

TNT Documentation

TNT is a library providing powerful dataloading, logging and visualization utlities for Python.
It is closely intergrated with PyTorch [http://pytorch.org] and is designed to enable rapid iteration with any model or training regimen.

Notes

	 Examples [https://github.com/pytorch/tnt/tree/master/example]

Package Reference

	 torchnet.dataset

	 torchnet.engine

	 torchnet.logger

	 torchnet.meter

	 torchnet.utils

TNT was inspired by TorchNet, and legend says that it stood for “TorchNetTwo”. Since then, TNT has developed
on its own.

TNT provides simple methods to record model preformance in the torchnet.meter module
and to log them to Visdom (or in the future, TensorboardX) with the torchnet.logging
module.

In the future, TNT will also provide strong support for multi-task learning and transfer learning applications. It
currently supports joint training data loading through
torchnet.utils.MultiTaskDataLoader.

torchnet.dataset

Provides a Dataset interface, similar to vanilla PyTorch.

	
class torchnet.dataset.dataset.Dataset

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
batch(*args, **kwargs)

	

	
parallel(*args, **kwargs)

	

	
shuffle(*args, **kwargs)

	

	
split(*args, **kwargs)

	

	
transform(*args, **kwargs)

	

BatchDataset

	
class torchnet.dataset.BatchDataset(dataset, batchsize, perm=<function BatchDataset.<lambda>>, merge=None, policy='include-last', filter=<function BatchDataset.<lambda>>)

	Bases: torchnet.dataset.dataset.Dataset

Dataset which batches the data from a given dataset.

Given a dataset, BatchDataset merges samples from this dataset to
form a new sample which can be interpreted as a batch of size batchsize.

The merge function controls how the batching is performed. By default
the occurrences are supposed to be tensors, and they aggregated along the
first dimension.

It is often important to shuffle examples while performing the batch
operation. perm(idx, size) is a function which returns the shuffled index
of the sample at position idx in the underlying dataset. For convenience,
the size of the underlying dataset is also passed to the function. By
default, the function is the identity.

The underlying dataset size might or might not be always divisible by
batchsize. The optional policy string specify how to handle corner
cases.

Purpose: the concept of batch is problem dependent. In torchnet, it is up
to the user to interpret a sample as a batch or not. When one wants to
assemble samples from an existing dataset into a batch, then
BatchDataset is suited for the job. Sometimes it is however more
convenient to write a dataset from scratch providing “batched” samples.

	Parameters

	
	dataset (Dataset) – Dataset to be batched.

	batchsize (int [https://docs.python.org/3/library/functions.html#int]) – Size of the batch.

	perm (function, optional) – Function used to shuffle the dataset before
batching. perm(idx, size) should return the shuffled index of
idx th sample. By default, the function is the identity.

	merge (function, optional) – Function to control batching behaviour.
transform.makebatch(merge) is used to make the batch. Default is
None.

	policy (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Policy to handle the corner cases when the
underlying dataset size is not divisible by batchsize. One of
(include-last, skip-last, divisible-only).

	
	include-last makes sure all samples of the underlying dataset

	will be seen, batches will be of size equal or inferior to
batchsize.

	
	skip-last will skip last examples of the underlying dataset if

	its size is not properly divisible. Batches will be always of
size equal to batchsize.

	
	divisible-only will raise an error if the underlying dataset

	has not a size divisible by batchsize.

	filter (function, optional) – Function to filter the sample before
batching. If filter(sample) is True, then sample is included for
batching. Otherwise, it is excluded. By default, filter(sample)
returns True for any sample.

ConcatDataset

	
class torchnet.dataset.ConcatDataset(datasets)

	Bases: torchnet.dataset.dataset.Dataset

Dataset to concatenate multiple datasets.

Purpose: useful to assemble different existing datasets, possibly
large-scale datasets as the concatenation operation is done in an
on-the-fly manner.

	Parameters

	datasets (iterable) – List of datasets to be concatenated

ListDataset

	
class torchnet.dataset.ListDataset(elem_list, load=<function ListDataset.<lambda>>, path=None)

	Bases: torchnet.dataset.dataset.Dataset

Dataset which loads data from a list using given function.

