
MagicBox Documentation

UNICEF Office of Innovation

Aug 13, 2018

General:

1 Administrative boundaries 3
1.1 Levels . 3
1.2 Why we use them . 4
1.3 Naming string explained . 5

1.3.1 First integer . 5
1.3.2 Second and third integer . 5
1.3.3 Putting it together . 5

2 Access control 7
2.1 Tokens . 7
2.2 Rules . 8

3 Ingesting data into MagicBox 11
3.1 School data ingestion . 11
3.2 School data database . 12

3.2.1 Inserted data . 12

4 Querying MagicBox data 15
4.1 Cases . 15
4.2 Mobility . 15
4.3 Mosquitoes . 16
4.4 Population . 16
4.5 Schools . 16

4.5.1 How we do it . 16
4.6 Caveats . 18

5 Data ingestion rules 19
5.1 Available flags . 19
5.2 School data file names . 19
5.3 Caveats . 20

6 Data validation 21
6.1 How we do it . 21

6.1.1 Adding new attributes . 22
6.2 Why we do it . 22

7 Data visualization 23

i

7.1 How we do it . 23
7.2 Why we do it . 23

8 How to deploy an application 25
8.1 Create a feature branch for development . 25

8.1.1 Create a tag . 25
8.2 Deploying the application . 26

8.2.1 Adding Azure remote for repository . 26
8.2.2 Pushing changes to the staging slot . 26
8.2.3 Swap staging to production (Web) . 26
8.2.4 Swap staging to production (CLI) . 28

9 GitHub workflow best practices 31
9.1 How to make a new GitHub repository . 31

9.1.1 Repository creation . 31
9.1.2 Configure repository . 32
9.1.3 Set up useful labels . 34
9.1.4 Set up continuous integration (CI) . 35
9.1.5 Set up code health checks with Code Climate . 35
9.1.6 Set up a testing framework . 37

9.2 How to maintain a GitHub repository . 37
9.2.1 Update issue and pull request metadata . 38
9.2.2 Adding labels to issues . 38
9.2.3 Updating project boards . 38
9.2.4 Making pull requests . 38
9.2.5 Reviewing pull requests . 40

9.3 Communicating about development . 41

10 Indices and tables 43

ii

MagicBox Documentation

MagicBox is an open-source platform that uses real-time information to inform life-saving humanitarian responses to
emergency situations. It’s composed of multiple GitHub repositories designed to ingest, aggregate, and serve data.

General: 1

MagicBox Documentation

2 General:

CHAPTER 1

Administrative boundaries

UNICEF uses administrative boundaries (or administrative areas) to define geographic areas in MagicBox and re-
lated projects. Administrative boundaries (ABs) extend the concepts of a country, state, or region. Examples of an
administrative boundary may be. . .

• Country

• State

• Province

• County

• Municipality

• And more. . .

ABs come from GADM and the Humanitarian Data Exchange (HumData), databases of global administrative areas.
In addition, more ABs may come from other sources like municipal governments. These databases make it easier to
work with this data in GIS or related software.

1.1 Levels

Levels are a hierarchy system to explain different concepts of administrative boundaries. For example, a city may
belong to a municipality, which belongs to a country. Levels help us explain this hierarchy.

UNICEF uses this system of levels:

• Level 0: Countries

• Level 1: States

• Level 2: Counties

• Level 3: Municipalities

• And so on. . .

3

http://gadm.org/
https://data.humdata.org/

MagicBox Documentation

1.2 Why we use them

Different definitions of geographic areas by different nations makes worldwide geographic mapping a challenge. Not
everyone uses the same names for regions. In MagicBox projects, each region, or shape, is assigned an admin_id.

An admin_id is an interpretation of a political border for a specific time. They point to a specific shape in a shapefile
that represents an individual country. Time is a part of the admin ID to ingest historical data. For example, mobility
or temperature might require a series from an earlier date where a region was known by a different name.

See the following example of an AB for Afghanistan, with an admin_id.

Fig. 1: Example of an administrative boundary for Afghanistan

To understand where afg_1_11_102-gadm2-8 points to, note that Afghanistan has three levels of administrative
boundaries. The admin_id has three integers, one per admin level:

Fig. 2: Afghanistan has three levels of administrative boundaries

4 Chapter 1. Administrative boundaries

MagicBox Documentation

1.3 Naming string explained

1.3.1 First integer

The first integer is 1 because Afghanistan is the first country in GADM’s database.

Fig. 3: The first few countries in GADM’s database

1.3.2 Second and third integer

Afghanistan has 34 shapes at level one and 320 shapes in level two.

