thompsons_v Documentation

Release

Author

March 07, 2016
1 Overview 3
2 Implementation details 5
3 Contents 7
4 Indices 61
Bibliography 63
Python Module Index 65

Nathan Barker, Andrew Duncan and David Robertson have submitted a paper entitled The power conjugacy problem in Higman-Thompson groups which addresses the following problem in the groups named $G_{n, r}$.
[AS74] Given two elements x and y of a group, are there integers a and b and a third element z for which $x^{a}=z y^{b} z^{-1} \neq 1$? If so, provide them.
This package aims to implement the algorithms described in the paper. To do so it provides tools for working in

- the algebra $V_{n, r}$, a certain set of words, and
- the automorphism group $G_{n, r}=\operatorname{Aut}\left(V_{n, r}\right)$.

This documentation serves three purposes. Firstly, it is meant to serve as a gentle introduction, explaining how to install and use the package. Secondly, it is meant to be a reference to all the various classes and functions provided by thompson. Finally, a number of examples are included throughout the documentation, which can be used as a means to test the implementation.

David M. Robertson, March 07, 2016

Overview

Warning: For the most part, this documentation is automatically generated by Sphinx, so it's not the prettiest thing that's ever been written.

This all began as a series of tools to draw tree pair diagrams in Thompson's group $V=G_{2,1}$, hence the name thompson. The focus has moved away from trees diagrams towards bijections between bases of words. From there, the package has grown and it now serves as an implementation of the algorithms we describe in the paper. Chief among these are the algorithms which:

- Determine the type of component which contains a given element, with respect to some given basis [Lemma 4.28]
- Computes the quasi-normal basis for a given automorphism [Lemma 4.28]
- Test to see if two words share an orbit [Lemma 4.34]
- Test to see if two automorphism are conjugate [Algorithm 5.6] and power conjugate [Algorithm 6.13].

Implementation details

The implementation is written in Python and runs under Python 3.3 and above. The intent was to provide a proof-of-concept rather than a perfectly optimised implementation. Despite this, we have found the program useful as a calculator for $G_{n, r}$, as a means to generate examples, and for experimentally testing conjectures. The source code (both to the program and this documentation) is publicly available from GitHub.

Todo

Make this available under an open-source license.

Contents

3.1 Getting Started

3.1.1 Installation

1. Python interpreter. This program is written in Python and needs a Python interpreter to run; to be specific, Python 3.3 or above is required. If you don't have this already installed on your system, your best bet is to download the latest version (currently 3.5) from the Python website. For Linux users, Python may be available from your distribution's repositories; take care to install version 3.x rather than 2.x!
2. Source code. If you have git available on your system, the easiest way to obtain the program is to simply clone the repository:
git clone https://github.com/DMRobertson/thompsons_v.git
If this is not possible, a ZIPped version can be downloaded from the project page on GitHub.
3. Package requirements. The de-facto package management tool for Python is the pip program, which is installed as part of Python 3.4 and higher. Python 3.3 users should consult the pip documentation for instructions on how to install pip directly. Some Linux distributions may also provide pip as a package (make sure it's for Python 3-it may be listed as pip3).
Once pip is installed, navigate to the project directory and run
pip install -r requirements.txt
(possibly you may need to use pip3). This should do all the hard work for you.
Direct installation: If you would prefer not to install pip, you may install the prerequisites directly.
There is only one major Python package required to run the program: NetworkX, a library for working with graphs in Python. This may be available in Linux repositories, e.g. Ubuntu.

This documentation is built using Sphinx. If you wish to build it yourself, or run the test suite, you must install Sphinx also. Again, consider checking Linux repositories e.g. in Ubuntu.

3.1.2 First steps

Navigate to the root folder (thompsons_v) in a terminal and start up Python using the python command. Once the python prompt (>>>) is available, try to import thompson:

```
$ python
Python 3.3.3 (v3.3.3:c3896275c0f6, Nov 18 2013, 21:19:30) [MSC v.1600 64 bit (AMD64)] orp win32
Type "help", "copyright", "credits" or "license" for more information.
```

```
>>> import thompson
```

\ggg

If this fails, check that you're using Python 3.3 or above. If python started up Python 2.x, try using the command python3 instead.

We can now use the python REPL as a sort of calculator for these groups.

```
>>> from thompson import *
>>> sig = (2, 1) #signature of the algebra we work in
>>> domain = Generators.standard_basis(sig).expand(0).expand(0)
>>> range = Generators.standard_basis(sig).expand(0).expand(1)
>>> print(domain)
[x1 a1 a1, x1 a1 a2, x1 a2]
>>> print(range)
[x1 a1, x1 a2 a1, x1 a2 a2]
>>> phi = Automorphism(domain, range)
>>> print(phi)
InfiniteAut: V(2, 1) -> V(2, 1) specified by 3 generators (after expansion and reduction).
x1 a1 a1 -> x1 a1
x1 a1 a2 -> x1 a2 a1
x1 a2 -> x1 a2 a2
```

```
>>> phi.image('x a2 a1 a2 a2 a1')
Word('x1 a2 a2 a1 a2 a2 a1', (2, 1))
>>> phi.order
inf
>>> phi.print_characteristics()
(-1, a1)
(1, a2)
>>> phi.dump_QNB()
x1 al Left semi-infinite component with characteristic (-1, a1)
x1 a2 Right semi-infinite component with characteristic (1, a2)
```

```
>>> print(phi ** 2)
InfiniteAut: V(2, 1) -> V(2, 1) specified by 4 generators (after expansion and reductiorn).
x1 al al a1 -> x1 al
x1 a1 a1 a2 -> x1 a2 a1
x1 a1 a2 -> x1 a2 a2 a1
x1 a2 -> x1 a2 a2 a2
>>> print(~phi) #inverse
InfiniteAut: V(2, 1) -> V(2, 1) specified by 3 generators (after expansion and reduction).
x1 a1 -> x1 a1 a1
x1 a2 a1 -> x1 a1 a2
x1 a2 a2 -> x1 a2
>>> print(~phi * phi) # == identity
PeriodicAut: V(2, 1) -> V(2, 1) specified by 1 generators (after expansion and reductiorp).
x1 -> x1
```


3.1.3 Locating examples

A number of examples are included in this package, some of which are used in [BDR]. To access them, use the load_example () function:

```
>>> from thompson import *
>>> phi = load_example('nathan_pond_example')
>>> print(phi)
InfiniteAut: V(2, 1) -> V(2, 1) specified by 7 generators (after expansion and reduction).
```

```
x1 a1 a1 a1 a1 -> x1 al al
x1 a1 a1 a1 a2 -> x1 a1 a2 a1 a1
x1 a1 a1 a2 a1 -> x1 a2 a2
x1 a1 a1 a2 a2 -> x1 a2 a1
x1 a1 a2 -> x1 a1 a2 a1 a2
x1 a2 a1 -> x1 a1 a2 a2 a2
x1 a2 a2 -> x1 a1 a2 a2 a1
```

Note: Previously, one would access this example by using from thompson.examples import nathan_pond_example. I changed this, because it meant that every example was loaded (and the quasinormal bases etc. computed) whenever thompson. examples was imported.

To see the list of available examples, consult the documentation for the examples module. You might also like to consult the demo notebook on GitHub.

3.1.4 Running the test suite

Make sure Sphinx is installed (see the installation section). Then navigate to the docs folder and run make doctest. This should look through the source code for short tests and alert you if any of them fail. You can also run make html to build this documentation. Reset with make clean.

3.2 Number theory

At the bottom level of the package hierarchy are various helper functions which implement standard number-theoretic algorithms.

```
thompson.number_theory.gcd (a,b)
```

Calculate the Greatest Common Divisor of a and b.
Unless $\mathrm{b}==0$, the result will have the same sign as b (so that when b is divided by it, the result comes out positive).

```
>>> gcd(12, 8)
4
>>> gcd(0, 50)
50
>>> gcd(7, 101)
1
```

thompson.number_theory.extended_gcd (a, b)

From this exposition of the extended gcd algorithm. Computes $d=\operatorname{gcd}(a, b)$ and returns a triple (d, x, y) where $d=a x+b y$.

```
>>> extended_gcd(14, 33)
    (1, -7, 3)
>>> extended_gcd(12, 32)
    (4, 3, -1)
```

thompson.number_theory.lcm (*args)

Computes the least common multiple of the given args. If a single argument is provided, the least common multiple of its elements is computed.

```
>>> n = randint(1, 1000000)
>>> lcm(n) == n
True
>>> lcm(2, 13)
26
>>> lcm(*range(1, 10)) #1, 2, ..., 9
2520
>>> lcm(range(1, 10)) #Don't have to unpack the arguments
2520
```

```
thompson.number_theory.solve_linear_diophantine (a,b,c)
```

Solves the equation $a x+b y=c$ for integers $x, y \in \mathbb{Z}$.

Return type

None if no solution exists; otherwise a triple (base, inc, lcm) where

- base is a single solution $\left(x_{0}, y_{0}\right)$;
- inc is a pair $(\delta x, \delta y)$ such that if (x, y) is a solution, so is $(x, y) \pm(\delta x, \delta y)$; and
- $l \mathrm{~cm}$ is the value of $\operatorname{lcm}(a, b)$.

```
thompson.number_theory.solve_linear_congruence ( }a,b,n
```

Solves the congruence $a x \equiv b(\bmod n)$.
Return type a SolutionSet representing all such solutions x.

```
>>> x = solve_linear_congruence(6, 12, 18)
>>> print(x)
{..., -1, 2, 5, 8, 11, 14, ...}
>>> y = solve_linear_congruence(5, 7, 11)
>>> print(y)
{..., -3, 8, 19, 30, 41, 52, ...}
>>> print(x & y)
{..., -25, 8, 41, 74, 107, 140, ...}
```

thompson.number_theory.divisors (n, include_one=True)

An iterator that yields the positive divisors $d \mid n$.
Parameters include_one ($b \circ \circ 1$) - set to False to exlude $d=1$.

```
>>> list(divisors(12))
[1, 2, 3, 4, 6, 12]
>>> list(divisors(125, include_one=False))
[5, 25, 125]
```

thompson.number_theory.prod (iterable)
Handy function for computing the product of an iterable collection of numbers. From Stack Overflow.

```
>>> prod(range(1, 5))
```

24

3.3 Words and standard forms

By a word, we mean a string written using the symbols

$$
X \cup \Omega=\left\{x_{1}, \ldots, x_{r}\right\} \cup\left\{\alpha_{1}, \ldots, \alpha_{n}, \lambda\right\} .
$$

We treat the x_{i} are constants, the α_{i} are unary operators and λ as an n-ary operation. We refer to the parameters n and r as the arity and alphabet size respectively.

3.3.1 Notation

If we collect together all such words, we obtain an algebra (in the sense of universal algebra) of words. We consider three different algebras; using the notation of [Cohn81]:

1. $W(\Omega ; X)$, the set of all finite strings written using letters in $X \cup \Omega$. In other words/jargon, this is the free monoid on $X \cup \Omega$. Cohn calls these strings Ω-rows.
2. $W_{\Omega}(X)$, the subset of $W(\Omega ; X)$ whose strings represent a valid series of operations. Valid means that each the operations α_{i} and λ always recieve the correct number of arguments. Cohn calls these strings Ω-words.
3. $V_{n, r}(X)=W_{\Omega}(X) / \mathfrak{q}$. This is equivalent to the set of words in $W_{\Omega}(X)$ which are in Higman's standard form. Roughly speaking, a word is in standard form if is valid (type 2) and it cannot be reduced to a shorter word using the following two rules.
(a) $w_{1} \ldots w_{n} \lambda \alpha_{i}=w_{i}$, where each w_{i} is in standard form.
(b) $w \alpha_{1} \ldots w \alpha_{n} \lambda=w$, where w is in standard form.

Sometimes we need to refer to a string which consists only of α-s. Write A for the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. We define A^{*} to be the set of finite strings over A. (Again, this is the free monoid on A.)

Finally, let S be a set of words. We define $X\langle A\rangle$ to be the set of concatenations $s \Gamma$, where $s \in S$ and $\Gamma \in A^{*}$. It is sometimes helpful to think of $S\langle A\rangle$ as the set of words below S.

See also:

Sections 2 and 2.3 and Remark 3.3 of the paper.

3.3.2 Signatures

It may happen that we need to work in different algebras $V_{n, r}, V_{m, s}$ at the same time. To keep track of the algebras that different words belong to, we associate a Signature to each word $w \in V_{n, r} .{ }^{1}$ Signatures are implemented as a glorified tuple (n, r). This means they are immutable.

class thompson.word.Signature

static __new__ (arity, alphabet_size)
Signatures store an arity $n \geq 2$ and an alphabet_size $r \geq 1$.
__contains \qquad (other)
We can use the in operator to see if a Word lies in the algebra that this signature describes.

```
>>> s = Signature(2, 1)
>>> Word('x1 a1 a2', s) in s
True
>>> Word('x1 a1 a2', (2, 2)) in s
False
```

is_isomorphic_to (other)
We can test the (signatures of) two algebras $V_{n, r}$ and $V_{m, s}$ to see if they are isomorphic. This happens precisely when $n=m$ and $r \equiv s(\bmod n-1)$.

```
>>> Signature(2, 1).is_isomorphic_to(Signature(2, 4))
True
>>> Signature(2, 1).is_isomorphic_to(Signature(3, 1))
False
>>> Signature(3, 2).is_isomorphic_to(Signature(3, 1))
```

[^0]```
False
>>> Signature(3, 3).is_isomorphic_to(Signature(3, 1))
True
```


## See also:

Corollary 3.14 of the paper.

### 3.3.3 Operations on words

We represent a word as a tuple of integers, where:

- $x_{i}$ is represented by $i$,
- $\alpha_{i}$ is represented by $-i$, and
- $\lambda$ is represented by 0 .

We can write words of all types in this format, but we're only interested in the standard forms (type 3). To this end, the validate () detects those which are of type 2, and standardise () reduces type 2 words to type 3 .

```
thompson.word.format (word)
```

Turns a sequence of integers representing a word into a nicely formatted string. Can be thought of as an inverse to from_string(). The word is not processed or reduced in any way.

```
>>> format ([2, -1, 2, -2, 0])
'x2 a1 x2 a2 L'
>>> format([])
'<the empty word>'
```

thompson.word.from_string (str)
Converts a string representing a word to the internal format—a tuple of integers. Anything which does not denote
 for $\lambda$ ) is ignored.

Note that ' x ' is interpreted as shorthand for ${ }^{\prime} \mathrm{x} 1^{\prime}$.

```
>>> x = from_string('x2 a1 x2 a2 L')
>>> print(x); print(format(x))
 (2, -1, 2, -2, 0)
 x2 a1 x2 a2 L
 >>> w = random_simple_word()
 >>> from_string(str(w)) == w
 True
```

Return type tuple of integers

## Todo

More convenient ways of inputting words, e.g. $x$ a1^3 instead of $x$ al al a1.
thompson.word.validate (letters, signature)
Checks that the given letters describe a valid word belonging to the algebra with the given signature $=$ (arity, alphabet_size). If no errors are raised when running this function, then we know that:
-The first letter is an $x_{i}$.
$\bullet$ Every $\lambda$ has arity arguments to its left.
-If the word contains a $\lambda$, every subword is an argument of some $\lambda$.

- No $\alpha_{i}$ appears with $i>$ arity .
- No $x_{i}$ occurs with $i>$ alphabet_size.

Calling this function does not modify letters. The argument letters need not be in standard form.

```
>>> validate(from_string('a1 x a2 L'), (2, 1))
Traceback (most recent call last):
 . . .
ValueError: The first letter (a1) should be an x.
>>> validate(from_string('x1 a2 x12 al a2 L'), (2, 4))
Traceback (most recent call last):
 . . .
IndexError: Letter x12 at index 2 is not in the alphabet (maximum is x4).
>>> validate(from_string('x1 a1 a2 a3 a4 a5 x2 a2 L'), (3, 2))
Traceback (most recent call last):
 ...
IndexError: Letter a4 at index 4 is not in the alphabet (maximum is a3).
>>> validate(from_string('x1 a2 L'), (4, 1))
Traceback (most recent call last):
ValueError: Letter L at index 2 is invalid. Check that lambda has 4 arguments.
>>> validate(from_string('x1 x1 L x1 L x1'), (2, 1))
Traceback (most recent call last):
ValueError: Word is invalid: valency is 2 (should be 1).
```


## Raises

- ValueError - if the first letter is not an $x_{i}$.
- IndexError - if this word contains an $x_{i}$ with $i$ outside of the range 1 ... alphabet_size
- IndexError - if this word contains an $\alpha_{i}$ outside of the range 1 ... arity
- IndexError - if this word is empty (i.e. consists of 0 letters).
- ValueError - if this word fails the valency test.


## See also:

Proposition 2.12 of the paper for the valency test.
thompson.word.standardise (letters, signature, tail=())
Accepts a valid word as a tuple of letters and reduces it to standard form. The result-a new tuple of lettersis returned. The signature must be given so we know how many arguments to pass to each $\lambda$. The tail argument is used internally in recursive calls to this function and should be omitted.

In the examples below, the Word class standardises its input before creating a Word.

