

 Navigation

 	
 index

 	
 next |

 	Totem 1.4.0 documentation

Totem

Changeset calculator and handler for any type of complex data

Requires at least PHP 5.4. Compatible PHP 5.5, PHP 5.6, and HHVM

Reference Guide

	Totem : Basic Usage
	First step : Taking a bunch of Snapshots

	Second Step : Calculate the diff between your two snapshots

	Third and final step : manipulate your diff

 Copyright 2013, Baptiste "Talus" Clavié.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Totem 1.4.0 documentation

Totem : Basic Usage

Totem is a PHP 5.4 library helping you to calculate changes brought to you data.
Sure, that does help much to know what it does... Let me clarify then.

Let’s say you have a simple array, which looks like this

['foo' => 'bar',
 'baz' => ['fubar', 'fubaz']]

And then, for some reasons, you need to alter the foo key, and instead of
having the “bar” value, it should have the “qux” value. So you are stuck with

['foo' => 'qux',
 'baz' => ['fubar', 'fubaz']]

... And then, let’s say you want to say to the end-user “hey, something has
changed !”. How do you know which key has changed, without actually knowing it
(think data edition through a form) ? The answer is simple, it’s Totem !

First step : Taking a bunch of Snapshots

Before you modify the data, you’ll first need to take a Snapshot, which
will freeze its data a a given time (all of it). To do that, you just need to
instanciate a Totem\Snapshot object... Or, to be more precise, it depends
on the root type of your data. Currently, here are the built-in types :

	Totem\Snapshot\ArraySnapshot, if your root data is an array

	Totem\Snapshot\ObjectSnapshot, if your root data is an object.

	Totem\Snapshot\CollectionSnapshot, if your root data is a collection.

Warning

The Collection Snapshot is not a recursive snapshot. It will snapshots its
arrays and objects, but not its collections. It will consider them as
arrays, as there is no easy way to determine what is a collection (except on
userland, like the root of the data), and what is the primary key of each
elements in said collection.

Second Step : Calculate the diff between your two snapshots

Once you have at least two snapshots (one before your modification, the other
one after that modification), you may calculte the diff

// let's consider you have two snapshots : one "before" and one "after" the
// modifications
$set = $snapshot['before']->diff($snapshot['after']);

You have then a Totem\Set object, which is already computed. It is in fact a
sort of a container, in which will be stored all the modifications that happened
since the “before” snapshot until the “after” snapshot. Each items of this
set may have two forms :

	a Totem\Set if the item was a snapshot material in the “before” snapshot
and in the “after” snapshot ;

	a Totem\AbstractChange object if your data was completely changed (if it
is a whole different array, object, or whatever else – string, integer,
boolean, you name it). This change can be represented in 3 states :
	a Totem\Change\Addition if the key was added in the new state ;

	a Totem\Change\Modification if the key was modified ;

	a Totem\Change\Removal if the key was removed from the data

Third and final step : manipulate your diff

Once you have your Totem\Set object, you have an access to each key that was
modified ; if it is another Totem\Set object, it means that a recursive
changeset was created ; if it is only a Totem\AbstractChange, you have
access to the “old” value (what it was in the old snapshot), and the new value
(what is is now)

// let's consider you stored the result set in a ``$set`` variable
if ($set->hasChanged('foo')) {
 $change = $set->getChange('foo');
 var_dump($change->getOld(), $change->getNew()); // should dump "bar", "qux"
}

There, you have a fully functionnal changeset !

 Copyright 2013, Baptiste "Talus" Clavié.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Totem 1.4.0 documentation

Index

 Copyright 2013, Baptiste "Talus" Clavié.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Totem 1.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Baptiste "Talus" Clavié.
 Created using Sphinx 1.2.2.

internals.html

 Navigation

 		
 index

 		
 previous |

 		Totem 1.4.0 documentation »

 © Copyright 2013, Baptiste "Talus" Clavié.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

