
Totem Documentation
Release 1.1.0

Baptiste "Talus" Clavié

July 21, 2014

Contents

1 Reference Guide 3
1.1 Totem : Basic Usage . 3

i

ii

Totem Documentation, Release 1.1.0

Changeset calculator and handler for any type of complex data

Requires at least PHP 5.4. Compatible PHP 5.5.

Contents 1

Totem Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Reference Guide

1.1 Totem : Basic Usage

Totem is a PHP 5.4 library helping you to calculate changes brought to you data. Sure, that does help much to know
what it does... Let me clarify then.

Let’s say you have a simple array, which looks like this

[’foo’ => ’bar’,
’baz’ => [’fubar’, ’fubaz’]]

And then, for some reasons, you need to alter the foo key, and instead of having the “bar” value, it should have the
“qux” value. So you are stuck with

[’foo’ => ’qux’,
’baz’ => [’fubar’, ’fubaz’]]

... And then, let’s say you want to say to the end-user “hey, something has changed !”. How do you know which key
has changed, without actually knowing it (think data edition through a form) ? The answer is simple, it’s Totem !

1.1.1 First step : Taking a bunch of Snapshots

Before you modify the data, you’ll first need to take a Snapshot, which will freeze its data a a given time (all of it).
To do that, you just need to instanciate a Totem\Snapshot object... Or, to be more precise, it depends on the root
type of your data. Currently, here are the built-in types :

• Totem\Snapshot\ArraySnapshot, if your root data is an array

• Totem\Snapshot\ObjectSnapshot, if your root data is an object.

1.1.2 Second Step : Calculate the diff between your two snapshots

Once you have at least two snapshots (one before your modification, the other one after that modification), you may
calculte the diff

// let’s consider you have two snapshots : one "before" and one "after" the
// modifications
$set = $snapshot[’before’]->diff($snapshot[’after’]);

You have then a Totem\Set object, in which, from its constructor, the changeset will be computed. It is in fact a sort
of a container, in which will be stored all the modifications that happened since the “before” snapshot until the “after”

3

Totem Documentation, Release 1.1.0

snapshot. Each items of this snapshot is a Totem\ChangeInterface, which is basically either a Totem\Set
object if the key was an object or an array that was modified between the “before” changeset and the “after” changeset,
or a Totem\Change object if your data was completely changed (if it is a whole different array, object, or whatever
else – string, integer, boolean, you name it))

1.1.3 Third and final step : manipulate your diff

Once you have your Totem\ChangeInterface object, you may have access to the “old” value (what it was in the
old snapshot), and the new value (what is is now)

// let’s consider you stored the result set in a ‘‘$set‘‘ variable
if ($set->hasChanged(’foo’)) {

$change = $set->getChange(’foo’);
var_dump($change->getOld(), $change->getNew()); // should dump "bar", "qux"

}

There, you have a fully functionnal changeset !

4 Chapter 1. Reference Guide

	Reference Guide
	Totem : Basic Usage

