

    
      
          
            
  
Introduction



	About Pinot

	Architecture

	Quick Demo








Reference



	PQL

	Index Techniques

	Executing queries via REST API on the Broker

	Managing Pinot via REST API on the Controller

	Creating Pinot segments

	Running Pinot in production








Customizing Pinot



	Pluggable Streams

	Segment Fetchers

	Pluggable Storage









          

      

      

    

  

    
      
          
            
  
About Pinot

Pinot is a realtime distributed OLAP datastore, which is used at LinkedIn to deliver scalable real time analytics with low latency. It can ingest data
from offline data sources (such as Hadoop and flat files) as well as streaming events (such as Kafka). Pinot is designed to scale horizontally,
so that it can scale to larger data sets and higher query rates as needed.


What is it for (and not)?

Pinot is well suited for analytical use cases on immutable append-only data that require low latency between an event being ingested and it being available to be queried.




Key Features


	A column-oriented database with various compression schemes such as Run Length, Fixed Bit Length


	Pluggable indexing technologies - Sorted Index, Bitmap Index, Inverted Index


	Ability to optimize query/execution plan based on query and segment metadata .


	Near real time ingestion from streams and batch ingestion from Hadoop


	SQL like language that supports selection, aggregation, filtering, group by, order by, distinct queries on data.


	Support for multivalued fields


	Horizontally scalable and fault tolerant




Because of the design choices we made to achieve these goals, there are certain limitations in Pinot:


	Pinot is not a replacement for database i.e it cannot be used as source of truth store, cannot mutate data


	Not a replacement for search engine i.e Full text search, relevance not supported


	Query cannot span across multiple tables.




Pinot works very well for querying time series data with lots of Dimensions and Metrics. For example:

SELECT sum(clicks), sum(impressions) FROM AdAnalyticsTable
  WHERE ((daysSinceEpoch >= 17849 AND daysSinceEpoch <= 17856)) AND accountId IN (123456789)
  GROUP BY daysSinceEpoch TOP 100





SELECT sum(impressions) FROM AdAnalyticsTable
  WHERE (daysSinceEpoch >= 17824 and daysSinceEpoch <= 17854) AND adveriserId = '1234356789'
  GROUP BY daysSinceEpoch,advertiserId TOP 100





SELECT sum(cost) FROM AdAnalyticsTable GROUP BY advertiserId TOP 50











          

      

      

    

  

    
      
          
            
  
Architecture


[image: _images/pinot-architecture.png]
Pinot Architecture Overview




Terminology


	Table

	A table is a logical abstraction to refer to a collection of related data. It consists of columns and rows (documents).



	Segment

	Data in table is divided into (horizontal) shards referred to as segments.








Pinot Components


	Pinot Controller

	Manages other pinot components (brokers, servers) as well as controls assignment of tables/segments to servers.



	Pinot Server

	Hosts one or more segments and serves queries from those segments



	Pinot Broker

	Accepts queries from clients and routes them to one or more servers, and returns consolidated response to the client.





Pinot leverages Apache Helix [http://helix.apache.org] for cluster management.
Helix is a cluster management framework to manage replicated, partitioned resources in a distributed system.
Helix uses Zookeeper to store cluster state and metadata.

Briefly, Helix divides nodes into three logical components based on their responsibilities:


	Participant

	The nodes that host distributed, partitioned resources



	Spectator

	The nodes that observe the current state of each Participant and use that information to access the resources.
Spectators are notified of state changes in the cluster (state of a participant, or that of a partition in a participant).



	Controller

	The node that observes and controls the Participant nodes. It is responsible for coordinating all transitions
in the cluster and ensuring that state constraints are satisfied while maintaining cluster stability





Pinot Controller hosts Helix Controller, in addition to hosting REST APIs for Pinot cluster administration and data ingestion.
There can be multiple instances of Pinot controller for redundancy. If there are multiple controllers, Pinot expects that all
of them are configured with the same back-end storage system so that they have a common view of the segments (e.g. NFS).
Pinot can use other storage systems such as HDFS or ADLS [https://azure.microsoft.com/en-us/services/storage/data-lake-storage/].

Pinot Servers are modeled as Helix Participants, hosting Pinot tables (referred to as resources in helix terminology).
Segments of a table are modeled as Helix partitions (of a resource). Thus, a Pinot server hosts one or more helix partitions of one
or more helix resources (i.e. one or more segments of one or more tables).

Pinot Brokers are modeled as Spectators. They need to know the location of each segment of a table (and each replica of the
segments)
and route requests to the
appropriate server that hosts the segments of the table being queried. The broker ensures that all the rows of the table
are queried exactly once so as to return correct, consistent results for a query. The brokers (or servers) may optimize
to prune some of the segments as long as accuracy is not satisfied. In case of hybrid tables, the brokers ensure that
the overlap between realtime and offline segment data is queried exactly once.
Helix provides the framework by which spectators can learn the location (i.e. participant) in which each partition
of a resource resides. The brokers use this mechanism to learn the servers that host specific segments of a table.




Pinot Tables

Pinot supports realtime, or offline, or hybrid tables. Data in Pinot tables is contained in the segments
belonging to that table. A Pinot table is modeled as a Helix resource.  Each segment of a table is modeled as a Helix Partition,

Table Schema defines column names and their metadata. Table configuration and schema is stored in zookeeper.

Offline tables ingest pre-built pinot-segments from external data stores, whereas Reatime tables
ingest data from streams (such as Kafka) and build segments.

A hybrid Pinot table essentially has both realtime as well as offline tables.
In such a table, offline segments may be pushed periodically (say, once a day). The retention on the offline table
can be set to a high value (say, a few years) since segments are coming in on a periodic basis, whereas the retention
on the realtime part can be small (say, a few days). Once an offline segment is pushed to cover a recent time period,
the brokers automatically switch to using the offline table for segments in _that_ time period, and use realtime table
only to cover later segments for which offline data may not be available yet.

Note that the query does not know the existence of offline or realtime tables. It only specifies the table name
in the query.


Ingesting Offline data

Segments for offline tables are constructed outside of Pinot, typically in Hadoop via map-reduce jobs
and ingested into Pinot via REST API provided by the Controller.
Pinot provides libraries to create Pinot segments out of input files in AVRO, JSON or CSV formats in a hadoop job, and push
the constructed segments to the controlers via REST APIs.

When an Offline segment is ingested, the controller looks up the table’s configuration and assigns the segment
to the servers that host the table. It may assign multiple servers for each servers depending on the number of replicas
configured for that table.

Pinot supports different segment assignment strategies that are optimized for various use cases.

Once segments are assigned, Pinot servers get notified via Helix to “host” the segment. The servers download the segments
(as a cached local copy to serve queries) and load them into local memory. All segment data is maintained in memory as long
as the server hosts that segment.

Once the server has loaded the segment, Helix notifies brokers of the availability of these segments. The brokers
start include the new
segments for queries. Brokers support different routing strategies depending on the type of table, the segment assignment
strategy and the use case.

Data in offline segments are immmutable (Rows cannot be added, deleted, or modified). However, segments may be replaced modified data.




Ingesting Realtime Data

Segments for realtime tables are constructed by Pinot servers. The servers ingest rows from realtime streams (such as
Kafka) until
some completion threshold (such as number of rows, or a time threshold) and build a segment out of those rows. Depending
on the type of ingestion mechanism used (stream or partition level), segments may be locally stored in the servers
or in the controller’s segment store.

Multiple servers may ingest the same data to increase availability and share query load.

Once a realtime segment is built and loaded the servers continue
to consume from where they left off.

Realtime segments are immutable once they are completed. While realtime segments are being consumed they are mutable,
in the sense that new rows can be added to them. Rows cannot be deleted from segments.

