
TOAST Documentation
Release 2.3.0

Theodore Kisner, Reijo Keskitalo

Aug 13, 2019

Contents

1 Introduction 3
1.1 Data Organization . 3
1.2 Workflow . 4
1.3 Support for Specific Experiments . 4

2 Installation 5
2.1 Compiled Dependencies . 5
2.2 Python Dependencies . 5
2.3 Using Configure . 6
2.4 Testing the Installation . 7

3 Utilities 9
3.1 Environment Control . 9
3.2 Logging . 10
3.3 Vector Math Operations . 11
3.4 Random Number Generation . 11

4 Indices and tables 13

Index 15

i

ii

TOAST Documentation, Release 2.3.0

Contents:

Contents 1

TOAST Documentation, Release 2.3.0

2 Contents

CHAPTER 1

Introduction

TOAST is a software framework for simulating and processing timestream data collected by telescopes. Telescopes
which collect data as timestreams rather than images give us a unique set of analysis challenges. Detector data
usually contains noise which is correlated in time as well as sources of correlated signal from the instrument and
the environment. Large pieces of data must often be analyzed simultaneously to extract an estimate of the sky signal.
TOAST has evolved over several years. The current codebase contains an internal C++ library to allow for optimization
of some calculations, while the public interface is written in Python.

The TOAST framework contains:

• Tools for distributing data among many processes

• Tools for performing operations on the local pieces of the data

• Generic operators for common processing tasks (filtering, pointing expansion, map-making)

• Basic classes for performing I/O in a limited set of formats

• Well-defined interfaces for adding custom I/O classes and processing operators

The highest-level control of the workflow is done by the user, often by writing a small Python “pipeline” script (some
examples are included). Such pipeline scripts make use of TOAST functions for distributing data and then call built-in
or custom operators to process the timestream data.

1.1 Data Organization

The TOAST framework groups data into one or more “observations”. Each observation represents data from a group
of detectors for some time span. Detectors in the same observation must have the same number of samples for the
length of the observation. We currently also assume that the noise properties of the detectors are constant across this
observation (i.e. the noise is stationary). A TOAST “dataset” is simply a collection of one or more observations.

3

https://en.wikipedia.org/wiki/Software_framework

TOAST Documentation, Release 2.3.0

1.2 Workflow

Example: Satellite

Example: Ground-Based

1.3 Support for Specific Experiments

If you are a member of one of these projects:

• Planck

• LiteBIRD

• Simons Array

• Simons Observatory

• CMB-S4

Then there are additional software repositories you have access to that contain extra TOAST classes and scripts for
processing data from your experiment.

4 Chapter 1. Introduction

CHAPTER 2

Installation

TOAST is written in C++ and python3 and depends on several commonly available packages. It also has some optional
functionality that is only enabled if additional external libraries are available.

2.1 Compiled Dependencies

TOAST compilation requires a C++11 compatible compiler as well as a compatible MPI C++ compiler wrapper. You
must also have an FFT library and both FFTW and Intel’s MKL are supported by configure checks. Additionally a
BLAS/LAPACK installation is required.

Several optional compiled dependencies will enable extra features in TOAST. If the Elemental library is found at
configure time then internal atmosphere simulation code will be enabled in the build. If the MADAM destriping
mapmaker is available at runtime, then the python code will support calling that library.

2.2 Python Dependencies

You should have a reasonably new (>= 3.4.0) version of python3. We also require several common scientific python
packages:

• numpy

• scipy

• matplotlib

• pyephem

• mpi4py (>= 2.0.0)

• healpy

For mpi4py, ensure that this package is compatible with the MPI C++ compiler used during TOAST installation. When
installing healpy, you might encounter difficulties if you are in a cross-compile situation. In that case, I recommend
installing the repackaged healpix here.

5

http://libelemental.org/
https://github.com/hpc4cmb/libmadam
https://github.com/hpc4cmb/libmadam
https://github.com/tskisner/healpix-autotools

TOAST Documentation, Release 2.3.0

There are obviously several ways to meet these python requirements.

2.2.1 Option #0

If you are using machines at NERSC, see nersc.

