoader.__init__()

 		
 KVArgParseConfigLoader.load_config()

 		
 Utils

 		
 import_item()

 		
 signature_has_traits()

 		
 Links

 		
 link

 		
 directional_link

 		
 Migration from Traitlets 4.0 to Traitlets 4.1

 		
 Separation of metadata and keyword arguments in TraitType constructors

 		
 Deprecation of on_trait_change

 		
 The new @observe decorator

 		
 dynamic defaults generation with decorators

 		
 Deprecation of magic method for cross-validation

 		
 Backward-compatible upgrades

 		
 Changes in Traitlets

 		
 5.14.2

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.14.1

 		
 Bugs fixed

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.14.0

 		
 Enhancements made

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.13.0

 		
 Bugs fixed

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.12.0

 		
 Enhancements made

 		
 Maintenance and upkeep improvements

 		
 Documentation improvements

 		
 Contributors to this release

 		
 5.11.2

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.11.1

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.11.0

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.10.1

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.10.0

 		
 Enhancements made

 		
 Maintenance and upkeep improvements

 		
 Documentation improvements

 		
 Other merged PRs

 		
 Contributors to this release

 		
 5.9.0

 		
 Enhancements made

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.8.1

 		
 Bugs fixed

 		
 Maintenance and upkeep improvements

 		
 Documentation improvements

 		
 Contributors to this release

 		
 5.8.0

 		
 Enhancements made

 		
 Maintenance and upkeep improvements

 		
 Documentation improvements

 		
 Contributors to this release

 		
 5.7.1

 		
 Bugs fixed

 		
 Contributors to this release

 		
 5.7.0

 		
 Enhancements made

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.6.0

 		
 Maintenance and upkeep improvements

 		
 Contributors to this release

 		
 5.5.0

 		
 5.4.0

 		
 5.3.0

 		
 5.2.2

 		
 5.2.1

 		
 5.2.0

 		
 5.1.1

 		
 5.1.0

 		
 5.0.5

 		
 5.0.4

 		
 5.0.3

 		
 5.0.2

 		
 5.0.0

 		
 API changes

 		
 4.3

 		
 4.3.2

 		
 4.3.1

 		
 4.3.0

 		
 4.2

 		
 4.2.2 - 2016-07-01

 		
 4.2.1 - 2016-03-14

 		
 4.2.0 - 2016-03-14

 		
 4.1 - 2016-01-15

 		
 4.0 - 2015-06-19

_static/plus.png

_static/file.png

_static/minus.png

