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Totem

Changeset calculator and handler for any type of complex data

Requires at least PHP 5.4. Compatible PHP 5.5, PHP 5.6, and HHVM


Reference Guide



	Totem : Basic Usage
	First step : Taking a bunch of Snapshots

	Second Step : Calculate the diff between your two snapshots

	Third and final step : manipulate your diff















          

      

      

    


    
         Copyright 2013, Baptiste "Talus" Clavié.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Totem 1.4.0 documentation 
 
      

    


    
      
          
            
  
Totem : Basic Usage

Totem is a PHP 5.4 library helping you to calculate changes brought to you data.
Sure, that does help much to know what it does... Let me clarify then.

Let’s say you have a simple array, which looks like this

['foo' => 'bar',
 'baz' => ['fubar', 'fubaz']]





And then, for some reasons, you need to alter the foo key, and instead of
having the “bar” value, it should have the “qux” value. So you are stuck with

['foo' => 'qux',
 'baz' => ['fubar', 'fubaz']]





... And then, let’s say you want to say to the end-user “hey, something has
changed !”. How do you know which key has changed, without actually knowing it
(think data edition through a form) ? The answer is simple, it’s Totem !


First step : Taking a bunch of Snapshots

Before you modify the data, you’ll first need to take a Snapshot, which
will freeze its data a a given time (all of it). To do that, you just need to
instanciate a Totem\Snapshot object... Or, to be more precise, it depends
on the root type of your data. Currently, here are the built-in types :


	Totem\Snapshot\ArraySnapshot, if your root data is an array

	Totem\Snapshot\ObjectSnapshot, if your root data is an object.

	Totem\Snapshot\CollectionSnapshot, if your root data is a collection.




Warning

The Collection Snapshot is not a recursive snapshot. It will snapshots its
arrays and objects, but not its collections. It will consider them as
arrays, as there is no easy way to determine what is a collection (except on
userland, like the root of the data), and what is the primary key of each
elements in said collection.






Second Step : Calculate the diff between your two snapshots

Once you have at least two snapshots (one before your modification, the other
one after that modification), you may calculte the diff

// let's consider you have two snapshots : one "before" and one "after" the
// modifications
$set = $snapshot['before']->diff($snapshot['after']);





You have then a Totem\Set object, which is already computed. It is in fact a
sort of a container, in which will be stored all the modifications that happened
since the “before” snapshot until the “after” snapshot. Each items of this
set may have two forms :


	a Totem\Set if the item was a snapshot material in the “before” snapshot
and in the “after” snapshot ;

	a Totem\AbstractChange object if your data was completely changed (if it
is a whole different array, object, or whatever else – string, integer,
boolean, you name it). This change can be represented in 3 states :
	a Totem\Change\Addition if the key was added in the new state ;

	a Totem\Change\Modification if the key was modified ;

	a Totem\Change\Removal if the key was removed from the data










Third and final step : manipulate your diff

Once you have your Totem\Set object, you have an access to each key that was
modified ; if it is another Totem\Set object, it means that a recursive
changeset was created ; if it is only a Totem\AbstractChange, you have
access to the “old” value (what it was in the old snapshot), and the new value
(what is is now)

// let's consider you stored the result set in a ``$set`` variable
if ($set->hasChanged('foo')) {
    $change = $set->getChange('foo');
    var_dump($change->getOld(), $change->getNew()); // should dump "bar", "qux"
}





There, you have a fully functionnal changeset !
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