
Tractor Documentation
Release 1.0

Hogg & Lang

Nov 24, 2018

Contents

1 Introduction to using The Tractor 1
1.1 Sources, positions, and brightnesses . 1
1.2 Parameters . 3
1.3 Thawing/Freezing Params . 4
1.4 Optimization / Fitting . 5
1.5 Multi-Image Optimization / Fitting . 9

2 Introduction to using The Tractor (Part 2) 15
2.1 Galaxies . 15

3 Using the Tractor with GalSim images 19

4 Code structure of the Tractor 27

5 Once-asked Questions 29
5.1 Q: My images have some crazy WCS that your code doesn’t understand. What do I do? 29
5.2 A: . 29

6 API Reference 31
6.1 Flat list . 31
6.2 Ducks . 32
6.3 Utilities . 32
6.4 Core Tractor routines . 32
6.5 Galaxies . 32
6.6 SDSS images & catalogs . 32
6.7 CFHT images & catalogs . 32

7 Case Study: Extending the Tractor to do Strong Gravitational Lensing 33

8 Using Ceres Solver with the Tractor 37
8.1 Building Ceres Solver . 37

9 API Reference – Tractor Basics 39
9.1 Basics for standard images & catalogs . 39

10 Indices 41

i

ii

CHAPTER 1

Introduction to using The Tractor

The Tractor is a code for optimizing or sampling from models of astronomical objects. The approach is generative:
given astronomical sources and a description of the image properties, the code produces pixel-space estimates or
predictions of what will be observed in the images. We use this estimate to produce a likelihood for the observed data
given the model: assuming our model space actually includes the truth (it doesn’t, in detail), then if we had the optimal
model parameters, the predicted image would only differ from the actually observed image by noise. Given a noise
model of the instrument and assuming pixelwise independent noise, the log-likelihood is just the negative chi-squared
difference: (image - model) / noise.

To actually use the Tractor code to infer the properties of astronomical objects in your images, you will probably have
to write a driver script, which will read in your data of interest, create tractor.Image objects describing your images,
and source objects describing the astronomical sources of interest. The Tractor does not (at present) create sources
itself; you have to initialize it with reasonable guesses about the objects in your images.

tractor.Image objects carry the data, per-pixel noise sigma (we usually work with inverse-variance), and a number
of calibration parameters. These include the PSF model, astrometric calibration (WCS), photometric calibra-
tion, and sky background model. Each of these calibrations can be parameterized and its parameters fit alongside
the properties of the astronomical sources.

1.1 Sources, positions, and brightnesses

tractor.Source objects are rather nebulously defined, as we will see below. A simple example is the trac-
tor.PointSource class, which has a “position” and a “brightness”. A Source object must be able to render its
appearance in a given tractor.Image; that is, is must be able to produce a pixel-space model of what it would
look like in the given image. To do this, it must use the image’s calibration objects to convert the source’s
representation of its position into pixel space (via the image’s WCS), convert its representation of its brightness
into pixel counts (via the image’s photometric calibration or “photoCal”). It also needs the image’s PSF model.

The core Tractor code does not know or care about the exact types (python classes) you use to represent the position
and brightness. The only requirement for a “position” or “brightness” class is that it have the right “duck type”, and
that the image’s PhotoCal or WCS objects can convert it to image space. That is, the class you use for the “position”
of sources must match the class you use for the “WCS” of the images, and the “brightness” of the sources must match
the “PhotoCal” of the images. Let’s see an example to clarify this.

1

Tractor Documentation, Release 1.0

In this example, we are working in pixel space and raw counts; we use the PixPos class to represent pixel positions, and
the Flux class to represent the image counts. We can then use the “null” calibration classes, which just pass through
the position and flux values unmodified.

from tractor import *

source = PointSource(PixPos(17., 27.4), Flux(23.9))

photocal = NullPhotoCal()
wcs = NullWCS()

counts = photocal.brightnessToCounts(source.getBrightness())
x,y = wcs.positionToPixel(source.getPosition())
print 'source', source
print 'counts', counts, 'x,y', x,y

Which prints:

source PointSource at pixel (17.00, 27.40) with Flux: 23.9
counts 23.9 x,y 17.0 27.4