See Consuming and Indexing rows in Realtime [https://cwiki.apache.org/confluence/display/PINOT/Consuming+and+Indexing+rows+in+Realtime] for details.






Pinot Segments

A segment is laid out in a columnar format
so that it can be directly mapped into memory for serving queries. Columns may be single or multi-valued. Column types may be
STRING, INT, LONG, FLOAT, DOUBLE or BYTES. Columns may be declared to be metric or dimension (or specifically as a time dimension)
in the schema.

Pinot uses dictionary encoding to store values as a dictionary ID. Columns may be configured to be “no-dictionary” column in which
case raw values are stored. Dictionary IDs are encoded using minimum number of bits for efficient storage (_e.g._ a column with cardinality
of 3 will use only 3 bits for each dictionary ID).

There is a forward index for each column compressed appropriately for efficient memory use.  In addition, optional inverted indices can be
configured for any set of columns. Inverted indices, while taking up more storage, offer better query performance.

Specialized indexes like StartTree index is also supported.







          

      

      

    

  

    
      
          
            
  
Quick Demo

A quick way to get familiar with Pinot is to run the Pinot examples. The examples can be run either by compiling the
code or by running the prepackaged Docker images.

To demonstrate Pinot, let’s start a simple one node cluster, along with the required Zookeeper. This demo setup also
creates a table, generates some Pinot segments, then uploads them to the cluster in order to make them queryable.

All of the setup is automated, so the only thing required at the beginning is to start the demonstration cluster.


Compiling the code

One can also run the Pinot demonstration by checking out the code on GitHub, compiling it, and running it. Compiling
Pinot requires JDK 8 or later and Apache Maven 3.


	Check out the code from GitHub (https://github.com/apache/incubator-pinot)


	With Maven installed, run mvn install package -DskipTests -Pbin-dist in the directory in which you checked out Pinot.


	Make the generated scripts executable cd pinot-distribution/target/apache-pinot-incubating-<version>-SNAPSHOT-bin; chmod +x bin/*.sh







Trying out Offline quickstart demo


	To run the demo with compiled code:

	bin/quick-start-offline.sh





Once the Pinot cluster is running, you can query it by going to http://localhost:9000/query/

You can also use the REST API to query Pinot, as well as the Java client. As this is outside of the scope of this
introduction, the reference documentation to use the Pinot client APIs is in the Executing queries via REST API on the Broker section.

Pinot uses PQL, a SQL-like query language, to query data. Here are some sample queries:

/*Total number of documents in the table*/
SELECT count(*) FROM baseballStats LIMIT 0

/*Top 5 run scorers of all time*/
SELECT sum('runs') FROM baseballStats GROUP BY playerName TOP 5 LIMIT 0

/*Top 5 run scorers of the year 2000*/
SELECT sum('runs') FROM baseballStats WHERE yearID=2000 GROUP BY playerName TOP 5 LIMIT 0

/*Top 10 run scorers after 2000*/
SELECT sum('runs') FROM baseballStats WHERE yearID>=2000 GROUP BY playerName

/*Select playerName,runs,homeRuns for 10 records from the table and order them by yearID*/
SELECT playerName,runs,homeRuns FROM baseballStats ORDER BY yearID LIMIT 10





The full reference for the PQL query language is present in the PQL section of the Pinot documentation.




Trying out Realtime quickstart demo

Pinot can ingest data from streaming sources such as Kafka.


	To run the demo with compiled code:

	bin/quick-start-realtime.sh





Once started, the demo will start Kafka, create a Kafka topic, and create a realtime Pinot table. Once created, Pinot
will start ingesting events from the Kafka topic into the table. The demo also starts a consumer that consumes events
from the Meetup API and pushes them into the Kafka topic that was created, causing new events modified on Meetup to
show up in Pinot.

To show new events appearing, one can run SELECT * FROM meetupRsvp ORDER BY mtime DESC LIMIT 50 repeatedly, which shows the
last events that were ingested by Pinot.







          

      

      

    

  

    
      
          
            
  
PQL


	PQL is a derivative of SQL derivative that supports selection, projection, aggregation, grouping aggregation.
There is no support for Joins.


	Specifically, for Pinot:


	Grouping keys always appear in query results, even if not requested


	Aggregations are computed in parallel


	Results of aggregations with large amounts of group keys (>1M) are approximated


	ORDER BY only works for selection queries, for aggregations one must use the TOP keyword









PQL Examples

The Pinot Query Language (PQL) is very similar to standard SQL:

SELECT COUNT(*) FROM myTable








Aggregation

SELECT COUNT(*), MAX(foo), SUM(bar) FROM myTable








Grouping on Aggregation

SELECT MIN(foo), MAX(foo), SUM(foo), AVG(foo) FROM myTable
  GROUP BY bar, baz TOP 50








Filtering

SELECT COUNT(*) FROM myTable
  WHERE foo = 'foo'
  AND bar BETWEEN 1 AND 20
  OR (baz < 42 AND quux IN ('hello', 'goodbye') AND quuux NOT IN (42, 69))








Selection (Projection)

SELECT * FROM myTable
  WHERE quux < 5
  LIMIT 50








Ordering on Selection

SELECT foo, bar FROM myTable
  WHERE baz > 20
  ORDER BY bar DESC
  LIMIT 100








Pagination on Selection

Note: results might not be consistent if column ordered by has same value in multiple rows.

SELECT foo, bar FROM myTable
  WHERE baz > 20
  ORDER BY bar DESC
  LIMIT 50, 100








Wild-card match (in WHERE clause only)

To count rows where the column airlineName starts with U

SELECT count(*) FROM SomeTable
  WHERE regexp_like(airlineName, '^U.*')
  GROUP BY airlineName TOP 10








Examples with UDF

As of now, functions have to be implemented within Pinot. Injecting functions is not allowed yet.
The examples below demonstrate the use of UDFs

SELECT count(*) FROM myTable
  GROUP BY timeConvert(timeColumnName, 'SECONDS', 'DAYS')

SELECT count(*) FROM myTable
  GROUP BY div(tim








PQL Specification


SELECT

The select statement is as follows

SELECT <outputColumn> (, outputColumn, outputColumn,...)
  FROM <tableName>
  (WHERE ... | GROUP BY ... | ORDER BY ... | TOP ... | LIMIT ...)





outputColumn can be * to project all columns, columns (foo, bar, baz) or aggregation functions like (MIN(foo), MAX(bar), AVG(baz)).




Supported aggregations on single-value columns


	COUNT


	MIN


	MAX


	SUM


	AVG


	MINMAXRANGE


	DISTINCTCOUNT


	DISTINCTCOUNTHLL


	FASTHLL


	PERCENTILE[0-100]: e.g. PERCENTILE5, PERCENTILE50, PERCENTILE99, etc.


	PERCENTILEEST[0-100]: e.g. PERCENTILEEST5, PERCENTILEEST50, PERCENTILEEST99, etc.







Supported aggregations on multi-value columns


	COUNTMV


	MINMV


	MAXMV


	SUMMV


	AVGMV


	MINMAXRANGEMV


	DISTINCTCOUNTMV


	DISTINCTCOUNTHLLMV


	FASTHLLMV


	PERCENTILE[0-100]MV: e.g. PERCENTILE5MV, PERCENTILE50MV, PERCENTILE99MV, etc.


	PERCENTILEEST[0-100]MV: e.g. PERCENTILEEST5MV, PERCENTILEEST50MV, PERCENTILEEST99MV, etc.