2.2.2 Option #1

If you are using a linux distribution which is fairly recent (e.g. the latest Ubuntu version), then you can install all the
dependencies with the system package manager:

%> apt-get install fftw-dev python3-scipy \
python3-matplotlib python3-ephem python3-healpy \
python3-mpi4py

On OS X, you can also get the dependencies with macports. However, on some systems OpenMPI from macports is
broken and MPICH should be installed as the dependency for the mpi4py package.

2.2.3 Option #2

If your OS is old, you could use a virtualenv to install updated versions of packages into an isolated location. This
is also useful if you want to separate your packages from the system installed versions, or if you do not have root
access to the machine. Make sure that you have python3 and the corresponding python3-virtualenv packages installed
on your system. Also make sure that you have some kind of MPI (OpenMPI or MPICH) installed with your system
package manager. Then:

1. create a virtualenv and activate it.

2. once inside the virtualenv, pip install the dependencies

2.2.4 Option #3

Use Anaconda. Download and install Miniconda or the full Anaconda distribution. Make sure to install the Python3
version. If you are starting from Miniconda, install the dependencies that are available through conda:

%> conda install -c conda-forge numpy scipy matplotlib mpi4py healpy pyephem

2.3 Using Configure

TOAST uses autotools to configure, build, and install both the compiled code and the python tools. If you are running
from a git checkout (instead of a distribution tarball), then first do:

%> ./autogen.sh

Now run configure:

%> ./configure --prefix=/path/to/install

See the top-level “platforms” directory for other examples of running the configure script. Now build and install the
tools:

6 Chapter 2. Installation

TOAST Documentation, Release 2.3.0

%> make install

In order to use the installed tools, you must make sure that the installed location has been added to the search paths
for your shell. For example, the “<prefix>/bin” directory should be in your PATH and the python install location
“<prefix>/lib/pythonX.X/site-packages” should be in your PYTHONPATH.

2.4 Testing the Installation

After installation, you can run both the compiled and python unit tests. These tests will create an output directory in
your current working directory:

%> python -c "import toast.tests; toast.tests.run()"

2.4. Testing the Installation 7

TOAST Documentation, Release 2.3.0

8 Chapter 2. Installation

CHAPTER 3

Utilities

TOAST contains a variety of utilities for controlling the runtime environment, logging, timing, streamed random
number generation, quaternion operations, FFTs, and special function evaluation. In some cases these utilities provide
a common interface to compile-time selected vendor math libraries.

3.1 Environment Control

The run-time behavior of the TOAST package can be controlled by the manipulation of several environment variables.
The current configuration can also be queried.

class toast.utils.Environment
Global runtime environment.

This singleton class provides a unified place to parse environment variables at runtime and to change global
settings that impact the overall package.

current_threads(self: toast._libtoast.Environment)→ int
Return the current threading concurrency in use.

function_timers(self: toast._libtoast.Environment)→ bool
Return True if function timing has been enabled.

get()→ toast._libtoast.Environment
Get a handle to the global environment class.

log_level(self: toast._libtoast.Environment)→ str
Return the string of the current Logging level.

max_threads(self: toast._libtoast.Environment)→ int
Returns the maximum number of threads used by compiled code.

print(self: toast._libtoast.Environment)→ None
Print the current environment to STDOUT.

set_log_level(self: toast._libtoast.Environment, level: str)→ None
Set the Logging level.

9

TOAST Documentation, Release 2.3.0

Parameters level (str) – one of DEBUG, INFO, WARNING, ERROR or CRITICAL.

Returns None

set_threads(self: toast._libtoast.Environment, nthread: int)→ None
Set the number of threads in use.

Parameters nthread (int) – The number of threads to use.

Returns None

signals(self: toast._libtoast.Environment)→ List[str]
Return a list of the currently available signals.

tod_buffer_length(self: toast._libtoast.Environment)→ int
Returns the number of samples to buffer for TOD operations.

use_mpi(self: toast._libtoast.Environment)→ bool
Return True if TOAST was compiled with MPI support and MPI is supported in the current runtime
environment.

version(self: toast._libtoast.Environment)→ str
Return the current source code version string.