Instead, we could chose to work in RA,Dec coordinates, so we would use the RaDecPos class to represent the positions
of sources in celestial coordinates, and one of the WCS calibration classes that expect celestial coordinates. Similarly,
we could decide to work with brightness represented in Mags, and use a MagsPhotoCal.

from tractor import *
from astrometry.util.util import Tan

source = PointSource(RaDecPos(42.3, 9.7), Mags(r=12., i=11.3))

photocal = MagsPhotoCal('r', 22.5)
wcs = FitsWcs(Tan(42.0, 9.0, 100., 100., 0.1, 0., 0., 0.1, 200., 200.))

counts = photocal.brightnessToCounts(source.getBrightness())
x,y = wcs.positionToPixel(source.getPosition())

print 'source', source
print 'photocal', photocal
print 'wcs', wcs
print 'counts', counts, 'x,y', x,y

Which prints:

source PointSource at RaDecPos: RA, Dec = (42.30000, 9.70000) with Mags: i=11.3, r=12
photocal MagsPhotoCal(band=r, zp=22.500)
wcs FitsWcs: x0,y0 0.000,0.000, WCS TAN: crpix (100.0, 100.0), crval (42, 9), cd (0.1,
→˓ 0, 0, 0.1), image 200 x 200
counts 15848.9319246 x,y 101.957357071 106.001652903

Notice a few things here: we created a Mags object with r and i-band mags. Then when we created the photocal, we
told it that this image is r band. The Tractor doesn’t care how many parameters you use to represent your brightness,
all it cares is that your PhotoCal class can convert it to counts. You could imagine representing a star’s brightness in
terms of angular diameter and black-body temperature, and have your PhotoCal integrate its spectrum through a filter
curve.

In this example, we gave the source magnitudes in two different bands. If we had, say, an image in each band, we count
then fit its position and flux in both bands. The position (in RA,Dec) would be fit to jointly optimize the likelihood in
the two images, while the fluxes would be fit independently of each other. The r-band image would just have nothing

2 Chapter 1. Introduction to using The Tractor

Tractor Documentation, Release 1.0

to say about the i-band magnitude, and vice versa.

In the Tractor code, the “duck types” are defined in the file tractor/ducks.py. This code is not actually used, it is just
documentation written in code. A toolbox of typical choices for position and brightness and their corresponding WCS
and PhotoCal are given in the file tractor/basics.py.

1.2 Parameters

Before going any further, let’s look at some of the infrastructure for how the Tractor deals with parameters. In the
Tractor code, most objects (sources, image calibration objects) must be Params duck-type objects. That is, a source
should act like a Params object, as should a PhotoCal object. The most important function calls are shown here:

>>> from tractor import *
>>> pos = RaDecPos(42.3, 9.7)
>>> print pos
RaDecPos: RA, Dec = (42.30000, 9.70000)
>>> print pos.getParams()
[42.3, 9.7]
>>> print pos.getParamNames()
['ra', 'dec']
>>> print pos.getStepSizes()
[0.00010145038861680802, 0.0001]
>>> pos.setParams([42.7, 9.3])
>>> print pos
RaDecPos: RA, Dec = (42.70000, 9.30000)
>>> pos.setParam(1, 10.0)
>>> print pos
RaDecPos: RA, Dec = (42.70000, 10.00000)

Most of the Tractor’s infrastructure for dealing with params is in the tractor/utils.py file, which is not easy reading.
The hope, however, is that the resulting API is flexible and easy to use.

We often want to “compose” objects out of sub-objects (a PointSource has a position and a brightness), so there is a
class for that, called MultiParams. It is also nice to be able to parameters or sub-objects by name; this is accomplished
by the NamedParams mix-in class, though you’ll probably never have to use that in your own code. For example:

>>> from tractor import *
>>> source = PointSource(RaDecPos(42.3, 9.7), Mags(r=99.9))
>>> print source
PointSource at RaDecPos: RA, Dec = (42.30000, 9.70000) with Mags: r=99.9
>>> print source.pos
RaDecPos: RA, Dec = (42.30000, 9.70000)
>>> print source.brightness
Mags: r=99.9
>>> print source.pos.ra
42.3
>>> print source.brightness.r
99.9
>>> print source.getParams()
[42.3, 9.7, 99.9]
>>> print zip(source.getParamNames(), source.getParams())
[('pos.ra', 42.3), ('pos.dec', 9.7), ('brightness.r', 99.9)]

