

    
      
          
            
  
trace-simexp Package

Welcome to the trace_simexp package documentation, a python3 package to
conduct a computer experiment for the thermal-hydraulics system code TRACE!

If you’re just getting started with trace-simexp, please start with
Introduction and Getting Started Guide.  If you are already familiar with it, the
trace_simexp Reference part of the documentation provides more detailed
reference to the internals of the package.  Finally, if you are thinking to
make modification or extend the capability of the package perhaps it is a good
idea to check some Notes on Implementation of the current version so
you can understand better its design philosophy as well as its current (and
inherent) limitations.



	Introduction and Getting Started Guide
	List of Current Features

	Installing trace-simexp

	Tutorial: Simple Uncertainty Propagation of a Reflood Facility Model





	trace_simexp Reference
	User’s Guide

	API Documentation





	Notes on Implementation
	Parameter Perturbation

	Iso-Probability Transform

	Data Types (and Parsing Them)

	Batch Processing





	About trace-simexp
	License

	Contributors

	Funding










	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Introduction and Getting Started Guide

A computer experiment is a multiple model runs using different values of the
model parameters. Its design, in particular the selection of the design points
at which the model will be evaluated; as well as its analysis, in particular
the analysis of the output variation in relation to the inputs variation, are
useful for sensitivity and uncertainty analyses of the model subjected to the
experimentation.

An important prerequisite of carrying out such experiment is the availability
of a supporting tool able to handle the related logistical aspects. A
Python3-based scripting utility has been developed to assist in carrying such
experiments for the thermal-hydraulics system code TRACE. The scope of the
utility is ranging from the pre-processing of the TRACE input deck amenable for
batch parallel execution to the post-treatment of the resulting binary xtv/dmx
file amenable to subsequent sensitivity and uncertainty analyses. This
documentation describes the development of the tool, including the description
of its usage, implementations, and assumptions.

The general processing flowchart of the module is shown in the figure below.

[image: ../_images/flowchart.png]


	List of Current Features

	Installing trace-simexp

	Tutorial: Simple Uncertainty Propagation of a Reflood Facility Model
	Problem Specification

	Conducting Simulation Experiment

	Analyzing Results













          

      

      

    

  

    
      
          
            
  
List of Current Features



	Complete separation of the processes in 3 different steps: prepro,
exec, and postpro.


	Three modes of parameter perturbation are supported: additive,
multiplicative, and substitutive


	Four categories of TRACE variables in the input deck can be perturbed:
spacer grid, material properties, sensitivity coefficient, and components


	For TRACE components, five are supported: PIPE, VESSEL, POWER, FILL, BREAK


	Specification of the computer experiment by the users is done throug a set
of input files (list of parameters file, design matrix file, and list of
graphic variables)


	Iso-probabilistic transformation of the normalized design matrix is
available for uniform, discrete, and log-uniform











          

      

      

    

  

    
      
          
            
  
Installing trace-simexp

Obtaining and installing trace-simexp is simple.  First is to download the
current version hosted in bitbucket [https://bitbucket.org/lrs-uq/trace-simexp] and install it to your machine locally.
trace-simexp is written in python3 and can be installed using pip:

> git clone https://bitbucket.org/lrs-uq/trace-simexp
> cd trace-simexp
> pip install .





Verifying the installation can be done by invoking:

> trace_simexp
trace-simexp version 0.4.0
Conduct simulation experiment for TRACE

Please use the driver scripts for each of the desired phases:
    trace_simexp_prepro     pre-process and generate perturbed inputs
    trace_simexp_execute    execute the generated perturbed inputs
    trace_simexp_postpro    extract select variables from dmx
    trace_simexp_reset      return the original state of a given phase
    trace_simexp_freeze     freeze current state for archival
Use <driver_script> --help to get the help for each









          

      

      

    

  

    
      
          
            
  
Tutorial: Simple Uncertainty Propagation of a Reflood Facility Model

In this tutorial, we are going to propagate the uncertainty of parameters
related to the spacer grid model in TRACE
in the simulation of a reflood experimental facility model.


Problem Specification

Spacer grid specification in TRACE requires 7 parameters to be specified.
In the specification of the FEBA reflood facility, given as part of the OECD/NEA PREMIUM benchmark,
only two of those parameters were given explicitly,
two were derived from simple schematic of the test section,
and the rest of the parameters are considered unknown.
Furthermore, the specification also stated that “the applied spacers were original PWR spacers as used by KWU”
which is not specific enough to obtain the actual technical data.
The table below summarized the required inputs to fully specify the TRACE spacer grid model.












	No.

	Parameter

	Description

	Unit

	Allowable Values

	Nominal Value

	Remark





	1

	spbloc

	spacer grid blockage ratio

	[-]

	\([0.,1.]\)

	\(0.2\)

	Specified



	2

	vnbloc

	mixing vane blockage ratio

	[-]

	\([0.,1.]\)

	\(0.\)

	Assumed



	3

	phi

	mixing vane angle from parallel with the top of the grid

	\([^o]\)

	\([0.,45.]\)

	\(0.\)

	Assumed



	4

	wetperm

	spacer grid wetted perimeter

	[m]

	\(\geq 0.\)

	\(1.803\)

	Derived



	5

	height

	spacer grid axial height

	[m]

	\(\geq 0.\)

	\(3.8E-2\)

	Specified



	6

	strthick

	grid strap thickness

	[m]

	\(\geq 0.\)

	\(1.3275E-3\)

	Derived



	7

	spmatid

	spacer grid material number

	[-]

	\([-]\)

	Inconel 718

	Assumed






Note that for the spacer grid material number, TRACE supports 7 built-in material given in the table below







	spmatid

	Description





	2

	zircaloy



	6

	stainless steel 304



	7

	stainless steel 316



	8

	stainless steel 347



	9

	carbon steel A508



	10

	Inconel 718



	11

	ZrO2



	12

	Inconel 600






As such, the unknown parameters have to be assumed and are considered uncertain.
To have a robust analysis it is wise to check how the model behave under the change of these assumptions.
Statistical method is adopted for the problem of uncertainty quantification
where the unknown parameters are modeled as random variables and allowed to vary within certain ranges.
Furthermore, the other 4 parameters, though specified,
are also allowed to vary around their respective nominal values.
These parameters are to be sampled and for each combination of inputs the output will be evaluated.
The dispersion of the output will give some ideas on how the output of the model behave under the assumed parameter uncertainties.

In trace-simexp, an uncertain model parameter change its value due to perturbation by a factor.
This perturbation factor is the one which is modeled explicitly as random variable,
following certain known distribution from which it can be sampled.
The perturbation factor affects the actual value of model parameter through three modes of operation:


	substitutive: the sampled perturbation factor directly substitutes the value of the model parameter


	additive: the sampled perturbation factor is added to the nominal value of the model parameter


	multiplicative: the sampled perturbation factor is multiplied to the nominal value of the model parameter




The table below summarizes the specification of the perturbation factor associated with each of the model parameters.