```
>>> #Extraction only
>>> print(Word("x a1 a2 a1 x a2 a1 L a1 a2", (2, 1)))
x1 a1 a2 a1 a2
>>> #Contraction only
>>> print(Word("x2 a2 a2 a1 x2 a2 a2 a2 L", (2, 2)))
x2 a2 a2
>>> #Contraction only, arity 3
>>> print(Word("x1 a1 a1 x1 a1 a2 x1 a1 a3 L", (3, 2)))
x1 a1
>>> #Both extraction and contraction
```

```
>>> print(Word("x a1 a2 a1 a1 x a1 a2 a1 x a2 a1 L a1 a2 a1 x al a2 a1 a2 a2 L L", (2, 1)))
x1 a1 a2 a1
>>> #Lambda concatenation
>>> print(Word("x a1 a2 a1 x a1 a2 a1 x a2 a1 L a1 a2 a1 x a1 a2 a1 a2 a2 L L", (2, 1)))
x1 a1 a2 a1 x1 a1 a2 a1 a2 L
>>> #A mix of contraction and extraction
>>> print(Word("x a2 x a1 L x a1 L a1 a2 a1 a2", (2, 1)))
x1 a1 a1 a2
>>> #Can't contract different x-es
>>> print(Word('x1 a1 x2 a2 L', (2, 2)))
x1 a1 x2 a2 L
>>> #Something meaty, arity 3
>>> print(Word('x1 a1 x1 a2 x1 a3 L a2 a1 a3 x1 a2 a1 x2 a1 x1 a1 a1 x1 a1 a2 x2 L x1 a2 L a2 a1
x1 a1 a1 a1 a3 a2
```


## Raises

- TypeError - if letters is not a tuple of integers.
- IndexError - if letters describes an invalid word.

Return type tuple of integers.

## See also:

Remark 3.3 of the paper.
thompson.word.lambda_arguments (word, signature=None)
This function takes a valid word which ends in a $\lambda$, and returns the arguments of the rightmost $\lambda$ as a list of Words.

If word is given as a Word instance, then signature may be omitted. Otherwise the signature should be provided.

```
>>> w = Word('x a1 a2 x a2 a2 L x a1 a1 L', (2, 1))
>>> subwords = lambda_arguments(w)
>>> for subword in subwords: print(subword)
x1 a1 a2 x1 a2 a2 L
x1 a1 a1
>>> w = 'x x x x a1 x L x a1 x a2 x L L x a1 a2 x L x a1 a2 x a2 al x L L'
>>> subwords = lambda_arguments(Word(w, (3, 1)))
>>> for subword in subwords: print(subword)
x1
x1 x1 x1 a1 x1 L x1 a1 x1 a2 x1 L L x1 a1 a2 x1 L
x1 a1 a2 x1 a2 a1 x1 L
```


## Raises

- IndexError - if word is an empty list of letters.
- ValueError - if the last letter in word is not a lambda.
- TypeError - if no arity is provided and word has no arity attribute.

Return type list of Words.
thompson.word.are_contractible (words)
Let words be a list of words, either as sequences of integers or as full Word objects. This function tests to see if words is a list of the form $\left(w \alpha_{1}, \ldots, w \alpha_{n}\right)$, where $\mathrm{n}==$ len(words).

Returns $w$ (as a tuple of integers) if the test passes; the empty tuple if the test fails.

Warning: If there is a prefix $w$, this function does not check to see if

- $w$ is a valid word, or
- $n$ is the same as the arity of the context we're working in.

```
>>> prefix = are_contractible(
 [Word("x a1 a2 a3 a1", (3, 1)), Word("x a1 a2 a3 a2", (3, 1)), Word("x a1 a2 a3 a3", (3,
>>> format(prefix)
'x1 a1 a2 a3'
```

thompson.word.free_monoid_on_alphas (arity)
An infinite iterator which enumerates the elements of $A^{*}$ in shortlex order.

```
>>> for i, gamma in enumerate(free_monoid_on_alphas(4)):
... if i >= 10: break
... print(format (gamma))
<the empty word>
a1
a2
a3
a4
a1 a1
a1 a2
a1 a3
a1 a4
a2 a1
```


## thompson.word.root (sequence)

Given a sequence $\Gamma \in A^{*}$, this function computes the root $\sqrt{\Gamma} \in A^{*}$ and the root power $r \in \mathbb{N}$. These are objects such that $(\sqrt{\Gamma})^{r}=\Gamma$, and $r$ is maximal with this property.

Returns the pair $(\sqrt{\Gamma}, r)$

```
>>> root('abababab')
('ab', 4)
>>> root([1, 2, 3, 1, 2, 3])
([1, 2, 3], 2)
```


## See also:

The discussion following Corollary 6.7 in the paper.

### 3.3.4 The Word class

It's important to know when a sequence of letters denotes a word in standard form. The Word class addresses this problem by standardising its input upon creation. We can think of a Word object as a fixed list of letters with the guarantee that it is in standard form. Words are also given a Signature at creation time, so that we know which algebra the word comes from.

We also need to know that once a Word has been created, it cannot be modified to something not in standard form. We achieve this simply by making it impossible to modify a Word. Words are implemented as (subclasses of) tuple, which are immutable. One useful side effect of this is that Words can be used as dictionary keys. ${ }^{2}$

```
>>> w = Word('x1 al', (2, 1))
>>> x = {}; x[w] = 'stored value'
>>> x[w]
'stored value'
```

[^1]```
>>> #Can also use the underlying tuple as a key
>>> x[1, -1]
'stored value'
>>> #the reason this works
>>> hash(w) == hash((1, -1))
True
```

class thompson. word. Word

Variables

- signature - the signature of the algebra this word belongs to.
- lambda_length - the number of times the contraction symbol λ occurs in this word after it has been written in standard form.
static __new__ (letters, signature, preprocess=True)
Creates a new Word consisting of the given letters belonging the algebra with the given signature. The letters may be given as a list of integers or as a string (which is passed to the from_string () function).
The signature can be given as a tuple of a fully-fledged Signature.

```
>>> Word("x2 a1 a2 a3 x1 a1 a2 a1 x2 L a2", (3, 2))
Word('x1 a1 a2 a1', (3, 2))
```

By default, the argument preprocess is True. This means that words are validated and reduced to standard form before they are stored as a tuple. These steps can be disabled by using preprocess=False. This option is used internally when we know we have letters which are already vaild and in standard form.

Raises ValueError - See the errors raised by validate ().

Let us assign a total order to the alphabet $X \cup \Omega$ by declaring:

$$
\alpha_{1}<\cdots<\alpha_{n}<x_{1}<\cdots<x_{r}<\lambda
$$

We can use this to order simple words by using dictionary order.

```
>>> Word('x1', (2, 2)) < Word('x1', (2, 2))
False
>>> Word('x1', (2, 2)) < Word('x2', (2, 2))
True
>>> Word('x1 a2', (2, 2)) < Word('x1 al', (2, 2))
False
>>> Word('x1 a1 a2 a3 a4', (4, 1)) < Word('x1 a1 a2 a3 a3', (4, 1))
False
```

We extend this to non-simple words in standard form in the following way. Let $\lambda(u)$ denote the lambda-length of u.
1.If $\lambda(u)<\lambda(v)$, then $u<v$.

```
>>> Word('x2 x1 L', (2, 2)) < Word('x1 x2 x1 L L', (2, 2))
True
```

2.If $u=v$, then neither is strictly less than the other.

```
>>> Word('x1 x2 L', (2, 2)) < Word('x1 x2 L', (2, 2))
False
```

3.Otherwise $u \neq v$ are different words with the same λ-length. Break both words into the n arguments of the outmost lambda, so that $u=u_{1} \ldots u_{n} \lambda$ and $v=v_{1} \ldots v_{n} \lambda$, where each subword is in standard form.
4.Let i be the first index for which $u_{i} \neq v_{i}$. Test if $u_{i}<v_{i}$ by applying this definition recursively. If this is the case, then $u<v$; otherwise, $u>v$.

```
>>> \#True, because \(x 2<x 2\) a2
>>> Word('x1 x2 L', (2, 2)) < Word('x1 x2 a2 L', (2, 2))
True
>>> \#True, because words of lambda-length 1 are less than those of lambda-length 2 .
\(\ggg \operatorname{Word}(' x 1\) x2 L x3 x4 L L', (2, 4)) < Word('x1 x2 L x3 L x4 L', (2, 4))
True
```

The other three comparison operators ($\langle=,>,>=$) are also implemented.

```
>>> Word('x1 x2 L', (2, 2)) <= Word('x1 x2 L', (2, 2))
True
>>> Word('x1 a1', (2, 2)) <= Word('x1 a1', (2, 2)) <= Word('x1 al a2', (2, 2))
True
>>> Word('x1', (2, 2)) > Word('x1', (2, 2))
False
>>> Word('x1', (2, 2)) >= Word('x1', (2, 2))
True
>>> Word('x1 a2', (2, 2)) > Word('x1', (2, 2))
True
>>> Word('x1 a2', (2, 2)) >= Word('x1', (2, 2))
True
```


Todo

I think this is a total order-try to prove this. I based the idea on [Zaks] (section 2, definition 1) which describes a total order on k-ary trees. On another note, isn't this similar to shortlex order?

is_simple()

Let us call a Word simple if it has a lambda length of zero once it has been reduced to standard form.

```
>>> Word("x1 al a2", (2, 1)).is_simple()
True
>>> Word("x1 a1 a2 x2 a2 L", (2, 2)).is_simple()
False
>>> #Simplify a contraction
>>> Word("x1 a1 a1 x1 a1 a2 L", (2, 1)).is_simple()
True
>>> #Lambda-alpha extraction
>>> Word("x1 x2 L a2", (2, 2)).is_simple()
True
```

is_above (word)
Tests to see if the current word is an initial segment of word. Returns True if the test passes and False if the test fails.

```
>>> w = Word('x1 al', (2, 2))
>>> w.is_above(Word('x1 a1 a1 a2', (2, 2)))
True
>>> w.is_above(Word('x1', (2, 2)))
False
>>> w.is_above(w)
```

```
True
>>> v = Word('x1 al x1 a2 L', (2, 2))
>>> w.is_above(v)
False
>>> v.is_above(w)
True
```

test_above (word)
Tests to see if the current word c is an initial segment of the given word w. In symbols, we're testing if $w=c \Gamma$, where $\Gamma \in\langle A\rangle$ is some string of alphas only.

The test returns Γ (as a tuple of integers) if the test passes; note that Γ could be the empty word 1 (if $c=w)$. If the test fails, returns None.

```
>>> c = Word('x1 a1', (2, 2))
>>> c.test_above(Word('x1 a1 a1 a2', (2, 2)))
(-1, -2)
>>> c.test_above(Word('x1', (2, 2))) is None
True
>>> c.test_above(c)
()
>>> w = Word('x1 a2 x1 a1 L', (2, 2))
>>> print(c.test_above(w))
None
>>> w.test_above(c)
(-2,)
>>> v = Word('x1 a2 x1 a1 L x1 a2 a2 L x1 a2 x1 a1 L L', (2, 2))
>>> print(c.test_above(v))
None
>>> #There are two possible \Gamma values here; only one is returned.
>>> v.test_above(c)
(-1, -1, -2)
```

Note: There may be many different values of Γ for which $w=c \Gamma$; this method simply returns the first such Γ that it finds.
max_depth_to (basis)
Let w be the current word and let X be a basis. Choose a (possibly empty) string of alphas Γ of length $s \geq 0$ at random. What is the smallest value of s for which we can guarantee that $w \Gamma$ is below X, i.e. in $X\langle A\rangle$?

```
>>> from thompson.generators import Generators
>>> basis = Generators.standard_basis((2, 1)).expand(0).expand(0).expand(0)
>>> basis
Generators((2, 1), ['x1 a1 a1 a1', 'x1 a1 a1 a2', 'x1 a1 a2', 'x1 a2'])
>>> Word('x', (2, 1)).max_depth_to(basis)
3
>>> Word('x al', (2, 1)).max_depth_to(basis)
2
>>> Word('x a2 x a1 L x1 a1 L', (2, 1)).max_depth_to(basis)
4
>>> Word('x a2', (2, 1)).max_depth_to(basis)
0
```

Warning: If basis doesn't actually generate the algebra we're working in, this method could potentially loop forever.
as_interval()
Returns a pair (start, end) of Fract ions which describe the interval $I \subseteq[0,1]$ that this word corresponds to.

```
>>> def print_interval(w, s):
... start, end = Word(w, s).as_interval()
... print('[{}, {}]'.format(start, end))
...
>>> print_interval('x a1 a2 al x L', (2, 1))
Traceback (most recent call last):
...
ValueError: The non-simple word x1 al a2 a1 x1 L does not correspond to a interval.
>>> print_interval('x1', (2, 1))
[0, 1]
>>> print_interval('x1', (3, 1))
[0, 1]
>>> print_interval('x1', (4, 2))
[0, 1/2]
>>> print_interval('x1 al', (2, 1))
[0, 1/2]
>>> print_interval('x1 a1', (3, 1))
[0, 1/3]
>>> print_interval('x1 al', (4, 2))
[0, 1/8]
>>> print_interval('x1 a2 a1 a2', (2, 1))
[5/8, 3/4]
>>> print_interval('x1 a2 a1 a2', (3, 1))
[10/27, 11/27]
>>> print_interval('x1 a2 a1 a2', (4, 2))
[17/128, 9/64]
```

>>> from thompson.examples import random_simple_word
$\ggg s, e=r a n d o m _s i m p l e _w o r d() . a s _i n t e r v a l() ; 0<=s<e<=1$
True

Raises ValueError-if the word is not simple.

alpha (index)

Let w stand for the current word. This method creates and returns a new word $w \alpha_{\text {index }}$.

```
>>> Word("x al a2", (3, 2)).alpha(3)
Word('x1 a1 a2 a3', (3, 2))
```

Raises IndexError - if index is not in the range 1... arity.

extend (tail)

Concatenates the current word with the series of letters tail to form a new word.The argument tail can be given as either a string or a tuple of integers.

```
>>> Word('x1 a2 a1', (2, 1)).extend('a2 a2')
Word('x1 a2 a1 a2 a2', (2, 1))
>>> Word('x1 a2 a1', (2, 1)).extend('x1 a2 a2')
Traceback (most recent call last):
    ValueError: Word is invalid: valency is 2 (should be 1).
    >>> Word('x1 a2 a1', (2, 1)).extend('x1 a2 a2 L')
    Word('x1 a2', (2, 1))
```

expand()
Returns an iterator that yields the arity descendants of this word.

```
>>> w = Word("x a1", (5, 1))
>>> for child in w.expand():
... print(child)
x1 a1 a1
x1 a1 a2
x1 a1 a3
x1 al a4
x1 al a5
>>> w = Word("x a1 a1 x a2 a1 L", (2, 1))
>>> for child in w.expand():
... print(child)
x1 al a1
x1 a2 a1
```

Return type iterator which yields Words.
split (head_width)
Splits the current word w into a pair of tuples head, tail where len (head) == head_width. The segments of the word are returned as tuples of integers, i.e. not fully fledged Words.

Raises IndexError - if head_width is outside of the range $0<=$ head_width $<=$ len (w).

```
>>> Word('x1 a1 a2 a3 a1 a2', (3, 1)).split(4)
((1, -1, -2, -3), (-1, -2))
>>> Word('x1 a1 a2 a3 a1 a2', (3, 1)).split(10)
Traceback (most recent call last):
    IndexError: The head width 10 is not in the range 0 to 6.
```

rsplit (tail_width)
The same as split (), but this time tail_width counts from the right hand side. This means that len(tail) == tail_width.

Raises IndexError - if tail_width is outside of the range $0<=$ tail_width $<=$ len (w).

```
>>> Word('x1 a1 a2 a3 a1 a2', (3, 1)).rsplit(4)
((1, -1), (-2, -3, -1, -2))
>>> Word('x1 a1 a2 a3 a1 a2', (3, 1)).rsplit(10)
    Traceback (most recent call last):
    IndexError: The tail width 10 is not in the range 0 to 6.
```

subwords()
todo docstring

3.3.5 Next steps

Now that we can work with words in $V_{n, r}$, we need to be able to work with collections of words. The generators module will let us treat a list of words as a generating set and examine the subalgebra that the collection generates.

3.4 Generating sets and bases

Let S be a set of words in $V_{n, r}$. We can obtain new words by applying the operations α_{i} and λ to elements of S. Next, we can apply the operations to the new words we've received. This process continues indefinitely, producing a set of words T whose elements are sourced from the original set S. We call T the subalgebra generated by S and say that S generates T.
Of particular interest are bases, which we can think of as generating sets which do not contain any redundant elements. For example, it would be pointless to include each of $x, x \alpha_{1}$ and $x \alpha_{2}$ in S, as the first can be obtained from the last two and vice versa.