Notice that source.getParams() just concatenates the getParams() results from its pos and brightness sub-objects.
This is a really general theme in the Tractor. A Tractor Image object is composed of all its calibration sub-objects;
Image.getParams() gives a full description of the calibration parameters of the image. Similarly, a Tractor Catalog is a

1.2. Parameters 3

Tractor Documentation, Release 1.0

list-like container of sources whose getParams() method just concatenates the getParams() of all the source it contains.
Taking this one step further, a Tractor object itself is composed of Images and a Catalog.

1.3 Thawing/Freezing Params

A powerful feature of the Tractor is that you can “freeze” a subset of the parameters – hold them fixed and exclude
them from fitting. This power comes at a price, though (doesn’t it always?); freezing the right parameters can be a bit
tricky, and objects with frozen parameters might not always act the way you expect.

For MultiParams objects, you can freeze and thaw sub-objects by name. A parameter is considered “thawed” if the
full path from the Tractor object to the parameter is thawed.

One possibly surprising thing about frozen parameters is that they disappear from the getParams() and getParam-
Names() lists; they are also not counted in numberOfParams(), and setParams() will skip past them. Frozen parameters
effectively disappear from view:

>>> from tractor import *
>>> cat = Catalog(PointSource(RaDecPos(42.3, 9.7), Mags(r=99.9)))
>>> print cat
Catalog: 1 sources, 3 parameters
>>> print zip(cat.getParamNames(), cat.getParams())
[('source0.pos.ra', 42.3), ('source0.pos.dec', 9.7), ('source0.brightness.r', 99.9)]
>>> cat[0].freezeParam('pos')
>>> print zip(cat.getParamNames(), cat.getParams())
[('source0.brightness.r', 99.9)]

Here we froze the “pos” sub-object of the PointSource, so it disappears from view. We could thaw the position, but
then freeze its RA component:

>>> cat[0].thawParam('pos')
>>> cat[0].pos.freezeParam('ra')
>>> print zip(cat.getParamNames(), cat.getParams())
[('source0.pos.dec', 9.7), ('source0.brightness.r', 99.9)]

Handy functions include:

>>> cat.thawAllRecursive()
>>> print zip(cat.getParamNames(), cat.getParams())
[('source0.pos.ra', 42.3), ('source0.pos.dec', 9.7), ('source0.brightness.r', 99.9)]
>>> cat.freezeAllRecursive()
>>> cat.thawPathsTo('r')
True
>>> print zip(cat.getParamNames(), cat.getParams())
[('source0.brightness.r', 99.9)]
>>> print 'Thawed(self) Thawed(parent) Param', '\n', '-'*50
>>> for param, tself, tparent in cat.getParamStateRecursive():
... print ' %5s %5s ' % (tself, tparent), param
Thawed(self) Thawed(parent) Param
--

True True source0
False True source0.pos
False False source0.pos.ra
False False source0.pos.dec
True True source0.brightness
True True source0.brightness.r

4 Chapter 1. Introduction to using The Tractor

Tractor Documentation, Release 1.0

The last table shows that the freezeAllRecursive() call froze both the source pos but also pos.ra and pos.dec; just
thawing pos won’t cause ra and dec to become active again; we have to thaw the full path down to ra and dec:

>>> cat[0].thawParam('pos')
>>> cat.printThawedParams()
source0.brightness.r = 99.9
>>> cat[0].pos.thawAllParams()
>>> cat.printThawedParams()
source0.pos.ra = 42.3
source0.pos.dec = 9.7
source0.brightness.r = 99.9

1.4 Optimization / Fitting

So far we haven’t actually created a Tractor object or fit anything. Time to get down to business.