	No.

	Parameter

	Mode of Perturbation

	Distribution

	Dist. Parameters

	Remarks





	1

	spbloc

	multiplicative

	uniform

	min = 0.75, max = 1.25

	nominal \(\pm 25\%\)



	2

	vnbloc

	substitutive

	uniform

	min = 0.0, max = 0.5

	direct substitution



	3

	phi

	substitutive

	discrete uniform

	{0.,15.,30.,45.}

	to reduce input space



	4

	wetperm

	multiplicative

	uniform

	min = 0.75, max = 1.25

	nominal \(\pm 25\%\)



	5

	height

	multiplicative

	uniform

	min = 0.75, max = 1.25

	nominal \(\pm 25\%\)



	6

	strthick

	multiplicative

	uniform

	min = 0.75, max = 1.25

	nominal \(\pm 25\%\)



	7

	spmatid

	substitutive

	discrete uniform

	{2,6,7,8,9,10,11,12}

	no preferred choice






The nature of the present analysis is rather exploratory,
with a main purpose to see how the predicted cladding temperature is dispersed due to the uncertainties of the model parameters.
This is the main reason to use uniform distribution within a certain plausible range to model the perturbation factor.
Furthermore, the uncertainties given in the above table are assumed to be independent.
This, strictly speaking, is not a correct assumption as the strap thickness and the grid flow blockage ratio are correlated.
The same goes for the mixing vane angle and the vane blockage ratio.
However, for simplicity, in line with the purposed of the analysis, the independent assumption is kept.




Conducting Simulation Experiment

Conducting a simulation experiment on the TRACE code using trace-simexp is divided into three main steps:


	pre-processing


	execution


	post-processing





Pre-processing

The pre-processing step requires three main ingredients:


	The base TRACE input deck, in which the selected parameters are to be perturbed.


	The list of parameters file, where the perturbation factors are to be defined.


	The design matrix file, which contains the value of the perturbation factor normalized, between [0,1].




In this tutorial it is assumed that the base TRACE input deck for the FEBA facility model is already prepared
(given in the tutorial package as febaTrans216.inp).
Furthermore, the values of the perturbation factors are generated by a certain experimental design.
trace-simexp accepts normalized experimental design matrix (i.e., values in \([0,1]\))
with different samples written in rows and different parameters written in columns.
Below is an example of the first 5 entries in a 7-dimensional latin hypercube experimental design:

1.092710e-03,5.614512e-01,1.161323e-01,8.371081e-01,7.101176e-01,2.959605e-01,5.136827e-01
5.439255e-03,9.844196e-01,2.142417e-01,9.612770e-02,6.955985e-01,7.804047e-01,9.155945e-02
1.009063e-02,4.280897e-02,6.611510e-01,4.816894e-01,7.589150e-02,4.572519e-01,3.038666e-01
1.896974e-02,6.510401e-01,6.152107e-01,8.770555e-01,2.264880e-01,5.790797e-01,2.871109e-01
2.073383e-02,4.893371e-01,3.778709e-01,6.242067e-01,5.985220e-01,4.555468e-02,7.610146e-02
...





The value in this matrix are normalized between [0,1]
and the rescaling to the actual model parameter values will be done by trace-simexp with the information provided in the list of parameters file.
The generation of such a design can be done by generic experimental design packages and it is outside the scope of trace-simexp.
To conduct this tutorial, the package includes a 7-dimensional latin hypercube design of size 200 called lhs_200_7.csv.

What is left is to specify the list of parameters file.
The contents of the file are a direct translation of the table given above to be parsed by trace-simexp.
Preparing such a file requires basic knowledge on TRACE input deck.
The file feba216Vars7.inp included in the tutorial package has the following contents:

################################################################################################################################
#1  2       3   4           5       6   7   8   9           10                                          11                     #
# Spacer Grid Area Blockage Ratio (spbloc), multiplicative
1   spacer  1   spbloc      scalar  2   1   3   unif        ['min':0.75, 'max':1.25]                    14.4f
# Mixing Vane Area Blockage Ratio (vnbloc), substitutive
2   spacer  1   vnbloc      scalar  2   2   1   unif        ['min':0.0, 'max':0.5]                      14.4f
# Mixing Vane Angle (phi), discrete choice, substitutive
3   spacer  1   phi         scalar  2   3   1   discrete    [0.:.25,15.:.25,30.:.25,45.:.25]            14.1f
# Spacer Grid Wetted Perimeter (wetperm), multiplicative
4   spacer  1   wetperm     scalar  2   4   3   unif        ['min': 0.75, 'max': 1.25]                  14.4f
# Spacer Grid Height (height), multiplicative
5   spacer  1   height      scalar  3   1   3   unif        ['min': 0.75, 'max': 1.25]                  14.4f
# Grid Strap Thickness (strthick), multiplicative
6   spacer  1   strthick    scalar  3   2   3   unif        ['min': 0.75, 'max': 1.25]                  14.4e
# Spacer Grid Material (spmatid), discrete choice, substitutive
7   spacer  1   spmatid     scalar  3   3   1   discrete    [2:.125,6:.125,7:.125,8:.125,9:.125,10:.125,11:.125,12:.125]    14d
################################################################################################################################





The lines starting with # are comment lines which will not be parsed.
The rest of the columns is as follows
(note that the ordering has to be strictly kept and each column has to be separated by at least one space character):


	the first column is the enumeration of the parameters or perturbation factors.


	the second column is the trace-simexp data type of the parameter.
The data types are associated with TRACE components.
Four types are currently supported, and type spacer is one of them.


	the third column is the unique TRACE component ID of the type.
In the example above the parameters are associated with spacer grid with ID 1 in the TRACE input deck.


	the fourth column is the variable name.
The entry above follows the entry of the second column of Table 3 above.


	the fifth column signify the data structure of the pertubation factor.
Here all of the parameters are of scalar type which means that in TRACE a single number is used to specify the value of the parameter.
There are other type of data structure used in TRACE such as table (a series of tuple of values) and array.


	the sixth column is the card number of that variable.
card is TRACE input deck terminology used to designate the line (relative to the component declaration) at which the variable is to be specified.


	the seventh column is the word number of the variable.
word is another TRACE input deck terminology used to designate the column at which the variable is to be specified.


	the eighth column is the mode of perturbation ID.
Three modes are currently supported: substitutive (ID = 1), additive (ID = 2), and multiplicative (ID = 3).


	the ninth column is the probability distribution type of the perturbation factor.
It is used to rescale the normalized value given in the design matrix file to the actual value of the model parameter perturbation.
The entries above follow the entries of the fourth column of Table 3 above.


	the tenth column is the parameters of the distribution given as a set of keyword-value pairs enclosed in square brackets.
The valid pair depends on the probability distribution type given in the ninth column.
From the above example,
for a uniform distribution 2 parameters need to be specified (the minimum and the maximum),
while discrete distribution requires the values and their respective probabilities to be specified.


	the eleventh column is the string formating specification of TRACE input deck.
It follows the same fortran string formating syntax used in TRACE.