WHERE

Supported predicates are comparisons with a constant using the standard SQL operators (=, <, <=, >, >=, <>, ‘!=’) , range comparisons using BETWEEN (foo BETWEEN 42 AND 69), set membership (foo IN (1, 2, 4, 8)) and exclusion (foo NOT IN (1, 2, 4, 8)). For BETWEEN, the range is inclusive.

Comparison with a regular expression is supported using the regexp_like function, as in WHERE regexp_like(columnName, 'regular expression')




GROUP BY

The GROUP BY clause groups aggregation results by a list of columns, or transform functions on columns (see below)




ORDER BY

The ORDER BY clause orders selection results by a list of columns. PQL supports ordering DESC or ASC.




TOP

The TOP n clause causes the ‘n’ largest group results to be returned. If not specified, the top 10 groups are returned.




LIMIT

The LIMIT n clause causes the selection results to contain at most ‘n’ results.
The LIMIT a, b clause paginate the selection results from the ‘a’ th results and return at most ‘b’ results.




Transform Function in Aggregation and Grouping

In aggregation and grouping, each column can be transformed from one or multiple columns.
For example, the following query will calculate the maximum value of column foo divided by column bar grouping on the column time converted form time unit MILLISECONDS to SECONDS:

SELECT MAX(DIV(foo, bar) FROM myTable
  GROUP BY TIMECONVERT(time, 'MILLISECONDS', 'SECONDS')








Supported transform functions


	ADD

	Sum of at least two values



	SUB

	Difference between two values



	MULT

	Product of at least two values



	DIV

	Quotient of two values



	TIMECONVERT

	Takes 3 arguments, converts the value into another time unit. E.g. TIMECONVERT(time, 'MILLISECONDS', 'SECONDS')



	DATETIMECONVERT

	Takes 4 arguments, converts the value into another date time format, and buckets time based on the given time granularity.
e.g. DATETIMECONVERT(date, '1:MILLISECONDS:EPOCH', '1:SECONDS:EPOCH', '15:MINUTES')



	VALUEIN

	Takes at least 2 arguments, where the first argument is a multi-valued column, and the following arguments are constant values.
The transform function will filter the value from the multi-valued column with the given constant values.
The VALUEIN transform function is especially useful when the same multi-valued column is both filtering column and grouping column.
e.g. VALUEIN(mvColumn, 3, 5, 15)










Differences with SQL


	JOIN is not supported


	Use TOP instead of LIMIT for truncation


	LIMIT n has no effect in grouping queries, should use TOP n instead. If no TOP n defined, PQL will use TOP 10 as default truncation setting.


	No need to select the columns to group with.




The following two queries are both supported in PQL, where the non-aggregation columns are ignored.

SELECT MIN(foo), MAX(foo), SUM(foo), AVG(foo) FROM mytable
  GROUP BY bar, baz
  TOP 50

SELECT bar, baz, MIN(foo), MAX(foo), SUM(foo), AVG(foo) FROM mytable
  GROUP BY bar, baz
  TOP 50






	The results will always order by the aggregated value (descending).




The results for query:

SELECT MIN(foo), MAX(foo) FROM myTable
  GROUP BY bar
  TOP 50





will be the same as the combining results from the following queries:

SELECT MIN(foo) FROM myTable
  GROUP BY bar
  TOP 50
SELECT MAX(foo) FROM myTable
  GROUP BY bar
  TOP 50





where we don’t put the results for the same group together.







          

      

      

    

  

    
      
          
            
  
Index Techniques

Pinot currently supports the following index techniques, where each of them have their own advantages in different query
scenarios.


Forward Index


Dictionary-Encoded Forward Index with Bit Compression

For each unique value from a column, we assign an id to it, and build a dictionary from the id to the value. Then in the
forward index, we only store the bit-compressed ids instead of the values.

With few number of unique values, dictionary-encoding can significantly improve the space efficiency of the storage.




Raw Value Forward Index

In contrast to the dictionary-encoded forward index, raw value forward index directly stores values instead of ids.

Without the dictionary, the dictionary lookup step can be skipped for each value fetch. Also, the index can take
advantage of the good locality of the values, thus improve the performance of scanning large number of values.




Sorted Forward Index with Run-Length Encoding

On top of the dictionary-encoding, all the values are sorted, so sorted forward index has the advantages of both good
compression and data locality.

Sorted forward index can also be used as inverted index.






Inverted Index (only available with dictionary-encoded indexes)


Bitmap Inverted Index

Pinot maintains a map from each value to a bitmap, which makes value lookup to be constant time.




Sorted Inverted Index

Because the values are sorted, the sorted forward index can directly be used as inverted index, with constant time
lookup and good data locality.






Advanced Index


Star-Tree Index

Unlike other index techniques which work on single column, Star-Tree index is built on multiple columns, and utilize the
pre-aggregated results to significantly reduce the number of values to be processed, thus improve the query performance.









          

      

      

    

  

    
      
          
            
  
Executing queries via REST API on the Broker

The Pinot REST API can be accessed by invoking POST operation witha a JSON body containing the parameter pql
to the /query URI endpoint on a broker. Depending on the type of query, the results can take different shapes.
The examples below use curl.


Aggregation

curl -X POST -d '{"pql":"select count(*) from flights"}' http://localhost:8099/query


{
 "traceInfo":{},
 "numDocsScanned":17,
 "aggregationResults":[
    {
       "function":"count_star",
       "value":"17"
    }
 ],
 "timeUsedMs":27,
 "segmentStatistics":[],
 "exceptions":[],
 "totalDocs":17
}








Aggregation with grouping

curl -X POST -d '{"pql":"select count(*) from flights group by Carrier"}' http://localhost:8099/query


{
 "traceInfo":{},
 "numDocsScanned":23,
 "aggregationResults":[
    {
       "groupByResult":[
          {
             "value":"10",
             "group":["AA"]
          },
          {
             "value":"9",
             "group":["VX"]
          },
          {
             "value":"4",
             "group":["WN"]
          }
       ],
       "function":"count_star",
       "groupByColumns":["Carrier"]
    }
 ],
 "timeUsedMs":47,
 "segmentStatistics":[],
 "exceptions":[],
 "totalDocs":23
}








Selection

curl -X POST -d '{"pql":"select * from flights limit 3"}' http://localhost:8099/query


{
 "selectionResults":{
    "columns":[
       "Cancelled",
       "Carrier",
       "DaysSinceEpoch",
       "Delayed",
       "Dest",
       "DivAirports",
       "Diverted",
       "Month",
       "Origin",
       "Year"
    ],
    "results":[
       [
          "0",
          "AA",
          "16130",
          "0",
          "SFO",
          [],
          "0",
          "3",
          "LAX",
          "2014"
       ],
       [
          "0",
          "AA",
          "16130",
          "0",
          "LAX",
          [],
          "0",
          "3",
          "SFO",
          "2014"
       ],
       [
          "0",
          "AA",
          "16130",
          "0",
          "SFO",
          [],
          "0",
          "3",
          "LAX",
          "2014"
       ]
    ]
 },
 "traceInfo":{},
 "numDocsScanned":3,
 "aggregationResults":[],
 "timeUsedMs":10,
 "segmentStatistics":[],
 "exceptions":[],
 "totalDocs":102
}








Java

The Pinot client API is similar to JDBC, although there are some differences, due to how Pinot behaves. For example, a query with multiple aggregation function will return one result set per aggregation function, as they are computed in parallel.

Connections to Pinot are created using the ConnectionFactory class’ utility methods to create connections to a Pinot cluster given a Zookeeper URL, a Java Properties object or a list of broker addresses to connect to.