Fig. 4: Afghanistan: Higher level administrative boundaries

1.3.3 Putting it together

Thus, afg_1_11_102-gadm2-8 indicates any population value attached to it is related to:

• First country in the gadm collection

• 11th shape in the admin level 1 shapefile

• 102nd shape in the admin level 2 shapefile

1.3. Naming string explained 5

MagicBox Documentation

Fig. 5: Putting it together: What the admin ID represents

6 Chapter 1. Administrative boundaries

CHAPTER 2

Access control

Information about schools can be sensitive. Potential bad actors could use school data for malicious purposes and
terrorism. How school data is shared outside of the API is important.

MagicBox uses Auth0 to authenticate users and assign them roles.

2.1 Tokens

Auth0 creates tokens for users authenticating to the API. A user may make a request with their token like this.

curl -i localhost:8000/api/v1/schools/countries/GL -H "Token: Bearer
→˓xxxxxxxxxx9gek6Z5Ilnkx"

After receiving the token, UNICEF reviews the applicant before privileges are granted. Once our API receives the
token, we pass it to Auth0 which returns the user’s profile and roles.

7

https://auth0.com/

MagicBox Documentation

2.2 Rules

General rules can be assigned by email domain via Auth0.

See also:

See Data ingestion rules for more information about data rules.

8 Chapter 2. Access control

MagicBox Documentation

Fig. 1: Code that implements checking for the email domain of a user

2.2. Rules 9

MagicBox Documentation

10 Chapter 2. Access control

CHAPTER 3

Ingesting data into MagicBox

Importing new data sets to MagicBox is important for expanding coverage and how we retrieve new data insights.
This document explains how we ingest and import new data to MagicBox.

3.1 School data ingestion

Data for schools comes in CSV files with a specific naming scheme. We developed a Ruby on Rails-based CRUD1

application, Project Connect to ingest this data.

There are two admin interfaces for Rails applications:

• Rails Admin

• Active Admin

Active Admin has an import plugin for uploading CSVs with before_batch_import support. We chose Active
Admin for this reason.

1 Create, Read, Update, Delete

11

https://github.com/unicef/project-connect
https://github.com/activeadmin-plugins/active_admin_import

MagicBox Documentation

3.2 School data database

MagicBox needed a database to manage large amounts of school data and process it quickly. To do this, MagicBox
uses a relational database, PostgreSQL, to store data. PostgreSQL was chosen because it was used in a tutorial for
building a similar use case as ours (thus, a relational database is not a “married” idea).

All school data is stored in a single table named schools. This keeps things simple at the expense of some repeated
values in the database.

3.2.1 Inserted data

When data is imported, new data is inserted alongside the imported data. Four new types of important data are added:

• Provider / owner of school CSV data

• Organization that received school data

• Identity of uploader

• If uploader chooses to remain private

12 Chapter 3. Ingesting data into MagicBox

https://www.postgresql.org/

MagicBox Documentation

These values are not included with the data. We use the before_batch_import hook in Active Admin to parse
file names, insert this data, and assign values.

Fig. 1: Implementation of how data is modified before imported. See schools.rb

3.2. School data database 13

https://github.com/unicef/project-connect/blob/master/app/admin/schools.rb

MagicBox Documentation

14 Chapter 3. Ingesting data into MagicBox

CHAPTER 4

Querying MagicBox data

The MagicBox API (magicbox-open-api) serves different sets of data through its API. Currently, five datasets are
available.

• Cases

• Mobility

• Mosquitoes

• Population

• Schools

The benefit of querying this data is to analyze and cross different data sets together. For example, this is done in
magicbox-maps, where population and mosquito prevelance data are crossed together.

This document explains how the API works but does not document how to use it. For more information on using the
API, see the magicbox-open-api repository.

4.1 Cases

Note: This section needs to be written.

4.2 Mobility

Note: This section needs to be written.

15

https://github.com/unicef/magicbox-open-api
https://github.com/unicef/magicbox-maps
https://github.com/unicef/magicbox-open-api

MagicBox Documentation

4.3 Mosquitoes

Note: This section needs to be written.

4.4 Population

Note: This section needs to be written.

4.5 Schools

The MagicBox API also serves data about schools. The public repositories contain sample data from private data sets.
However, in the interest of the privacy and safety of the schools, the full data sets are kept private.

4.5.1 How we do it

There are three endpoints for querying school data. They serve the following data:

1. List of countries with school data

2. Schools in a country

3. Specific school data by ID value

The first endpoint returns a comma-seperated list of country codes. There is available data about schools in the
countries returned in the list.

The second endpoint returns an array of arrays, where

• First array returns column names (e.g. lat, lon, speed_connectivity, type_connectivity)

• Subsequent arrays return values for school records

The third endpoint returns column values from a specific school, as selected by its ID number. Some of the values
available are listed below:

• Address

• Network connectivity

• Number of teachers

• Number of students

• If electricity is available

• If running water is available

• And more

16 Chapter 4. Querying MagicBox data

MagicBox Documentation

Fig. 1: Example of output from third endpoint inside of a front-end utilizing the API

4.5. Schools 17

MagicBox Documentation

4.6 Caveats

There are some caveats with querying the MagicBox API.

