TigerForecast reference documentation

For an introduction to TigerForecast, start at the TigerForecast GitHub page.

tigerforecast package

Subpackages

tigerforecast.utils package

dataset_registry
unemployment([verbose]) Description: Checks if unemployment data exists, downloads if not.
uci_indoor([verbose]) Description: Checks if uci_indoor data exists, downloads if not.
sp500([verbose]) Description: Checks if S&P500 data exists, downloads if not.
crypto([verbose]) Description: Checks if cryptocurrency data exists, downloads if not.
enso(input_signals, include_month, …) Description: Transforms the ctrl_indices dataset into a format suitable for online learning.
random
set_key([key]) Descripton: Fix global random key to ensure reproducibility of results.
generate_key() Descripton: Generate random key.
get_global_key() Descripton: Get current global random key.
optimizers
optimizers.Optimizer([pred, loss, …]) Description: Core class for method optimizers
optimizers.Adagrad([pred, loss, …]) Description: Ordinary Gradient Descent optimizer.
optimizers.Adam([pred, loss, learning_rate, …]) Description: Ordinary Gradient Descent optimizer.
optimizers.ONS([pred, loss, learning_rate, …]) Online newton step algorithm.
optimizers.SGD([pred, loss, learning_rate, …]) Description: Stochastic Gradient Descent optimizer.
optimizers.OGD([pred, loss, learning_rate, …]) Description: Ordinary Gradient Descent optimizer.
optimizers.mse(y_pred, y_true) Description: mean-square-error loss :param y_pred: value predicted by method :param y_true: ground truth value :param eps: some scalar
optimizers.cross_entropy(y_pred, y_true[, eps]) Description: cross entropy loss, y_pred is equivalent to logits and y_true to labels :param y_pred: value predicted by method :param y_true: ground truth value :param eps: some scalar
boosting
boosting.SimpleBoost() Description: Implements the equivalent of an AR(p) method - predicts a linear combination of the previous p observed values in a time-series
autotuning
autotuning.grid_search.GridSearch() Description: Implements the equivalent of an AR(p) method - predicts a linear combination of the previous p observed values in a time-series

tigerforecast.problems package

core

This is a core

Problem()
custom
tigerforecast.problems.CustomProblem() Description: class for implementing algorithms with enforced modularity
tigerforecast.problems.register_custom_problem(…) Description: global custom problem method
tigerforecast.problems.MyProblem() Description: Make dataset into tigerforecast problem class.
time_series
tigerforecast.problems.Problem()
tigerforecast.problems.SP500() Description: Outputs the daily opening price of the S&P 500 stock market index from January 3, 1986 to June 29, 2018.
tigerforecast.problems.UCI_Indoor() Description: Outputs various weather metrics from a UCI dataset from 13/3/2012 to 11/4/2012
tigerforecast.problems.ENSO() Description: Collection of monthly values of control indices useful for predicting La Nina/El Nino.
tigerforecast.problems.Crypto() Description: Outputs the daily price of bitcoin from 2013-04-28 to 2018-02-10
tigerforecast.problems.Random() Description: A random sequence of scalar values taken from an i.i.d.
tigerforecast.problems.ARMA() Description: Simulates an autoregressive moving-average time-series.
tigerforecast.problems.Unemployment() Description: Monthly unemployment rate since 1948.
tigerforecast.problems.LDS_TimeSeries() Description: Simulates a linear dynamical system.
tigerforecast.problems.LSTM_TimeSeries() Description: Produces outputs from a randomly initialized recurrent neural network.
tigerforecast.problems.RNN_TimeSeries() Description: Produces outputs from a randomly initialized recurrent neural network.

tigerforecast.methods package

core
Method
time_series
tigerforecast.methods.AutoRegressor() Description: Implements the equivalent of an AR(p) method - predicts a linear combination of the previous p observed values in a time-series
tigerforecast.methods.LastValue() Description: Predicts the last value in the time series, i.e.
tigerforecast.methods.PredictZero() Description: Predicts the next value in the time series to be 0, i.e.
tigerforecast.methods.RNN() Description: Produces outputs from a randomly initialized recurrent neural network.
tigerforecast.methods.LSTM() Description: Produces outputs from a randomly initialized LSTM neural network.
tigerforecast.methods.LeastSquares() Description: Implements online least squares.
tigerforecast.methods.WaveFiltering() Description: Predicts the last value in the time series, i.e.
boosting
tigerforecast.methods.boosting.SimpleBoost() Description: Implements the equivalent of an AR(p) method - predicts a linear combination of the previous p observed values in a time-series

tigerforecast.experiments package

core
create_full_problem_to_methods(problems_ids, …) Description: Associate all given problems to all given methods.
run_experiment(problem, method[, metric, …]) Description: Initializes the experiment instance.
run_experiments(problem, method[, metric, …]) Description: Initializes the experiment instance.
metrics
mse(y_pred, y_true) Description: mean-square-error loss
cross_entropy(y_pred, y_true[, eps]) Description: cross entropy loss, y_pred is equivalent to logits and y_true to labels
experiment
Experiment() Description: Streamlines the process of performing experiments and comparing results of methods across a range of problems.
new_experiment
NewExperiment() Description: class for implementing algorithms with enforced modularity
precomputed
recompute([verbose, load_bar]) Description: Recomputes all the results.
load_prob_method_to_result([problem_ids, …]) Description: Initializes the experiment instance.

help

email alexjyu@google.com

Need further help

Please join the IRC channel

License

Some license

Indices and tables