Connection connection = ConnectionFactory.fromZookeeper
  ("some-zookeeper-server:2191/zookeeperPath");

Connection connection = ConnectionFactory.fromProperties("demo.properties");

Connection connection = ConnectionFactory.fromHostList
  ("some-server:1234", "some-other-server:1234", ...);





Queries can be sent directly to the Pinot cluster using the Connection.execute(java.lang.String) and Connection.executeAsync(java.lang.String) methods of Connection.

ResultSetGroup resultSetGroup = connection.execute("select * from foo...");
Future<ResultSetGroup> futureResultSetGroup = connection.executeAsync
  ("select * from foo...");





Queries can also use a PreparedStatement to escape query parameters:

PreparedStatement statement = connection.prepareStatement
  ("select * from foo where a = ?");
statement.setString(1, "bar");

ResultSetGroup resultSetGroup = statement.execute();
Future<ResultSetGroup> futureResultSetGroup = statement.executeAsync();





In the case of a selection query, results can be obtained with the various get methods in the first ResultSet, obtained through the getResultSet(int) method:

ResultSet resultSet = connection.execute
  ("select foo, bar from baz where quux = 'quuux'").getResultSet(0);

for (int i = 0; i < resultSet.getRowCount(); ++i) {
  System.out.println("foo: " + resultSet.getString(i, 0));
  System.out.println("bar: " + resultSet.getInt(i, 1));
}

resultSet.close();





In the case of aggregation, each aggregation function is within its own ResultSet:

ResultSetGroup resultSetGroup = connection.execute("select count(*) from foo");

ResultSet resultSet = resultSetGroup.getResultSet(0);
System.out.println("Number of records: " + resultSet.getInt(0));
resultSet.close();





There can be more than one ResultSet, each of which can contain multiple results grouped by a group key.

ResultSetGroup resultSetGroup = connection.execute
    ("select min(foo), max(foo) from bar group by baz");

System.out.println("Number of result groups:" +
    resultSetGroup.getResultSetCount(); // 2, min(foo) and max(foo)

ResultSet minResultSet = resultSetGroup.getResultSet(0);
for(int i = 0; i < minResultSet.length(); ++i) {
    System.out.println("Minimum foo for " + minResultSet.getGroupKeyString(i, 1) +
        ": " + minResultSet.getInt(i));
}

ResultSet maxResultSet = resultSetGroup.getResultSet(1);
for(int i = 0; i < maxResultSet.length(); ++i) {
    System.out.println("Maximum foo for " + maxResultSet.getGroupKeyString(i, 1) +
        ": " + maxResultSet.getInt(i));
}

resultSet.close();











          

      

      

    

  

    
      
          
            
  
Managing Pinot via REST API on the Controller

TODO : Remove this section altogether and find a place somewhere for a pointer to the management API. Maybe in the ‘Running pinot in production’ section?

There is a REST API which allows management of tables, tenants, segments and schemas. It can be accessed by going to http://[controller host]/help which offers a web UI to do these tasks, as well as document the REST API.

It can be used instead of the pinot-admin.sh commands to automate the creation of tables and tenants.





          

      

      

    

  

    
      
          
            
  
Creating Pinot segments

Pinot segments can be created offline on Hadoop, or via command line from data files. Controller REST endpoint
can then be used to add the segment to the table to which the segment belongs.


Creating segments using hadoop


[image: _images/Pinot-Offline-only-flow.png]
Offline Pinot workflow



To create Pinot segments on Hadoop, a workflow can be created to complete the following steps:


	Pre-aggregate, clean up and prepare the data, writing it as Avro format files in a single HDFS directory


	Create segments


	Upload segments to the Pinot cluster




Step one can be done using your favorite tool (such as Pig, Hive or Spark), Pinot provides two MapReduce jobs to do step two and three.


Configuring the job

Create a job properties configuration file, such as one below:

# === Index segment creation job config ===

# path.to.input: Input directory containing Avro files
path.to.input=/user/pinot/input/data

# path.to.output: Output directory containing Pinot segments
path.to.output=/user/pinot/output

# path.to.schema: Schema file for the table, stored locally
path.to.schema=flights-schema.json

# segment.table.name: Name of the table for which to generate segments
segment.table.name=flights

# === Segment tar push job config ===

# push.to.hosts: Comma separated list of controllers host names to which to push
push.to.hosts=controller_host_0,controller_host_1

# push.to.port: The port on which the controller runs
push.to.port=8888








Executing the job

The Pinot Hadoop module contains a job that you can incorporate into your
workflow to generate Pinot segments.

mvn clean install -DskipTests -Pbuild-shaded-jar
hadoop jar pinot-hadoop-0.016-shaded.jar SegmentCreation job.properties





You can then use the SegmentTarPush job to push segments via the controller REST API.

hadoop jar pinot-hadoop-0.016-shaded.jar SegmentTarPush job.properties










Creating Pinot segments outside of Hadoop

Here is how you can create Pinot segments from standard formats like CSV/JSON.


	Follow the steps described in the section on Compiling the code to build pinot. Locate pinot-admin.sh in pinot-tools/target/pinot-tools=pkg/bin/pinot-admin.sh.


	Create a top level directory containing all the CSV/JSON files that need to be converted into segments.


	The file name extensions are expected to be the same as the format name (i.e .csv, or .json), and are case insensitive.
Note that the converter expects the .csv extension even if the data is delimited using tabs or spaces instead.


	Prepare a schema file describing the schema of the input data. The schema needs to be in JSON format. See example later in this section.


	
	Specifically for CSV format, an optional csv config file can be provided (also in JSON format). This is used to configure parameters like the delimiter/header for the CSV file etc.

	A detailed description of this follows below.









Run the pinot-admin command to generate the segments. The command can be invoked as follows. Options within “[ ]” are optional. For -format, the default value is AVRO.

bin/pinot-admin.sh CreateSegment -dataDir <input_data_dir> [-format [CSV/JSON/AVRO]] [-readerConfigFile <csv_config_file>] [-generatorConfigFile <generator_config_file>] -segmentName <segment_name> -schemaFile <input_schema_file> -tableName <table_name> -outDir <output_data_dir> [-overwrite]





To configure various parameters for CSV a config file in JSON format can be provided. This file is optional, as are each of its parameters. When not provided, default values used for these parameters are described below:


	fileFormat: Specify one of the following. Default is EXCEL.





##.  EXCEL
##.  MYSQL
##.  RFC4180
##.  TDF





	header: If the input CSV file does not contain a header, it can be specified using this field. Note, if this is specified, then the input file is expected to not contain the header row, or else it will result in parse error. The columns in the header must be delimited by the same delimiter character as the rest of the CSV file.


	delimiter: Use this to specify a delimiter character. The default value is “,”.


	dateFormat: If there are columns that are in date format and need to be converted into Epoch (in milliseconds), use this to specify the format. Default is “mm-dd-yyyy”.


	dateColumns: If there are multiple date columns, use this to list those columns.




Below is a sample config file.