• Cannot specify or limit columns included in response

• Cannot request values where value is null

• Cannot use operators (e.g. greater than, less than, etc.)

18 Chapter 4. Querying MagicBox data

CHAPTER 5

Data ingestion rules

This document explains how the format we receive data in. It also details how certain flags, or rules, are applied to the
data when ingested.

5.1 Available flags

There are two flags available. These flags are applied to data when ingested.

• Private data: Data is private and is only accessible to UNICEF and uploading organization

• Anonymity: Uploading organization chooses to remain anonymous

These flags are not inside of the data sets. The flags must be applied when the data is ingested.

See also:

See Ingesting data into MagicBox for more information about data ingestion.

5.2 School data file names

School mapping data is provided in a unique file name format. Some information must be gathered from the file name.
See this example:

BR-ProCo-0-MCTIC-0.csv

There are five parts to the file name.

1. BR: Country code (BR is Brazil)

2. ProCo: Partner (ProCo is Project Connect)

3. 0: Sets privacy of data (0 is public, 1 is private)

4. MCTIC: Provider (MCTIC is Ministério da Ciência, Tecnologia, Inovação e Comunicação)

19

https://github.com/unicef/project-connect
http://www.mctic.gov.br

MagicBox Documentation

5. 0: Sets privacy of uploader (0 is public, 1 is anonymous)

5.3 Caveats

Code is not yet written to enforce rules. We still need to implement permissions based on user information forwarded
from Auth0.

20 Chapter 5. Data ingestion rules

CHAPTER 6

Data validation

Data validation ensures correct and consistent data is processed and aggregated for use in MagicBox. The validated
data is used by implementations of the MagicBox API, such as magicbox-maps.

This article explains how we verify values, identify duplicates, and merge multiple records into one.

6.1 How we do it

Fig. 1: How magicbox-latlong-admin-server validates coordinate pairs

Data validation is performed by magicbox-latlong-admin-server. The server verifies a pair of latitude / longtitude
coordinates are located within the country indicated by the beginning of a file name.

The data validation program processes every ten minutes as a cron job. It runs a programatic version of this query:

// Do a select on all schools that have not been geo validated
"SELECT id, lat, lon, country_code FROM schools WHERE date_geo_validated IS null AND
→˓lat IS NOT null AND lon IS NOT null"

21

https://github.com/unicef/magicbox-maps
https://github.com/unicef/magicbox-latlong-server
https://github.com/unicef/magicbox-latlong-server
https://github.com/unicef/validate_geo_coordinates

MagicBox Documentation

6.1.1 Adding new attributes

After the data is validated, the magicbox-latlong-admin-server updates attributes for some data. The attributes are only
added if the engine returns an admin area ID for the target country (see Administrative boundaries).

1. date_geo_validated: To CURRENT_TIMESTAMP

2. coords_within_country: true or false

6.2 Why we do it

Some CSV files we import and aggregate contain tens of thousands of records. Data validation is an expensive
operation. We chose not to verify each school’s coordinates in the before_batch_import hook for this reason.

Instead, we opted for the data validation program to run as a cron job every ten minutes to accomplish this.

22 Chapter 6. Data validation

https://github.com/unicef/magicbox-latlong-server
https://github.com/unicef/validate_geo_coordinates

CHAPTER 7

Data visualization

MagicBox is a full-stack application. While the back-end API (magicbox-open-api) serves the data and makes it
available for querying, the magicbox-maps application visualizes the data inside a world map.

7.1 How we do it

magicbox-maps draws the plot points using OpenStreetMap Leaflet and WebGL. WebGL allows us to render up to 16
million clickable points at once.

To do this inside of a React application like magicbox-maps, we created react-webgl-leaflet. This React module
enables us to render several plot points simultaneously, like we use for the school mapping data. Every school is
represented with a unique, clickable point.

Fig. 1: react-webgl-leaflet npm module

This is currently used for magicbox-maps.

7.2 Why we do it

Originally, we began using Leaflet markers. This worked well for Mauritania with 2,936 schools. However, when
we moved to Colombia with 49,020 schools, performance took a significant hit. We experimented with a few other
options, like heatmaps and clustering.

23

https://github.com/unicef/magicbox-open-api
https://github.com/unicef/magicbox-maps
https://github.com/unicef/magicbox-maps
http://leafletjs.com/
https://www.khronos.org/webgl/
https://stackoverflow.com/questions/16830824/google-maps-using-three-js-and-webgl/27653983#27653983
https://stackoverflow.com/questions/16830824/google-maps-using-three-js-and-webgl/27653983#27653983
https://reactjs.org/
https://github.com/unicef/react-webgl-leaflet
https://github.com/unicef/react-webgl-leaflet
https://github.com/unicef/magicbox-maps
http://leafletjs.com/

MagicBox Documentation

In the end, we decided on using WebGL, as explained above.