3.4.1 The Generators class

class thompson.generators.Generators (signature, generators=None)
An ordered subset of $V_{n, r}$, together with methods which treat such sets as generating sets and bases. Internally, this is a subclass of list, so it is possible to reorder and otherwise modify collections of Generators.

Variables signature - The Signature of the algebra this set belongs to.
__init__ (signature, generators=None)
When creating a generating set, you must specify the algebra $V_{n, r}$ it is a subset of. A list of generators can optionally be provided. Each generator is passed to append ().
append (w)
Adds w to this generating set. If w is a string, a Word object is created and assigned the same arity and alphabet_size as the generating set.

Raises

- TypeError - if w is neither a string nor a Word.
- IndexError - if w has a different arity to the generating set.
- IndexError - if w has a larger alphabet_size the generating set.
- ValueError - if w is already contained in this generating set.
copy ()
We override list. copy () 'so that we don't have to recreate Generators instances by hand.

```
>>> olga_f = load_example('olga_f')
>>> X = olga_f.quasinormal_basis.copy()
>>> X is olga_f.quasinormal_basis
False
>>> type(X).__name__
    'Generators'
```

filter (func)

Creates a copy of the current generating set whose elements x are those for which $f u n c(x)$ is True. The original generating set is unmodified, and the order of elements is inherited by the filtered copy.

```
>>> X = load_example('olga_f').quasinormal_basis
>>> print(X)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2]
>>> def test(x):
    ... return len(x) % 2 == 0
    ...
    >>> print(X.filter(test))
    [x1 a2 a2 a1, x1 a2 a2 a2]
```

test_free ()
Tests to see if the current generating set X is a free generating set. To do so, the words contained in X must all be simple.
If the test fails, returns the first pair of indices (i, j) found for which X_{i} is above X_{j}. If the test passes, returns $(-1,-1)$.

```
>>> g = Generators((2, 3), ["x1 a1", "x1 a2 a1", "x1 a2 a1 a1", "x1 a2 a2"])
>>> g.test_free()
(1, 2)
>>> print(g[1], g[2], sep='\n')
x1 a2 a1
x1 a2 a1 a1
>>> g = Generators((2, 1), ['x1 a2 a2', 'x1 a2 a1 x1 a2 a2 a2 a1 L x1 a1 L'])
>>> g.test_free()
Traceback (most recent call last):
ValueError: Cannot test for freeness unless all words are simple.
```

Raises ValueError - if any word in the basis is not simple.

See also:

Lemma 3.16 of the paper.
is_free()
Returns True if this is a free generating set; otherwise False.

```
>>> g = Generators((2, 3), ['x1', 'x2']);
>>> g.is_free()
True
>>> g.append('x3'); g.is_free()
True
>>> g.append('x2 a1'); g.is_free()
False
```

preorder_traversal()

Yields words as if traversing the vertices of a tree in pre-order.

```
simple_words_above()
```

An iterator that yields the simple words which can be obtained by contracting this basis $n \geq 0$ times. (So the 'above' condition is not strict.)

```
    >>> g = Generators((3, 1), ["x a1 a1 a3", "x a1 a1 a1", "x a1 a2", "x a1 a1 a2", "x a1 a3"])
    >>> for word in g.simple_words_above():
    ... print(format(word))
    x1 al al al
    x1 a1 a1 a2
    x1 a1 a1 a3
    x1 a1 a2
    x1 a1 a3
    x1 a1 a1
    x1 a1
```

test_generates_algebra()
Tests to see if this set generates all of $V_{n, r}$. The generating set is sorted, and then contracted as much as possible. Then we check to see which elements of the standard basis $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{r}\right\}$ are not included in the contraction.

The test fails if there is at least one such element; in this case, the list of all such elements is returned. Otherwise the test passes, and an empty list is returned.

```
>>> #A basis for V_2,1
>>> Y = Generators((2, 1), ["x a1", "x a2 a1", "x a2 a2 a1 a1", "x a2 a2 a1 a2", "x a2 a2 a2
>>> Y.test_generates_algebra()
[]
>>> #The same words do not generate V_2,3
>>> Y = Generators((2, 3), ["x a1", "x a2 a1", "x a2 a2 a1 a1", "x a2 a2 a1 a2", "x a2 a2 a2
>>> missing = Y.test_generates_algebra(); missing
[Word('x2', (2, 3)), Word('x3', (2, 3))]
>>> for x in missing: print(x)
x2
x3
```

Return type a list of Words.
generates_algebra()
Returns True if this set generates all of $V_{n, r}$. Otherwise returns False.

```
>>> from random import randint
>>> arity = randint (2, 5); alphabet_size = randint(2, 10)
>>> Y = Generators.standard_basis((arity, alphabet_size))
>>> Y.generates_algebra()
True
>>> random_basis().generates_algebra()
True
```

test_above (word, return_index=False)
Searches for a pair (gen, tail) where gen belongs to the current basis and gen + tail = word. If no such pair exists, returns None.

If return_index is False, returns the pair (gen, tail). Otherwise, returns the pair (i,tail) where i is the index of gen in the current basis.

```
>>> basis = Generators.standard_basis((2, 1)).expand(0).expand(0).expand(0)
>>> basis
Generators((2, 1), ['x1 a1 a1 a1', 'x1 a1 a1 a2', 'x1 a1 a2', 'x1 a2'])
>>> gen, tail = basis.test_above(Word('x1 a2 a2 a1', (2, 1)))
>>> print(gen, '|', format(tail))
x1 a2 | a2 a1
>>> i, tail = basis.test_above(Word('x1 a2 a2 a1', (2, 1)), return_index=True)
>>> print(basis[i])
x1 a2
```

is_above (word)
Returns True if any generator is_above () the given word.

```
>>> g = Generators((2, 2), ['x1 a1', 'x1 a2', 'x2'])
>>> g.is_above(Word('x1 a1 al a2', (2, 2)))
True
>>> g.is_above(Word('x1', (2, 2)))
False
>>> g.is_above(Word('x2', (2, 2)))
True
>>> g.is_above(Word('x1 al x1 a2 L', (2, 2)))
False
```

is_basis()

Returns True if this is a free generating set which generates all of $V_{n, r}$. Otherwise returns False.

```
>>> g = Generators((2, 2), ["x1 a1", "x1 a2"])
>>> g.is_free()
True
>>> g.generates_algebra()
False
>>> g.is_basis()
False
>>> g.append('x2')
>>> g.is_basis()
True
>>> random_basis().is_basis()
True
```


descendants_above (floor)

Suppose we have a basis floor below the current basis ceiling. There are a finite number of elements below ceiling which are not below floor. This method enumerates them. In symbols, we are enumerating the set $X\langle A\rangle \backslash F\langle A\rangle$, where X is the current basis and F is the floor.

```
>>> phi = load_example('example_5_15')
>>> X = phi.quasinormal_basis
>>> Y = X.minimal_expansion_for(phi)
>>> Z = phi.image_of_set(Y)
>>> terminal = X.descendants_above(Y)
>>> initial = X.descendants_above(Z)
>>> print(initial, terminal, sep='\n')
[x1 a1, x1 a1 a1]
[x1 a2 a2, x1 a2 a2 a1]
```

classmethod standard_basis (signature)
Creates the standard basis $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{r}\right\}$ for $V_{n, r}$, where n is the arity and r is the alphabet_size of the signature.

```
>>> Generators.standard_basis((2, 4))
Generators((2, 4), ['x1', 'x2', 'x3', 'x4'])
```

minimal_expansion_for (*automorphisms)
Suppose we are given a finite sequence of automorphisms of $V_{n, r}$ and that the current generaeting set is a basis X for $V_{n, r}$. This methods returns an expansion Y of X such that each automorphism maps Y into $X\langle A\rangle$.

```
>>> std_basis = Generators.standard_basis((2, 1))
>>> reduced_domain = Generators((2, 1), ["x a1 a1", "x a1 a2 a1", "x a1 a2 a2", "x a2 a1",
>>> std_basis.minimal_expansion_for(load_example('cyclic_order_six')) == reduced_domain
True
```

```
>>> phi = load_example('example_5_3')
>>> basis = phi.quasinormal_basis
>>> print(basis.minimal_expansion_for(phi))
[x1 a1 a1 a1 a1, x1 a1 a1 a1 a2, x1 a1 a1 a2, x1 a1 a2 a1, x1 a1 a2 a2, x1 a2 a1, x1 a2 a2
```


Raises

- ValueError - if no automorphisms are passed to this method.
- ValueError - if the automorphisms or basis do not all belong to the same group $G_{n, r}$.
- ValueError - if the given basis does not generate $V_{n, r}$.

See also:

Lemma 4.3 of the paper proves that this expansion exists, is of minimal size, and is unique with this that property.
expand (index)
Replaces the word w at index index in the current generating set with its children, $w \alpha 1, \ldots, w \alpha_{n}$, where n is the arity of the generating set. As with ordinary Python lists, negative values of index are supported.

```
>>> g = Generators.standard_basis((3, 1)); g
Generators((3, 1), ['x1'])
>>> g.expand(0)
Generators((3, 1), ['x1 a1', 'x1 a2', 'x1 a3'])
>>> g.expand(-2) #expand at the second entry from the right, i.e. at 'xI a2'
Generators((3, 1), ['x1 a1', 'x1 a2 a1', 'x1 a2 a2',' 'x1 a2 a3', 'x1 a3'])
```

Raises IndexError - if there is no generator at index index.
Returns the current generating set, after modification.
classmethod sort_mapping_pair (domain, range)
Makes copies of the given lists of words domain and range. The copy of domain is sorted according to the order defined on words. The same re-ordering is applied to the range, so that the mapping from domain to range is preserved.

Return type A pair of class:Generator instances.
expand_to_size (size)
Expands the current generating set until it has the given size. The expansions begin from the end of the generating set and work leftwards, wrapping around if we reach the start. (This is to try and avoid creating long words where possible.)

```
>>> basis = Generators.standard_basis((3, 1)); print (basis)
    [x1]
    >>> basis.expand_to_size(11); print(basis)
    [x1 a1 a1, x1 a1 a2, x1 a1 a3, x1 a2 a1, x1 a2 a2, x1 a2 a3, x1 a3 a1, x1 a3 a2, x1 a3 a3 a1
    >>> basis = Generators.standard_basis((2, 1)); print(basis)
    [x1]
    >>> basis.expand_to_size(2); print(basis)
    [x1 a1, x1 a2]
    >>> basis = Generators.standard_basis((2, 3)).expand(2).expand(0); print(basis)
    [x1 a1, x1 a2, x2, x3 a1, x3 a2]
    >>> basis.expand_to_size(12); print(basis)
    [x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2, x2 a1, x2 a2, x3 a1 a1, x3 a1 a2, x3 a2 a1 a1, x3
```

Returns the current generating set
Raises ValueError - if an expansion to the given size is not possible.
cycled (positions=1)
Produces a copy of the current generating set, cyclicly shifted by a number of positions to the right.

```
>>> phi = load_example('example_5_15')
>>> print(phi.domain)
    [x1 a1, x1 a2 a1, x1 a2 a2 a1 a1, x1 a2 a2 a1 a2, x1 a2 a2 a2]
    >>> print(phi.domain.cycled(2))
    [x1 a2 a2 a1 a1, x1 a2 a2 a1 a2, x1 a2 a2 a2, x1 a1, x1 a2 a1]
```

```
>>> X = random_basis()
>>> X == X.cycled(0) == X.cycled(len(X))
True
```

thompson.generators.rewrite_set (set, basis, new_basis)
Maps set into the algebra generated by new_basis according to the bijection between basis and new_basis. See also rewrite_word().

thompson.generators.rewrite_word (word, basis, new_basis)

Suppose that we have a word which is below a given basis. Suppose we have a bijection between basis and some image new_basis. Then we can rewrite word as as descendant of new_basis in a manner which is compatible with this bijection.

Raises

- ValueError - if basis is not above word.
- ValueError - if basis and new_basis have different sizes.

3.4.2 Next steps

Suppose we have a map $f: V_{n, r} \rightarrow V_{n^{\prime}, r^{\prime}}$. If this is just a set map then we would have to specify the image of every word in $V_{n, r}$. However, if f preserves structure then it is sufficient to specify the image of a generating set-or even better, a basis-for $V_{n, r}$. Such maps f are called homomorphisms. The next module describes homomorphisms in terms of the image of a given basis.

3.5 Homomorphisms

The algebra of words has its own structure, and just like groups, rings etc. there exist homomorphisms which preserve this structure. In our specific case, a homomorphism $\phi: V_{n, r} \rightarrow V_{n, s}$ is a function satisfying

$$
w \alpha_{i} \phi=w \phi \alpha_{i} \quad \text { and } \quad w_{1} \ldots w_{n} \lambda \phi=a w_{1} \phi \ldots w_{n} \phi \lambda
$$

In other words, a homomorphism is a function which 'commutes' with the algebra operations α_{i} and λ.

3.5.1 The Homomorphism Class

class thompson.homomorphism. Homomorphism (domain, range, reduce=True)
Let $f: D \rightarrow R$ be some map embedding a basis D for $V_{n, r}$ into another algebra $V_{n, s}$ of the same Signature. This map uniquely extends to a homomorphism of algebras $\psi: V_{n, r} \rightarrow V_{n, s}$.

Variables

- domain - abasis of preimages
- range - a basis of images.

The next few attributes are used internally when constructing free factors. We need to have a way to map back to the parent automorphisms.

Variables

- domain_relabeller - the homomorphism which maps relabelled words back into the original algebra that this automorphism came from.
- range_relabeller - the same.

init(domain, range, reduce $=$ True)
Creates a homomorphism with the specified domain and range. Sanity checks are performed so that the arguments do genuinely define a basis.

By default, any redudancy in the mapping is reduced. For example, the rules x1 a1 a1 -> x1 a2 a1 and x1 a1 a2 -> x1 a2 a2 reduce to the single rule x1 a1 -> x1 a2. The reduce argument can be used to disable this. This option is intended for internal use only. ${ }^{1}$

Raises

- TypeError - if the bases are of different sizes.
- TypeError - if the algebras described by domain and range have different arities.
- ValueError - if domain is not a basis.

classmethod from_file (filename)

Reads in a file specifying a homomorphism and returns the homomorphism being described. Here is an example of the format:

```
5
    (2,1) -> (2,1)
    x1 a1 a1 a1 -> x1 a1 a1
    x1 a1 a1 a2 -> x1 a1 a2 a1
    x1 a1 a2 -> x1 a1 a2 a2
    x1 a2 a1 -> x1 a2 a2
    x1 a2 a2 -> x1 a2 a1
    This is an example intended to illustrate the format for reading and writing automorphisms
```

There are three components
-number k of generators in domain and range
-signatures of domain and range
\bullet list of k rules domain -> range
Any lines after this are ignored, and can be treated as comments. Comments are read in and added to the __doc__ attribute of the homomorphism that gets created.

classmethod from_string (string)

An alternative from_file () for working with examples that you might want to copy and paste somewhere. string should be a Python string which describes an automorphism in the same format as in from_file().
save_to_file (filename=None, comment=None)
Takes a homomorphism and saves it to the file with the given filename. The homomorphism is stored in a format which is compatible with from_file (). Optionally, a comment may be appended to the end of the homomorphism file.

```
>>> before = random_automorphism()
>>> before.save_to_file('test_saving_homomorphism.aut')
>>> after = Automorphism.from_file('test_saving_homomorphism.aut')
>>> before == after, before is after
(True, False)
```

\qquad (other)
We can test for equality of homomorphisms by using Python's equality operator $==$.

[^2]```
>>> phi = random_automorphism()
>>> phi == phi
True
>>> phi * ~phi == Homomorphism.identity(phi.signature)
True
```

__mul__(other)
If the current automorphism is $\psi$ and the other is $\phi$, multiplication forms the composition $\psi \phi$, which maps $x \mapsto x \psi \mapsto(x \psi) \phi$.

Raises TypeError - if the homomorphisms cannot be composed in the given order; i.e. if self.range.signature $!=$ other.domain.signature.

Return type an MixedAut if possible; otherwise a Homomorphism.

```
>>> phi = load_example('alphabet_size_two')
>>> print(phi * phi)
MixedAut: V(3, 2) -> V(3, 2) specified by 8 generators (after expansion and reduction).
x1 a1 -> x1 a1
x1 a2 -> x1 a2 a3 a3
x1 a3 a1 -> x1 a3
x1 a3 a2 -> x1 a2 a2
x1 a3 a3 -> x1 a2 a1
x2 a1 -> x2
x2 a2 -> x1 a2 a3 a2
x2 a3 -> x1 a2 a3 a1
```


## classmethod identity (signature)

Creates a new homo/automorphism which is the identity map on the algebra with the given signature.