Considering a elem_list (can be an iterable or a string) i-th sample
of a dataset will be returned by load(elem_list[i]), where load()
is a function provided by the user.

If path is provided, elem_list is assumed to be a list of strings, and
each element elem_list[i] will prefixed by path/ when fed to load().

Purpose: many low or medium-scale datasets can be seen as a list of files
(for example representing input samples). For this list of file, a target
can be often inferred in a simple manner.

	Parameters

	
	elem_list (iterable/str) – List of arguments which will be passed to
load function. It can also be a path to file with each line
containing the arguments to load

	load (function, optional) – Function which loads the data.
i-th sample is returned by load(elem_list[i]). By default load
is identity i.e, lambda x: x

	path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Defaults to None. If a string is provided,
elem_list is assumed to be a list of strings, and each element
elem_list[i] will prefixed by this string when fed to load().

ResampleDataset

	
class torchnet.dataset.ResampleDataset(dataset, sampler=<function ResampleDataset.<lambda>>, size=None)

	Bases: torchnet.dataset.dataset.Dataset

Dataset which resamples a given dataset.

Given a dataset, creates a new dataset which will (re-)sample from this
underlying dataset using the provided sampler(dataset, idx) function.

If size is provided, then the newly created dataset will have the
specified size, which might be different than the underlying dataset
size. If size is not provided, then the new dataset will have the same
size as the underlying one.

Purpose: shuffling data, re-weighting samples, getting a subset of the
data. Note that an important sub-class ShuffleDataset is provided for
convenience.

	Parameters

	
	dataset (Dataset) – Dataset to be resampled.

	sampler (function, optional) – Function used for sampling. idx`th
sample is returned by `dataset[sampler(dataset, idx)]. By default
sampler(dataset, idx) is the identity, simply returning idx.
sampler(dataset, idx) must return an index in the range
acceptable for the underlying dataset.

	size (int [https://docs.python.org/3/library/functions.html#int], optional) – Desired size of the dataset after resampling. By
default, the new dataset will have the same size as the underlying
one.

ShuffleDataset

	
class torchnet.dataset.ShuffleDataset(dataset, size=None, replacement=False)

	Bases: torchnet.dataset.resampledataset.ResampleDataset

Dataset which shuffles a given dataset.

ShuffleDataset is a sub-class of ResampleDataset provided for
convenience. It samples uniformly from the given dataset with, or without
replacement. The chosen partition can be redrawn by calling resample()

If replacement is true, then the specified size may be larger than
the underlying dataset.
If size is not provided, then the new dataset size will be equal to the
underlying dataset size.

Purpose: the easiest way to shuffle a dataset!

	Parameters

	
	dataset (Dataset) – Dataset to be shuffled.

	size (int [https://docs.python.org/3/library/functions.html#int], optional) – Desired size of the shuffled dataset. If
replacement is true, then can be larger than the len(dataset).
By default, the new dataset will have the same size as dataset.

	replacement (bool [https://docs.python.org/3/library/functions.html#bool], optional) – True if uniform sampling is to be done
with replacement. False otherwise. Defaults to false.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If size is larger than the size of the underlying dataset
and replacement is False.

	
resample(seed=None)

	Resample the dataset.

	Parameters

	
	seed (int [https://docs.python.org/3/library/functions.html#int], optional) – Seed for resampling. By default no seed is

	used. –

SplitDataset

	
class torchnet.dataset.SplitDataset(dataset, partitions, initial_partition=None)

	Bases: torchnet.dataset.dataset.Dataset

Dataset to partition a given dataset.

Partition a given dataset, according to the specified partitions. Use
the method select() to select the current partition in use.

The partitions is a dictionary where a key is a user-chosen string
naming the partition, and value is a number representing the weight (as a
number between 0 and 1) or the size (in number of samples) of the
corresponding partition.

Partioning is achieved linearly (no shuffling). See ShuffleDataset if you
want to shuffle the dataset before partitioning.

	Parameters

	
	dataset (Dataset) – Dataset to be split.

	partitions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary where key is a user-chosen string
naming the partition, and value is a number representing the weight
(as a number between 0 and 1) or the size (in number of samples)
of the corresponding partition.

	initial_partition (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Initial parition to be selected.

	
select(partition)

	Select the parition.

	Parameters

	partition (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition to be selected.