24 Chapter 7. Data visualization

https://www.khronos.org/webgl/

CHAPTER 8

How to deploy an application

In the UNICEF Office of Innovation team, we use Azure Web Apps to deploy our applications to the cloud.

This guide will walk you through the deployment process of a WebApp in the Azure environment. At the end of this
guide you will be able to develop, tag and deploy the tagged version of the application to the azure servers.

8.1 Create a feature branch for development

While in development, it is useful to make all of your changes in a feature branch named accordingly to the task.

For example, if we want to implement a new feature to show information about the country the user clicked in, we
could name the branch accordingly to this task using the command below:

git checkout -b show_country_information

We can implement our features in this branch and submit a Pull Request to merge it into the master branch of the app.

8.1.1 Create a tag

Once your changes get merged into master, we can create a tag for the current version of the application. Make sure
to name the tag accordingly with the project’s convention and following the semantic versioning rules.

For example, suppose you made a simple fix in the application and your changes just got merged from the branch
“fix_bug_61” into master. In this project, tags are named using the convention “vX.X.X” and the last tag is “v1.1.1”.

Since your fix is a patch, you can create the tag “v1.1.2” with the command

git tag v1.1.2

Always remember to push the tag to the public repository to make others aware of the current project version. You can
push your tags to the public repository with the command.

25

https://docs.microsoft.com/en-us/azure/app-service/
https://semver.org/
https://semver.org/#spec-item-6

MagicBox Documentation

git push origin master --tags

8.2 Deploying the application

After our changes get merged into master, we can deploy the application to Azure.

Each UNICEF’s application in Azure have two main deployment slots: production and staging.

In the production slot lies the code that you can see in your browser, the application as it is, available for the final user.

The staging slot contains the code preparing to be released to production. Once your code is in this slot you can take
a look in a private url to see how your code will respond in production.

If everything looks correct in staging, you can swap the code in production with the code in the staging slot to make
your changes available for all users.

8.2.1 Adding Azure remote for repository

The first thing we need to do is add the staging remote to our local git repository.

Within the project directory, you can add the stagin remote for the project issuing the command below.

git remote add staging https://<username>@<project-name>-staging.scm.azurewebsites.
→˓net:443/<project-name>.git

Make sure to change <project-name> with the project name you are working on and <username> for your username
set in the deployment credentials in Azure.

8.2.2 Pushing changes to the staging slot

Push changes to the staging repository issuing the command below

git push staging master

This command will push the current version in your master branch to staging in azure.

To push a specific tag to Azure, run:

git push staging tagname:master

Replace “tagname” with the tag you want to push to azure.

8.2.3 Swap staging to production (Web)

The last step to make your changes available to the public is swap the staging environment with the production
environment.

Once your code is working properly in the staging environment, you can swap it with production. Swapping those
slots means that the code in the staging environment now answers for the production environment and the code in the
production environment now lives in the staging environment.

If a bug was introduced in your changes and it was not caught in the staging environment and is now in the production
environment, all you have to do to revert it to the last working version of the application is to swap it again.

26 Chapter 8. How to deploy an application

MagicBox Documentation

To make the swap, go to the Azure Panel > App Services, find the project you are working on and select it.

In the overview section you will find the “Swap” button, you can click in it.

Make sure to select in the Swap panel “staging” as source and “production” as destination.

8.2. Deploying the application 27

https://portal.azure.com

MagicBox Documentation

Click OK to make the swap. You will get a notification once it finishes.

To replace your changes for the last working version of the application, just repeat this procedure.

8.2.4 Swap staging to production (CLI)

If you have the right permissions in place you can make the swap using the Azure CLI.

28 Chapter 8. How to deploy an application

https://www.npmjs.com/package/azure-cli

MagicBox Documentation

To do this, make sure you are in the ASM mode running

azure config mode --help

Then you can use

azure site swap <appname>

8.2. Deploying the application 29

MagicBox Documentation

30 Chapter 8. How to deploy an application

CHAPTER 9

GitHub workflow best practices

The UNICEF Innovation development team uses GitHub to host open source projects. This document explains the
GitHub workflow maintainers and developers use. It also offers suggestions for best practices on using available tools
and integrations.

This document explains. . .

• How to make a new GitHub repository

• How to maintain a GitHub repository

• How to communicate effectively

9.1 How to make a new GitHub repository

This section explains steps to follow when creating a new GitHub repository. These makes projects more organized,
easier to follow from an outsider’s perspective, and boosts visibility of development.

9.1.1 Repository creation

These steps focus on the initial repository creation, from github.com/new.