As an example, let’s create a synthetic image manually, and then use the Tractor to fit a source model to it.

import numpy as np
import pylab as plt
from tractor import *

Size of image, centroid and flux of source
W,H = 25,25
cx,cy = 12.8, 14.3
flux = 12.
PSF size
psfsigma = 2.
Per-pixel image noise
noisesigma = 0.01
Create synthetic Gaussian star image
G = np.exp(((np.arange(W)-cx)[np.newaxis,:]**2 +

(np.arange(H)-cy)[:,np.newaxis]**2)/(-2.*psfsigma**2))
trueimage = flux * G/G.sum()
image = trueimage + noisesigma * np.random.normal(size=trueimage.shape)

Create Tractor Image
tim = Image(data=image, invvar=np.ones_like(image) / (noisesigma**2),

psf=NCircularGaussianPSF([psfsigma], [1.]),
wcs=NullWCS(), photocal=NullPhotoCal(),
sky=ConstantSky(0.))

Create Tractor source with approximate position and flux
src = PointSource(PixPos(W/2., H/2.), Flux(10.))

Create Tractor object itself
tractor = Tractor([tim], [src])

Render the model image
mod0 = tractor.getModelImage(0)
chi0 = tractor.getChiImage(0)

Plots
ima = dict(interpolation='nearest', origin='lower', cmap='gray',

vmin=-2*noisesigma, vmax=5*noisesigma)
imchi = dict(interpolation='nearest', origin='lower', cmap='gray',

(continues on next page)

1.4. Optimization / Fitting 5

Tractor Documentation, Release 1.0

(continued from previous page)

vmin=-5, vmax=5)
plt.clf()
plt.subplot(2,2,1)
plt.imshow(trueimage, **ima)
plt.title('True image')
plt.subplot(2,2,2)
plt.imshow(image, **ima)
plt.title('Image')
plt.subplot(2,2,3)
plt.imshow(mod0, **ima)
plt.title('Tractor model')
plt.subplot(2,2,4)
plt.imshow(chi0, **imchi)
plt.title('Chi')
plt.savefig('1.png')

Freeze all image calibration params -- just fit source params
tractor.freezeParam('images')

Save derivatives for later plotting...
derivs = tractor.getDerivs()

Take several linearized least squares steps
for i in range(10):

dlnp,X,alpha = tractor.optimize()
print 'dlnp', dlnp
if dlnp < 1e-3:

break

Get the fit model and residual images for plotting
mod = tractor.getModelImage(0)
chi = tractor.getChiImage(0)
Plots
plt.clf()
plt.subplot(2,2,1)
plt.imshow(trueimage, **ima)
plt.title('True image')
plt.subplot(2,2,2)
plt.imshow(image, **ima)
plt.title('Image')
plt.subplot(2,2,3)
plt.imshow(mod, **ima)
plt.title('Tractor model')
plt.subplot(2,2,4)
plt.imshow(chi, **imchi)
plt.title('Chi')
plt.savefig('2.png')

Plot the derivatives we saved earlier
def showpatch(patch, ima):

im = patch.patch
h,w = im.shape
ext = [patch.x0,patch.x0+w, patch.y0,patch.y0+h]
plt.imshow(im, extent=ext, **ima)
plt.title(patch.name)

imderiv = dict(interpolation='nearest', origin='lower', cmap='gray',
vmin=-0.05, vmax=0.05)

(continues on next page)

6 Chapter 1. Introduction to using The Tractor

Tractor Documentation, Release 1.0

(continued from previous page)

plt.clf()
plt.subplot(2,2,1)
plt.imshow(mod0, **ima)
ax = plt.axis()
plt.title('Initial Tractor model')
for i in range(3):

plt.subplot(2,2,2+i)
showpatch(derivs[i][0][0], imderiv)
plt.axis(ax)

plt.savefig('3.png')

The plots look like:

The “before” image—our initial Tractor model has the source a little too low and to the left, which you can see in the
“chi” image.

The “after” image—the source position has been adjusted and the “chi” image looks like a noise field.

1.4. Optimization / Fitting 7

Tractor Documentation, Release 1.0

The “derivatives” image—the initial model, and its derivatives with respect to each of the parameters being fit. The
fitter finds a linear combination of the derivatives that should minimize the residuals, then does line-search (since the
minimum in the linearized problem may not coincide with the minimum in the real non-linear problem).