TensorDataset

	
class torchnet.dataset.TensorDataset(data)

	Bases: torchnet.dataset.dataset.Dataset

Dataset from a tensor or array or list or dict.

TensorDataset provides a way to create a dataset out of the data that is
already loaded into memory. It accepts data in the following forms:

	tensor or numpy array

	idx`th sample is `data[idx]

	dict of tensors or numpy arrays

	idx`th sample is `{k: v[idx] for k, v in data.items()}

	list of tensors or numpy arrays

	idx`th sample is `[v[idx] for v in data]

Purpose: Easy way to create a dataset out of standard data structures.

	Parameters

	data (dict/list/tensor/ndarray) – Data for the dataset.

TransformDataset

	
class torchnet.dataset.TransformDataset(dataset, transforms)

	Bases: torchnet.dataset.dataset.Dataset

Dataset which transforms a given dataset with a given function.

Given a function transform, and a dataset, TransformDataset applies
the function in an on-the-fly manner when querying a sample with
__getitem__(idx) and therefore returning transform[dataset[idx]].

transform can also be a dict with functions as values. In this case, it
is assumed that dataset[idx] is a dict which has all the keys in
transform. Then, transform[key] is applied to dataset[idx][key] for
each key in transform

The size of the new dataset is equal to the size of the underlying
dataset.

Purpose: when performing pre-processing operations, it is convenient to be
able to perform on-the-fly transformations to a dataset.

	Parameters

	
	dataset (Dataset) – Dataset which has to be transformed.

	transforms (function/dict) – Function or dict with function as values.
These functions will be applied to data.

torchnet.engine

Engines are a utility to wrap a training loop. They provide several hooks which
allow users to define their own fucntions to run at specified points during the
train/val loop.

Some people like engines, others do not. TNT is build modularly, so you can use
the other modules with/without using an engine.

torchnet.engine.Engine

	
class torchnet.engine.Engine

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
hook(name, state)

	Registers a backward hook.

The hook will be called every time a gradient with respect to the
Tensor is computed. The hook should have the following signature:

hook (grad) -> Tensor or None

The hook should not modify its argument, but it can optionally return
a new gradient which will be used in place of grad.
This function returns a handle with a method handle.remove()
that removes the hook from the module.

Example

>>> v = torch.tensor([0., 0., 0.], requires_grad=True)
>>> h = v.register_hook(lambda grad: grad * 2) # double the gradient
>>> v.backward(torch.tensor([1., 2., 3.]))
>>> v.grad
 2
 4
 6
[torch.FloatTensor of size (3,)]
>>> h.remove() # removes the hook

	
test(network, iterator)

	

	
train(network, iterator, maxepoch, optimizer)

	

torchnet.logger

Loggers provide a way to monitor your models. For example, the MeterLogger class
provides easy meter visualizetion with Visdom [https://github.com/facebookresearch/visdom] ,
as well as the ability to print and save meters with the ResultsWriter class.

For visualization libraries, the current loggers support Visdom, although TensorboardX
would also be simple to implement.

MeterLogger

	
class torchnet.logger.MeterLogger(server='localhost', env='main', port=8097, title='DNN', nclass=21, plotstylecombined=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class to package and visualize meters.

	Parameters

	
	server – The uri of the Visdom server

	env – Visdom environment to log to.

	port – Port of the visdom server.

	title – The title of the MeterLogger. This will be used as a prefix for all plots.

	nclass – If logging for classification problems, the number of classes.

	plotstylecombined – Whether to plot train/test curves in the same window.

	
peek_meter()

	Returns a dict of all meters and their values.

	
print_meter(mode, iepoch, ibatch=1, totalbatch=1, meterlist=None)

	

	
reset_meter(iepoch, mode='Train')

	

	
update_loss(loss, meter='loss')

	

	
update_meter(output, target, meters={'accuracy'})

	

VisdomLogger

Logging to Visdom server

	
class torchnet.logger.visdomlogger.BaseVisdomLogger(fields=None, win=None, env=None, opts={}, port=8097, server='localhost')

	Bases: torchnet.logger.logger.Logger

The base class for logging output to Visdom.