1. Set a meaningful name:

• Try to make purpose obvious in title

• Use hyphens (-) instead of underscores (_)

2. Write a description: Write one or two sentences to quickly describe the project

3. Initialize with README: Check to add a README.md file

• If one is not yet written, initialize one

4. Add .gitignore for project type: Find project’s programming language and choose its .gitignore file, if
available

31

https://github.com/new

MagicBox Documentation

5. Add BSD-3 Clause license: Standard license used for UNICEF Innovation projects

Fig. 1: Example of creating a new repository

9.1.2 Configure repository

Now, the repository is created. Make sure these settings are updated:

Disable unneeded tools

Disable any unneeded features or repository tools. If they are needed, they can be turned on again later. Turning off
unneeded features makes it easier for someone to find the useful places in the project. It can also indicate if the thing
they are looking for (e.g. documentation) is somewhere else.

These features are found under the Settings menu for every repository.

32 Chapter 9. GitHub workflow best practices

MagicBox Documentation

Fig. 2: Disable unneeded tools, like a wiki or project boards. There may be documentation or project boards set up
elsewhere. This does not disable organization-level project boards.

9.1. How to make a new GitHub repository 33

MagicBox Documentation

Set description, URL, topic tags

Make sure every repository has a description and topic tags set. If there is a URL to view a demo of the project or read
more about it, include it too.

At the top of every GitHub repository, there are fields of metadata for a description, a URL, and topic tags. A
description and URL helps someone understand the project in one or two sentences or see a live demo. Topic tags
raise visibility in the GitHub ecosystem and help other people discover new projects.

Fig. 3: Example of no description, URL, or topic tags

Do not leave a repository empty like this. Use the Edit button on the right to change the description and URL. Two
text boxes will appear.

For topic tags, click Add topics towards the left. Choose tags related to your project to help identify it. Consider
programming languages, frameworks, or other software used. Tags like humanitarian or united-nations are
also examples of tags for types of software.

Fig. 4: magicbox-latlon-admin-server with description and topic tags

9.1.3 Set up useful labels

Labels are visual organization tools for your GitHub project. They make issues easier to sort and prioritize tasks. Ad-
ditionally, they also help new contributors identify areas of interest for your project. They can help improve awareness
of different types of contribution methods in your project (e.g. design and documentation tasks).

Configure each repository’s labels in a way that makes sense for your project. The labels should mean something to
you so they are easily applied for sorting later. Every repository’s issue and pull request labels are found under the
Issues tab with the Labels button.

Fig. 5: Click the Labels button towards the right of the search bar

34 Chapter 9. GitHub workflow best practices

MagicBox Documentation

A good example of labels is here on the unicef/magicbox repository. To view the color code for a given label, click
the Edit on its row.

Not all of these labels will be helpful for a new project. Take ones that make sense, and make new labels specific to
the project, if needed.

9.1.4 Set up continuous integration (CI)

• Why we need CI

MagicBox repositories use Travis CI for continuous integration. Below is how you can add this service to a new
repository:

1. Make sure you have the admin access to the repository. New core developers can gain such access
across multiple repositories by joining the MagicBox Admins team. Contact Mike (@mikefab) or one of
the lead maintainers for this permission.

2. If you are not already on Travis CI, browse to travis-ci.com and log in with your GitHub account.
Along the way, you will see the option to add any repository to Travis CI. Select Only select repositories
and choose unicef/<the-repo-of-interest> from the drop-down list. At the moment, we still
handpick repositories to be monitored by Travis CI because not all repositories will need this service.
Once you arrive at your Travis CI Profile page, you will see a list of all repositories currently under Travis
CI tracking, whether they belong to your personal account or the @unicef GitHub account.

3. Now go to the repository’s main page on GitHub, click on the Settings tab, then select Integrations
& services from the left-side menu. If everything is properly set up in the previous step, you should see
Travis CI under Installed GitHub Apps.

4. From the root directory of the repository on GitHub, add a new file called .travis.yml. Place the
following content in that file:

language: node_js
node_js:
- "8"

cache:
directories:

- "node_modules"

If these steps do not make sense, refer to this Getting Started guide by Travis CI.

5. The last step is to add the Travis CI badge to the repository’s README. Browse to the Travis CI
page of the repository - the URL probably looks like this: htps://travis-ci.com/unicef/
the-repo-of-interest. Find the status symbol next to your repository’s name (the little bar to
the right of the Octocat). In the pop-up window, click the drop-down menu to select Markdown, then
copy the generated code block. Paste it to the top of your README file, just under the repository’s name.
If unclear, see this guide.

9.1.5 Set up code health checks with Code Climate

Code Climate is the chosen code health checker for MagicBox projects. This automated code review service runs
checks whenever a pull request is made, helping contributors and maintainers identify issues before they get merged
into the code base. That makes it sound similar to Travis CI or other CI tools in general - they all perform pre-merge
checks. The main difference is: one is more about the technical functionality of the code (e.g. will my program crash?)
and the other considers how “clean” and maintainable the code is - hence the term “code health.” Examples of issues
that Code Climate could bring up: complex or hard-to-understand code; code duplicates; functions or classes that are
too long and need refactoring; style issues raised by ESLint.