```
>>> print(Homomorphism.identity((3, 2)))
PeriodicAut: V(3, 2) -> V(3, 2) specified by 2 generators (after expansion and reduction).
x1 -> x1
x2 -> x2
```

is_identity()
Returns True if this automorphism is the identity map on the algebra with the given signature. Otherwise returns False.

```
>>> aut = Homomorphism.identity(random_signature())
>>> aut.is_identity()
True
>>> load_example('example_5_15').is_identity()
False
```

image (key, sig_in=None, sig_out=None, cache=None)
Computes the image of a key under the given homomorphism. The result is cached for further usage later.
The key must be given as one of:
-a string to be passed to from_string();
-a sequence of integers (see the word module); or

- Word instance.

Note: All other arguments are intended for internal use only. ${ }^{2}$

[^3]The input need not be in standard form. This method
1.Converts key to standard form if necessary.
2. Checks if the image of the standard form of key has been cached, and returns the image if so.
3.Computes the image of key under the homomorphism, then caches and returns the result.

```
>>> #An element of the domain---just a lookup
>>> phi = load_example('example_5_15')
>>> print(phi.image('x1 al'))
x1 al al al
>>> #A word below a the domain words
>>> print(phi.image('x1 a1 a2 a2'))
x1 a1 a1 a1 a2 a2
>>> #Above domain words---have to expand.
>>> print(phi.image('x1'))
x1 a1 a1 a1 x1 a1 a1 a2 x1 a2 a2 x1 a1 a2 L x1 a2 a1 L L L
>>> #Let's try some words not in standard form
>>> print(phi.image('x1 a1 a1 x1 a1 a2 L'))
x1 al al al
>>> print(phi.image('x1 a1 a1 x1 a1 a2 L a2 a1'))
x1 a1 a1 a1 a2 a1
>>> print(phi.image('x1 a1 a1 x1 a2 a2 L'))
x1 a1 a1 a1 a1 x1 a2 a2 x1 a1 a2 L x1 a2 a1 L L
```

Return type a Word instance (which are always in standard form).
image_of_set (set, sig_in=None, sig_out=None, cache=None)
Computes the image of a list of Generators under the current homomorphism. The order of words in the list is preserved.

Return type another list of Generators.

```
>>> basis = Generators.standard_basis((2,1))
>>> basis.expand_to_size(8); print(basis)
[x1 a1 a1 a1, x1 a1 a1 a2, x1 a1 a2 a1, x1 a1 a2 a2, x1 a2 a1 a1, x1 a2 a1 a2, x1 a2 a2 a1,
>>> print(load_example('example_5_3').image_of_set(basis))
[x1 a1 a1 a1 x1 a1 a1 a2 a1 L, x1 a1 a1 a2 a2, x1 a1 a2 a2, x1 a1 a2 a1, x1 a2 a1 a1 a1, x1
```

$\qquad$
Printing an automorphism gives its arity, alphabet_size, and lists the images of its domain elements.

```
>>> print(load_example('cyclic_order_six'))
PeriodicAut: V(2, 1) -> V(2, 1) specified by 5 generators (after expansion and reduction).
x1 a1 a1 -> x1 al a1
x1 a1 a2 a1 -> x1 a1 a2 a2 a2
x1 a1 a2 a2 -> x1 a2
x1 a2 a1 -> x1 a1 a2 a2 a1
x1 a2 a2 -> x1 a1 a2 a1
```

add_relabellers (domain_relabeller, range_relabeller)

## Raises

- LookupError - if a relabeller is provided and the relabeller's signature does not match that of domain or range
- TypeError - if a relabeller is provided and the relabeller's signature does not match that of domain or range (as appropriate)
relabel()
If this automorphism was derived from a parent automorphism, this converts back to the parent algebra after doing computations in the derived algebra.
In the following example test_conjugate_to () takes a pure periodic automorphism and extracts factors. A conjugator $\rho$ is produced by the overridden version of this method. Finally $\rho$ is relabelled back to the parent algebra.

Raises AttributeError - if the factor has not been assigned any relabellers.

```
>>> psi, phi = load_example_pair('example_5_12')
>>> rho = psi.test_conjugate_to(phi)
>>> print(rho)
PeriodicAut: V(2, 1) -> V(2, 1) specified by 6 generators (after expansion and reduction).
x1 a1 a1 a1 a1 -> x1 a1 a2
x1 a1 a1 a1 a2 -> x1 a2 a2
x1 a1 a1 a2 -> x1 a1 a1 a1
x1 a1 a2 -> x1 a2 a1 a1
x1 a2 a1 -> x1 a1 a1 a2
x1 a2 a2 -> x1 a2 a1 a2
>>> rho * phi == psi * rho
True
```


### 3.5.2 Next steps

It is not possible to repeatedly apply a homomorphism $\psi$ to a word unless $\psi$ is actually an automorphism. The next class extends Homomorphism to represent an Automorphism.

### 3.6 Automorphisms

As usual, a bijective homomorphism is called an isomorphism, and an isomorphism from an algebra to itself is called an automorphism. A collection of automorphisms of an object $O$ forms a group $\operatorname{Aut}(O)$ under composition. The group of automorphisms $\operatorname{Aut}\left(V_{n, r}\right)$ is known as $G_{n, r}$.

We consider three different classes of automorphism; this module implements functionality common to each class.

### 3.6.1 The Automorphisms class

class thompson. automorphism.Automorphism (domain, range, reduce=True)
Represents an automorphism as a bijection between bases.
Generic attributes:

## Variables

- signature - The Signature shared by the generating sets domain and range.
- quasinormal_basis - See compute_quasinormal_basis().
- pond_banks - A list of tuples $(\ell, k, r)$ such that $(\ell, r)$ are banks of a pond with $\ell \phi^{k}=r$. For instance:

```
>>> olga_f = load_example('olga_f')
>>> olga_g = load_example('olga_g')
>>> print(len(olga_f.pond_banks), sep=', ') #No ponds
0
```

```
>>> print(len(olga_g.pond_banks)) #One pond
1
>>> print(*olga_g.pond_banks[0], sep=', ')
x1 a2 a1 a2 a1 a1, 2, x1 a1 a2 a2
```

Periodic attributes:

## Variables

- periodic_orbits - a mapping $d \mapsto L_{d}$, where $L_{d}$ isthelistof size : math : ‘d orbits in the quasinormal basis.
- multiplicity - a mapping $d \mapsto m_{\phi}\left(d, X_{\phi}\right)$, which is the number of periodic orbits of size $d$ in the quasinormal basis for $\phi$. See Definition 5.8 in the paper.
- cycle_type - the set $\{d \in \mathbb{N}: \exists$ an orbit of length $d$.
- order - The Icm () of the automorphism's cycle type. This is the group-theoretic order of the periodic factor of $\phi$. If the cycle type is empty, the order is $\infty$.

```
>>> def display_orbits(orbits_by_size):
... for key in sorted(orbits_by_size):
... print('Orbits of length', key)
... for list in orbits_by_size[key]:
... print('...', *list, sep=' -> ', end=' -> ...\n')
>>> display_orbits(load_example('example_5_9').periodic_orbits)
Orbits of length 2
... -> x1 a2 a1 a1 -> x1 a2 a1 a2 -> ...
... -> x1 a2 a2 a1 -> x1 a2 a2 a2 -> ...
Orbits of length 3
... -> x1 a1 a1 a1 -> x1 a1 a1 a2 -> x1 a1 a2 -> ...
```

Note: mixed automorphisms will have a finite order, despite being infinite-order group elements.

Infinite attributes:
Variables characteristics - the set of characteristics $(m, \Gamma)$ of this automorphism.
$\qquad$ ( domain, range, reduce=True)
Creates an automorphism mapping the given domain basis to the range basis in the given order.

$$
\operatorname{domain}_{i} \mapsto \text { range }_{i}
$$

The quasi-normal basis $X$ and the various attributes are all calculated at creation time.

## Raises

- TypeError - if the bases have different arities or alphabet sizes.
- TypeError - if either basis isn't actually a basis.


## See also:

The superclass method.
image (key, inverse=False)
If inverse is True, the inverse of the current automorphism is used to map key instead. Otherwise this method delegates to Homomorphism. image.
Examples of finding inverse images:

```
>>> phi = load_example('example_5__15')
>>> print(phi.image('x1 a2 a2', inverse=True))
x1 a2 a2 a1 a1
>>> print(phi.image('x1 a1 a1 a2 a2 a1', inverse=True))
x1 a2 a1 a2 a1
>>> print(phi.image('x a2', inverse=True))
x1 a2 a2 a2 x1 a2 a2 a1 a1 L
>>> print(phi.image('x a2 a2 x a1 a2 L', inverse=True))
x1 a2 a2 a1
```

image_of_set (set, inverse=False)
If inverse is True, the inverse of the current automorphism is used to map set instead. Otherwise this method delegates to Homomorphism. image_of_set.

Examples of finding inverse images:

```
>>> basis = Generators.standard_basis((2,1))
>>> basis.expand_to_size(8);
>>> print(load_example('example_5_3').image_of_set(basis, inverse=True))
[x1 a1 a1 a1 a1, x1 a1 a1 a1 a2 x1 a1 a1 a2 L, x1 a1 a2 a2, x1 a1 a2 a1, x1 a2 a1, x1 a2 a2
```

repeated_image (key, power)
If $\psi$ is the current automorphism, returns key $\psi$ power.
Return type a Word instance.

```
>>> phi = load_example('example_5_15')
>>> print(phi.repeated_image('x1 a1', 10))
x1 a1 al
>>> print(phi.repeated_image('x1 al al al al al al a1', -3))
x1 al
>>> phi = load_example('arity_four')
>>> print(phi.repeated_image('x1 a4 a4 a2', 4))
x1 a3 a3 a2
>>> print(phi.repeated_image('x1 a3 a3 a2', -4))
x1 a4 a4 a2
```


## Todo

This could be made more efficient for large values of power by using knowledge of the component containing key.
_pow_(power)

```
>>> psi = random_automorphism()
>>> ~psi ** 2 == ~psi * ~psi == psi ** -2
True
```

__invert__()
We overload python's unary negation operator $\sim$ as shorthand for inversion. (In Python, $\sim$ is normally used for bitwise negation.) We can also call a method explicitily: phi.inverse () is exactly the same as ~phi.

```
>>> phi = random_automorphism()
>>> phi * ~phi == ~phi * phi
True
>>> (phi * ~phi).is_identity()
```

```
True
>>> (~phi).quasinormal_basis == phi.quasinormal_basis
True
```


## compute_quasinormal_basis()

We say that $\phi$ is in semi-normal form with respect to the basis $X$ if no element of $X$ lies in an incomplete $X$-component of a $\phi$ orbit. See the orbits module for more details.

There is a minimal such basis, $X_{\phi}$ say, and we say that $\phi$ is in quasi-normal form with respect to $X_{\phi}$. This method determines and returns the basis $X_{\phi}$ where $\phi$ denotes the current automorphism. The result is cached so that further calls to this method perform no additional computation.

Note: This method is called automatically at creation time and does not need to be called by the user.

```
>>> for name in ['example_4_5', 'alphabet_size_two', 'example_5_12_phi', 'example_6_2', 'exa
 print(load_example(name).quasinormal_basis)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2]
[x1 a1, x1 a2, x1 a3, x2]
[x1 a1, x1 a2]
[x1 a1 a1, x1 a1 a2, x1 a2]
[x1 a1, x1 a2]
```

Return type a Generators instance.

## See also:

Quasi-normal forms are introduced in Section 4.2 of the paper. In particular, this method implements Lemma 4.28. Higman first described the idea of quasi-normal forms in Section 9 of [Hig74].
seminormal_form_start_point ()
Returns the minimal expansion $X$ of $\boldsymbol{x}$ such that every element of $X$ belongs to either self.domain or self.range. Put differently, this is the minimal expansion of $\boldsymbol{x}$ which does not contain any elements which are above $Y \cup Z$. This basis that this method produces is the smallest possible which might be semi-normal.

```
>>> for name in ['example_4_5', 'example_4_11', 'example_4_12', 'example_5_15',
 print(load_example(name).seminormal_form_start_point())
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2]
[x1 a1, x1 a2]
[x1 a1, x1 a2]
[x1 a1, x1 a2 a1, x1 a2 a2]
[x1 a1 a1, x1 a1 a2 a1, x1 a1 a2 a2, x1 a2]
```


## See also:

Remark 4.10 of the paper.
orbit_type ( $y$, basis=None)
Returns the orbit type of $y$ with respect to the given basis. If basis is omitted, the quasi-normal basis is used by default. Also returns a dictionary of computed images, the list (11) from the paper.

```
>>> phi = load_example('example_4_5')
>>> print_component_types(phi, phi.domain)
x1 al al al: Left semi-infinite component with characteristic (-1, a1)
x1 a1 a1 a2: Bi-infinite component
x1 a1 a2: Right semi-infinite component with characteristic (1, a2)
x1 a2 a1: Periodic component of order 2
x1 a2 a2: Periodic component of order 2
with respect to the basis [x1 a1 a1 a1, x1 a1 a1 a2, x1 a1 a2, x1 a2 a1, x1 a2 a2]
```

```
>>> print_component_types(phi, basis=phi.domain, words=['x', 'x a1', 'x a2'])
x1: Incomplete component
x1 a1: Incomplete component
x1 a2: Incomplete component
with respect to the basis [x1 a1 a1 a1, x1 a1 a1 a2, x1 a1 a2, x1 a2 a1, x1 a2 a2]
```

Components can be calculated with respect to any basis, not just the quasi-normal basis.

```
>>> print(olga_f.quasinormal_basis)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2]
>>> basis = olga_f.quasinormal_basis.copy().expand(-1); print(basis)
[x1 a1 a1, x1 a1 a2, x1 a2 a1, x1 a2 a2 a1, x1 a2 a2 a2 a1, x1 a2 a2 a2 a2]
>>> from pprint import pprint
>>> print(olga_f.orbit_type('x a2 a2 a2')[0])
Bi-infinite component
>>> print(olga_f.orbit_type('x a2 a2 a2', basis)[0])
Incomplete component
```


## See also:

Lemmas 4.18, 4.28 of the paper.

## Todo

This should be renamed to component_type.

## test_semi_infinite ( $y$, basis, backward=False)

Computes the orbit type of $y$ under the current automorphism $\psi$ with respect to basis in the given direction.
Let $y \psi^{m}$ be the most recently computed image. The process stops when either:
1.y $\psi^{m}$ is not below the basis, for some $m \geq 0$.
-infinite: False
-start: 0
-end: m-1
$\bullet$ •images: $y, y \psi, \ldots, y \psi^{m-1}$.
2.For some $0 \leq l<m, y \psi^{l}$ is above (or equal to) $y \psi^{m}$.
-infinite: True
-start: 1
-end: m
$\bullet$ •images: $y, y \psi, \ldots, y \psi^{m}$.

Note: The word $y \psi^{m}$ is not strictly in the core part of the orbit of Lemma 4.24. We return this as part of images so that we can compute the characteristic multiplier in orbit_type ().

Returns the tuple (infinite, start, end, images).

## See also:

Lemma 4.28 of the paper.
semi_infinite_end_points (exclude_characteristics=False)
Returns the list of terminal Words in left semi-infinite components and the list of initial words in right semi-infinite components. This is all computed with respect the current automorphism's quasinormal basis. These are the sets $X\langle A\rangle \backslash Y\langle A\rangle$ and $X\langle A\rangle \backslash Z\langle A\rangle$.

Parameters exclude_characteristics - if True, only the endpoints of noncharacteristic semi-infinite orbits will be returned.

```
>>> for id in ['4_5', '4_11', '4_12', '5_15', '6_2']:
... aut = load_example('example_' + id)
... print(*aut.semi_infinite_end_points())
[x1 a1 a1] [x1 a1 a2]
[x1 a1] [lx1 a2]
[] []
[x1 a2 a2, x1 a2 a2 a1] [x1 a1, x1 a1 a1]
[x1 a1 a1] [x1 a2]
>>> phi = load_example('nathan_pond_example')
>>> print(*phi.semi_infinite_end_points())
[x1 a1 a1, x1 a1 a1 a1, x1 a1 a1 a2] [x1 a1 a2, x1 a1 a2 a1, x1 a1 a2 a2]
>>> print(*phi.semi_infinite_end_points(exclude_characteristics=True))
[x1 a1 a1 a2] [x1 a1 a2 a2]
```

Return type A pair of Generators.

## See also:

The discussion before Lemma 4.6.
dump_QNB ()
A convenience method for printing the quasinormal basis $X$. The $X$-components of the elements $x \in X$ are displayed.

```
>>> load_example('example_5_3').dump_QNB()
x1 al al al Left semi-infinite component with characteristic (-1, a1)
x1 a1 a1 a2 Right semi-infinite component with characteristic (1, a2)
x1 a1 a2 a1 Periodic component of order 2
x1 a1 a2 a2 Periodic component of order 2
x1 a2 a1 Right semi-infinite component with characteristic (1, a1)
x1 a2 a2 Left semi-infinite component with characteristic (-1, a2)
```

print_characteristics()
For convenience, a method that prints out all of the characteristics of type B components wrt the quasinormal_basis.