The variable name, card and word numbers seem to be redundant,
but they are all kept to force user to be precise in designating model parameter to be perturbed.

Finally, given all these ingredients the pre-processing step can be invoked in the terminal using the following command:

trace_simexp_prepro -tracin febaTrans216.inp \
                    -parlist feba216Vars7.inp \
                    -dm lhs_200_7.csv \
                    -prepro_info ./prepro-tutorial.nfo





The results of invoking the above command is a set of perturbed TRACE input decks inside a directory structure:

.
|+---febaTrans216
|   +---feba216Vars7-lhs_200_7
|       +---febaTrans216-run_1
|           febaTrans216-run_1.inp
|       +---febaTrans216-run_2
|           febaTrans216-run_2.inp
|       +---febaTrans216-run_3
|           febaTrans216-run_3.inp
|
...
|       +---febaTrans216-run_200
|           febaTrans216-run_200.inp





Additionally, an info file of the pre-processing phase prepro-tutorial.nfo is created.




Running TRACE

After the perturbed TRACE input decks have been generated in their respective run directories,
they can be executed sequentially in batch using the command line interface trace_simexp_execute as follows:

trace_simexp_execute -prepro prepro-tutorial.nfo \
                     -trace trace_v5.0p3.uq_extended \
                     -xtv2dmx xtv2dmx_v6.5.2_inst01.sh  \
                     -nprocs 12 \
                     -exec_info ./exec-tutorial.nfo





It is assumed from executing above command that the executables trace_v5.0p3.uq_extended and xtv2dmx_v6.5.2_inst01.sh are both available in the PATH.
Additionally, 12 processors are assigned to execute the samples simultaneously
(that is, run 12 perturbed input decks at once).


Note

To avoid failed operation due to broken interactive session to the lclrs machine,
it is advised to send the job in the background while keeping the credential using:

k5run -B trace_simexp_execute -prepro prepro-tutorial.nfo \
                              -trace trace_v5.0p3.uq_extended \
                              -xtv2dmx xtv2dmx_v6.5.2_inst01.sh  \
                              -nprocs 12 \
                              -exec_info ./exec-tutorial.nfo >& exec-tutorial.log &







Succesful completion of the execute step results in a set of dmx files produced in each of the run directories:

.
|+---febaTrans216
|   +---feba216Vars7-lhs_200_7
|       +---febaTrans216-run_1
|           ...
|           febaTrans216-run_1.dmx
|       +---febaTrans216-run_2
|           ...
|           febaTrans216-run_2.dmx
|       +---febaTrans216-run_3
|           ...
|           febaTrans216-run_3.dmx
|
...
|       +---febaTrans216-run_200
|           ...
|           febaTrans216-run_200.dmx






Note

By default TRACE produces an xtv binary file which serves as a container of TRACE output variables at each time step.
xtv file is multiplexed, meaning that the data is arranged such that all the variables of a given time step are clustered together.
Though such a multiplexed structure might serve TRACE output dumping routines well,
it is hindering the process of plotting because plotting one variable as a function of time implies loading all the clusters in memory first.
To circumvent this issue, a file can be demultiplexed first (ergo the resulting``dmx`` file, converted by running the xtv2dmx tool).
In a demultiplexed file, TRACE output variables are arranged such that a single TRACE output variable, but for all time steps, is clustered together.
More importantly to the subject at hand, however, it also happens that a dmx file occupies smaller disk space.






Post-processing

In trace-simexp the term post-processing refers to extracting a set of select TRACE output of interest  from the binary xtv or dmx file to a separate text file,
each delimited by comma (csv file).
To post-process the resulting dmx files,  the user needs to specify a  list of TRACE graphic variable file
which simply contains the keys identifier of TRACE graphic variables to be extracted (see TRACE user’s manual for detail).
The file for this tutorial (select_vars.apt) contains the following entries:

rftn-20A19R29  # clad temperature at    45 [mm]
rftn-20A34R29  # clad temperature at   590 [mm]
rftn-20A49R29  # clad temperature at 1'135 [mm]
rftn-20A69R29  # clad temperature at 1'680 [mm]
rftn-20A89R29  # clad temperature at 2'235 [mm]
rftn-20A109R29 # clad temperature at 2'770 [mm]
rftn-20A124R29 # clad temperature at 3'315 [mm]
rftn-20A139R29 # clad temperature at 3'860 [mm]





As the key to TRACE graphic variable is often cryptic,
it is a good idea to include comments using # either in-line after the variable or otherwise.

Given the list of TRACE graphic variables file and the previous step info file, the post-processing can be invoked from the terminal using:

trace_simexp_postpro -exec exec-tutorial.nfo \
                     -vars select_vars.apt \
                     -aptplot aptplot_v6.5.2_inst01.sh \
                     -postpro_info ./postpro-tutorial.nfo \
                     -nprocs 10





In this example, the process is not sent in the background because having short list of extracted variables as above is not CPU demanding and can be waited.
Invoking the command above it is assumed that the program aptplot_v6.5.2_inst01.sh is available in the PATH
and that an X11 library is available (e.g. X11 forwarding on Putty client is set up properly and Xming, if using windows, is up and running).
Succesful completion of the post-processing phase results in a set of csv files produced in each of the run directories:

.
|+---febaTrans216
|   +---feba216Vars7-lhs_200_7
|       +---febaTrans216-run_1
|           ...
|           febaTrans216-run_1-select_vars.csv
|       +---febaTrans216-run_2
|           ...
|           febaTrans216-run_2-select_vars.csv
|       +---febaTrans216-run_3
|           ...
|           febaTrans216-run_3-select_vars.csv
|
...
|       +---febaTrans216-run_200
|           ...
|           febaTrans216-run_200-select_vars.csv





At this point the tasks as trace-simexp is designed to perform are complete.
The user is free to post-process further the resulting csv files  to answer the initial questions related to uncertainty or sensitivity analyses.
Below are some examples of how the results can be processed further.






Analyzing Results

To get an idea how the output of interest are dispersed due to the model parameters variations,  the first step is often simply plotting the results of all samples.
The figure below shows the clad temperature evolution at 8 different axial locations, from the bottom (top left panel) to the top (bottom right panel).
Note that in FEBA, the zero axial location was set at the top of the test section (at physical height of \(4.114\) [m]).