{
  "fileFormat" : "EXCEL",
  "header" : "col1,col2,col3,col4",
  "delimiter" : "\t",
  "dateFormat" : "mm-dd-yy"
  "dateColumns" : ["col1", "col2"]
}





Sample Schema:

{
  "dimensionFieldSpecs" : [
    {
      "dataType" : "STRING",
      "delimiter" : null,
      "singleValueField" : true,
      "name" : "name"
    },
    {
      "dataType" : "INT",
      "delimiter" : null,
      "singleValueField" : true,
      "name" : "age"
    }
  ],
  "timeFieldSpec" : {
    "incomingGranularitySpec" : {
      "timeType" : "DAYS",
      "dataType" : "LONG",
      "name" : "incomingName1"
    },
    "outgoingGranularitySpec" : {
      "timeType" : "DAYS",
      "dataType" : "LONG",
      "name" : "outgoingName1"
    }
  },
  "metricFieldSpecs" : [
    {
      "dataType" : "FLOAT",
      "delimiter" : null,
      "singleValueField" : true,
      "name" : "percent"
    }
   ]
  },
  "schemaName" : "mySchema",
}






Pushing segments to Pinot

You can use curl to push a segment to pinot:

curl -X POST -F segment=@<segment-tar-file-path> http://controllerHost:controllerPort/segments





Alternatively you can use the pinot-admin.sh utility to upload one or more segments:

pinot-tools/target/pinot-tools-pkg/bin//pinot-admin.sh UploadSegment -controllerHost <hostname> -controllerPort <port> -segmentDir <segmentDirectoryPath>





The command uploads all the segments found in segmentDirectoryPath.
The segments could be either tar-compressed (in which case it is a file under segmentDirectoryPath)
or uncompressed (in which case it is a directory under segmentDirectoryPath).









          

      

      

    

  

    
      
          
            
  
Running Pinot in production


Installing Pinot


Requirements


	Java 8+


	Several nodes with enough memory


	A working installation of Zookeeper







Recommended environment


	Shared storage infrastructure (such as NFS)


	Regular Zookeeper backups


	HTTP load balancers (such as nginx/haproxy)









Deploying Pinot


Direct deployment of Pinot




Deployment of Pinot on Kubernetes






Managing Pinot


Creating tables




Updating tables




Uploading data




Configuring realtime data ingestion




Monitoring Pinot









          

      

      

    

  

    
      
          
            
  
Pluggable Streams

Prior to commit ba9f2d [https://github.com/apache/incubator-pinot/commit/ba9f2ddfc0faa42fadc2cc48df1d77fec6b174fb], Pinot was only able to support reading
from Kafka [https://kafka.apache.org/documentation/] stream.

Pinot now enables its users to write plug-ins to read from pub-sub streams
other than Kafka. (Please refer to Issue #2583 [https://github.com/apache/incubator-pinot/issues/2583])

Some of the streams for which plug-ins can be added are:


	Amazon kinesis [https://docs.aws.amazon.com/streams/latest/dev/building-enhanced-consumers-kcl.html]


	Azure Event Hubs [https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-java-get-started-receive-eph]


	LogDevice [https://code.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/]


	Pravega [http://pravega.io/docs/latest/javadoc/]


	Pulsar [https://pulsar.apache.org/docs/en/client-libraries-java/]




You may encounter some limitations either in Pinot or in the stream system while developing plug-ins.
Please feel free to get in touch with us when you start writing a stream plug-in, and we can help you out.
We are open to receiving PRs in order to improve these abstractions if they do not work for a certain stream implementation.

Refer to Consuming and Indexing rows in Realtime [https://cwiki.apache.org/confluence/display/PINOT/Consuming+and+Indexing+rows+in+Realtime]
for details on how Pinot consumes streaming data.


Requirements to support Stream Level (High Level) consumers

The stream should provide the following guarantees:


	Exactly once delivery (unless restarting from a checkpoint) for each consumer of the stream.


	(Optionally) support mechanism to split events (in some arbitrary fashion) so that each event in the stream is delivered exactly to one host out of set of hosts.


	Provide ways to save a checkpoint for the data consumed so far. If the stream is partitioned, then this checkpoint is a vector of checkpoints for events consumed from individual partitions.


	The checkpoints should be recorded only when Pinot makes a call to do so.


	The consumer should be able to start consumption from one of:


	latest avaialble data


	earliest available data


	last saved checkpoint











Requirements to support Partition Level (Low Level) consumers

While consuming rows at a partition level, the stream should support the following
properties:


	Stream should provide a mechanism to get the current number of partitions.


	Each event in a partition should have a unique offset that is not more than 64 bits long.


	Refer to a partition as a number not exceeding 32 bits long.


	Stream should provide the following mechanisms to get an offset for a given partition of the stream:


	get the offset of the oldest event available (assuming events are aged out periodically) in the partition.


	get the offset of the most recent event published in the partition


	(optionally) get the offset of an event that was published at a specified time






	Stream should provide a mechanism to consume a set of events from a partition starting from a specified offset.


	Events with higher offsets should be more recent (the offsets of events need not be contiguous)




In addition, we have an operational requirement that the number of partitions should not be
reduced over time.




Stream plug-in implementation

In order to add a new type of stream (say,Foo) implement the following classes:


	FooConsumerFactory extends StreamConsumerFactory [https://github.com/apache/incubator-pinot/blob/master/pinot-core/src/main/java/org/apache/pinot/core/realtime/stream/StreamConsumerFactory.java]


	FooPartitionLevelConsumer implements PartitionLevelConsumer [https://github.com/apache/incubator-pinot/blob/master/pinot-core/src/main/java/org/apache/pinot/core/realtime/stream/PartitionLevelConsumer.java]


	FooStreamLevelConsumer implements StreamLevelConsumer [https://github.com/apache/incubator-pinot/blob/master/pinot-core/src/main/java/org/apache/pinot/core/realtime/stream/StreamLevelConsumer.java]


	FooMetadataProvider implements StreamMetadataProvider [https://github.com/apache/incubator-pinot/blob/master/pinot-core/src/main/java/org/apache/pinot/core/realtime/stream/StreamMetadataProvider.java]


	FooMessageDecoder implements StreamMessageDecoder [https://github.com/apache/incubator-pinot/blob/master/pinot-core/src/main/java/org/apache/pinot/core/realtime/stream/StreamMessageDecoder.java]




Depending on stream level or partition level, your implementation needs to include StreamLevelConsumer or PartitionLevelConsumer.

The properties for the stream implementation are to be set in the table configuration, inside streamConfigs [https://github.com/apache/incubator-pinot/blob/master/pinot-core/src/main/java/org/apache/pinot/core/realtime/stream/StreamConfig.java] section.

Use the streamType property to define the stream type. For example, for the implementation of stream foo, set the property "streamType" : "foo".

The rest of the configuration properties for your stream should be set with the prefix "stream.foo". Be sure to use the same suffix for: (see examples below):


	topic


	consumer type


	stream consumer factory


	offset


	decoder class name


	decoder properties


	connnection timeout


	fetch timeout




All values should be strings. For example:

"streamType" : "foo",
"stream.foo.topic.name" : "SomeTopic",
"stream.foo.consumer.type": "lowlevel",
"stream.foo.consumer.factory.class.name": "fully.qualified.pkg.ConsumerFactoryClassName",
"stream.foo.consumer.prop.auto.offset.reset": "largest",
"stream.foo.decoder.class.name" : "fully.qualified.pkg.DecoderClassName",
"stream.foo.decoder.prop.a.decoder.property" : "decoderPropValue",
"stream.foo.connection.timeout.millis" : "10000", // default 30_000
"stream.foo.fetch.timeout.millis" : "10000" // default 5_000





You can have additional properties that are specific to your stream. For example:

"stream.foo.some.buffer.size" : "24g"





In addition to these properties, you can define thresholds for the consuming segments:


	rows threshold


	time threshold




The properties for the thresholds are as follows:

"realtime.segment.flush.threshold.size" : "100000"
"realtime.segment.flush.threshold.time" : "6h"





An example of this implementation can be found in the KafkaConsumerFactory, which is an implementation for the kafka stream.







          

      

      

    

  

    
      
          
            
  
Segment Fetchers

When pinot segment files are created in external systems (hadoop/spark/etc), there are several ways to push those data to pinot Controller and Server:


	push segment to shared NFS and let pinot pull segment files from the location of that NFS.


	push segment to a Web server and let pinot pull segment files from the Web server with http/https link.


	push segment to HDFS and let pinot pull segment files from HDFS with hdfs location uri.


	push segment to other system and implement your own segment fetcher to pull data from those systems.