```
>>> for id in ['4_1', '5_15', '6_2', '6_8_phi']:
... name = 'example_' + id
... print (name)
... load_example(name).print_characteristics()
example_4_1
(-1, a1)
(1, a2)
example_5_15
(-1, a1 a1)
(1, a1 a1)
example_6_2
(-2, a1)
(1, a2)
example_6_8_phi
(-1, al al a1)
```

```
(1, a2 a2 a2)
>>> (load_example('example_6_2')**2).print_characteristics()
(-1, a1)
(1, a2 a2)
>>> #Lemma 5.16
>>> psi, phi = random_conjugate_pair()
>>> psi.characteristics == phi.characteristics
True
```


## See also:

Defintion 5.14.
share_orbit ( $u, v$ )
Determines if $u$ and $v$ are in the same orbit of the current automorphism $\psi$. Specifically, does there exist an integer $m$ such that $u \psi^{m}=v$ ?

```
>>> phi = load_example('alphabet_size_two')
>>> u = Word('x1 a2 a3 a1 a2', (3, 2))
>>> v1 = Word('x1 a1 a2 a2 a3 a1', (3, 2))
>>> v2 = Word('x2 a3 a2', (3, 2))
>>> print(phi.share_orbit(u, v1))
{}
>>> print(phi.share_orbit(u, v2))
{-2 }
>>> print(phi.share_orbit(u, u))
{0}
```

Returns The (possibly empty) SolutionSet of all integers $m$ for which $u \psi^{m}=v$. Note that if $u=v$ this method returns $\mathbb{Z}$.

## See also:

The implementation is due to lemma 4.34 of the paper.
is_conjugate_to (other)
A shortcut for self.test_conjugate_to(other) is not None.
preserves_order ()
Returns True if this automorphism is an element of $F_{n, r}$, Higman's analogue of Thompson's group $F$.
Otherwise returns False.

```
>>> random_automorphism(group='F').preserves_order()
True
>>> phi = random_automorphism(group='T')
>>> #phi preserves order iff it is in F.
>>> (sorted(phi.range) == phi.range) == phi.preserves_order()
True
>>> load_example('nathan_pond_example').preserves_order()
False
```

cycles_order()
Returns True if this automorphism is an element of $T_{n, r}$, Higman's analogue of Thompson's group $T$.
Otherwise returns False.

```
>>> random_automorphism(group='F').cycles_order()
True
>>> random_automorphism(group='T').cycles_order()
True
```

```
>>> load_example('nathan_pond_example').cycles_order() # in V \ T
False
```

test_revealing (domain='wrt QNB')
Determines if the given automorphism $\phi$ is revealed by the tree pair $(D, \phi(D))$, where $D$ is the given domain.

The domain may be implicitly specified by the string 'minimal' or 'wrt $\mathrm{QNB}^{\prime}$. In the first case, domain is taken to be the minimal domain required to specify the automorphism. In the second case, domain is taken to be the minimal expansion of the quasinormal basis.

Returns None if the pair is revealing for $\phi$. Otherwise, returns (as a Word) the root of a component of either $D \backslash \phi(D)$ or $\phi(D) \backslash D$ which does not contain an attractor/repeller.

```
>>> load_example('olga_f').test_revealing() is None
True
>>> print(load_example('semi__inf_c').test_revealing())
x1 a2 a1
>>> print(load_example('non_revealing').test_revealing())
x1 a1 a1
>>> f = load_example('cyclic_order_six')
>>> print(f.test_revealing('minimal'))
x1 a2
>>> f.test_revealing('wrt QNB') is None
True
```

Caution: This is an experimental feature based on [SD10].

## Todo

This method is badly named; something like test_revealed_by (basis) would be better.

## is_revealing (domain='wrt QNB')

Calls test_revealing(), but only returns True or False.
Returns True if the pair is revealing, otherwise False.

```
>>> load_example('olga_f').is_revealing()
True
>>> load_example('semi_inf_c').is_revealing()
False
>>> load_example('non_revealing').is_revealing()
False
>>> f = load_example('cyclic_order_six')
>>> f.is_revealing('minimal')
False
>>> f.is_revealing('wrt QNB')
True
```

Caution: This is an experimental feature based on [SD10].

## Todo

This method is badly named; something like is_revealed_by (basis) would be better.
area_to_identity (scaled=False)
Let $\phi \in F_{n, 1}$, viewed as a bijection of the interval. What is the (unsigned) area between $\phi$ and the identity?
Parameters scaled (bool) - If true, the area is normalised by ignoring subintervals where the function is equal to the identity.

Warning: This is an experimental feature based on a suggestion by Henry Bradford.

```
>>> for n in range(4):
 print(standard_generator(n).area_to_identity())
5/32
5/128
5/512
5/2048
>>> x0 = standard_generator(0)
>>> x1 = standard_generator(1)
>>> g = ~x0 * x1 * x0
>>> print(g.area_to_identity())
3/32
>>> f = load_example('non_dyadic_fixed_point')
>>> print(f.area_to_identity())
43/768
>>> for n in range(4):
... print(standard_generator(n).area_to_identity(scaled=True))
5/32
5/32
5/32
5/32
```

centralise_period (period, trees, rearranger)
Constructs a new element $\psi$ commuting with the given element $\phi$. We construct the centralising element by altering the $\phi$-orbit structure below the orbits of the given period.

There are two parameters: a collection of labelled trees and a rearranger element; in the notation of [BGG11] these are elements of $K_{m_{i}}$ and $G_{n, r_{i}}$ respectively. .. todo:: doctests .. caution:: This is an experimental feature based on [BGG11].

### 3.6.2 Next steps

Because an Automorphism can be repeatedly applied, we may consider the orbit $\left\{w \psi^{n} \mid n \in \mathbb{Z}\right\}$ of any word $w$. (Note that this is the orbit of $w$ under the cyclic subgroup $\langle\psi\rangle$, rather than all of $G_{n, r}$.)

The next module gives us tools to classify and work with these orbits. (In truth, the Automorphism class uses these tools, so this documentation is really in the wrong order.)

### 3.7 Orbits

Let $y$ be a word, and let $X$ be an expansion of the standard basis $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{n}\right\}$; finally let $\phi$ be an MixedAut. We call the set $\operatorname{orb}_{\phi}(y)=\left\{y \phi^{i}\right\}_{i \in \mathbb{Z}}$ the $\phi$-orbit of $y$. Let us refer to the intersection $\operatorname{orb}_{\phi}(y) \cap X\langle A\rangle$ as the $X$-component of (the $\phi$-orbit of) $y$. Higman demonstrated how we could classify these components in [Hig74] (section 9).

This module is responsible for two orbit-related data structures. Firstly, Component Type is set up to describe all possible types of orbits according to Higman's scheme. Secondly, the SolutionSet describes solutions to the equation $u \phi^{i}=v$.

### 3.7.1 Types of orbits and components

These components come in five different types:

1. Complete infinite components. The component is the entire orbit $\left\{y \phi^{i}\right\}_{i \in \mathbb{Z}}$ and each element of the orbit is different.
2. Complete finite components. The component is the entire orbit, which eventually it repeats itself. Thus the component only contains a finite number of distinct words.
3. Right semi-infinite components. The forward orbit $\left\{y \phi^{n}\right\}_{n \in \mathbb{N}}$ belongs to the component and does not repeat itself. However, the backward orbit $\left\{y \phi^{-n}\right\}_{n \in \mathbb{N}}$ eventually leaves $X\langle A\rangle$; thus the component only contains a finite amount of the backward orbit.
4. Left semi-infinite components. The backward orbit is contained in the component, and does not repeat itself; the forward orbit eventually leaves $X\langle A\rangle$.
5. Incomplete finite components. A finite part of the orbit

$$
y \phi^{-n}, \ldots, y \phi^{-1}, y, y \phi, \ldots, y \phi^{m}
$$

for which both $y \phi^{-n-1}$ and $y \phi^{m+1}$ are not in $X\langle A\rangle$.
There are six different ways we can form orbits using these components:

- Complete infinite (or doubly infinite) orbits. The entire orbit is a complete infinite component (type 1).
- Complete finite (or periodic) orbits. The entire orbit is a component finite component (type 2 ).
- Incomplete finite (or bad) orbits. The orbit does not contain any complete or semi-infinite components. Thus the only components which may appear are of type 5 . Note that these orbits need not have any components at all!
- Incomplete infinite orbits. The orbit contains at least one semi-infinite component (types 3, 4). The orbit may also contain incomplete finite components (type 5). We give names to the different cases:
- Right semi-infinite orbits. One component of type 3, none of type 4.
- Left semi-infinite orbits. One component of type 4, none of type 3.
- Pond orbits. One component of type 3 and one of type 4 . These components must be separated by a finite list of words in $V_{n, r} \backslash X\langle A\rangle$; we think of this list as being a pond.

If that wasn't confusing enough, we have a another way to classify those orbits which are not incomplete finite.

1. Type A components are those with characteristic $(m, \epsilon)$, where $\epsilon$ is the empty word. These are precisely the periodic orbits.
2. Type B components are those with characteristic $(m, \Gamma)$, where $\Gamma \neq \epsilon$ is nontrivial.
3. Type C components are those which are not of type A or B -that is, they are the components which do not have a characteristic. If $x$ belongs to a type C orbit, then $x \phi^{\ell}=z \Delta$ for some $z$ of type B . That is, type C orbits are those 'below' type B orbits.

Note: Type B components must be semi-infinite, but not all semi-infinite components are of type B. Complete infinite components are always of type $C$, but some semi-infinite components are of type $C$ too.
class thompson. orbits. Component Type
This class is essentially a glorified enumeration: its instances store a number from 1 to 5 to represent the type of a component.

Variables characteristic - Either the characteristic $(m, \Gamma)$ of this component, or None if this component has no characteristic. Periodic components have characteristic $(m, \varepsilon)$, where $\varepsilon$ is the empty word.

## See also:

Section 4.1 of the paper.

## classmethod periodic (period)

Describes a complete finite (i.e. periodic, type 2) component. The argument is the period of the the component.

## classmethod semi_infinite (characteristic, backward=False)

Describes a semi-infinite component (types 3, 4). The first argument is the characteristic of the component; use None if this component doesn't have a characteristic. The second argument should specify where this component is left or right semi-infinite.

## classmethod complete_infinite()

Describes a component which is infinite in both directions (type 1).

## classmethod incomplete ()

Describes a component which is incomplete finite (type 5).

```
is_type_A()
```

Returns true if this component belongs to an orbit of type A (periodic).

```
is_type_B()
```

Returns true if this component belongs to an orbit of type $B$ (has a characteristic)

## is_type_C()

Returns true if this component belongs to an orbit of type C (does not have a characteristic)

```
is_incomplete()
```

Returns True if this component is incomplete, otherwise False.

```
is_semi_infinite()
```

Returns True is this component is semi_infinite (with or without characteristic); otherwise returns False.

### 3.7.2 The SolutionSet structure

Solutions to the equation $u \psi^{m}=v$ come in specific instances. If there are no solutions, the solution set is $\emptyset$. Otherwise $u$ and $v$ share an orbit. If this orbit is periodic, then the solution set is of the form $m+p \mathbb{Z}$, where $p$ is the period of the orbit. Otherwise the solution set is a single integer $m$.

Internally we represent this as a pair (base, increment) of integers. The first element base is a solution $m$ if it exists; otherwise None. The second element increment is the increment $p$ between solutions (which occurs for a periodic orbit only).

## class thompson.orbits.SolutionSet

Solution sets to the orbit sharing test $u \phi^{k}=v$. These are either
-empty (no such $k$ ) exists;
-a singleton; or
-a linear sequence $a+b * n$.
Create solution sets as follows:

```
>>> print(SolutionSet (5, 2))
{..., 3, 5, 7, 9, 11, 13, ...}
>>> print(SolutionSet.singleton(4))
{4 }
>>> print(SolutionSet.empty_set())
{}
>>> print(SolutionSet.the_integers())
{..., -1, 0, 1, 2, 3, 4, ...}
```

is_sequence ()

Returns True if this set contains more than one distinct element; otherwise returns False.

```
>>> SolutionSet.empty_set().is_sequence()
False
>>> SolutionSet.singleton(2).is_sequence()
False
>>> SolutionSet(base=4, increment=3).is_sequence()
True
>>> SolutionSet.the_integers().is_sequence()
True
```

is_singleton()
Returns True if this contains precisely one element, otherwise False.

```
>>> SolutionSet.empty_set().is_singleton()
False
>>> SolutionSet.singleton(2).is_singleton()
True
>>> SolutionSet(base=4, increment=3).is_singleton()
False
>>> SolutionSet.the_integers().is_singleton()
False
```

is_empty ()
Returns True if this set is empty, otherwise False.

```
>>> SolutionSet.empty_set().is_empty()
True
>>> SolutionSet.singleton(2).is_empty()
False
>>> SolutionSet(base=4, increment=3).is_empty()
False
>>> SolutionSet.the_integers().is_empty()
False
```

is_the_integers()
Returns True if this set contains every integer; otherwise returns False.

```
>>> SolutionSet.empty_set().is_the_integers()
False
>>> SolutionSet.singleton(2).is_the_integers()
False
>>> SolutionSet(base=4, increment=3).is_the_integers()
False
>>> SolutionSet.the_integers().is_the_integers()
True
```

contains__(other)

Returns true if this set contains an other number.

```
>>> 1024 in SolutionSet.empty_set()
False
>>> 1024 in SolutionSet.singleton(128)
False
>>> 1024 in SolutionSet(0, 256)
True
>>> 1024 in SolutionSet.the_integers()
True
```


## and__(other)

The \& operator (usually used for bitwise and) stands for intersection of sets.

```
>>> phi = SolutionSet.empty_set()
>>> Z = SolutionSet.the_integers()
>>> singleton = SolutionSet.singleton
>>> print(phi & phi)
{}
>>> print(phi & singleton(1))
{}
>>> print(phi & SolutionSet(2, 3))
{}
>>> print(singleton(1) & singleton(1))
{1}
>>> print(singleton(1) & singleton(2))
{}
>>> print(singleton(8) & SolutionSet(4, 2))
{8}
>>> print(SolutionSet(1, 3) & SolutionSet(2, 3))
{}
>>> print(SolutionSet(1, 3) & SolutionSet(1, 2))
{..., -5, 1, 7, 13, 19, 25, ...}
>>> print(SolutionSet(1, 18) & SolutionSet(5, 24))
{}
>>> print(SolutionSet(1, 18) & SolutionSet(13, 24))
{..., -35, 37, 109, 181, 253, 325, ...}
>>> print(SolutionSet(1, 3) & Z)
{..., -2, 1, 4, 7, 10, 13, ...}
>>> print(Z & Z)
{..., -1, 0, 1, 2, 3, 4, ...}
```


### 3.7.3 Helper functions

thompson.orbits.print_component_types (aut, basis=None, words=None)
Prints the classification of the components under aut of each word in words with respect to basis. If basis is omitted, it is taken to be the smallest possible expansion which could potentially be a semi-normal basis; see seminormal_form_start_point (). If words is omited, it is taken to be the same as basis.