[image: ../_images/feba_grid.png]
As it can be seen the dispersion at each axial elevation is relatively minor given the assumed large model parameters input uncertainties.
The dispersion also tends to widen going from the bottom to the top.

Another example of simple exploratory analysis is to make a scatter plot between a chosen quantity of interest and the sampled parameter values.
This kind of plot might be able to reveal some partial dependence between the two.
A typical quantity of interest in reflood simulation is the maximum temperature or the time of quenching.

A set of scatter plots between maximum temperature and each of the parameters is given in the figure below.
It can be seen that the range of maximum temperature variation in the sample is approximately between \(1'200\) [K] and \(1'225\) [K],
which in the context of reflood simulation is considered minor.
There are no apparent trend in the scatter plots except for the spacer and mixing vane blockage ratios,
with the mixing vane blockage ratio showing a very strong correlation with the maximum temperature.

[image: ../_images/temp_max.png]
A similar set of scatter plots now for the time of quenching at an elevation of \(3.86\) [m] as the quantity of interest is given below.
The range of variation in the sample is approximately between \(450\) [s] and \(490\) [s].
Similar to the results for maximum temperature, only the two blockage ratios showed strong correlations with the time of quenching.

[image: ../_images/quench_time.png]






          

      

      

    

  

    
      
          
            
  
trace_simexp Reference


User’s Guide



	Installation

	Terminology

	Command Line Interface
	Pre-process (trace_simexp_prepro)

	Execute (trace_simexp_execute)

	Post-process (trace_simexp_postpro)

	Reset Phase (trace_simexp_reset)

	Freeze (trace_simexp_freeze)





	Auxiliary Files
	Base TRACE Input Deck

	List of Parameters File

	Design Matrix File

	List of TRACE Graphic Variables

	Pre-processing Phase Info File

	Execute Phase Info File





	Other Required Executables
	TRACE

	XTV2DMX

	APTPLOT












API Documentation



	cmdln_args Package











          

      

      

    

  

    
      
          
            
  
Installation

Obtaining and installing trace-simexp is simple.
First is to download the current version hosted in bitbucket [https://bitbucket.org/lrs-uq/trace-simexp].
and install it to your machine locally.
trace-simexp is written in python3 and can be installed using pip:

> git clone https://bitbucket.org/lrs-uq/trace-simexp
> cd trace-simexp
> pip install .





Verifying the installation can be done by invoking:

> trace_simexp
trace-simexp version 0.4.0
Conduct simulation experiment for TRACE

Please use the driver scripts for each of the desired phases:
    trace_simexp_prepro     pre-process and generate perturbed inputs
    trace_simexp_execute    execute the generated perturbed inputs
    trace_simexp_postpro    extract select variables from dmx
    trace_simexp_reset      return the original state of a given phase
    trace_simexp_freeze     freeze current state for archival
Use <driver_script> --help to get the help for each





If you want to modify the package on the fly without re-installing it everytime to check the effect
use the -e (editable mode) when invoking pip:

> pip install -e .









          

      

      

    

  

    
      
          
            
  
Terminology





          

      

      

    

  

    
      
          
            
  
Command Line Interface

trace_simexp is controlled using command-line interface (CLI),
all user’s interaction with the functionalities provided by the package
is done through a set of executables (or driver scripts)
which are made available to the user in the path upon successful installation of the package.
The driver scripts include:



	Pre-process (trace_simexp_prepro)

	Execute (trace_simexp_execute)

	Post-process (trace_simexp_postpro)

	Reset Phase (trace_simexp_reset)

	Freeze (trace_simexp_freeze)





Short description of each driver script is the following:







	Driver Script

	Short Description





	trace_simexp_prepro

	Used to create a set of perturbed
TRACE input deck and a directory
structure for execution



	trace_simexp_execute

	Used to execute, in batches
(within batch parallel execution
is possible), the generated
perturbed TRACE input decks



	trace_simexp_postpro

	Used to extract a
select set of variables from TRACE
binary output (the so-called
xtv/dmx file) into a csv



	trace_simexp_reset

	Used to reset a completed
phase to its original state



	trace_simexp_freeze

	Used to update all the
relevant information on the info
files information from absolute
path to relative path (archival)






If you simply execute trace_simexp a welcome screen will be displayed showing all available executables and their usage.





          

      

      

    

  

    
      
          
            
  
Pre-process (trace_simexp_prepro)

In the pre-processing phase, the base TRACE input deck is modified by changing
the parameter values of the parameters listed in the list of parameter files
according to the values listed in the design matrix file.
A set of new perturbed TRACE input decks will be created and put into
separate directories.
In subsequent execute step, these directories will serve as the run
directories.

trace_simexp_prepro is the driver script to carry out the preprocessing
phase. It can be invoked in the terminal using the following command:

trace_simexp_prepro {-as, -ns, -nr} <argument to select samples to create> \
                    -b <the base run directory name> \
                    -tracin <the base TRACE input deck> \
                    -dm <the design matrix> \
                    -parlist <the list of parameters file> \
                    -info <The short description of the campaign> \
                    -prepro_info <The prepro info filename, optional>
                    -ow <flag to overwrite existing directory structure>





Brief explanation on this parameter can be shown using the following command:

trace_simexp_prepro --help





The table below lists the complete options/flag in detail.












	No.

	Short Name

	Long Name

	Type

	Required

	Description

	Default





	1

	-h

	–help

	flag

	No

	Show help message

	False



	2

	-ns

	–num_samples

	integer(s)

	No

	Pre-process the selected samples

	None



	3

	-nr

	–num_range

	2 integers

	No

	Pre-process the range of samples, inclusive

	None



	4

	-as

	–all_sample

	flag/bool

	No

	Pre-process all samples in design matrix

	True



	5

	-b

	–base_dirname

	string

	No

	The base directory to spawn run directories

	./



	6

	-tracin

	–base_tracin

	string

	Yes

	The base TRACE input deck, path+filename

	None



	7

	-dm

	–design_matrix

	string

	Yes

	The design matrix, path+filename

	None



	8

	-parlist

	–params_list

	string

	Yes

	The list of parameters file, path+filename

	None



	9

	-info

	–info

	string

	No

	Short message of the experiment

	None



	10

	-prepro_info

	–prepro_filename

	string

	No

	The pre-process info filename

	See below



	11

	-ow

	–overwrite

	flag

	No

	Flag to overwrite existing directory structure

	False



	12

	-V

	–version

	flag

	No

	Show the program’s version number and exit

	False






The directories created is nested in the following form:

.
|
+---<the base run directory name>
|   +---<tracin>
|       +---<parlist-dm>
|           +---<tracin-run_1>
|                   <tracin>-run_1.inp
|           +---<tracin-run_2>
|                   <tracin>-run_2.inp
|           +---<tracin-run_3>
|                   <tracin>-run_3.inp
|
...