9.1. How to make a new GitHub repository 35

https://github.com/unicef/magicbox/labels
https://github.com/unicef/magicbox
https://github.com/unicef/magicbox/issues/6
https://travis-ci.com/
https://github.com/orgs/unicef/teams/magicbox-admins/members
https://github.com/mikefab
https://travis-ci.com/
https://github.com/unicef
https://docs.travis-ci.com/user/getting-started/
https://docs.travis-ci.com/user/status-images/
https://codeclimate.com/

MagicBox Documentation

Aside from that, Code Climate automates and displays test coverage results. Having a high test coverage score is
encouraged for any code repository, especially open source projects since the code quality will affect and be affected
by a larger group of developers. Code Climate reads output from locally run tests or coverage tools like lcov, then
displays the score alongside the analysis of other quality metrics. The score can be viewed via both the dashboard on
Code Climate site and the README badge.

Before following the steps below to activate Code Climate for a new repository, make sure to gain admin access first.

1. Sign into Code Climate - Quality if you are not on it yet. If this is your first time signing up, use your
GitHub account. (If you already have a Code Climate account and it is not linked with your GitHub
account, follow these instructions to set that up.) Select Open Source as you sign up and you can add the
repository here. Handpick repositories rather than opting for All repositories. If you are already on Code
Climate, add new repositories by clicking on the button Add a repository from your Dashboard. (If all of
this doesn’t make sense, use this guide from CodeClimate.)

2. Now Code Climate has started tracking your code, but you need a bit more set-up in order to interact
with this service more actively. From the list of tracked repositories on your Code Climate profile, click
the repository you want to set up and navigate to its Repo Settings tab. Look for the following sections in
the left-side navigation menu.

a. Enable Pull Request integration: GitHub section. Scroll down to Pull request status up-
dates and click Install. A little green check mark will tell you if the installation succeeds and
this feature is now active. If this option is not available or nowhere to be seen, it could be be-
cause you have not installed the Code Climate GitHub app. In step 1, by signing up and linking
your GitHub account, you have connected with Code Climate via OAuth authentication. Your
GitHub repository now sees Code Climate as an OAuth app. However, to automatically dis-
play the check status at each pull request, Code Climate needs to have access to your GitHub
repository as a GitHub app. Hence, head to Code Climate GitHub app to install it on both
your personal account and the @unicef GitHub account. You should install it on your personal
account to utilize Code Climate power when you work in your own forks.

b. Set up Webhooks: This guide explains why we need Webhooks and how to set it up.
You can verify if the setup is successful via either Code Climate (Repo Settings > GitHub >
Connections > Webhook on GitHub) or GitHub (Settings > Webhooks).

c. Enable ESLint with Code Climate: Plugins section. Check the box in front of ES-
Lint. Since the ESLint engine by default only analyzes .js files, if the repository uses non-
traditional JavaScript syntax such as JSX or ES6, you will need to add the following file to the
repository’s root directory. Name it .codeclimate.yml:

plugins:
eslint:

enabled: true
channel: "eslint-4"
config:
extensions:
- .js
- .jsx

nodesecurity:
enabled: true

This code accesses the newest ESLint release possible (channel 4, see more here: https://docs.
codeclimate.com/docs/eslint) and specifies the file extensions that we want ESLint to analyze.

3. By now, most quality metrics have been taken care of except for test coverage reporting*. As said
in point number 7 here, test coverage statuses are enabled by default when you enable Pull Request
integration. However, the docs article also says you need to configure test coverage for the statuses to
populate. Hence, go to your repository on Code Climate and navigate to Repo Settings > Test coverage.

36 Chapter 9. GitHub workflow best practices

http://ltp.sourceforge.net/coverage/lcov.php
https://codeclimate.com/dashboard
https://docs.codeclimate.com/docs/linkingunlinking-my-github-user
https://docs.codeclimate.com/docs/open-source-free#section-adding-an-oss-github-repo-to-code-climate
https://github.com/apps/codeclimate
https://github.com/unicef
https://docs.codeclimate.com/v1.0/docs/installing-code-climates-webhook
https://docs.codeclimate.com/docs/eslint
https://docs.codeclimate.com/docs/eslint
https://docs.codeclimate.com/docs/github-pull-requests#section-show-me-how

MagicBox Documentation

There you will find the repository’s Test Reporter ID. Copy that token to clipboard. Then go to your
repository’s main page on GitHub. Replace the content of .travis-ci.yml with the following:

env:
global:

- CC_TEST_REPORTER_ID=<your-token-here>

language: node_js
node_js:
- "8"

cache:
directories:

- "node_modules"

before_script:
- curl -L https://codeclimate.com/downloads/test-reporter/test-reporter-

→˓latest-linux-amd64 > ./cc-test-reporter
- chmod +x ./cc-test-reporter
- ./cc-test-reporter before-build

after_script:
- ./cc-test-reporter after-build --exit-code $TRAVIS_TEST_RESULT

The code above tells Code Climate to run and report on test coverage scores every time Travis CI runs
checks for a new pull request. Code Climate, however, does not generate test coverage results itself - it
reads output from a supported testing framework, which usually are third-party tools, as said here. We,
therefore, need to set up a testing framework in our code, which is covered below.