8 Chapter 1. Introduction to using The Tractor

Tractor Documentation, Release 1.0

1.5 Multi-Image Optimization / Fitting

In the following example we will fit for the positions and fluxes of two point sources in two images with different
point-spread functions and noise properties. The sources are within a few pixels of each other, so this is actually not
a trivial problem for most source extraction routines, while for the Tractor the code is nearly identical to the easier
single-image, single-source case.

import numpy as np
import pylab as plt
from tractor import *

def imshow(x, **kwa):
plt.imshow(x, **kwa)
plt.xticks([]); plt.yticks([])

Size of image, centroids and fluxes of sources
W,H = 25,25
stars = [((12.8, 14.3), 12.), ((15.0, 11.0), 15.)]
PSF sizes
psfsigmas = [2., 1.]
Per-pixel image noise
noisesigmas = [0.01, 0.02]

(continues on next page)

1.5. Multi-Image Optimization / Fitting 9

Tractor Documentation, Release 1.0

(continued from previous page)

Create synthetic Gaussian star images
trueimages = []
images = []
for psfsigma, noisesigma in zip(psfsigmas, noisesigmas):

trueimage = np.zeros((H,W))
for (cx,cy),flux in stars:

G = np.exp(((np.arange(W)-cx)[np.newaxis,:]**2 +
(np.arange(H)-cy)[:,np.newaxis]**2)/(-2.*psfsigma**2))

trueimage += flux * G/G.sum()
image = trueimage + noisesigma * np.random.normal(size=trueimage.shape)
trueimages.append(trueimage)
images.append(image)

Create Tractor Images
tims = [Image(data=image, invvar=np.ones_like(image) / (noisesigma**2),

psf=NCircularGaussianPSF([psfsigma], [1.]),
wcs=NullWCS(), photocal=NullPhotoCal(),
sky=ConstantSky(0.))
for image, noisesigma, psfsigma
in zip(images, noisesigmas, psfsigmas)]

Create Tractor sourcess with approximate position and flux
cat = [PointSource(PixPos(W/2.-1, H/2.-1), Flux(10.)),

PointSource(PixPos(W/2.+1, H/2.+1), Flux(10.))]

Create Tractor object itself
tractor = Tractor(tims, cat)

Render the model images
mods0 = [tractor.getModelImage(i) for i in range(2)]
chis0 = [tractor.getChiImage(i) for i in range(2)]

Plots
ima = dict(interpolation='nearest', origin='lower', cmap='gray',

vmin=-2*noisesigma, vmax=20*noisesigma)
imchi = dict(interpolation='nearest', origin='lower', cmap='gray',

vmin=-5, vmax=5)
def plot_src_pos(srcs):

ax = plt.axis()
plt.plot([src.getPosition().x for src in srcs],

[src.getPosition().y for src in srcs], 'r+')
plt.axis(ax)

def plot_true_pos(stars):
ax = plt.axis()
plt.plot([cx for (cx,cy),flux in stars],

[cy for (cx,cy),flux in stars], 'o', mec='r', mfc='none')
plt.axis(ax)

plt.clf()
for i,(trueim,im,mod,chi) in enumerate(zip(trueimages,images,mods0,chis0)):

plt.subplot(2,4, 4*i+1)
imshow(trueim, **ima)
plot_true_pos(stars)
plt.title('True image')
plt.subplot(2,4, 4*i+2)
imshow(im, **ima)
plot_true_pos(stars)

(continues on next page)

10 Chapter 1. Introduction to using The Tractor

Tractor Documentation, Release 1.0

(continued from previous page)

plt.title('Image')
plt.subplot(2,4, 4*i+3)
imshow(mod, **ima)
plot_src_pos(cat)
plt.title('Tractor model')
plt.subplot(2,4, 4*i+4)
imshow(chi, **imchi)
plot_src_pos(cat)
plt.title('Chi')

plt.savefig('4.png')

Freeze all image calibration params -- just fit source params
tractor.freezeParam('images')