3.2 Logging

Although python provides logging facilities, those are not accessible to C++. The logging class provided in TOAST
is usable from within the compiled libtoast code and also from python, and uses logging level independent from the
builtin python logger.

class toast.utils.Logger
Simple Logging class.

This class mimics the python logger in C++. The log level is controlled by the TOAST_LOGLEVEL environ-
ment variable. Valid levels are DEBUG, INFO, WARNING, ERROR and CRITICAL. The default is INFO.

critical(self: toast._libtoast.Logger, msg: str)→ None
Print a CRITICAL level message.

Parameters msg (str) – The message to print.

Returns None

debug(self: toast._libtoast.Logger, msg: str)→ None
Print a DEBUG level message.

Parameters msg (str) – The message to print.

Returns None

error(self: toast._libtoast.Logger, msg: str)→ None
Print an ERROR level message.

Parameters msg (str) – The message to print.

Returns None

get()→ toast._libtoast.Logger
Get a handle to the global logger.

info(self: toast._libtoast.Logger, msg: str)→ None
Print an INFO level message.

10 Chapter 3. Utilities

TOAST Documentation, Release 2.3.0

Parameters msg (str) – The message to print.

Returns None

warning(self: toast._libtoast.Logger, msg: str)→ None
Print a WARNING level message.

Parameters msg (str) – The message to print.

Returns None

3.3 Vector Math Operations

The following functions . . .

toast.utils.vsin(in: buffer, out: buffer)→ None
Compute the Sine for an array of float64 values.

The results are stored in the output buffer. To guarantee SIMD vectorization, the input and output arrays should
be aligned (i.e. use an AlignedF64).

Parameters

• in (array_like) – 1D array of float64 values.

• out (array_like) – 1D array of float64 values.

Returns None

3.4 Random Number Generation

The following functions . . .

toast._libtoast.rng_dist_uint64(key1: int, key2: int, counter1: int, counter2: int, data: buffer)
→ None

Generate random unsigned 64bit integers.

The provided input array is populated with values. The dtype of the input array should be compatible with
unsigned 64bit integers. To guarantee SIMD vectorization, the input array should be aligned (i.e. use an
AlignedU64).

Parameters

• key1 (uint64) – The first element of the key.

• key2 (uint64) – The second element of the key.

• counter1 (uint64) – The first element of the counter.

• counter2 (uint64) – The second element of the counter. This is effectively the sample
index in the stream defined by the other 3 values.

• data (array) – The array to populate.

Returns None.

#workflow.rst #data.rst #tod.rst #intervals.rst #noise.rst #pointing.rst #sim.rst #maptools.rst #timing.rst #nersc.rst
#dev.rst

3.3. Vector Math Operations 11

TOAST Documentation, Release 2.3.0

12 Chapter 3. Utilities

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

TOAST Documentation, Release 2.3.0

14 Chapter 4. Indices and tables

Index

C
critical() (toast.utils.Logger method), 10
current_threads() (toast.utils.Environment

method), 9

D
debug() (toast.utils.Logger method), 10

E
Environment (class in toast.utils), 9
error() (toast.utils.Logger method), 10

F
function_timers() (toast.utils.Environment

method), 9

G
get() (toast.utils.Environment method), 9
get() (toast.utils.Logger method), 10

I
info() (toast.utils.Logger method), 10

L
log_level() (toast.utils.Environment method), 9
Logger (class in toast.utils), 10

M
max_threads() (toast.utils.Environment method), 9

P
print() (toast.utils.Environment method), 9

R
rng_dist_uint64() (in module toast._libtoast), 11

S
set_log_level() (toast.utils.Environment method),

9

set_threads() (toast.utils.Environment method), 10
signals() (toast.utils.Environment method), 10

T
tod_buffer_length() (toast.utils.Environment

method), 10

U
use_mpi() (toast.utils.Environment method), 10

V
version() (toast.utils.Environment method), 10
vsin() (in module toast.utils), 11

W
warning() (toast.utils.Logger method), 11

15

	Introduction
	Data Organization
	Workflow
	Support for Specific Experiments

	Installation
	Compiled Dependencies
	Python Dependencies
	Using Configure
	Testing the Installation

	Utilities
	Environment Control
	Logging
	Vector Math Operations
	Random Number Generation

	Indices and tables
	Index