The first two options should be supported out of the box with pinot package. As long your remote jobs send Pinot controller with the corresponding URI to the files it will pick up the file and allocate it to proper Pinot Servers and brokers. To enable Pinot support for HDFS, you will need to provide Pinot Hadoop configuration and proper Hadoop dependencies.


HDFS segment fetcher configs

In your Pinot controller/server configuration, you will need to provide the following configs:

pinot.controller.segment.fetcher.hdfs.hadoop.conf.path=`<file path to hadoop conf folder>





or

pinot.server.segment.fetcher.hdfs.hadoop.conf.path=`<file path to hadoop conf folder>





This path should point the local folder containing core-site.xml and hdfs-site.xml files from your Hadoop installation

pinot.controller.segment.fetcher.hdfs.hadoop.kerberos.principle=`<your kerberos principal>
pinot.controller.segment.fetcher.hdfs.hadoop.kerberos.keytab=`<your kerberos keytab>





or

pinot.server.segment.fetcher.hdfs.hadoop.kerberos.principle=`<your kerberos principal>
pinot.server.segment.fetcher.hdfs.hadoop.kerberos.keytab=`<your kerberos keytab>





These two configs should be the corresponding Kerberos configuration if your Hadoop installation is secured with Kerberos. Please check Hadoop Kerberos guide on how to generate Kerberos security identification.

You will also need to provide proper Hadoop dependencies jars from your Hadoop installation to your Pinot startup scripts.




Push HDFS segment to Pinot Controller

To push HDFS segment files to Pinot controller, you just need to ensure you have proper Hadoop configuration as we mentioned in the previous part. Then your remote segment creation/push job can send the HDFS path of your newly created segment files to the Pinot Controller and let it download the files.

For example, the following curl requests to Controller will notify it to download segment files to the proper table:

curl -X POST -H "UPLOAD_TYPE:URI" -H "DOWNLOAD_URI:hdfs://nameservice1/hadoop/path/to/segment/file.gz" -H "content-type:application/json" -d '' localhost:9000/segments








Implement your own segment fetcher for other systems

You can also implement your own segment fetchers for other file systems and load into Pinot system with an external jar. All you need to do is to implement a class that extends the interface of SegmentFetcher [https://github.com/apache/incubator-pinot/blob/master/pinot-common/src/main/java/org/apache/pinot/common/segment/fetcher/SegmentFetcher.java] and provides config to Pinot Controller and Server as follows:

pinot.controller.segment.fetcher.`<protocol>`.class =`<class path to your implementation>





or

pinot.server.segment.fetcher.`<protocol>`.class =`<class path to your implementation>





You can also provide other configs to your fetcher under config-root pinot.server.segment.fetcher.<protocol>







          

      

      

    

  

    
      
          
            
  
Pluggable Storage

Pinot enables its users to write a PinotFS abstraction layer to store data in a source of truth data layer of their
choice for offline segments. We do not yet have support for realtime consumption in deep storage.

Some examples of storage backends(other than local storage) currently supported are:


	HadoopFS [https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html]


	Azure Data Lake [https://azure.microsoft.com/en-us/solutions/data-lake/]




If the above two filesystems do not meet your needs, please feel free to get in touch with us,
and we can help you out.


New Storage Type implementation

In order to add a new type of storage backend (say, Amazon s3) implement the following class:


	S3FS extends PinotFS [https://github.com/apache/incubator-pinot/blob/master/pinot-filesystem/src/main/java/org/apache/pinot/filesystem/PinotFS.java]




The properties for the stream implementation are to be set in your controller and server configurations, like so [https://github.com/apache/incubator-pinot/wiki/Pluggable-Storage].







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Multitenancy


Problems with Multiple cluster in Pinot 1.0

In Pinot 1.0, we created one cluster for every engagement. While this was good in the beginning, it causes maintenance head aches and also delays on boarding new engagements.




Engagement

Here is the typical process of on boarding a new engagement.


	Capacity planning, estimate the number of nodes needed.


	Place new hardware request and wait for allocation.


	Once we get the the hardware, tag the nodes and deploy the software




The above steps take time and every new engagement causes disruption for developers and engagements don’t understand the process and feel that infrastructure team is slowing them down. Our goal is to drastically reduce the on boarding time on Pinot and also minimize the involvement from developers in on boarding new engagements.




Cluster Maintenance

Even maintenance becomes harder as we have more number of clusters. Some of the problems with having multiple clusters



	Too many versions to manage. Lot of clusters continue to run with old version. When there is a bug, we upgrade one cluster because its urgent but never get to upgrade remaining clusters.


	Promotes per tenant configuration. Since each cluster can have its own tag based configuration. We end up having too many configuration parameters that are specific to a particular tenant.










Hardware utilization (cost to serve)

Having separate set of hardware for every client means we cannot use the hardware in a cost effective manner. Most of the boxes in Pinot are under utilized and can easily support multiple use cases. However because of the way it is designed in Pinot 1.0, we end up creating separate clusters for each tenant. Co-locating multiple tenants on same hardware can reduce the number of boxes needed. While this is risky for external/site facing use cases, this can be used for internal use cases.




Multi tenancy in Pinot 2.0


[image: _images/image2015-4-14-194451.png]


In Pinot 2.0, we designed the system assuming that it will be Multi tenant from day 1. We will have only one cluster for all tenants. Helix will be used to drive the multi tenancy in Pinot. The key ideas here are


	Unlike Pinot 1.0 where we order nodes on a per tenant basis, we order hardware in bulk. SRE will install the same software version on all boxes, these boxes will start up and register in Helix. This allows us the SRE’s to configure and deploy the software on these boxes in one go.


	Make use of tagging feature provided by Helix. Helix allows one to Tag/untag a node dynamically. All instances are untagged when they join the cluster for the first time.


	On boarding a new engagement is as simple as tagging a node in Helix and assigning segments to the appropriate nodes in the cluster.







Example flow



	Procure 100 nodes from Ops in the beginning of the quarter and deploy pinot code.


	All nodes will have the tag “untagged”


	Lets say we get an use case “XLNT”. We do capacity planning and estimate that we need 10 nodes in total (Including replication factor). Pinot Controller automatically grabs 10 nodes from the pool and tags them as “XLNT”. All segments arriving from Hadoop and real time segments will be assigned to one of these boxes.


	When we reach close to the capacity we get new hardware and add them to this cluster.










Cluster maintenance


	With this approach, all nodes in the cluster can be upgraded at once.


	We might however some times want to upgrade only a set of machines. Current tooling at LinkedIn does not understand Helix metadata, hence we will write a small wrapper script that reads the information from Helix and upgrades the boxes that belong to a particular tenant.


	Canary: we will tag some nodes as canary and deploy our golden data set on it. Every release will be first deployed to these canary nodes before deploying on rest of the nodes.







Monitoring


	With Pinot 1.0, we would have one in graph dashboard per tenant because we tag the nodes in svn when they are assigned to a tenant. With Pinot 2.0, we can dynamically assign a node to any tenant. This makes it hard to have a per tenant dashboard. We solve this problem by having a convention in naming our metrics. Every metric we log in Auto metrics will have tenant name as part of it. SRE can use regex feature in InGraphs to filter metrics that belong to a tenant and generate per tenent dashboard.