Deeper reads:

• If you don’t have admin access to a repository but still want to track its detailed code health analysis, go to its
README on GitHub, click on its Maintainability badge to open its Code Climate report, and hit Star to add
this repository to your Code Climate dashboard. If unclear, see this guide.

• If you are a core developer or maintainer, read this article to make better use of Code Climate in your pull
request workflow.

• Explore advanced features with review comments.

4. The last step is to embed the maintainability and test coverage badges to GitHub. Head to your
repository on Code Climate and click on Repo Settings > Badges. Select the format of your choice and
copy that code snippet to the top of the repository’s README, just under the repository’s name. (This
guide has good screenshots to illustrate this step.)

9.1.6 Set up a testing framework

Note: To be written.

9.2 How to maintain a GitHub repository

This section focuses on “housekeeping” with GitHub projects, including labels and project boards.

Housekeeping is important to maintain a repository. This organizes bugs, feature requests, and the project itself.
Organized projects help active contributors stay on track and make realistic deadlines. It also helps new contributors
understand what is going on.

9.2. How to maintain a GitHub repository 37

https://docs.codeclimate.com/docs/configuring-test-coverage#section-requirements
https://docs.codeclimate.com/docs/adding-an-oss-repo-to-your-dashboard#section-adding-an-oss-repo-to-your-dashboard
https://docs.codeclimate.com/docs/workflow
https://docs.codeclimate.com/docs/github-pull-requests#section-pull-request-review-comments
https://docs.codeclimate.com/docs/overview#section-badges

MagicBox Documentation

Housekeeping has five parts:

1. Issue metadata

2. Adding labels

3. Updating project boards

4. Making pull requests

5. Reviewing pull requests

9.2.1 Update issue and pull request metadata

Every GitHub issue and pull request has four metadata properties:

1. Assignees: Who is currently working on this and who is the best point-of-contact for updates

2. Labels: Visual cues on task status and importance (see below)

3. Projects: Advanced business process management (see below)

4. Milestone: Relevant feature or version milestone for an issue or pull request

Assignees and labels should always be used at a minimum. Use projects and milestones when they are available.

9.2.2 Adding labels to issues

Above, labels were mentioned as part of issue and pull request metadata. Maintaining and using labels is a good habit.
An issue or pull request might have two to four labels, depending on how the project was set up.

If labels are not yet configured, read Set up useful labels.

Once a week, check issues and pull requests to see if tags are up-to-date. Update or change any labels that are stale
(such as priority labels). Add labels from the metadata sub-menu when you open an issue or pull request.

9.2.3 Updating project boards

GitHub project boards are an organizational tool for the project. They use a kanban-style approach to organizing
GitHub issues and pull requests. Our workflow is explained on Opensource.com.

To update and maintain the project boards. . .

1. Make sure any issues or pull requests not shown are added to the board

2. Ensure important issues are organized by In progress or To Do

3. Issues not yet ready for consideration go on the backlog

4. All items under In progress or To Do columns should be GitHub issues, not note cards (note cards are okay for
the backlog column)

9.2.4 Making pull requests

All major changes to the project should always be made through a pull request (PR). Pull requests are like a registry
of changes for a project. It is easy for someone to see what is going in and out of a project. Outside contributors will
always have to make pull requests, so it is good practice for core / trusted developers to use pull requests too.

38 Chapter 9. GitHub workflow best practices

https://help.github.com/articles/about-project-boards/
https://en.wikipedia.org/wiki/Kanban_(development)
https://opensource.com/article/18/4/keep-your-project-organized-git-repo

MagicBox Documentation

Fig. 6: Set assignees, labels, project boards, and milestones from the side column in every GitHub issue or pull request

9.2. How to maintain a GitHub repository 39

MagicBox Documentation

Follow contributing guidelines

The contributing guidelines for all MagicBox projects live in the unicef/magicbox repository.

Always follow these contributing guidelines when working in the project. These are the standards and rules we ask
the community to follow when contributing. As project maintainers, it is our responsibility to hold ourselves to the
same standards we ask of others. Thus, always make sure current development practices are in-line with what our
guidelines.

Write useful commit messages

Writing useful commit messages is a good practice to follow. When looking through project commits, it should be
somewhat clear what has changed in the project and how. Short or nondescript commit messages are not helpful to
maintainers or new contributors. Commit messages do not need to be paragraphs, but they should clearly indicate
what changed or why something changed.