```
>>> print_component_types(load_example('arity_three_order_inf'))
x1 al: Left semi-infinite component with characteristic (-1, al)
x1 a2: Bi-infinite component
x1 a3 a1: Bi-infinite component
x1 a3 a2: Bi-infinite component
x1 a3 a3: Right semi-infinite component with characteristic (1, a1)
with respect to the basis [x1 a1, x1 a2, x1 a3 a1, x1 a3 a2, x1 a3 a3]
```

```
>>> print_component_types(load_example('arity_four'))
x1 al al: Periodic component of order 4
```

```
x1 a1 a2: Periodic component of order 4
x1 a1 a3: Periodic component of order 4
x1 a1 a4: Periodic component of order 4
x1 a2: Bi-infinite component
x1 a3: Right semi-infinite component with characteristic (1, a3)
x1 a4: Left semi-infinite component with characteristic (-1, a4)
with respect to the basis [x1 a1 a1, x1 a1 a2, x1 a1 a3, x1 a1 a4, x1 a2, x1 a3, x1] a4]
```


## See also:

The orbit_type() method.
class thompson.orbits.Characteristic (power, multiplier)

## __getnewargs__()

Return self as a plain tuple. Used by copy and pickle.
__getstate__()
Exclude the OrderedDict from pickling
static __new__ (_cls, power, multiplier)
Create new instance of Characteristic(power, multiplier)
$\qquad$ ()

Return a nicely formatted representation string

## multiplier

Alias for field number 1
power
Alias for field number 0

### 3.7.4 Next steps

With tools to describe orbits in hand, we can dive straight into the Automorphism class. In particular, we need to know how orbits work to

- determine quasinormal bases
- perform the orbit sharing test
- perform the conjugacy test


### 3.8 MixedAuts

A general automorphism $\phi \in G_{n, r}$ may exhibit periodic behaviour, infinite behaviour, or a mix of both. We say that an automorphism is

- purely periodic if it has finite order;
- purely infinite if it has no periodic orbits; and
- mixed otherwise.

We can represent a mixed automorphism $\psi$ as a free product $\psi=\psi_{P} * \psi_{I}$ of a purely periodic and purely infinite automorphism. The automorphisms $\psi_{P}$ and $\psi_{I}$ are called free_factors (). We form this decomposition because the conjugacy problem is easier to solve when the automorphisms are both pure infinite or both pure periodic.

This class is responsible for:

- Generating the free factors from a mixed automorphism;
- Combining a periodic and infinite factor into a mixed automorphism; and
- Delegating the conjugacy and power conjugacy tests to these factors.


### 3.8.1 The MixedAut class

class thompson.mixed.MixedAut (domain, range, reduce=True)

## free_factors()

In principle, an automorphism can be decomposed into free factors using any partition of the quasi-normal basis $X=X_{1} \sqcup X_{2}$. The decomposition $X=X_{P} \sqcup X_{I}$ is particularly interesting since these sets generate $\psi$-invariant subalgebras, which means that a conjugator can be reassembled from conjugators of the factors.

## See also:

This jargon comes from Theorem 5.1.
This is a convenience method which produces the free factors $\psi_{P}$ and $\psi_{I}$ from $\psi$.

## free_factor (generators)

This method restricts the current automorphism to the subalgebra generated by the given set $W$ of generators. This is then transformed into an automorphism of an isomorphic algebra with minimal alphabet size $1 \leq s \leq n-1$.

$$
\begin{aligned}
& G_{n, r} \\
\rightarrow & G_{n,|W|} \\
\rightarrow & G_{n, s} \\
& \phi \\
\mapsto & \left.\phi\right|_{W\langle A\rangle\langle\lambda\rangle} \\
\mapsto & \phi^{\prime}
\end{aligned}
$$

Returns The transformed automorphism $\phi \in G_{n, s}$. Its type is PeriodicAut or InfiniteAut as appropriate.

Raises ValueError - if an empty list of generators is provided.

```
>>> phi = load_example('alphabet_size_two')
>>> qnb = phi.quasinormal__basis
>>> p, i = phi._partition_basis (qnb)
>>> print (phi.free_factor(p))
PeriodicAut: V(3, 1) -> V(3, 1) specified by 1 generators (after expansion and reduction).
This automorphism was derived from a parent automorphism.
'x' and 'y' represent root words of the parent and current derived algebra, respectively.
x1 a1 ~> y1 => y1 ~> x1 al
>>> print(phi.free_factor(i))
InfiniteAut: V(3, 1) -> V(3, 1) specified by 5 generators (after expansion and reduction).
This automorphism was derived from a parent automorphism.
'x' and 'y' represent root words of the parent and current derived algebra, respectively.
x1 a2 ~> y1 a1 => y1 a1 a3 ~> x1 a2 a3
x1 a3 ~> y1 a2 => y1 a3 ~> x2
x2 a1 ~> y1 a3 a1 => y1 a2 ~> x1 a3
x2 a2 ~> y1 a3 a2 => y1 a1 a2 ~> x1 a2 a2
x2 a3 ~> y1 a3 a3 => y1 a1 a1 ~> x1 a2 a1
```

test_conjugate_to (other)
Determines if the current automorphism $\psi$ is conjugate to the other automorphism $\phi$.
Returns if it exists, a conjugating element $\rho$ such that $\rho^{-1} \psi \rho=\phi$. If no such $\rho$ exists, returns None.

Raises ValueError - if the automorphisms have different arities or alphabet sizes.

```
>>> psi, phi = random_conjugate_pair()
>>> rho = psi.test__conjugate_to(phi)
>>> rho is not None
True
>>> psi * rho == rho * phi
True
>>> psi, phi = load__example_pair('first_pond_example')
>>> rho = psi.test__conjugate_to(phi)
>>> rho is not None
True
>>> psi * rho == rho * phi
True
```


## See also:

This is an implementation of Algorithm 5.6 in the paper. It depends on Algorithms 5.13 and 5.27; these are the periodic and infinite tests for conjugacy.
find_power_conjugators (other, cheat=False)
Determines if some power of the current automorphism $\psi$ is conjugate to some power of the other automorphism $\phi$. This method exhaustively searches for all minimal solutions $(a, b, \rho)$ such that $\rho^{-1} \psi^{a} \rho=\phi^{b}$. This method returns a generator which yields such minimal solutions.

Warning: If the power_conjugacy_bounds () are reasonable large (say $>30$ ), this method could potentially take a long time!

Parameters cheat - (internal) for speeding up testing.
Raises ValueError - if the automorphisms have different arities or alphabet sizes.

## See also:

This is an implementation of Algorithm 6.13 in the paper. It depends on Algorithms 5.6 (the con jugacy test) and 6.11 (the infinite power conjugate test.)

## test_power_conjugate_to (other, cheat=False)

Determines if some power of the current automorphism $\psi$ is conjugate to some power of the other automorphism $\phi$. This method searches for a single minimal solution $(a, b, \rho)$ such that $\rho^{-1} \psi^{a} \rho=\phi^{b}$. If no such solution exists, returns None.

Warning: If the power_conjugacy_bounds () are reasonable large (say > 30), this method could potentially take a long time!

Parameters cheat - (internal) for speeding up testing.
Raises ValueError - if the automorphisms have different arities or alphabet sizes.

```
>>> psi, phi = load_example_pair('mixed_pconj')
>>> a, b, rho = psi.test_power_conjugate_to(phi)
>>> a, b
(6, 3)
>>> psi**a * rho == rho * phi ** b
True
```


## See also:

This is an implementation of Algorithm 6.13 in the paper. It depends on Algorithms 5.6 (the con jugacy test) and 6.11 (the infinite power conjugate test.)

### 3.8.2 Next steps

To complete the details of the con jugacy test, we have to be able to test if two pure periodic automorphisms are conjugate and if two pure infinite automorphisms are conjugate. Any given automorphism can be broken down into a pure periodic and pure infinite part. These parts are called free factors.

### 3.9 Free Factors and conjugacy

To test for conjugacy we need to extract periodic and infinite components of an automorphism and test those components for conjugacy. These next few classes keep track of

- how the components embed into the original automorphism, and
- any extra information that we need to test the components for conjugacy.


### 3.9.1 Periodic Factors

class thompson.periodic.PeriodicAut (domain, range, reduce=True)
A purely periodic automorphism, which may have been extracted from a mixed automorphism.

```
>>> example_5_9 = load_example('example_5_9')
>>> print (example_5_9)
PeriodicAut: V(2, 1) -> V(2, 1) specified by 7 generators (after expansion and redulction).
x1 a1 a1 a1 -> x1 a1 a1 a2
x1 a1 a1 a2 -> x1 a1 a2
x1 a1 a2 -> x1 a1 a1 a1
x1 a2 a1 a1 -> x1 a2 a1 a2
x1 a2 a1 a2 -> x1 a2 a1 a1
x1 a2 a2 a1 -> x1 a2 a2 a2
x1 a2 a2 a2 -> x1 a2 a2 a1
>>> sorted(example_5_9.cycle_type)
[2, 3]
>>> #Two orbits of size 2, one orbit of size 3
>>> from pprint import pprint
>>> pprint(example_5_9.multiplicity)
{2: 2, 3: 1}
>>> example_5_9.order
6
```

```
>>> load_example('cyclic_order_six').order
6
>>> phi = random_periodic_automorphism()
>>> 1 <= phi.order < float('inf')
True
>>> len(phi.cycle_type) != 0
True
>>> len(phi.characteristics)
0
```

test_conjugate_to (other)
We can determine if two purely periodic automorphisms are conjugate by examining their orbits.

```
>>> psi_p, phi_p = load_example('example_5_12_psi'), load_example('example_5_12_phi')
>>> rho_p = psi__p.test_conjugate_to(phi_p)
>>> print(rho_p)
PeriodicAut: V(2, 1) -> V(2, 1) specified by 6 generators (after expansion and reduction).
x1 a1 a1 a1 a1 -> x1 a1 a2
x1 a1 a1 a1 a2 -> x1 a2 a2
x1 a1 a1 a2 -> x1 a1 a1 a1
x1 a1 a2 -> x1 a2 a1 a1
x1 a2 a1 -> x1 a1 a1 a2
x1 a2 a2 -> x1 a2 a1 a2
>>> rho_p * phi_p == psi_p * rho_p
True
>>> psi__p, phi_p = random_conjugate_periodic_pair()
>>> rho_p = psi_p.test_conjugate_to(phi_p)
>>> rho_p * phi_p == psi_p * rho_p
True
```


## See also:

This implements algorithm 5.13 of the paper-see section 5.3.
find_power_conjugators (other, identity_permitted=False, cheat=False)
test_power_conjugate_to (other, cheat=False)
Tests two periodic factors to see if they are power conjugate. Yields minimal solutions $(a, b, \rho)$. such that $\rho^{-1} \psi^{a} \rho=\phi^{b}$.

## See also:

Section 6.1 of the paper.
power_conjugacy_bounds (other, identity_permitted)
We simply try all powers of both automorphisms. There are only finitely many, because everything is periodic.

Returns self.power, other.power if the identity is permitted as a solution; otherwise self.power - 1, other.power - 1.

## Todo

Maybe this should be 0 to order if the identity is permitted and 1 to order otherwise?

## See also:

Section 6.1 of the paper.

### 3.9.2 Infinite Factors

class thompson.infinite. InfiniteAut (domain, range, reduce=True)
A purely infinite automorphism which may have been extracted from a mixed automorphism.

```
>>> print(load_example('example_5_3').free_factors() [1])
InfiniteAut: V(2, 1) -> V(2, 1) specified by 6 generators (after expansion and redulction).
This automorphism was derived from a parent automorphism.
'x' and 'y' represent root words of the parent and current derived algebra, respectively.
x1 al al al al ~> y1 a1 a1 a1 => y1 al al ~> x1 al al al
```

```
x1 a1 a1 a1 a2 ~> y1 a1 a1 a2 => y1 a1 a2 a1 ~> x1 a1 a1 a2 a1
x1 a1 a1 a2 ~> y1 a1 a2 }\quad>y\mathrm{ y1 a1 a2 a2 }~>>x1 a1 a1 a2 a
x1 a2 a1 ~> y1 a2 a1 my1 a2 a1 a1 ~> x1 a2 a1 a1
x1 a2 a2 a1 ~> y1 a2 a2 a1 => y1 a2 a1 a2 ~> x1 a2 a1 a2
x1 a2 a2 a2 ~> y1 a2 a2 a2 => y1 a2 a2 ~> x1 a2 a2
>>> phi = random_infinite_automorphism()
>>> phi.order
inf
>>> len(phi.cycle_type)
0
>>> len(phi.characteristics) != 0
True
```

test_conjugate_to (other)
We can determine if two purely infinite automorphisms are conjugate by breaking down the quasi-normal basis into equivalence classes.

```
>>> for psi_i, phi_i in (
... load_example_pair('example_5_26'),
... load_example_pair('inf_conj'),
... random_conjugate_infinite_pair()):
... rho_i = psi_i.test_conjugate_to(phi_i)
... print('Conjugate:', rho_i is not None, ' Conjugator works:', rho_i * phi_i == psi_i
Conjugate: True Conjugator works: True
Conjugate: True Conjugator works: True
Conjugate: True Conjugator works: True
```

```
>>> f, g = (load_example('not_conjugate_' + c) for c in 'fg')
>>> f.is_conjugate_to(g)
False
```


## See also:

This implements Algorithm 5.27 of the paper-see Section 5.4.
equivalence_data (type_b, type_c)
Let $X$ be the quasi-normal basis for the current automorphism $\psi$. We can define an equivalence relation $\equiv$ on $X$ by taking the non-transitive relation

$$
x \equiv y \Longleftrightarrow \exists k, \Gamma, \Delta: x \Gamma \psi^{k}=y \Delta
$$

and allowing it to generate an equivalence relation. This method returns a pair (roots, graph) where

- graph is a DiGraph
-vertices are type B words in $X$
-directed edges $x \rightarrow y$ correspond to the direct relation $x \equiv y$
-the graph is a directed forest
-roots is a list of type B words in $X$
-Each root is the root of a different tree in the forest graph.
This information allows us to (attempt to) compute the images of $X$ under a conjugator given only the images of roots.

See also:
Definition 5.17 through to Lemma 5.20.
potential_image_endpoints (other, self_type_b)
Let x be a type B word with respect to the current automorphism. This returns a mapping which takes x and produces the set of words $w$ which are endpoints of other-orbits which have the same characteristic as $x$.

## See also:

The sets $\mathcal{R}_{i}$ of defintion 5.23.
find_power_conjugators (other, cheat=False)
Tests two infinite factors to see if they are power conjugate. Yields minimal solutions ( $a, b, h o$ ).

```
>>> example_6_8_psi, example_6_8_phi = load_example_pair('example_6_8')
>>> solns = example_6_8_psi.find_power_conjugators(example_6_8_phi)
>>> for a, b, rho in solns:
... print(a, b)
... assert example_6_8_psi ** a * rho == rho * example_6_8_phi ** b
3 1
-3 -1
```

Warning: If the power_conjugacy_bounds () are reasonable large (say > 30), this method could potentially take a long time!

## See also:

Algorithm 6.11 of the paper.
test_power_conjugate_to (other, cheat=False)
Tests two infinite factors to see if they are power conjugate. If a solution exists, returns $(a, b, \rho)$ such that $\rho^{-1} \psi^{a} \rho=\phi^{b}$. Otherwise returns None.

```
>>> result = example_6_8_psi.test_power_conjugate_to(example_6_8_phi)
>>> result is not None
True
>>> a, b, rho = result
>>> (example_6_8_psi ** a) * rho == rho * (example_6_8_phi ** b)
True
```

Warning: If the power_conjugacy_bounds () are reasonable large (say > 30), this method could potentially take a long time!

## See also:

Algorithm 6.11 of the paper.
power_conjugacy_bounds (other)
Compute the bounds $\hat{a}, \hat{b}$ on powers which could solve the power conjugacy problem.

```
>>> example_6_8_psi.power_conjugacy_bounds (example_6_8_phi)
(9, 1)
```


## See also:

Proposition 6.6 and Corollary 6.7.
minimal_partition()
Let $\psi$ be the current automorphism. This method partitions the characteristics $M_{\psi}$ into cells $P_{1} \sqcup \cdots \sqcup P_{L}$, where - The multipliers $\Gamma$ all have the same root (), for all $(m, \Gamma)$ in each $P_{i}$. - L is minimal with this property.

```
>>> def print_partition(p):
... for root in sorted(p.keys(), reverse=True):
... print(format (root), end = ':')
... for power, mult, _ in p[root]:
... print(' ({}, {})'.format(power, format(mult)), end='')
 print()
>>> print_partition(example_6_8_psi.minimal_partition())
a1: (-1, a1)
a2: (1, a2)
>>> print_partition(example_6_8_phi.minimal_partition())
a1: (-1, a1 a1 a1)
a2: (1, a2 a2 a2)
>>> example_6_9_psi, example_6_9_phi = load_example_pair('example_6_9')
>>> print_partition(example_6_9_phi.minimal_partition())
a1: (-2, a1)
a2: (1, a2)
```

Returns a dictionary of sets. The keys of this dictionary are the roots $\sqrt{\Gamma}$; the values are the cells $P_{i}$. An element of a cell looks like $m, \Gamma, r$ where $m, \Gamma$ is a characteristic and $r$ is the root power corresponding to $\sqrt{\Gamma}$.

## See also:

the discussion following Corollary 6.7.
static compute_bounds (s_parts, o_parts)
Computes the bounds $\hat{a}, \hat{b}$ (in terms of the partitions $P, Q$ given by $s_{\_}$parts and o_parts) as in eqns (14) and (15) of the paper.

```
>>> def bounds(s, o):
... P = s.minimal_partition()
... Q = o.minimal_partition()
... a_hat = InfiniteAut.compute_bounds(P, Q)
... b_hat = InfiniteAut.compute_bounds(Q, P)
... return a_hat, b_hat
>>> bounds(example_6_8_psi, example_6_8_phi)
(9, 1)
>>> bounds(example_6_9_psi, example_6_9_phi)
(1, 2)
```


### 3.9.3 Next steps

With these classes, the conjugacy and power conjugacy tests are implemented. The other important part of this package is the examples module.

### 3.10 Examples

This module provides a number of explicit examples for use in doctests. Additionally, functions to generate random automorphisms are provided.

### 3.10.1 Explict named examples

A list of named examples is loaded from the . aut files in the examples folder. This includes all the examples given in the paper, as well as others used to test the package. Use the following functions to load one of these examples.
thompson.examples.available_examples()
Returns an iterator yielding the names of the examples that are provided with the package. (Note that the full list is provided in this documentation.)