Plot derivatives...
derivs = tractor.getDerivs()
def showpatch(patch, ima):

im = patch.patch
h,w = im.shape
ext = [patch.x0-0.5,patch.x0+w-0.5, patch.y0-0.5,patch.y0+h-0.5]
imshow(im, extent=ext, **ima)
plt.title(patch.name.replace('d(ptsrc)', 'd'))

imderiv = dict(interpolation='nearest', origin='lower', cmap='gray',
vmin=-0.05, vmax=0.05)

plt.clf()
for i,mod0 in enumerate(mods0):

plt.subplot(4,4, 8*i+1)
imshow(mod0, **ima)
plot_src_pos(cat)
ax = plt.axis()
plt.title('Initial Tractor model')
for j in range(6):

plt.subplot(4,4, 8*i + (j/3)*4 + j%3 + 2)
showpatch(derivs[j][i][0], imderiv)
plt.axis(ax)
plot_src_pos([cat[j/3]])

plt.savefig('5.png')

Take several linearized least squares steps
for i in range(10):

dlnp,X,alpha = tractor.optimize()
print 'dlnp', dlnp
if dlnp < 1e-3:

break

Get the fit model and residual images for plotting
mods = [tractor.getModelImage(i) for i in range(2)]
chis = [tractor.getChiImage(i) for i in range(2)]
Plots
plt.clf()
for i,(trueim,im,mod,chi) in enumerate(zip(trueimages,images,mods,chis)):

plt.subplot(2,4, 4*i+1)
imshow(trueim, **ima)
plot_true_pos(stars)
plt.title('True image')
plt.subplot(2,4, 4*i+2)
imshow(im, **ima)

(continues on next page)

1.5. Multi-Image Optimization / Fitting 11

Tractor Documentation, Release 1.0

(continued from previous page)

plot_true_pos(stars)
plt.title('Image')
plt.subplot(2,4, 4*i+3)
imshow(mod, **ima)
plot_src_pos(cat)
plot_true_pos(stars)
plt.title('Tractor model')
plt.subplot(2,4, 4*i+4)
imshow(chi, **imchi)
plot_src_pos(cat)
plt.title('Chi')

plt.savefig('6.png')

Here are the resulting images. First, the initial model. Note that we did not initialize the source positions very well.

Next, the derivatives.

12 Chapter 1. Introduction to using The Tractor

Tractor Documentation, Release 1.0

Finally, the optimized model. The Tractor found the correct centroids and fluxes for the sources, leaving nothing but
noise (by eye, at least).

1.5. Multi-Image Optimization / Fitting 13

Tractor Documentation, Release 1.0

14 Chapter 1. Introduction to using The Tractor

CHAPTER 2

Introduction to using The Tractor (Part 2)

2.1 Galaxies

The Tractor currently supports parametric Exponential (“exp”, ExpGalaxy) and deVaucoulers (“dev”, DevGalaxy)
galaxies, composite galaxies (deV+exp, CompositeGalaxy and FixedCompositeGalaxy), and general Sersic galaxies
(SersicGalaxy). The dev and exp galaxies are in the tractor.galaxy package, while Sersic is in tractor.sersic.

Each of these galaxies is described by its position, brightness, and an ellipse describing its shape. Composite galaxies
have a brightness and shape for the dev and exp components. FixedComposite has a single brightness and a FracDev
parameter describing how the flux is split between the exp and dev components. Sersic galaxies also a Sersic index
parameter.

A number of ellipse parameterizations are available, including GalaxyShape (radius, axis ratio, and position angle;
in galaxy.py), EllipseE (radius, e1, e2)—which I believe are called g1,g2 in GalSim, and EllipseESoft (log-radius,
ee1, ee2), where ee1,ee2 go through a sigmoid softening function (1-exp(-|ee|)) to get to the standard e1,e2. This
parameterization has the advantage that the parameter space is smooth and unbounded, which tends to make optimizers
happy.