THIS CLASS IS ABSTRACT AND MUST BE SUBCLASSED

Note that the Visdom server is designed to also handle a server architecture,
and therefore the Visdom server must be running at all times. The server can
be started with
$ python -m visdom.server
and you probably want to run it from screen or tmux.

	
log(*args, **kwargs)

	

	
log_state(state)

	Gathers the stats from self.trainer.stats and passes them into
self.log, as a list

	
viz

	

	
class torchnet.logger.visdomlogger.VisdomLogger(plot_type, fields=None, win=None, env=None, opts={}, port=8097, server='localhost')

	Bases: torchnet.logger.visdomlogger.BaseVisdomLogger

A generic Visdom class that works with the majority of Visdom plot types.

	
log(*args, **kwargs)

	

	
class torchnet.logger.visdomlogger.VisdomPlotLogger(plot_type, fields=None, win=None, env=None, opts={}, port=8097, server='localhost', name=None)

	Bases: torchnet.logger.visdomlogger.BaseVisdomLogger

	
log(*args, **kwargs)

	

	
class torchnet.logger.visdomlogger.VisdomSaver(envs=None, port=8097, server='localhost')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Serialize the state of the Visdom server to disk.
Unless you have a fancy schedule, where different are saved with different frequencies,
you probably only need one of these.

	
save(*args, **kwargs)

	

	
class torchnet.logger.visdomlogger.VisdomTextLogger(fields=None, win=None, env=None, opts={}, update_type='REPLACE', port=8097, server='localhost')

	Bases: torchnet.logger.visdomlogger.BaseVisdomLogger

Creates a text window in visdom and logs output to it.

The output can be formatted with fancy HTML, and it new output can
be set to ‘append’ or ‘replace’ mode.

	Parameters

	
	fields – Currently not used

	update_type – One of {‘REPLACE’, ‘APPEND’}. Default ‘REPLACE’.

For examples, make sure that your visdom server is running.

Example

>>> notes_logger = VisdomTextLogger(update_type='APPEND')
>>> for i in range(10):
>>> notes_logger.log("Printing: {} of {}".format(i+1, 10))
results will be in Visdom environment (default: http://localhost:8097)

	
log(msg, *args, **kwargs)

	

	
valid_update_types = ['REPLACE', 'APPEND']

	

torchnet.meter

Meters provide a way to keep track of important statistics in an online manner.
TNT also provides convenient ways to visualize and manage meters via the torchnet.logger.MeterLogger class.

	
class torchnet.meter.meter.Meter

	Meters provide a way to keep track of important statistics in an online manner.

This class is abstract, but provides a standard interface for all meters to follow.

	
add(value)

	Log a new value to the meter

	Parameters

	value – Next restult to include.

	
reset()

	Resets the meter to default settings.

	
value()

	Get the value of the meter in the current state.

Classification Meters

APMeter

	
class torchnet.meter.APMeter

	The APMeter measures the average precision per class.

The APMeter is designed to operate on NxK Tensors output and
target, and optionally a Nx1 Tensor weight where (1) the output
contains model output scores for N examples and K classes that ought to
be higher when the model is more convinced that the example should be
positively labeled, and smaller when the model believes the example should
be negatively labeled (for instance, the output of a sigmoid function); (2)
the target contains only values 0 (for negative examples) and 1
(for positive examples); and (3) the weight (> 0) represents weight for
each sample.

	
add(output, target, weight=None)

	Add a new observation

	Parameters

	
	output (Tensor) – NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model. The probabilities should
sum to one over all classes

	target (Tensor) – binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)

	weight (optional, Tensor) – Nx1 tensor representing the weight for
each example (each weight > 0)

	
reset()

	Resets the meter with empty member variables

	
value()

	Returns the model’s average precision for each class

	Returns

	1xK tensor, with avg precision for each class k

	Return type

	ap (FloatTensor)

mAPMeter

	
class torchnet.meter.mAPMeter

	The mAPMeter measures the mean average precision over all classes.

The mAPMeter is designed to operate on NxK Tensors output and
target, and optionally a Nx1 Tensor weight where (1) the output
contains model output scores for N examples and K classes that ought to
be higher when the model is more convinced that the example should be
positively labeled, and smaller when the model believes the example should
be negatively labeled (for instance, the output of a sigmoid function); (2)
the target contains only values 0 (for negative examples) and 1
(for positive examples); and (3) the weight (> 0) represents weight for
each sample.