```
>>> list(available_examples()) [:4]
['alphabet_size_two', 'arity_four',' 'arity_three_order_inf', 'bleak_alpha']
```

thompson.examples.load_example (name)
Loads the example with the given name from disk. A corresponding Automorphism instance is created and returned. The results are cached, so call this method as often as you like.
thompson.examples.load_example_pair (name)
Loads a pair of examples, *name*_psi and *name*_phi.
Return type a 2-tuple of automorphisms.
thompson.examples.load_all_examples()
Loads (and processes) all examples provided by the package. Returns a dictionary whose keys are the example names and whose values are the loaded automorphisms.

Note: To discourage use of this function, it is not available when importing * from thompson.examples. Instead it must be explicitly imported with from thompson.examples import load_all_examples.

Warning: Some of the examples are slow to process, so calling this could take a long time.
thompson.examples.standard_generator ( $n=0$ )
Produces the standard generator $X_{n}$ of $F$ as described in [CFP96]. For instance, $X_{0}$ is the following:

```
>>> print(standard_generator())
InfiniteAut: V(2, 1) -> V(2, 1) specified by 3 generators (after expansion and redulction).
x1 a1 -> x1 al a1
x1 a2 a1 -> x1 a1 a2
x1 a2 a2 -> x1 a2
```

For $n>0$ the element $X_{n}$ is a Mixed automorphism, consisting of a large fixed part and a smaller part which looks like $X_{0}$.

```
>>> from random import randint
>>> n = randint(1, 20)
>>> x_n = standard_generator(n)
>>> type(x_n)
<class 'thompson.mixed.MixedAut'>
```

The $X_{n}$ generate $F$; in fact just $X_{0}$ and $X_{1}$ are sufficient, due to the relation $X_{k}^{-1} X_{n} X_{k}=X_{n+1}$ for $k<n$. See [CFP96] for more details.

```
>>> x_k = standard_generator(randint(0, n-1))
>>> x_k * x_n * ~x_k == standard_generator(n+1) #operation is the other way round in Python
True
```


## Todo

Add the named generators A, B, C of Thompson's T and V. Analogues for general G_n,r?

## List of named examples

Note that some automorphisms have more than one name-they will appear once in this list for every alias.
alphabet_size_two A toy example to test that the program works in $V_{3,2}$.
arity_four Another example for sanity checking. This is an automorphism of $V_{4,1}$.
arity_three_order_inf A purely infinite automorphism of $V_{3,1}$.
bleak_alpha The element $\alpha$ of $V$ used by Bleak et al [Bleak] to illustrate their train tracks and flow graphs.
cyclic_order_six An introductory example drawn on the board by NB. It is purely periodic of order six.
example_4_1 This example is used in the paper to illustrate the meaning of a semi-normal form (Example 4.11) and of a tree pair diagram (Example 4.1).
example_4_11 This example is used in the paper to illustrate the meaning of a semi-normal form (Example 4.11) and of a tree pair diagram (Example 4.1).
example_4_12 This example is used in the paper to illustrate the meaning of a semi-normal form. This example needs to be expanded from its minimal representation to find a semi-normal (in fact quasi-normal) form.
example_4_17 Nathan's example of an automorphism containing a pond. This was simpler than the first example found.
example_4_33 Nathan's example of an automorphism containing a pond. This was simpler than the first example found.
example_4_35 Nathan's example of an automorphism containing a pond. This was simpler than the first example found.
example_4_5 This example is used to illustrate the different types of components/orbits in the paper.
example_4_7 This example is used to illustrate the different types of components/orbits in the paper.
example_5_12_phi The example used in the paper to demonstrate the periodic conjugacy test.
example_5_12_psi The example used in the paper to demonstrate the periodic conjugacy test.
example_5_15 This example is used in the paper to illustrate the process of finding the quasi-normal basis.
example_5_18 This example is used in the paper to illustrate the process of finding the quasi-normal basis.
example_5_2 This example is used to illustrate the different types of components/orbits in the paper.
example_5_26_phi This example is used in the paper to illustrate the process of finding the quasi-normal basis.
example_5_26_psi The example used in the paper to demonstrate the infinite conjugacy test.
example_5_3 This example is used to demonstrate how we can break down an automorphism into its free_factors().
example_5_9 This example is used in the paper to illustrate the definition of cycle types.
example_6_2 Example 6.2 of the paper, used to illustrate lemma 6.1.
example_6_8_phi A purely infinite automorphism which illustrates the bounds $\hat{a}, \hat{b}$ for power conjugacy.
example_6_8_psi This example is used in the paper to illustrate the meaning of a semi-normal form (Example 4.11) and of a tree pair diagram (Example 4.1).
example_6_9_phi Example 6.2 of the paper, used to illustrate lemma 6.1.
example_6_9_psi This example is used in the paper to illustrate the meaning of a semi-normal form (Example 4.11) and of a tree pair diagram (Example 4.1).
first_pond_example_phi The first example of a pond orbit, found by a random search. Its banks are $x \alpha_{1}^{4} \alpha_{2}$ and $x \alpha_{1} \alpha_{2}^{2}$.
first_pond_example_psi The element which was conjugate to the first example of a pond orbit, found by a random search.
four_minimal_revealing_pairs I think this automorphism has 4 minimal revealing pairs. It has an orbit of characteristic $\left(-4, \mathrm{a} 1^{\wedge} 4\right)$ spread apart over four components of $A \backslash B$. Brin's algorithm would have you add three of these components to the tree, and I think the component you DON'T add is the one that determines the revealing pair.
inf_conj_phi An example used to debug the infinite conjugacy test.
inf_conj_psi An example used to debug the infinite conjugacy test.
mixed_pconj_phi An example of mixed power conjugacy found by random search. Should have $\psi^{-4} \sim \phi^{2}$.
mixed_pconj_psi An example of mixed power conjugacy found by random search. Should have $\psi^{-4} \sim \phi^{2}$.
multiple_classes A purely infinite automorphism for which there are two equivalence classes defined on X. This was the first example found (via random search) of such an automorphism. Photographic notes are contained in /thompson/examples.
multiple_classes_smaller A purely infinite automorphism for which there are two equivalence classes defined on X. It was more straightforward to see that this automorphism had two equivalence classes.
nathan1_example One of Nathan's examples. This is almost, but not quite conjugate to nathan_pond_example. Nathan had this to say: "I untwisted one of the infinite orbits after a conjugation and so they definitely should not be conjugate."
nathan_pond_example Nathan's example of an automorphism containing a pond. This was simpler than the first example found.
no_minimal_revealing An example from section 3.6 of [SD10]. This is an automorphism $f \in G_{2,1}$ for which there is no minimal revealing pair from which every other revaling pair can be obtained via rollings.
non_dyadic_fixed_point In their paper introducing strand diagrams, Belk and Matucci provide an example of an element of $F$ which has a non-dyadic fixed point. This is a slight simplification of that example.
non_revealing A purely infinite automorphism for which - The minimal representation does NOT correspond to a revealing pair; and - The quasinormal basis does NOT correspond to a revealing pair.
not_conjugate_f At first glance this automorphism looks like it could be conjugate to not_conjugate_g; indeed this satisfies the criteria of theorem 2 in [SD10]. However the infinite conjugacy test only yields one potential conjugator $\rho$ which turns out not to be an automorphism (in fact, just an endomorphism) of $V_{2,1}$.
not_conjugate_g At first glance this automorphism looks like it could be conjugate to not_conjugate_f; indeed this satisfies the criteria of theorem 2 in [SD10]. However the infinite conjugacy test only yields one potential conjugator $\rho$ which turns out not to be an automorphism (in fact, just an endomorphism) of $V_{2,1}$.
olga_f An automorphism described in example 5 of [SD10]. Nathan had this to say: "olga_f is conjugate to olga_g, via a rho that can be found using your program or olga_h. Note that characteristics are not the same for two of the semi-infinite orbits."
olga_g An automorphism described in example 5 of [SD10]. Nathan had this to say: "olga fis conjugate to olga $\_$, via a rho that can be found using your program or olga_h. Note that characteristics are not the same for two of the semi-infinite orbits."
olga_gdash An automorphism described in example 5 of [SD10]. The paper claims that olga_f and olga_gdash are not conjugate.
olga_h An automorphism described in example 5 of [SD10]. Nathan had this to say: "olga_f is conjugate to olga_g, via a rho that can be found using your program or olga_h. Note that characteristics are not the same for two of the semi-infinite orbits."
periodic_QNB_206 This purely periodic automorphism (again found by random search) has a quasinormal basis of size 206.
periodic_QNB_344 This purely periodic automorphism (again found by random search) has a quasinormal basis of size 344.
pond_width_4 An example found by random search of a pond orbit of width 4. Prior to this we had only seen ponds of width 1 or 2 .
power_smaller_QNB The square of this automorphism appears to have a QNB above the QNB of the original automorphism.
semi_inf_c An example of an automorphism whose quasi-normal basis $X$ contains an element $x \alpha_{2} \alpha_{1}$ which belongs to a semi-infinite $X$-component which is not characteristic.

### 3.10.2 Randomly generated examples

## Words

## thompson.examples.random_signature()

Randomly generates a Signature $(n, r)$ for use in the functions below. The values of $n$ and $r$ are chosen (uniformly) at random from $n \in\{2,3,4\}$ and $r \in\{1,2,3,4,5\}$, respectively.

Note: This function is used to select a random signature when no signature argument is provided to the following random functions.
thompson.examples.random_simple_word (signature=None)
Randomly generates a simple Word belonging to the algebra with the given signature. The word consists of an $x_{i}$ followed by $0-15$ descendant operators $\alpha_{j}$. The length and the index of each $\alpha_{j}$ is chosen (uniformly) at random.

```
>>> random_simple_word().is_simple()
True
```

thompson.examples.random_basis (signature=None, num_expansions=None, *args, **kwargs)
Randomly generates a basis for the algebra with the given signature $(n, r)$. The basis is generated by expanding the standard_basis() num_expansions times. The expansion point is chosen (uniformly) at random each time. If num_expansions is not provided, a value from $\{1,2,3,4,5\}$ is chosen (uniformly) at random.

```
>>> random_basis().is_basis()
True
```

Note: This does not generate bases uniformly at random. For instance, take $V_{n, r}=V_{2,1}$ and let num_expansions $=3$. The first expansion always gives the basis $\left[x \alpha_{1}, x \alpha_{2}\right]$. Expanding this twice produces give six bases, one of which appears twice. (To see this, enumerate the rooted binary trees with four leaves.)

## Automorphisms

thompson.examples.random_automorphism(signature=None, num_expansions=None, *args, **kwargs)
Randomly generates an automorphism for the algebra with the given signature. Two bases domain and range are generated by random_basis(). Then the range is manipulated according to the group we're interesting in. For group $=={ }^{\prime} \mathrm{V}^{\prime}$, we randomly shuffle the range; for group $=={ }^{\prime} \mathrm{T}^{\prime}$, we cyclicly permute the range; for group $=='^{\prime} F^{\prime}$ we do nothing.

```
>>> random_automorphism(group='T').cycles_order()
True
>>> random_automorphism(group='F').preserves_order()
True
```

An automorphism is returned which maps the elements of domain to those of range in whichever order results.

Note: The bases may be reduced when the automorphism is created (if they contain redundancy).
thompson.examples.random_periodic_automorphism (signature=None,

$$
\begin{aligned}
& \text { num_expansions=None, } \quad \text { *args, } \\
& \text { **kwargs }
\end{aligned}
$$

Randomly generates an automorphism for the algebra with the given signature. A basis domain is generated by random_basis (). A copy range is made of domain, and is then randomly shuffled. An automorphism is returned which maps the elements of domain to those of range in order.

Note: The bases may be reduced when the automorphism is created (if they contain redundancy.
thompson.examples.random_infinite_automorphism (signature=None, num_expansions $=$ None, $\quad$ *args, ***wargs)
Randomly generates an infinite automorphism—either by chance, or by extracting an infinite free_factor().
thompson.examples.random_conjugate_pair (signature=None, num_expansions=None, *args, **kwargs)
Calls random_automorphism () to create two automorphisms $\psi$ and $\rho$. Returns the pair $\left(\psi, \rho^{-1} \psi \rho\right)$, which are conjugate by definition.
thompson.examples.random_conjugate_periodic_pair (signature=None, num_expansions $=$ None, $\quad$ args, The same as random_conjugate_pair(), except $\psi$ is chosen to be a random_periodic_automorphism().
thompson.examples.random_conjugate_infinite_pair (signature $=$ None,
num_expansions $=$ None, $\quad$ args, **kwargs)
The same as random_conjugate_pair(), except $\psi$ is chosen to be a random_infinite_automorphism().
thompson.examples.random_power_conjugate_pair (signature=None, num_expansions $=$ None, *args, **kwargs)
Generates $\psi, \rho$ using random_automorphism() and random powers $a, b$. Returns the tuple $(\Psi, \Phi)=$ $\left(\psi^{b}, \rho^{-1} \psi^{a} \rho\right)$. Note that $\Psi^{a}$ is conjugate to $\Phi^{b}$ via $\rho$.

### 3.11 Drawing automorphisms

It can be helpful to see automorphisms rather than just read a description of them. To that end we introduce functions for rendering automorphisms as tree pair diagrams. The output looks best for automorphisms with a small arity (2-5) and a reasonable number of leaves.

### 3.11.1 Examples

First we take a well-behaved automorphism. The solid carets are those belonging to both the domain and range trees. All other carets are dotted. Some edges are highlighted in red-these correspond to the repellers and attractors discussed by [SD10].

```
>>> from thompson import *
>>> x0 = standard_ggenerator (0)
>>> plot(x0)
>>> forest(x0)
```



Discontinu-
ities are fine too. Here's example_4_17 for instance.

```
>>> pond = load_example('example_4_17')
>>> plot(pond, discontinuities=True)
>>> forest(pond)
```



Let's aim for something more chaotic. This example is complicated enough that the drawings don't really give us much insight into the automorphism.