Let’s see an example of creating some Galaxy objects.

import numpy as np
import pylab as plt
from tractor import *
from tractor.galaxy import *
from tractor.sersic import *

size of image
W,H = 40,40

PSF size
psfsigma = 1.

per-pixel noise
noisesigma = 0.01

(continues on next page)

15

Tractor Documentation, Release 1.0

(continued from previous page)

create tractor.Image object for rendering synthetic galaxy
images
tim = Image(data=np.zeros((H,W)), invvar=np.ones((H,W)) / (noisesigma**2),

psf=NCircularGaussianPSF([psfsigma], [1.]))

sources = [ExpGalaxy(PixPos(10,10), Flux(10.), GalaxyShape(3., 0.5, 45.)),
CompositeGalaxy(PixPos(10,30),

Flux(10.), EllipseE(3., 0.5, 0.),
Flux(10.), EllipseE(3., 0., -0.5)),

SersicGalaxy(PixPos(30,10), Flux(10.),
EllipseESoft(1., 0.5, 0.5), SersicIndex(3.)),

FixedCompositeGalaxy(PixPos(30,30), Flux(10.), 0.8,
EllipseE(2., 0., 0.),EllipseE(1., 0., 0.))]

tractor = Tractor([tim], sources)

mod = tractor.getModelImage(0)

Plot
plt.clf()
plt.imshow(np.log(mod + noisesigma),

interpolation='nearest', origin='lower', cmap='gray')
plt.title('Galaxies')
plt.savefig('7.png')

Notice that we can mix-and-match different ellipse types. The image looks like:

16 Chapter 2. Introduction to using The Tractor (Part 2)

Tractor Documentation, Release 1.0

2.1. Galaxies 17

Tractor Documentation, Release 1.0

18 Chapter 2. Introduction to using The Tractor (Part 2)

CHAPTER 3

Using the Tractor with GalSim images

In the example below, we will process images generated by a modified version of the GalSim demo12.py script (Origi-
nal: https://github.com/GalSim-developers/GalSim/blob/master/examples/demo12.py ; Modified: https://github.com/
dstndstn/tractor/blob/master/doc/galsim/demo12.py).

Using the Tractor with GalSim images requires creating a tractor.Image object and source (PointSource, Galaxy)
objects describing the objects in your scene.

Let’s start with the Image. For some experiments you would like to have the Tractor figure out the PSF itself, but here
we will assume you want to tell it the true PSF model that was used. If you used a single Gaussian PSF in GalSim,
that would look like:

from tractor import *
psf = NCircularGaussianPSF([sigma], [1.])

Be careful about PSF widths specified as full-width at half max (FWHM), or specified in arcseconds. All the Tractor
PSF models describe the PSF sizes in pixels, and standard deviations (sigmas).

For WCS, if you are working with single images, or pixel-aligned multiple images, it will probably be easiest to work
in pixel coordinates for positions. You will then use the PixPos class for your positions, and NullWCS (the default) for
the WCS.

For photometric calibration (“photocal”), again it will probably be easiest to work directly in counts (Flux class) if
you are doing single-band images, or Fluxes for multi-band. For Flux, you can keep the default NullPhotoCal, but for
Fluxes, use FluxesPhotoCal or LinearPhotoCal, telling it the band name of the image you are processing:

from tractor import *

flux = Fluxes(r=100, g=40)
source = PointSource(PixPos(0.,0.), flux)

If we're dealing with an r-band image:
photocal = FluxesPhotoCal('r')

The other thing you have to do is read the GalSim simulated pixels, and set up the inverse-variance (“invvar”) map.
Here I will assume the noise in the GalSim image is pixelwise independent Gaussian of known variance. I will assume

19

https://github.com/GalSim-developers/GalSim/blob/master/examples/demo12.py
https://github.com/dstndstn/tractor/blob/master/doc/galsim/demo12.py
https://github.com/dstndstn/tractor/blob/master/doc/galsim/demo12.py

Tractor Documentation, Release 1.0

we are reading 3 epochs of simulated images, stored in a “data cube” format. The actual files used in this example can
be found in the tractor git repository in the doc/galsim directory.

import numpy as np
import pylab as plt
import fitsio
from tractor import *
from tractor.galaxy import *

These match the values in galsim/demo12.py
pixnoise = 0.02
psf_sigma = 1.5
bands = 'ugrizy'
nepochs = 3