In addition to the creation of the run directory structure and perturbed TRACE
input deck, the script execution will also produce an info file (from here on
in will be called prepro info file). The info file is produced by default
with the following naming convention:

prepro-<tracin_name>-<parlist_name>-<dm_name>-<sample_start>_<sample_end>-<YYMMDD>-<HHMMSS>.info





The file is used to document the command line arguments specified when the
script was called. It will also be used in the subsequent step.


Example

For example, upon executing the following command:

trace_simexp_prepro -ns 1 3 5 \
                    -tracin ./simulation/febaTrans216.inp \
                    -dm ./simulation/lhs_200_27.csv \
                    -parlist ./simulation/feba216Vars27.inp \
                    -info "FEBA Test No. 214, 110 samples (select 1,3,5), 27 Parameters" \
                    -prepro_info ./nfo





A set of directory will be created in the current working directory:

.
|
+---febaTrans214
|   +---febaVars7Params-optLHS_110_2
|       +---febaTrans214-run_1
|           febaTrans214-run_1.inp
|       +---febaTrans214-run_2
|           febaTrans214-run_2.inp
|       +---febaTrans214-run_3
|           febaTrans214-run_3.inp





Based on the command above, the prepro info file will be created with the
following name under the ./nfo folders:

prepro-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-120237.nfo.info





The file has the following (abridged) contents:

TRACE Simulation Experiment - Date: 2017-03-28 12:02:37.678582
FEBA Test No. 214, 110 samples (select 1,3,5), 27 Parameters
***Pre-process Phase Info***
Base Name                     -> trace-simexp
Base Directory Name           -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp
Base Case Name                -> febaTrans216
Base Case File                -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/simulation/febaTrans216.inp
List of Parameters Name       -> feba216Vars27
List of Parameters File       -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/simulation/feba216Vars27.inp
Design Matrix Name            -> lhs_200_27
Design Matrix File            -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/simulation/lhs_200_27.csv
Samples to Run                ->
     1      3      5
***  End of Samples  ***
*** 1***
Component *break* ID *40*, parameter *ptb* is specified
Parameter type: table
Parameter perturbation mode: 3 (multiplicative)
Perturbation factor probability distribution:
- distribution: *unif*
- min: 0.9
- max: 1.1
*** 2***
Component *fill* ID *10*, parameter *tltb* is specified
Parameter type: table
Parameter perturbation mode: 2 (additive)
Perturbation factor probability distribution:
- distribution: *unif*
- min: -5.0
- max: 5.0
...
***26***
Sensitivity Coefficient with ID *1044* is specified
Parameter type: scalar
Parameter perturbation mode: 2 (additive)
Perturbation factor probability distribution:
- distribution: *unif*
- min: -50.0
- max: 50.0
***27***
Spacer grid with Grid ID *1*, parameter *spmatid* is specified
Parameter type: scalar
Parameter perturbation mode: 1 (substitutive)
Perturbation factor probability distribution:
- distribution: *discrete*
- 8: 0.25
- 2: 0.1
- 10: 0.15
- 6: 0.5











          

      

      

    

  

    
      
          
            
  
Execute (trace_simexp_execute)

In the execute step,
all the input decks that were created in the pre-processing step are executed sequentially in batch.
This means that the script will traverse the run directories created before and
execute TRACE using the input deck inside sequentially.
The size of a batch is controlled by the number of processors supplied by
the user through the command line argument.

trace_simexp_execute is the driver script to carry out the execute step.
It can be invoked in the terminal using the following command:

trace_simexp_execute -prepro <the preprocessing step info file> \
                     -nprocs <the number of available processors> \
                     -{ns, nr, as} <selection of samples to be executed> \
                     -scratch <the scratch directory> \
                     -trace <the trace executable> \
                     -xtv2dmx <the xtv2dmx executable>





Brief explanation on the required arguments can be printed on the screen using the following command:

trace_simexp_execute --help





The table below gives the complete options/flags in detail.












	No.

	Short Name

	Long Name

	Type

	Required

	Description

	Default





	1

	-h

	–help

	flag

	No

	Show help message and exit

	False



	2

	-prepro

	–prepro_info

	string

	Yes

	The prepro info file (path+name)

	None



	3

	-nprocs

	–num_processors

	integer

	No

	The number of processors (batch process size)

	1



	4

	-ns

	–num_samples

	integer(s)

	No

	Execute select samples

	None



	5

	-nr

	–num_range

	2 integers

	No

	Execute samples between these values, inclusive

	None



	6

	-as

	–all_samples

	flag

	No

	Execute all samples available in prepro info file

	True



	7

	-scratch

	–scratch_directory

	string

	No

	Path to scratch directory

	See below



	8

	-trace

	–trace_executable

	string

	Yes

	The TRACE executable, in PATH or specified

	None



	9

	-xtv2dmx

	–xtv2dmx_executable

	string

	Yes

	The XTV2DMX executable, in PATH or specified

	None



	10

	-ow

	–overwrite

	flag

	No

	Flag to overwrite existing directory

	None



	11

	-exec_info

	–exec_filename

	string

	No

	The execute phase info filename

	See below



	12

	-V

	–version

	flag

	No

	Show the program’s version number and exit

	False






The script execution will also produce an info file (from here on in will be called exec info file).
The info file is produced by default with the following naming convention:

exec-<tracin_name>-<parlist_name>-<dm_name>-<sample_start>_<sample_end>-<YYMMDD>-<HHMMSS>.nfo





The file is used to document the command line arguments specified when the script was called,
to log the process run for diagnostic purpose, as well as
be used in the subsequent (post-processing) step.
See below for the example of the contents.

Simultaneous execution of multiple TRACE simulation often requires large amount of disk space even for a single case.
To save disk space, the utility takes two measures.
First, the binary xtv file is not written directly in the running directory during the execution.
Instead a soft link is created inside the running directory,
linked to the actual xtv file written in a scratch directory.
This approach was adopted to limit the disk space usage in a STARS project working directory (or the activity folder)
that is a backup volume and limited to 200 [GB] currently.
The so-called scratch directory usually resides in a non-backup volume.
This measure is optional and is applied when -scratch option is provided with a valid directory.
Otherwise, the xtv will be written directly in the run directory.

Second, after each execution, the resulting xtv file will be directly converted to the more space efficient dmx format.
This is done by using xtv2dmx utility.
As such, the path to the scratch directory as well as
the path to the executable for xtv2dmx utility are needed to be supplied during the call.
This option is always active and at this point cannot be override.


Example

Following the previous example, executing the following command will
execute all of the TRACE input decks created in the previous step:

trace_simexp_execute -prepro ./nfo/prepro-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-120237.nfo \
                     -xtv2dmx xtv2dmx_v6.5.2_inst01.sh \
                     -trace trace_v5.0p3.uq_extended \
                     -exec_info ./nfo





By default, if not specified, all samples available in the prepro info file will be executed.
Also by default, the dmx file will be produced inside each respective run directory if a scratch directory is not specified.
Finally, by default the execution will be carried out sequentially in batch of size 1 (the number of processors).