ClassErrorMeter

	
class torchnet.meter.ClassErrorMeter(topk=[1], accuracy=False)

	

ConfusionMeter

	
class torchnet.meter.ConfusionMeter(k, normalized=False)

	Maintains a confusion matrix for a given calssification problem.

The ConfusionMeter constructs a confusion matrix for a multi-class
classification problems. It does not support multi-label, multi-class problems:
for such problems, please use MultiLabelConfusionMeter.

	Parameters

	
	k (int [https://docs.python.org/3/library/functions.html#int]) – number of classes in the classification problem

	normalized (boolean) – Determines whether or not the confusion matrix
is normalized or not

	
add(predicted, target)

	Computes the confusion matrix of K x K size where K is no of classes

	Parameters

	
	predicted (tensor) – Can be an N x K tensor of predicted scores obtained from
the model for N examples and K classes or an N-tensor of
integer values between 0 and K-1.

	target (tensor) – Can be a N-tensor of integer values assumed to be integer
values between 0 and K-1 or N x K tensor, where targets are
assumed to be provided as one-hot vectors

	
value()

	
	Returns

	Confustion matrix of K rows and K columns, where rows corresponds
to ground-truth targets and columns corresponds to predicted
targets.

Regression/Loss Meters

AverageValueMeter

	
class torchnet.meter.AverageValueMeter

	

AUCMeter

	
class torchnet.meter.AUCMeter

	The AUCMeter measures the area under the receiver-operating characteristic
(ROC) curve for binary classification problems. The area under the curve (AUC)
can be interpreted as the probability that, given a randomly selected positive
example and a randomly selected negative example, the positive example is
assigned a higher score by the classification model than the negative example.

The AUCMeter is designed to operate on one-dimensional Tensors output
and target, where (1) the output contains model output scores that ought to
be higher when the model is more convinced that the example should be positively
labeled, and smaller when the model believes the example should be negatively
labeled (for instance, the output of a signoid function); and (2) the target
contains only values 0 (for negative examples) and 1 (for positive examples).

MovingAverageValueMeter

	
class torchnet.meter.MovingAverageValueMeter(windowsize)

	

MSEMeter

	
class torchnet.meter.MSEMeter(root=False)

	

Miscellaneous Meters

TimeMeter

	
class torchnet.meter.TimeMeter(unit)

	
tnt.TimeMeter(@ARGP)
@ARGT

The tnt.TimeMeter is designed to measure the time between events and can be
used to measure, for instance, the average processing time per batch of data.
It is different from most other meters in terms of the methods it provides:

The tnt.TimeMeter provides the following methods:

	reset() resets the timer, setting the timer and unit counter to zero.

	value() returns the time passed since the last reset(); divided by the counter value when unit=true.

torchnet.utils

MultiTaskDataLoader

	
class torchnet.utils.MultiTaskDataLoader(datasets, batch_size=1, use_all=False, **loading_kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Loads batches simultaneously from multiple datasets.

The MultiTaskDataLoader is designed to make multi-task learning simpler. It is
ideal for jointly training a model for multiple tasks or multiple datasets.
MultiTaskDataLoader is initialzes with an iterable of Dataset objects,
and provides an iterator which will return one batch that contains an equal number
of samples from each of the Dataset s.

Specifically, it returns batches of [(B_0, 0), (B_1, 1), ..., (B_k, k)]
from datasets (D_0, ..., D_k), where each B_i has batch_size samples

	Parameters

	
	datasets – A list of Dataset objects to serve batches from

	batch_size – Each batch from each Dataset will have this many samples

	use_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then the iterator will return batches until all
datasets are exhausted. If False, then iteration stops as soon as one dataset
runs out

	loading_kwargs – These are passed to the children dataloaders

Example

>>> train_loader = MultiTaskDataLoader([dataset1, dataset2], batch_size=3)
>>> for ((datas1, labels1), task1), (datas2, labels2), task2) in train_loader:
>>> print(task1, task2)
0 1
0 1
...
0 1

ResultsWriter

	
class torchnet.utils.ResultsWriter(filepath, overwrite=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Logs results to a file.