Read this blog post for more information about keeping git history clean and tidy with git rebase.

9.2.5 Reviewing pull requests

Pull requests (often abbreviated as PRs) are the cornerstone of accepting contributions to countless open source
projects. All major contributions to a project, from both core contributors and new contributors, should be made
as pull requests. It is important to follow consistent practices when reviewing pull requests.

Triage new pull requests

Update the metadata for all new pull requests, especially if they will be open for longer than one work day. Examples
of metadata includes the following:

• Assignees: Indicates whose responsibility it is to review or accept a pull request

• Labels: Indicates what type of change the pull request is and what its priority is

• Projects: Provides context to overall project development (if using project boards)

• Milestones: Connects pull request to a specific goal or version (if applicable)

Triaging new pull requests by updating the metadata keeps the project organized. It is easier for an outsider to under-
stand the project workflow and development by triaging. It is also helpful to give context for a pull request if you have
to update it later. For example, if a pull request cannot be merged because of an external problem, label it as blocked.

Use continuous integration (CI)

Use the CI added in the previous section as a basic requirement for accepting new contributions. All pull requests will
run your test suite and ensure new contributions pass all tests. This prevents bad code from slipping under the cracks
and making it into a production environment. It also provides quick, instant feedback for a new contribution. The
contributor immediately knows their change broke the application and know test is not passing.

For all new contributions, from both active and new contributors, ensure all CI tests pass before merging a pull request.
Bypassing CI health checks by pushing directly to the repository or merging a pull request before tests finish bypasses
the advantages of CI.

40 Chapter 9. GitHub workflow best practices

https://github.com/unicef/magicbox/blob/master/.github/CONTRIBUTING.md
https://nathanleclaire.com/blog/2014/09/14/dont-be-scared-of-git-rebase/

MagicBox Documentation

Use code health checks

Use the code health checks added earlier in this section as another requirement for accepting new contributions. There
are many ways for you to configure the code health checks. Use them as a way to set standards for code quality and
enforce those standards automatically in new contributions. The code health checks offer both already active and new
contributors a way to understand the impact of their changes. This results in clear code that is easier to maintain in the
long-term.

Ensure all new contributions receive passing grades from the code health checking tool before accepting them.

Leave a review

Code review is a helpful practice for any software project and team, as explained in this Atlassian blog post. It is a
chance to catch deeper problems before they enter the code base. It also provides a chance for mentorship and guidance
for a new contributor. Additionally, it improves the overall health of your project and makes an outside contribution
more likely to contribute again. Taking the time to review someone’s contribution and code is also validation of their
time and energy spent to make that contribution.

Spending the time to review new contributions should be as regular of a practice as writing your own code. Ensure
each new pull request receives a review, even if it is a passing review with no comments. If you do leave feedback,
make sure it is kind and courteous – be aware of how you deliver your feedback. See this guide on unlearning toxic
behavior in code reviews.

Always remember to thank a contributor for their contribution too.

9.3 Communicating about development

Communication about development should be kept public as much as possible in our Gitter chat. Whenever you make
a new pull request, always share the link in the main Gitter chat room. This lets other developers know you made a
change and also gives them an opportunity to review your code. And if you want a code review, be sure to ask for it
too.

9.3. Communicating about development 41

https://www.atlassian.com/agile/software-development/code-reviews
https://medium.freecodecamp.org/unlearning-toxic-behaviors-in-a-code-review-culture-b7c295452a3c
https://gitter.im/unicef-innovation-dev/Lobby

MagicBox Documentation

42 Chapter 9. GitHub workflow best practices

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

43

	Administrative boundaries
	Levels
	Why we use them
	Naming string explained
	First integer
	Second and third integer
	Putting it together

	Access control
	Tokens
	Rules

	Ingesting data into MagicBox
	School data ingestion
	School data database
	Inserted data

	Querying MagicBox data
	Cases
	Mobility
	Mosquitoes
	Population
	Schools
	How we do it

	Caveats

	Data ingestion rules
	Available flags
	School data file names
	Caveats

	Data validation
	How we do it
	Adding new attributes

	Why we do it

	Data visualization
	How we do it
	Why we do it

	How to deploy an application
	Create a feature branch for development
	Create a tag

	Deploying the application
	Adding Azure remote for repository
	Pushing changes to the staging slot
	Swap staging to production (Web)
	Swap staging to production (CLI)

	GitHub workflow best practices
	How to make a new GitHub repository
	Repository creation
	Configure repository
	Set up useful labels
	Set up continuous integration (CI)
	Set up code health checks with Code Climate
	Set up a testing framework

	How to maintain a GitHub repository
	Update issue and pull request metadata
	Adding labels to issues
	Updating project boards
	Making pull requests
	Reviewing pull requests

	Communicating about development

	Indices and tables