Note

The utility was so far tested in the one of the lclrs machines.
To keep the kerberos token active for a long session,
it is advised to use the k5run -B command and put the job in the background
with the following command instead:

k5run -B    trace_simexp_execute -prepro ./nfo/prepro-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-120237.nfo \
                                 -xtv2dmx xtv2dmx_v6.5.2_inst01.sh \
                                 -trace trace_v5.0p3.uq_extended \
                                 -exec_info ./nfo >& 216_3_27.log &





the 216_3_27.log file is an arbitrary file to redirect standard output
and standard error.



Based on the command above, the prepro info file will be created with the following name:

exec-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-122617.nfo





The file has the following (abridged with the ellipsis) contents:

TRACE Simulation Experiment - Date: 2017-03-28 12:26:17.939115
***Execute Phase Info***
prepro.info Name              -> prepro-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-120237.nfo
prepro.info File              -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/nfo/prepro-febaTrans2
Base Directory Name           -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp
Base Case Name                -> febaTrans216
List of Parameters Name       -> feba216Vars27
Design Matrix Name            -> lhs_200_27
TRACE Executable              -> trace_v5.0p3.uq_extended
XTV2DMX Executable            -> xtv2dmx_v6.5.2_inst01.sh
Number of Processors          -> 1  (lclrs71)
Samples to Run                ->
    1      3      5
***  End of Samples  ***
*** Batch Execution -     1 ***
Execution Successful: trace_v5.0p3.uq_extended -p febaTrans216-run_1
Execution Successful: xtv2dmx_v6.5.2_inst01.sh -r febaTrans216-run_1.xtv -d febaTrans216-run_1.dmx
*** Batch Execution -     2 ***
Execution Successful: trace_v5.0p3.uq_extended -p febaTrans216-run_3
Execution Successful: xtv2dmx_v6.5.2_inst01.sh -r febaTrans216-run_3.xtv -d febaTrans216-run_3.dmx
*** Batch Execution -     3 ***
Execution Successful: trace_v5.0p3.uq_extended -p febaTrans216-run_5
Execution Successful: xtv2dmx_v6.5.2_inst01.sh -r febaTrans216-run_5.xtv -d febaTrans216-run_5.dmx











          

      

      

    

  

    
      
          
            
  
Post-process (trace_simexp_postpro)

After all the requested TRACE input decks (or samples) have been executed,
the resulting xtv files can be post-processed to extract the relevant variables
and put them into separate csv files,
placed inside the respective running directory.
The csv files, being text files, can be easily processed further with other tools for various purposes.
Similar to the execute step before,
the utility will traversed each of the executed running directory
and process the xtv file inside using the aptplot program to extract the requested variables.
The script also supports batch parallel execution.

trace_simexp_postpro is the driver script to carry out the post-processing step.
It can be invoked in the terminal using the following command:

trace_simexp_postpro -exec <the execute phase info file> \
                     -vars <the list of TRACE graphic variables file> \
                     -aptplot <the aptplot executable> \
                     -nprocs <the number of available processors> \
                     {-as, -ns, -nr} <argument to select samples to create, optional>





Brief explanation on the required arguments can be printed on the screen using the following command:

trace_simexp_postpro --help





The table below lists the complete options/flag in detail.












	No.

	Short Name

	Long Name

	Type

	Required

	Description

	Default





	1

	-h

	–help

	flag

	No

	Show the help message and exit

	None



	2

	-exec

	–exec_info

	string

	Yes

	The prepro info file (path+name)

	None



	3

	-vars

	–xtv_variables

	string

	Yes

	The list of TRACE graphic variables

	None



	4

	-aptplot

	–aptplot_executable

	string

	Yes

	The APTPLOT executable, in PATH or specified

	None



	5

	-nprocs

	–num_processors

	integer

	No

	The number of processors (batch process size)

	1



	6

	-ns

	–num_samples

	integer(s)

	No

	Pre-process the select of samples

	None



	7

	-nr

	–num_range

	2 integers

	No

	Post-process the range of samples, inclusive

	None



	8

	-as

	–all_samples

	flag

	No

	Post-process all samples from exec.info

	True



	9

	-ow

	–overwrite

	flag

	No

	Flag to overwrite the existing csv files

	False



	10

	-postpro_info

	–postpro_filename

	string

	No

	The post-process info filename

	See below



	11

	-V

	–version

	flag

	No

	Show the program’s version number and exit

	False







Note

When running the script interactively under Windows which is connected to an lclrs machine,
the aptplot program requires that an X Server running in the background (e.g., Xming).




Note

Make sure there is enough disk space in the running directory as the csv files being produced.
Depending on how many variables are being extracted, the files (being a text file) can take considerable amount of disk space.
Running out of space will break the postprocessing operations.
At this point, no graceful exit nor warning are provided.



In addition to the postprocessing of the xtv files, the execution of postpro script will also produced an info file (hereinafter postpro info file).
The info file is produced by default with the following naming convention:

postpro-<tracin_name>-<parlist_name>-<dm_name>-<sample_start>-_<sample_end>-<vars_name>-<YYMMDD>-<HHMMSS>.info





The file is used to document the command line arguments specified when the script was called as well as to log all the shell commands run during the execution.
See below for example of the contents.


Example

Following the previous example,
executing the following command will post-processed all of the TRACE dmx files produced in the previous step
using to extract TRACE graphic variables listed in the ./simulation/xtvVars.apt file:

trace_simexp_postpro -exec exec-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-122617.nfo \
                     -vars ./simulation/xtvVars.inp \
                     -aptplot aptplot_v6.5.2_inst01.sh \
                     -postpro_info ./nfo





By default, the execution is carried out using 1 processor and
all the availables samples listed in the exec info file will be post-processed.


Note

Similar to the execute phase, if the postprocess step is expected to take a long time,
it is advised that the job is sent to the background with k5run -B utility
as given in the previous example.