	Metric naming convention: (pinot_server|pinot_broker|pinot_controller)_resourceName_tableName.metricName







Pinot Broker

In Pinot 1.0, we had embedded pinot broker within every pinot server. While this simplified deployment, it made it hard to capacity plan appropriately. Pinot broker and Pinot Server differ quite a bit in resource usage and workload patterns. Often, we wanted to add additional servers without increasing the number of brokers but this was not possible since adding a server meant adding additional broker as well. In pinot 2.0, we separated pinot-broker and pinot-server into separate deployable. Note: we can still deploy them together. This allowed us to make our brokers multi tenant. Unlike pinot-servers, in case of pinot-brokers we can make them truly multi tenant since they are state less. Especially for all internal use cases where Pinot serves as the back end for UI, the qps is pretty low and we can easily share brokers across multiple tenants.




Helix Layout

All cluster state of Pinot is managed by Helix [http://helix.apache.org]. The following links will help you understand the general layout of ZNodes in Helix.



	ZNode Layout in Helix [https://cwiki.apache.org/confluence/display/HELIX/Zookeeper+Node+Layout]


	Helix ZNode description [https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=34013532#Design&Architecture-ZnodeStructure]










Pinot Cluster creation

When the cluster is created the Zookeeper ZNode layout looks as follows.


[image: _images/znode_layout.png]





Adding Nodes to cluster

Adding node to cluster can be done in two ways, manual or automatic. This is controlled by a property set in cluster config called “allowPariticpantAutoJoin”. If this is set to true, participants can join the cluster when they are started. If not, they need to be pre-registered in Helix via Helix Admin [http://helix.apache.org/0.6.4-docs/tutorial_admin.html] command addInstance.

{
 "id" : "PinotPerfTestCluster",
 "simpleFields" : {
 "allowParticipantAutoJoin" : "true"
 },
 "mapFields" : { },
 "listFields" : { }
}





In Pinot 2.0 we will set AUTO_JOIN to true. This means after the SRE’s procure the hardware they can simply deploy the Pinot war and provide the cluster name. When the nodes start up, they join the cluster and registers themselves as server_untagged or broker_untagged. This is what one would see in Helix.

The znode CONFIGS/PARTICIPANT/ServerInstanceName looks lik below:

{
 "id":"Server_localhost_8098"
 ,"simpleFields":{
 "HELIX_ENABLED":"true"
 ,"HELIX_HOST":"Server_localhost"
 ,"HELIX_PORT":"8098"
 }
 ,"listFields":{
 "TAG_LIST":["server_untagged"]
 }
 ,"mapFields":{
 }
}





And the znode CONFIGS/PARTICIPANT/BrokerInstanceName looks like below:

{
 "id":"Broker_localhost_8099"
 ,"simpleFields":{
 "HELIX_ENABLED":"true"
 ,"HELIX_HOST":"Broker_localhost"
 ,"HELIX_PORT":"8099"
 }
 ,"listFields":{
 "TAG_LIST":["broker_untagged"]
 }
 ,"mapFields":{
 }
}








Adding Resources to Cluster

There is one resource idealstate created for Broker by default called broker_resource. This will contain the broker_tenant to broker assignment. Before creation of first a data resource, here is the content of brokerResource IdealState

CLUSTERNAME/IDEALSTATES/BrokerResource (Broker IdealState before adding data resource)

{
 "id" : "brokerResource",
 "simpleFields" : {
 "IDEAL_STATE_MODE" : "CUSTOMIZED",
 "MAX_PARTITIONS_PER_INSTANCE" : "2147483647",
 "NUM_PARTITIONS" : "2147483647",
 "REBALANCE_MODE" : "CUSTOMIZED",
 "REPLICAS" : "2147483647",
 "STATE_MODEL_DEF_REF" : "BrokerResourceOnlineOfflineStateModel",
 "STATE_MODEL_FACTORY_NAME" : "DEFAULT"
 },
 "mapFields" : { },
 "listFields" : { }
}





After adding a resource using the following data resource creation command, a resource name XLNT will be created under IDEALSTATE znode. We will also tag one of server nodes as server_XLNT and 1 broker as broker_XLNT.




Sample Curl request

curl -i -X POST -H 'Content-Type: application/json' -d '{"requestType":"create", "resourceName":"XLNT","tableName":"T1", "timeColumnName":"daysSinceEpoch", "timeType":"daysSinceEpoch","numberOfDataInstances":4,"numberOfCopies":2,"retentionTimeUnit":"DAYS", "retentionTimeValue":"700","pushFrequency":"daily", "brokerTagName":"XLNT", "numberOfBrokerInstances":1, "segmentAssignmentStrategy":"BalanceNumSegmentAssignmentStrategy", "resourceType":"OFFLINE", "metadata":{}}'





This is how it looks in Helix after running the above command.

The znode CONFIGS/PARTICIPANT/Broker_localhost_8099 looks as follows:

{
 "id":"Broker_localhost_8099"
 ,"simpleFields":{
 "HELIX_ENABLED":"true"
 ,"HELIX_HOST":"Broker_localhost"
 ,"HELIX_PORT":"8099"
 }
 ,"listFields":{
 "TAG_LIST":["broker_mirrorProfileViewOfflineEvents1"]
 }
 ,"mapFields":{
 }
}





And the znode IDEALSTATES/brokerResource looks like below after Data resource is created

{
 "id":"brokerResource"
 ,"simpleFields":{
 "IDEAL_STATE_MODE":"CUSTOMIZED"
 ,"MAX_PARTITIONS_PER_INSTANCE":"2147483647"
 ,"NUM_PARTITIONS":"2147483647"
 ,"REBALANCE_MODE":"CUSTOMIZED"
 ,"REPLICAS":"2147483647"
 ,"STATE_MODEL_DEF_REF":"BrokerResourceOnlineOfflineStateModel"
 ,"STATE_MODEL_FACTORY_NAME":"DEFAULT"
 }
 ,"listFields":{
 }
 ,"mapFields":{
 "mirrorProfileViewOfflineEvents1_O":{
 "Broker_localhost_8099":"ONLINE"
 }
 }
}





Server Info in Helix

The znode CONFIGS/PARTICIPANT/Server_localhost_8098 looks as below

{
 "id":"Server_localhost_8098"
 ,"simpleFields":{
 "HELIX_ENABLED":"true"
 ,"HELIX_HOST":"Server_localhost"
 ,"HELIX_PORT":"8098"
 }
 ,"listFields":{
 "TAG_LIST":["XLNT"]
 }
 ,"mapFields":{
 }
}





And the znode /IDEALSTATES/XLNT (XLNT Data Resource IdealState) looks as below:

{
 "id":"XLNT"
 ,"simpleFields":{
 "IDEAL_STATE_MODE":"CUSTOMIZED"
 ,"INSTANCE_GROUP_TAG":"XLNT"
 ,"MAX_PARTITIONS_PER_INSTANCE":"1"
 ,"NUM_PARTITIONS":"0"
 ,"REBALANCE_MODE":"CUSTOMIZED"
 ,"REPLICAS":"1"
 ,"STATE_MODEL_DEF_REF":"SegmentOnlineOfflineStateModel"
 ,"STATE_MODEL_FACTORY_NAME":"DEFAULT"
 }
 ,"listFields":{}
 ,"mapFields":{ }
}








Adding tables to Resources

Once the resource is created, we can create tables and upload segments accordingly.




Add a table to data resource

Sample Curl request

curl -i -X PUT -H 'Content-Type: application/json' -d '{"requestType":"addTableToResource","resourceName":"XLNT","tableName":"T1", "resourceType":"OFFLINE", "metadata":{}}' <span class="nolink">[http://CONTROLLER-HOST:PORT/dataresources](http://CONTROLLER-HOST:PORT/dataresources)





After the table is added, mapping between Resources and Tables are maintained in Helix Property Store (This is a place holder in Zookeeper provided by Helix to store application specific attributes).