```
>>> random = random_automorphism() #different every time!
>>> plot(random)
>>> forest(random, horiz=False)
```

i


### 3.11.2 Drawing functions

thompson.drawing.display_file (filepath, format=None)
Display the image at filepath to the user. This function behaves differently, depending on whether or not we execute it in a Jupyter notebook.

If we are not in a notebook, this function opens the given image using the operating system's default application for that file.

If we are in a notebook, this returns an IPython object corresponding to the given image. If this object is the last expression of a notebook code block, the image will be displayed. The image is handled differently depending on its format, which must be specified when the function is called in a notebook. Only the formats 'svg' and 'pdf' are accepted.

Note: PDF files are displayed in a notebook as a rendered PNG. The conversion is made using the convert program provided by ImageMagick, which must be available on the PATH for this function to work with PDF files.

## Todo

use a Python binding to ImageMagick rather than just shelling out?
thompson.drawing.plot (aut, dest=None, display=True, endpoints=False)
Plots the given automorphism as a function $[0,1] \rightarrow[0,1]$. The image is rendered as an SVG using svgwrite.

## Parameters

- dest (str) - the destination filepath to save the SVG to. If None, the SVG is saved to a temporary file location.
- display (bool) - if True, automatically call display_file() to display the SVG to the user. Otherwise does nothing.
- endpoints (bool) - if True, open and closed endpoints are drawn on the plot to emphasise any discontinuities that aut has.
Returns the filepath where the SVG was saved. If dest is None this is a temporary file; otherwise the return value is simply dest.
thompson.drawing.forest (aut, jobname=None, name=' ', display=True, horiz=True)
Draws the given Automorphism as a forest-pair diagram. We use the minimal expansion of the quasi-normal basis as the leaves of the domain forest.

The image is rendered as an PDF using the tikz graph drawing libraries and lualatex.

## Parameters

- jobname (str) - the destination filepath to save the PDF to. A file extension should not be provided. If None, the SVG is saved to a temporary file location.
- name (str) - The label used for the arrow between domain and range forests.
- display (bool) - if True, automatically call display_file () to display the PDF to the user. Otherwise does nothing.
- horiz (bool) - if True, draws the range forest to the right of the domain forest. If false, draws the range forest below the range forest.

Returns the filepath where the PDF was saved. If dest is None this is a temporary file; otherwise the return value is simply jobname + '.pdf'.

Note: The graph drawing is done via a TikZ and LaTeX. The source file is compiled using lualatex, which must be available on the PATH for this function to work.

### 3.12 References

The main reference is to the paper describing theory behind these algorithms.

### 3.12.1 From the paper

### 3.12.2 Other references

### 3.13 Todo list

Note: There are also many \#TODO comments scattered throughout the python files.

Warning: Auto-generated page! This does not look pretty.

## Todo

Make this available under an open-source license.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/docs/index.rst, line 38.)

## Todo

This could be made more efficient for large values of power by using knowledge of the component containing key.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.repeated_image, line 18.)

## Todo

This should be renamed to component_type.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.orbit_type, line 87.)

## Todo

This method is badly named; something like test_revealed_by (basis) would be better.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.test_revealing, line 21.)

## Todo

This method is badly named; something like is_revealed_by (basis) would be better.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/automorphism.py:docstring of thompson.automorphism.Automorphism.is_revealing, line 19.)

## Todo

use a Python binding to ImageMagick rather than just shelling out?
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/drawing/__init__.py:docstring of thompson.drawing.display_file, line 14.)

## Todo

Add the named generators A, B, C of Thompson's T and V. Analogues for general G_n,r?
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsons$\mathrm{v} /$ checkouts/stable/docs/thompson.examples.rst, line 19.)

## Todo

Maybe this should be 0 to order if the identity is permitted and 1 to order otherwise?
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/periodic.py:docstring of thompson.periodic.PeriodicAut.power_conjugacy_bounds, line 5.)

## Todo

More convenient ways of inputting words, e.g. $x$ a1^3 instead of $x$ al al a1.
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/word.py:docstring of thompson.word.from_string, line 15.)

## Todo

I think this is a total order-try to prove this. I based the idea on [Zaks] (section 2, definition 1) which describes a total order on $k$-ary trees. On another note, isn't this similar to shortlex order?
(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/thompsonsv/checkouts/stable/thompson/word.py:docstring of thompson.word.Word.__lt_, line 53.)

Indices

- genindex
[BDR] N. Barker, A. J. Duncan, and D. M. Robertson, "The power conjugacy problem in Higman-Thompson groups". (2015) Preprint available at arXiv:1503.01032 [math.GR].
[AS74] M. Anshel and P. Stebe, "The solvability of the conjugacy problem for certain HNN groups", Bull. Amer. Math. Soc., 80 (2) (1974) 266-270.
[B87] K. S. Brown, "Finiteness properties of groups", Journal of Pure and Applied Algebra, 44 (1987) 45-75.
[BCR] J. Burillo, S. Cleary and C. E. R"over, "Obstructions for subgroups of Thompson's group V", arxiv.org/abs/1402.3860
[BGG11] C. Bleak, H. Bowman, A. Gordon, G. Graham, J. Hughes, F. Matucci and J. Sapir, "Centralizers in R.Thompson's group $V_{n} "$, Groups, Geometry and Dynamics 7 , No. 4 (2013), 821-865.
[BK08] V.N. Bezverkhnii, A.N. Kuznetsova, "Solvability of the power conjugacy problem for words in Artin groups of extra large type", Chebyshevskii Sb. 9 (1) (2008) 50-68.
[BM07] J. M. Belk and F. Matucci, "Conjugacy and dynamics in Thompson's groups", Geom. Dedicata 169 (1) (2014) 239-261.
[BMOV] O. Bogopolski, A. Martino, O. Maslakova and E. Ventura, "The conjugacy problem is solvable in free-bycyclic groups", Bulletin of the London Mathematical Society, 38 , (10) (2006) 787-794.
[Bar] N. Barker, "Topics in Algebra: The Higman-Thompson Group $G_{2,1}$ and Beauville $p$-groups", Thesis, Newcastle University (2014)
[Bez14] N.V. Bezverkhnii, "Ring Diagrams with Periodic Labels and Power Conjugacy Problem in Groups with Small Cancellation Conditions C (3)-T (6)", Science and Education of the Bauman MSTU , 14 (11) (2014).
[Brin04] M. G. Brin, "Higher dimensional Thompson groups", Geom. Dedicata, 108 (2004) 163-192.
[CFP96] J. W. Cannon, W.J. Floyd and W. R. Parry, "Introductory notes on Richard Thompson's groups", Enseign. Math. , (2) 42 (3-4) (1996) 215-256.
[Cohn81] P. M. Cohn, "Universal Algebra". Mathematics and its Applications, 6, D. Reidel Pub. Company, (1981).
[Cohn91] P. M. Cohn, "Algebra, Volume 3". J. Wiley, (1991).
[Com77] L. P. J. Comerford, A note on power-conjugacy, Houston J. Math. 3 (1977), no. 3, 337—341.
[DMP14] W. Dicks, C. Martinez-Pérez, "Isomorphisms of Brin-Higman-Thompson groups", Israel Journal of Mathematics, 199 (2014), 189-218.
[Fes14] A.V. Fesenko, "Vulnerability of Cryptographic Primitives Based on the Power Conjugacy Search Problem in Quantum Computing", Cybernetics and Systems Analysis, 50 (5) (2014) 815-816.
[Hig74] G. Higman, "Finitely presented infinite simple groups", Notes on Pure Mathematics, Vol. 8 (1974).
[JT61] B. Jónsson and A. Tarski, "On two properties of free algebras", Math. Scand., 9 (1961) 95-101.
[KA09] D. Kahrobaei and M. Anshel, "Decision and Search in Non-Abelian Cramer-Shoup Public Key Cryptosystem", Groups-Complexity-Cryptology, 1 (2) (2009) 217--225.
[LM71] S. Lipschutz and C.F. Miller, "Groups with certain solvable and unsolvable decision problems", Comm. Pure Appl. Math. , 24 (1971) 7-15.
[Lot83] M. Lothaire, "Combinatorics on Words", Addison-Wesley, Advanced Book Program, World Science Division, (1983).
[MPN13] C. Martinez-Perez, B. Nucinkis, "Bredon cohomological finiteness conditions for generalisations of Thompson's groups", Groups Geom. Dyn. 7 (4) (2013) 931-959.
[MT73] R. McKenzie and R. J. Thompson, "An elementary construction of unsolvable word problems in group theory", Word problems: decision problems and the Burnside problem in group theory, Studies in Logic and the Foundations of Math., 71, pp. 457-478. North-Holland, Amsterdam, (1973).
[Pa11] E. Pardo, "The isomorphism problem for Higman-Thompson groups", Journal of Algebra, 344 (2011), 172-183.
[Pr08] S.J. Pride, "On the residual finiteness and other properties of (relative) one-relator groups", Proc. Amer. Math. Soc. 136 (2) (2008) 377-386.
[R15] D. M. Robertson, "thompson: a package for Python 3.3+ to work with elements of the Higman-Thompson groups $G_{n, r}$ ". Source code available from https://github.com/DMRobertson/thompsons_v and documentation available from http://thompsons-v.readthedocs.org/.
[SD10] O. P. Salazar-Diaz, "Thompson's group V from a dynamical viewpoint", Internat. J. Algebra Comput., , 1, 39-70, 20, (2010).
[Tho] R. J. Thompson, unpublished notes. http://www.math.binghamton.edu/matt/thompson/index.html
[Bleak] C. Bleak et al, "Centralisers in the R. Thompson group $V_{n}$ ", Groups, Geometry, and Dynamics 7, no. 4, pp. 821-865 (2013).
[Kogan] R. Kogan, "nVTrees Applet" (2008). Accessed 17th September, 2014. Source code available on GitHub.
[Zaks] S. Zaks, "Lexicographic generation of ordered trees", Theoretical Computer Science 10: 63-82 (1980).


## t

thompson. automorphism, 30
thompson.drawing, 57
thompson.examples, 50
thompson. generators, 21
thompson.homomorphism, 26
thompson.infinite, 47
thompson.mixed, 43
thompson. number_theory, 9
thompson.orbits, 42
thompson.periodic, 46
thompson.word, 12

## Index

## Symbols

__and__() (thompson.orbits.SolutionSet method), 42
__contains__() (thompson.orbits.SolutionSet method), 41
__contains__() (thompson.word.Signature method), 11
__eq__() (thompson.homomorphism.Homomorphism method), 27
__getnewargs__() (thompson.orbits.Characteristic method), 43
__getstate__() (thompson.orbits.Characteristic method), 43
__init_() (thompson.automorphism.Automorphism method), 31
__init__() (thompson.generators.Generators method), 21
__init__() (thompson.homomorphism.Homomorphism method), 26
__invert__() (thompson.automorphism.Automorphism method), 32
__lt_() (thompson.word.Word method), 16
__mul__() (thompson.homomorphism.Homomorphism method), 28
__new__() (thompson.orbits.Characteristic static method), 43
__new__() (thompson.word.Signature static method), 11
__new__() (thompson.word.Word static method), 16
__pow__() (thompson.automorphism.Automorphism method), 32
__repr__() (thompson.orbits.Characteristic method), 43
__str__() (thompson.homomorphism.Homomorphism method), 29

## A

add_relabellers() (thomp-
son.homomorphism.Homomorphism method), 29
alpha() (thompson.word.Word method), 19
append() (thompson.generators.Generators method), 21
are_contractible() (in module thompson.word), 14
area_to_identity()
son.automorphism.Automorphism 37
as_interval() (thompson.word.Word method), 18
Automorphism (class in thompson.automorphism), 30
available_examples() (in module thompson.examples), 51
C
centralise_period() (thompson.automorphism.Automorphism method), 38
Characteristic (class in thompson.orbits), 43
complete_infinite() (thompson.orbits.ComponentType class method), 40
ComponentType (class in thompson.orbits), 39
compute_bounds() (thompson.infinite.InfiniteAut static method), 50
compute_quasinormal_basis() (thompson.automorphism.Automorphism method), 33
copy() (thompson.generators.Generators method), 21
cycled() (thompson.generators.Generators method), 25
cycles_order() (thompson.automorphism.Automorphism method), 36

D
descendants_above() (thompson.generators.Generators method), 24
display_file() (in module thompson.drawing), 57
divisors() (in module thompson.number_theory), 10
dump_QNB() (thompson.automorphism.Automorphism method), 35

## E

equivalence_data() (thompson.infinite.InfiniteAut method), 48
expand() (thompson.generators.Generators method), 25
expand() (thompson.word.Word method), 19
expand_to_size() (thompson.generators.Generators method), 25
extend() (thompson.word.Word method), 19
extended_gcd() (in module thompson.number_theory), 9

## F

filter() (thompson.generators.Generators method), 21
find_power_conjugators() (thompson.infinite.InfiniteAut method), 49
find_power_conjugators() (thompson.mixed.MixedAut method), 45
find_power_conjugators() (thompson.periodic.PeriodicAut method), 47
forest() (in module thompson.drawing), 58
format() (in module thompson.word), 12
free_factor() (thompson.mixed.MixedAut method), 44
free_factors() (thompson.mixed.MixedAut method), 44
free_monoid_on_alphas() (in module thompson.word), 15
from_file() (thompson.homomorphism.Homomorphism class method), 27
from_string() (in module thompson.word), 12
from_string() (thompson.homomorphism.Homomorphism class method), 27

## G

$\operatorname{gcd}()$ (in module thompson.number_theory), 9
generates_algebra() (thompson.generators.Generators method), 23
Generators (class in thompson.generators), 21

## H

Homomorphism (class in thompson.homomorphism), 26
I
identity() (thompson.homomorphism.Homomorphism class method), 28
image() (thompson.automorphism.Automorphism method), 31
image() (thompson.homomorphism.Homomorphism method), 28
image_of_set() (thompson.automorphism.Automorphism method), 32
image_of_set()
(thompson.homomorphism.Homomorphism method), 29
incomplete() (thompson.orbits.ComponentType class method), 40
InfiniteAut (class in thompson.infinite), 47
is_above() (thompson.generators.Generators method), 23
is_above() (thompson.word.Word method), 17
is_basis() (thompson.generators.Generators method), 23
is_conjugate_to()
son.automorphism.Automorphism 36
is_empty() (thompson.orbits.SolutionSet method), 41
is_free() (thompson.generators.Generators method), 22
is_identity() (thompson.homomorphism.Homomorphism method), 28
is_incomplete() (thompson.orbits.ComponentType method), 40
is_isomorphic_to() (thompson.word.Signature method), 11
is_revealing() (thompson.automorphism.Automorphism method), 37
is_semi_infinite() (thompson.orbits.ComponentType method), 40
is_sequence() (thompson.orbits.SolutionSet method), 41
is_simple() (thompson.word.Word method), 17
is_singleton() (thompson.orbits.SolutionSet method), 41
is_the_integers() (thompson.orbits.SolutionSet method), 41
is_type_A() (thompson.orbits.ComponentType method), 40
is_type_ B() (thompson.orbits.ComponentType method), 40
is_type_C() (thompson.orbits.ComponentType method), 40

## L

lambda_arguments() (in module thompson.word), 14
lcm() (in module thompson.number_theory), 9
load_all_examples() (in module thompson.examples), 51
load_example() (in module thompson.examples), 51
load_example_pair() (in module thompson.examples), 51

## M

max_depth_to() (thompson.word.Word method), 18
minimal_expansion_for() (thompson.generators.Generators method), 24
minimal_partition() (thompson.infinite.InfiniteAut method), 49
MixedAut (class in thompson.mixed), 44
multiplier (thompson.orbits.Characteristic attribute), 43
O
orbit_type() (thompson.automorphism.Automorphism method), 33
P
periodic() (thompson.orbits.ComponentType class method), 40
PeriodicAut (class in thompson.periodic), 46
plot() (in module thompson.drawing), 58
potential_image_endpoints()
(thompson.infinite.InfiniteAut method), 48
power (thompson.orbits.Characteristic attribute), 43
power_conjugacy_bounds() (thompson.infinite.InfiniteAut method), 49
power_conjugacy_bounds()
(thomp-
son.periodic.PeriodicAut method), 47
preorder_traversal() (thompson.generators.Generators method), 22
preserves_order()
son.automorphism.Automorphism 36
print_characteristics() son.automorphism.Automorphism 35
print_component_types() (in module thompson.orbits), 42
prod() (in module thompson.number_theory), 10

## R

random_automorphism() (in module thompson.examples), 55
random_basis() (in module thompson.examples), 54
random_conjugate_infinite_pair() (in module thompson.examples), 55
random_conjugate_pair() (in module thompson.examples), 55
random_conjugate_periodic_pair() (in module thompson.examples), 55
random_infinite_automorphism() (in module thompson.examples), 55
random_periodic_automorphism() (in module thompson.examples), 55
random_power_conjugate_pair() (in module thompson.examples), 55
random_signature() (in module thompson.examples), 54
random_simple_word() (in module thompson.examples), 54
relabel() (thompson.homomorphism.Homomorphism method), 29
repeated_image() (thompson.automorphism.Automorphism method), 32
rewrite_set() (in module thompson.generators), 26
rewrite_word() (in module thompson.generators), 26
$\operatorname{root}()$ (in module thompson.word), 15
rsplit() (thompson.word.Word method), 20

## S

save_to_file() (thompson.homomorphism.Homomorphism method), 27
semi_infinite() (thompson.orbits.ComponentType class method), 40
semi_infinite_end_points()
son.automorphism.Automorphism 34
seminormal_form_start_point() son.automorphism.Automorphism 33
share_orbit() (thompson.automorphism.Automorphism method), 36
Signature (class in thompson.word), 11
(thompmethod),
(thompmethod),
simple_words_above() (thompson.generators.Generators method), 22
SolutionSet (class in thompson.orbits), 40
solve_linear_congruence() (in module thompson.number_theory), 10
solve_linear_diophantine() (in module thompson.number_theory), 10
sort_mapping_pair() (thompson.generators.Generators class method), 25
split() (thompson.word.Word method), 20
standard_basis() (thompson.generators.Generators class method), 24
standard_generator() (in module thompson.examples), 51
standardise() (in module thompson.word), 13
subwords() (thompson.word.Word method), 20
T
test_above() (thompson.generators.Generators method), 23
test_above() (thompson.word.Word method), 18
test_conjugate_to() (thompson.infinite.InfiniteAut method), 48
test_conjugate_to()
(thompson.mixed.MixedAut method), 44
test_conjugate_to() (thompson.periodic.PeriodicAut method), 46
test_free() (thompson.generators.Generators method), 21
test_generates_algebra() (thomp-
son.generators.Generators method), 22
test_power_conjugate_to() (thompson.infinite.InfiniteAut method), 49
test_power_conjugate_to() (thompson.mixed.MixedAut method), 45
test_power_conjugate_to()
(thompson.periodic.PeriodicAut method), 47
test_revealing() (thompson.automorphism.Automorphism method), 37
test_semi_infinite() (thomp-
son.automorphism.Automorphism method), 34
thompson.automorphism (module), 30
thompson.drawing (module), 57
thompson.examples (module), 50
thompson.generators (module), 21
thompson.homomorphism (module), 26
thompson.infinite (module), 47
thompson.mixed (module), 43
thompson.number_theory (module), 9
thompson.orbits (module), 42
thompson.periodic (module), 46
thompson.word (module), 12

## V

validate() (in module thompson.word), 12

## W

Word (class in thompson.word), 16


[^0]:    ${ }^{1}$ This made it easier to catch bugs before they happened when I was passing words around as arguments to functions.

[^1]:    ${ }^{2}$ This made it so much easier to cache the images of homomorphisms, because I could just use a vanilla Python dictionary.

[^2]:    ${ }^{1}$ Sometimes we have to expand free factors so that the orbit sizes match up.

[^3]:    ${ }^{2}$ Exposing more arguments means I can write this function in a more general manner. Doing so makes it easy to compute inverse images under an MixedAut.