Based on the command above, the prepro info file will be created with the following name:

postpro-febaTrans216-feba216Vars27-lhs_200_27-1_5-xtvVars-170328-125447.nfo





The file has the following (abridged) contents:

TRACE Simulation Experiment - Date: 2017-03-28 12:54:47.506218
***Post-process Phase Info***
exec.info Name                -> exec-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-122617.nfo
exec.info File                -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/nfo/exec-febaTrans216
Base Directory Name           -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp
Base Case Name                -> febaTrans216
List of Parameters Name       -> feba216Vars27
Design Matrix Name            -> lhs_200_27
APTPlot Executable            -> aptplot_v6.5.2_inst01.sh
Number of Processors (Host)   -> 1  (lclrs71)
List of XTV Variables Name    -> xtvVars
List of XTV Variables File    -> /afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/simulation/xtvVars.in
List of XTV Variables         ->
        rftn-20A69R29         rftn-20A89R29        rftn-20A109R29              pn-30A04         pn-1A17R01T01         pn-1A13R01T01
Samples to Post-process       ->
     1      3      5
***  End of Samples  ***
*** Batch Execution -     1 ***
Execution Successful: aptplot_v6.5.2_inst01.sh -batch febaTrans216-run_1-xtvVars.apt -nowin
*** Batch Execution -     2 ***
Execution Successful: aptplot_v6.5.2_inst01.sh -batch febaTrans216-run_3-xtvVars.apt -nowin
*** Batch Execution -     3 ***
Execution Successful: aptplot_v6.5.2_inst01.sh -batch febaTrans216-run_5-xtvVars.apt -nowin











          

      

      

    

  

    
      
          
            
  
Reset Phase (trace_simexp_reset)

trace_simexp_reset allows the user to reset a completed phase into its original state.
It can be invoked from the terminal using the following command:

trace_simexp_reset -info <info file fullname>





Brief explanation on the required arguments can be printed on the screen using the following command:

trace_simexp_reset --help





The table below lists the complete options/flag in detail.












	No.

	Short Name

	Long Name

	Type

	Required

	Description

	Default





	1

	-h

	–help

	flag

	No

	Show the help message and exit

	None



	2

	-info

	–info_file

	string

	Yes

	A completed phase info file (path+name)

	None



	3

	-V

	–version

	flag

	No

	Show the program’s version number and exit

	False






The return to original state depends on the info file being passed:


	postpro: delete all the resulting csv files produced
from the post-processing phase listed in the info file


	execute: delete all files, except the TRACE input file, inside the run directories
listed in execute phase info file


	prepro: delete all files and run-directories of the produced
by pre-processing phase as listed the phase info file




The user will be prompted one more chance to review and confirm what’s going to be purged in the reset phase.


Warning

There would be no turning back after confirming that the specified files or directories are to be purged.
Review the listed files carefully.




Example

Resetting the previous post-processing phase can be done using the following command:

trace_simexp_reset -info postpro-febaTrans216-feba216Vars27-lhs_200_27-1_5-xtvVars-170328-125447.nfo





after which the user will be prompted with the following question:

/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_1-xtvVars.csv will be deleted.
/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_3-xtvVars.csv will be deleted.
/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_5-xtvVars.csv will be deleted.
Delete all CSV files? [y/N]





Press y to confirm purging.

Resetting the previous execute phase back to before its completion can be done similarly:

trace_simexp_reset -info exec-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-122617.nfo





After which the prompt would be:

/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_1 will be revert back to pre-pro state!
/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_3 will be revert back to pre-pro state!
/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_5 will be revert back to pre-pro state!
Revert select directories to pre-process state? Warning: this will delete all except *.inp file. [y/N]





Finally, to reset everything back to prior to pre-processing phase (basically purge everything), use the command:

trace_simexp_reset -info prepro-febaTrans216-feba216Vars27-lhs_200_27-1_5-170328-120237.nfo





The prompt after executing this command would be:

/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_1 will be deleted!
/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_3 will be deleted!
/afs/psi.ch/project/stars/workspace/RND/SB-RND-ACT-006-13/WD41/projects/trace-simexp/febaTrans216/feba216Vars27-lhs_200_27/febaTrans216-run_5 will be deleted!
Delete the select run directories? (Warning: this will delete them all) [y/N] y











          

      

      

    

  

    
      
          
            
  
Freeze (trace_simexp_freeze)





          

      

      

    

  

    
      
          
            
  
Auxiliary Files


Base TRACE Input Deck




List of Parameters File




Design Matrix File




List of TRACE Graphic Variables




Pre-processing Phase Info File




Execute Phase Info File







          

      

      

    

  

    
      
          
            
  
Other Required Executables


TRACE




XTV2DMX




APTPLOT







          

      

      

    

  

    
      
          
            
  
cmdln_args Package





          

      

      

    

  

    
      
          
            
  
Notes on Implementation



	Parameter Perturbation

	Iso-Probability Transform

	Data Types (and Parsing Them)
	Parsing comp Data Type

	Parsing spacer Data Type

	Parsing matprop Data Type

	Parsing senscoef Data Type





	Batch Processing









          

      

      

    

  

    
      
          
            
  
Parameter Perturbation





          

      

      

    

  

    
      
          
            
  
Iso-Probability Transform





          

      

      

    

  

    
      
          
            
  
Data Types (and Parsing Them)



	Parsing comp Data Type

	Parsing spacer Data Type

	Parsing matprop Data Type

	Parsing senscoef Data Type









          

      

      

    

  

    
      
          
            
  
Parsing comp Data Type





          

      

      

    

  

    
      
          
            
  
Parsing spacer Data Type





          

      

      

    

  

    
      
          
            
  
Parsing matprop Data Type





          

      

      

    

  

    
      
          
            
  
Parsing senscoef Data Type





          

      

      

    

  

    
      
          
            
  
Batch Processing





          

      

      

    

  

    
      
          
            
  
About trace-simexp



	License

	Contributors

	Funding









          

      

      

    

  

    
      
          
            
  
License

trace-simexp is licensed to you under the MIT License

Copyright (c) [2016] [Damar Wicaksono]

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.





          

      

      

    

  

    
      
          
            
  
Contributors

trace_simexp is written and currently maintained by Damar Wicaksono <damar.wicaksono@gmail.com>

Other co-maintainers:


	Gregory Perret <greg.perret@psi.ch>








          

      

      

    

  

    
      
          
            
  
Funding

trace_simexp is developed to support simulation of experiment for thermal-hydraulics system code TRACE
under a doctoral research project funded by the Swiss Federal Institute of Technology, in Lausanne
carried out at the Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, in Villigen.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/feba_grid.png
1200

1000

0o
o
o

Temperature [K]

o
o
o

LN
o
o

1200

1000

0o
o
o

o
o
o

Temperature [K]

LN
o
o

3'860 [mm]

0 100 300 500
Time [s]
1'680 [mm]
[ [ [ [ [
0 100 300 500
Time [s]

1200

Temperature [K]
© o
o o
o o

o
o
o

LN
o
o

1200

1000

0o
o
o

o
o
o

Temperature [K]

LN
o
o

3'315 [mm]

0 100 300 500
Time [s]
1'135 [mm]
[ [ [ [ [
0 100 300 500
Time [s]

1200

Temperature [K]
© o
o o
o o

o
o
o

LN
o
o

1200

1000

0o
o
o

Temperature [K]

o
o
o

LN
o
o

2'770 [mm]