The ResultsWriter provides a convenient interface for periodically writing
results to a file. It is designed to capture all information for a given
experiment, which may have a sequence of distinct tasks. Therefore, it writes
results in the format:

{
 'tasks': [...]
 'results': [...]
}

The ResultsWriter class chooses to use a top-level list instead of a dictionary
to preserve temporal order of tasks (by default).

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to write results to

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to clobber a file if it exists

Example

>>> result_writer = ResultWriter(path)
>>> for task in ['CIFAR-10', 'SVHN']:
>>> train_results = train_model()
>>> test_results = test_model()
>>> result_writer.update(task, {'Train': train_results, 'Test': test_results})

	
update(task_name, result)

	Update the results file with new information.

	Parameters

	
	task_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the currently running task. A previously unseen
task_name will create a new entry in both tasks
and results.

	result – This will be appended to the list in results which
corresponds to the task_name in task_nametasks.

Table module

	
torchnet.utils.table.canmergetensor(tbl)

	

	
torchnet.utils.table.mergetensor(tbl)

	

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 torchnet	

 	
 	
 torchnet.dataset	

 	
 	
 torchnet.engine	

 	
 	
 torchnet.logger	

 	
 	
 torchnet.logger.visdomlogger	

 	
 	
 torchnet.meter	

 	
 	
 torchnet.transform	

 	
 	
 torchnet.utils.table	

Index

 A
 | B
 | C
 | D
 | E
 | H
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	add() (torchnet.meter.APMeter method)

 	(torchnet.meter.ConfusionMeter method)

 	(torchnet.meter.meter.Meter method)

 	
 	APMeter (class in torchnet.meter)

 	AUCMeter (class in torchnet.meter)

 	AverageValueMeter (class in torchnet.meter)

B

 	
 	BaseVisdomLogger (class in torchnet.logger.visdomlogger)

 	
 	batch() (torchnet.dataset.dataset.Dataset method)

 	BatchDataset (class in torchnet.dataset)

C

 	
 	canmergetensor() (in module torchnet.utils.table)

 	ClassErrorMeter (class in torchnet.meter)

 	
 	compose() (in module torchnet.transform)

 	ConcatDataset (class in torchnet.dataset)

 	ConfusionMeter (class in torchnet.meter)

D

 	
 	Dataset (class in torchnet.dataset.dataset)

E

 	
 	Engine (class in torchnet.engine)

H

 	
 	hook() (torchnet.engine.Engine method)

L

 	
 	ListDataset (class in torchnet.dataset)

 	log() (torchnet.logger.visdomlogger.BaseVisdomLogger method)

 	(torchnet.logger.visdomlogger.VisdomLogger method)

 	(torchnet.logger.visdomlogger.VisdomPlotLogger method)

 	(torchnet.logger.visdomlogger.VisdomTextLogger method)

 	
 	log_state() (torchnet.logger.visdomlogger.BaseVisdomLogger method)

M

 	
 	makebatch() (in module torchnet.transform)

 	mAPMeter (class in torchnet.meter)

 	mergetensor() (in module torchnet.utils.table)

 	Meter (class in torchnet.meter.meter)

 	
 	MeterLogger (class in torchnet.logger)

 	MovingAverageValueMeter (class in torchnet.meter)

 	MSEMeter (class in torchnet.meter)

 	MultiTaskDataLoader (class in torchnet.utils)

P

 	
 	parallel() (torchnet.dataset.dataset.Dataset method)

 	
 	peek_meter() (torchnet.logger.MeterLogger method)

 	print_meter() (torchnet.logger.MeterLogger method)

R

 	
 	resample() (torchnet.dataset.ShuffleDataset method)

 	ResampleDataset (class in torchnet.dataset)

 	reset() (torchnet.meter.APMeter method)

 	(torchnet.meter.meter.Meter method)

 	
 	reset_meter() (torchnet.logger.MeterLogger method)

 	ResultsWriter (class in torchnet.utils)

S

 	
 	save() (torchnet.logger.visdomlogger.VisdomSaver method)

 	select() (torchnet.dataset.SplitDataset method)

 	shuffle() (torchnet.dataset.dataset.Dataset method)

 	
 	ShuffleDataset (class in torchnet.dataset)

 	split() (torchnet.dataset.dataset.Dataset method)