The znode /PROPERTYSTORE/CONFIGS/RESOURCE/XLNT like like:

{
 "id":"mirrorProfileViewOfflineEvents1_O"
 ,"simpleFields":{
 "brokerTagName":"broker_mirrorProfileViewOfflineEvents1"
 ,"numberOfBrokerInstances":"1"
 ,"numberOfCopies":"1"
 ,"numberOfDataInstances":"1"
 ,"pushFrequency":"daily"
 ,"resourceName":"mirrorProfileViewOfflineEvents1"
 ,"resourceType":"OFFLINE"
 ,"retentionTimeUnit":"DAYS"
 ,"retentionTimeValue":"300"
 ,"segmentAssignmentStrategy":"BalanceNumSegmentAssignmentStrategy"
 ,"timeColumnName":"daysSinceEpoch"
 ,"timeType":"DAYS"
 }
 ,"listFields":{
 "tableName":["T1"]
 }
 ,"mapFields":{
 "metadata":{
 }
 }
}
//This will change slightly when retention properties
//are stored at table scope </pre>





The znode /IDEALSTATES/XLNT (XLNT Data Resource IdealState)

{
 "id":"XLNT_O"
 ,"simpleFields":{
 "IDEAL_STATE_MODE":"CUSTOMIZED"
 ,"INSTANCE_GROUP_TAG":"XLNT_O"
 ,"MAX_PARTITIONS_PER_INSTANCE":"1"
 ,"NUM_PARTITIONS":"3"
 ,"REBALANCE_MODE":"CUSTOMIZED"
 ,"REPLICAS":"1"
 ,"STATE_MODEL_DEF_REF":"SegmentOnlineOfflineStateModel"
 ,"STATE_MODEL_FACTORY_NAME":"DEFAULT"
 }
 ,"listFields":{
 }
 ,"mapFields":{
 "XLNT_T1_daily_2014-08-01_2014-08-01_0":{
 "Server_localhost_8098":"ONLINE"
 }
 ,"XLNT_T1_daily_2014-08-01_2014-08-01_1":{
 "Server_localhost_8098":"ONLINE"
 }
 ,"XLNT_T1_daily_2014-08-01_2014-08-01_2":{
 "Server_localhost_8098":"ONLINE"
 }
 }
}











          

      

      

    

  

    
      
          
            
  

	PQL

	Index Techniques

	Executing queries via REST API on the Broker

	Managing Pinot via REST API on the Controller

	Creating Pinot segments







          

      

      

    

  _static/plus.png





_static/up-pressed.png





_static/up.png





_images/Pinot-Offline-only-flow.png
ETL to HDFS from Offline Pinot segment

some external aggregation (eg. conversion and
data source using Hadoop) push






_images/image2015-4-14-194451.png
STEP 1:Procure Hardware

QOO0

FREE UNTAGGED NODES

STEP 2: Deploy Pinot Broker and Server Nodes

QLLOOLAOLLO0O

< FREE SERVERNODES ———  <— FREE BROKER NODES — -

'STEP 3: ADD TENANT: CREATE RESOURCE COMMAND

TesourceName XINT
tableName T
‘numberOfDatalnstances @
numberOfCopies 2

brokerTagName. XINT
‘numberOfBrokernstances 1

WO O0O0
t ool s £ 4~ IR

NODES
XLNT XLNT

DATA SERVER NODES BROKER NODE





_images/pinot-architecture.png
Apache Helix

\ e Uses helix for cluster
\ management

e Pinot data is stored in

2 segments
=3
o] e Periodic push of
)c?r REST(Query) offline segments
o
v @ e Periodic creation of
Realtime segments by realtime
Stream segment ) — segment servers

Servers

o Broker routes queries
to offline and realtime
segments to cover all
data as needed

Pinot Controllers

REST(Admin)

Offline Store






_images/znode_layout.png
¥V [= pinot-cluster
> [= nuage-stg
¥ [ pinot

>

vVvyVvyvVvyYVYyYvVYyYy

(= CONFIGS

(= CONTROLLER

(= EXTERNALVIEW
(= IDEALSTATES

(= INSTANCES

[ LIVEINSTANCES
(= PROPERTYSTORE
(= STATEMODELDEFS






_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          Introduction
        


        		
          About Pinot
          
            		
              What is it for (and not)?
            


            		
              Key Features
            


          


        


        		
          Architecture
          
            		
              Terminology
            


            		
              Pinot Components
            


            		
              Pinot Tables
              
                		
                  Ingesting Offline data
                


                		
                  Ingesting Realtime Data
                


              


            


            		
              Pinot Segments
            


          


        


        		
          Quick Demo
          
            		
              Compiling the code
            


            		
              Trying out Offline quickstart demo
            


            		
              Trying out Realtime quickstart demo
            


          


        


        		
          PQL
          
            		
              PQL Examples
            


            		
              Aggregation
            


            		
              Grouping on Aggregation
            


            		
              Filtering
            


            		
              Selection (Projection)
            


            		
              Ordering on Selection
            


            		
              Pagination on Selection
            


            		
              Wild-card match (in WHERE clause only)
            


            		
              Examples with UDF
            


            		
              PQL Specification
              
                		
                  SELECT
                


                		
                  Supported aggregations on single-value columns
                


                		
                  Supported aggregations on multi-value columns
                


                		
                  WHERE
                


                		
                  GROUP BY
                


                		
                  ORDER BY
                


                		
                  TOP
                


                		
                  LIMIT
                


                		
                  Transform Function in Aggregation and Grouping
                


                		
                  Supported transform functions
                


              


            


            		
              Differences with SQL
            


          


        


        		
          Index Techniques
          
            		
              Forward Index
              
                		
                  Dictionary-Encoded Forward Index with Bit Compression
                


                		
                  Raw Value Forward Index
                


                		
                  Sorted Forward Index with Run-Length Encoding
                


              


            


            		
              Inverted Index (only available with dictionary-encoded indexes)
              
                		
                  Bitmap Inverted Index
                


                		
                  Sorted Inverted Index
                


              


            


            		
              Advanced Index
              
                		
                  Star-Tree Index
                


              


            


          


        


        		
          Executing queries via REST API on the Broker
          
            		
              Aggregation
            


            		
              Aggregation with grouping
            


            		
              Selection
            


            		
              Java
            


          


        


        		
          Managing Pinot via REST API on the Controller
        


        		
          Creating Pinot segments
          
            		
              Creating segments using hadoop
              
                		
                  Configuring the job
                


                		
                  Executing the job
                


              


            


            		
              Creating Pinot segments outside of Hadoop
              
                		
                  Pushing segments to Pinot
                


              


            


          


        


        		
          Running Pinot in production
          
            		
              Installing Pinot
              
                		
                  Requirements
                


                		
                  Recommended environment
                


              


            


            		
              Deploying Pinot
              
                		
                  Direct deployment of Pinot
                


                		
                  Deployment of Pinot on Kubernetes
                


              


            


            		
              Managing Pinot
              
                		
                  Creating tables
                


                		
                  Updating tables
                


                		
                  Uploading data
                


                		
                  Configuring realtime data ingestion
                


                		
                  Monitoring Pinot
                


              


            


          


        


        		
          Pluggable Streams
          
            		
              Requirements to support Stream Level (High Level) consumers
            


            		
              Requirements to support Partition Level (Low Level) consumers
            


            		
              Stream plug-in implementation
            


          


        


        		
          Segment Fetchers
          
            		
              HDFS segment fetcher configs
            


            		
              Push HDFS segment to Pinot Controller
            


            		
              Implement your own segment fetcher for other systems
            


          


        


        		
          Pluggable Storage
          
            		
              New Storage Type implementation
            


          


        


      


    
  

_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/minus.png