0 100 300 500
Time [s]
590 [mm]

[ [ [ [ [

0 100 300 500
Time [s]

1200

Temperature [K]
© o
o o
o o

o
o
o

LN
o
o

1200

1000

0o
o
o

Temperature [K]

o
o
o

LN
o
o

2'225 [mm]
[ [ [ [ [ [
0 100 300 500
Time [s]
45 [mm]
[ [ [ [ [ [
0 100 300 500

Time [s]





_images/temp_max.png
Max. Temperature [K]

Max. Temperature [K]

1230 -
12200 L’ | u et eed]
0'0' o c" ":'0 . °
"': : 0‘:: K ""
12107°g Lo T S
) ‘cc . . ‘0"‘.:
° ‘cﬂﬁf&".f."
1200 -

0.150 0.175 0.200 0.225 0.250

Spacer Blockage Ratio [-]

1230 A

1220 A

1210 A

1200 A

00 0.1

Mixing Vane Blockage Ratio |

02 03 04 05

Max. Temperature [K]

Max. Temperature [K]

1230 A

1220 A

1210 A

1200 A

0' . J ° .
o ® ° 'C" ® L
o ® ° P, .,: . ®
g ’:: °.0 % o
'00' : o ¢ :' ;e

: N y Q' ore o ¢
$
o '\ ?‘ “' ? ‘O"J

o’ 0' Y ol :‘ o’

0‘0:” o® *” o 0" *

® 0 ® o
°

1230 A

1220 A

1210 A

1200 A

150 1.75 200 2.25
Wetted Perimeter [m]

Max. Temperature [K]

Max. Temperature [K]

1230 A

1220 A

1210 A

1200 A

0.030 0.035 0.040 0.045
Spacer Height [m]

1230 A

1220 A

1210 A

1200 A

0.0011 0.0013 0.0015
Strap Thickness [m]

Max. Temperature [K]

1230 A

1220 A

1210 A

1200 A

'

W

é o
0" :
[ (4

A
ol o "'
v e %

2

6 7 8 9
Spacer Grid Material ID

10 11 12






_images/flowchart.png
Driver Scripts

Prepro

« Perturb the TRACE parameters
listed in the list of parameters
file according to the values
specified in design matrix

« Generate directory structures
that contains spawned trace

Execute

« submit and manage TRACE jobs
in parallel (in sequential
batches)

« Convert XTV to DMX to save
drive space

« Do directory cleanup to further
reduce the space requirements

Post-process

« Postprocess each xtv files and
extractthe variables listed in
the list of graphic variables file
into separate csv files.

¥

input decks
wss A Y
Aux files

Outputs

csv

Ready to be post-
processed further
for sensitivity or
uncertainty analyses






_images/quench_time.png
‘v 500 - ‘v 500 - ‘v 500 - ‘' 500 -
(@) (@) O) (@)
'E o0 O 'E o o o 'E o e © 'E O‘ o o
- °® - L ° - ° o - °
G 480 o 000002, *g. O 4804 2. Y G 4801 o o' o8 o o« o G 4801 % "2 5w 3
CICJ “'::- ""“':*'G'u‘:" “ w?s, C]CJ ':‘A: :: 0‘ ':" ¥ CICJ :-' 's"O: "O:'"f 3""“ "" C]CJ < "" 8, "\ ‘0‘0 ':;.' .‘t ".
% 0. %, * o° ° ° ° °® o o ° o oo o ) ° ® o -

C:; ‘:‘$ ¢ i & 'h': x‘ { 2 ::""0 ? C:; @ ': " : 0:’ ] : C:; :"”z ‘:‘ 'C‘:: o soo 0‘ “ oo ": ° 0\ C:; . ® - :g é ‘{ R "’
o 4607 ¢ KI AL Nl | 4601 TR 3 o 4607 et N g gt ot |~ 4607 0n \‘* s SRR " 3,
@) ° °o® .o @q® ® '® ) @) o © .'0 ® '0 o ©O '® : % ® ® 0 ¢ o '0
() () () ()
£ 440- £ 440- £ 440- £ 440-
— — — —

0.150 0.175 0.200 0.225 0.250 0 15 30 45 0.030 0.035 0.040 0.045 2 6 7 8 9 10 11 12

Spacer Blockage Ratio [-] phi [ded] Spacer Height [m] Spacer Grid Material ID
‘» 500 - ‘» 500 - @ 500 -
(@) (@) (@)
'E ‘0 'E ® o o 'E ® o ®
= - - ° 5 -1 e P ° ° o % o S 1 Qe o ¢ ®
O 0T Lok Yore g 4807 ¢ Bhe et vl © A Py LI
% oo, " by o % "% "’ . ‘:';0' :'l v’ :; & % "' " : > '\ ‘::;" * * e ¥
®C ®ces® o gt ®e 2%, o ° o®%% o " & % «b 2% ¢ee et

O 460 - et T | O up0 AW T e B s | O s ML BRI
Y— A O‘ e, L ° Y— o®® .".- | O O e o Y— o’ o oo ,:o' - ®
@) ) oo Yo og%e @) P '0 . ® ) ° @) . Y ) . oe O
() () ()
£ 440- £ 440- £ 440-
— — —

00 01 02 03 04 05 150 1.75 2.00 2.25 0.0011 0.0013 0.0015

Mixing Vane Blockage Ratio [ Wetted Perimeter [m] Strap Thickness [m]





nav.xhtml

    
      Table of Contents


      
        		
          trace-simexp Package
        


        		
          Introduction and Getting Started Guide
          
            		
              List of Current Features
            


            		
              Installing trace-simexp
            


            		
              Tutorial: Simple Uncertainty Propagation of a Reflood Facility Model
              
                		
                  Problem Specification
                


                		
                  Conducting Simulation Experiment
                


                		
                  Analyzing Results
                


              


            


          


        


        		
          trace_simexp Reference
          
            		
              User’s Guide
              
                		
                  Installation
                


                		
                  Terminology
                


                		
                  Command Line Interface
                


                		
                  Auxiliary Files
                


                		
                  Other Required Executables
                


              


            


            		
              API Documentation
              
                		
                  cmdln_args Package
                


              


            


          


        


        		
          Notes on Implementation
          
            		
              Parameter Perturbation
            


            		
              Iso-Probability Transform
            


            		
              Data Types (and Parsing Them)
              
                		
                  Parsing comp Data Type
                


                		
                  Parsing spacer Data Type
                


                		
                  Parsing matprop Data Type
                


                		
                  Parsing senscoef Data Type
                


              


            


            		
              Batch Processing
            


          


        


        		
          About trace-simexp
          
            		
              License
            


            		
              Contributors
            


            		
              Funding
            


          


        


      


    
  

_static/ajax-loader.gif





_static/comment-bright.png





_static/comment-close.png





_static/comment.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