 	SplitDataset (class in torchnet.dataset)

T

 	
 	tableapply() (in module torchnet.transform)

 	tablemergekeys() (in module torchnet.transform)

 	TensorDataset (class in torchnet.dataset)

 	test() (torchnet.engine.Engine method)

 	TimeMeter (class in torchnet.meter)

 	torchnet (module)

 	torchnet.dataset (module)

 	torchnet.engine (module)

 	
 	torchnet.logger (module)

 	torchnet.logger.visdomlogger (module)

 	torchnet.meter (module)

 	torchnet.transform (module)

 	torchnet.utils.table (module)

 	train() (torchnet.engine.Engine method)

 	transform() (torchnet.dataset.dataset.Dataset method)

 	TransformDataset (class in torchnet.dataset)

U

 	
 	update() (torchnet.utils.ResultsWriter method)

 	
 	update_loss() (torchnet.logger.MeterLogger method)

 	update_meter() (torchnet.logger.MeterLogger method)

V

 	
 	valid_update_types (torchnet.logger.visdomlogger.VisdomTextLogger attribute)

 	value() (torchnet.meter.APMeter method)

 	(torchnet.meter.ConfusionMeter method)

 	(torchnet.meter.meter.Meter method)

 	
 	VisdomLogger (class in torchnet.logger.visdomlogger)

 	VisdomPlotLogger (class in torchnet.logger.visdomlogger)

 	VisdomSaver (class in torchnet.logger.visdomlogger)

 	VisdomTextLogger (class in torchnet.logger.visdomlogger)

 	viz (torchnet.logger.visdomlogger.BaseVisdomLogger attribute)

torchnet

	torchnet.utils

torchnet package

Subpackages

	torchnet.dataset
	BatchDataset

	ConcatDataset

	ListDataset

	ResampleDataset

	ShuffleDataset

	SplitDataset

	TensorDataset

	TransformDataset

	torchnet.engine
	torchnet.engine.Engine

	torchnet.logger
	MeterLogger

	VisdomLogger

	torchnet.meter
	Classification Meters
	APMeter

	mAPMeter

	ClassErrorMeter

	ConfusionMeter

	Regression/Loss Meters
	AverageValueMeter

	AUCMeter

	MovingAverageValueMeter

	MSEMeter

	Miscellaneous Meters
	TimeMeter

	torchnet.utils
	MultiTaskDataLoader

	ResultsWriter

	Table module

Submodules

torchnet.transform module

	
torchnet.transform.compose(transforms)

	

	
torchnet.transform.makebatch(merge=None)

	

	
torchnet.transform.tableapply(f)

	

	
torchnet.transform.tablemergekeys()

	

Module contents

 _static/img/tensor_illustration.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 TNT Documentation

 		
 torchnet.dataset

 		
 BatchDataset

 		
 ConcatDataset

 		
 ListDataset

 		
 ResampleDataset

 		
 ShuffleDataset

 		
 SplitDataset

 		
 TensorDataset

 		
 TransformDataset

 		
 torchnet.engine

 		
 torchnet.engine.Engine

 		
 torchnet.logger

 		
 MeterLogger

 		
 VisdomLogger

 		
 torchnet.meter

 		
 Classification Meters

 		
 APMeter

 		
 mAPMeter

 		
 ClassErrorMeter

 		
 ConfusionMeter

 		
 Regression/Loss Meters

 		
 AverageValueMeter

 		
 AUCMeter

 		
 MovingAverageValueMeter

 		
 MSEMeter

 		
 Miscellaneous Meters

 		
 TimeMeter

 		
 torchnet.utils

 		
 MultiTaskDataLoader

 		
 ResultsWriter

 		
 Table module

_static/up-pressed.png

_static/up.png

_static/pytorch-logo-dark.png
PYTMRCH

_static/img/pytorch-logo-dark.png
PYTMRCH

_static/img/dynamic_graph.gif
A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1l, 10))
prev_h = Variable (torch.randn(1l, 20))
W h Variable (torch.randn (20, 20))
W_x = Variable(torch.randn(20, 10))

_static/img/pytorch-logo-dark-unstable.png
PYTHRCH
UNSTABLE

_static/img/pytorch-logo-flame.png