Read multiple epochs of imaging for each band.
mydir = os.path.dirname(__file__)
tims = []
for band in bands:

fn = os.path.join(mydir, 'galsim', 'output', 'demo12b_%s.fits' % band)
print 'Band', band, 'Reading', fn
cube,hdr = fitsio.read(fn, header=True)
print 'Read', cube.shape
pixscale = hdr['GS_SCALE']
print 'Pixel scale:', pixscale, 'arcsec/pix'
nims,h,w = cube.shape
assert(nims == nepochs)
for i in range(nims):

image = cube[i,:,:]
tim = Image(data=image, invvar=np.ones_like(image) / pixnoise**2,

photocal=FluxesPhotoCal(band),
wcs=NullWCS(pixscale=pixscale),
psf=NCircularGaussianPSF([psf_sigma], [1.0]))

tims.append(tim)

We create a dev+exp galaxy with made-up initial parameters.
galaxy = CompositeGalaxy(PixPos(w/2, h/2),

Fluxes(**dict([(band, 10.) for band in bands])),
EllipseESoft(0., 0., 0.),
Fluxes(**dict([(band, 10.) for band in bands])),
EllipseESoft(0., 0., 0.))

tractor = Tractor(tims, [galaxy])

Plot images
ima = dict(interpolation='nearest', origin='lower', cmap='gray',

vmin=-5.*pixnoise, vmax=20.*pixnoise)
plt.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.92)
plt.clf()
for i,band in enumerate(bands):

for e in range(nepochs):
plt.subplot(nepochs, len(bands), e*len(bands) + i +1)
plt.imshow(tims[nepochs*i + e].getImage(), **ima)
plt.xticks([]); plt.yticks([])
plt.title('%s #%i' % (band, e+1))

plt.suptitle('Images')
plt.savefig('8.png')

(continues on next page)

20 Chapter 3. Using the Tractor with GalSim images

Tractor Documentation, Release 1.0

(continued from previous page)

Plot initial models:
mods = [tractor.getModelImage(i) for i in range(len(tims))]
plt.clf()
for i,band in enumerate(bands):

for e in range(nepochs):
plt.subplot(nepochs, len(bands), e*len(bands) + i +1)
plt.imshow(mods[nepochs*i + e], **ima)
plt.xticks([]); plt.yticks([])
plt.title('%s #%i' % (band, e+1))

plt.suptitle('Initial models')
plt.savefig('9.png')

Freeze all image calibration parameters
tractor.freezeParam('images')

Take several linearized least squares steps
for i in range(20):

dlnp,X,alpha = tractor.optimize()
print 'dlnp', dlnp
if dlnp < 1e-3:

break

Plot optimized models:
mods = [tractor.getModelImage(i) for i in range(len(tims))]
plt.clf()
for i,band in enumerate(bands):

for e in range(nepochs):
plt.subplot(nepochs, len(bands), e*len(bands) + i +1)
plt.imshow(mods[nepochs*i + e], **ima)
plt.xticks([]); plt.yticks([])
plt.title('%s #%i' % (band, e+1))

plt.suptitle('Optimized models')
plt.savefig('10.png')

Plot optimized models + noise:
plt.clf()
for i,band in enumerate(bands):

for e in range(nepochs):
plt.subplot(nepochs, len(bands), e*len(bands) + i +1)
mod = mods[nepochs*i + e]
plt.imshow(mod + pixnoise * np.random.normal(size=mod.shape), **ima)
plt.xticks([]); plt.yticks([])
plt.title('%s #%i' % (band, e+1))

plt.suptitle('Optimized models + noise')
plt.savefig('11.png')

The resulting plots are:

21

Tractor Documentation, Release 1.0

This is our terrible initial guess:

22 Chapter 3. Using the Tractor with GalSim images

Tractor Documentation, Release 1.0

Here are the optimized models:

23

Tractor Documentation, Release 1.0

And here are the optimized models with the expected about of per-pixel noise added.

24 Chapter 3. Using the Tractor with GalSim images

Tractor Documentation, Release 1.0

25

Tractor Documentation, Release 1.0

26 Chapter 3. Using the Tractor with GalSim images

CHAPTER 4

Code structure of the Tractor

Miscellaneous notes on control flow and call stacks.

Tractor.optimize()
Tractor.getDerivs()

Image.getParamDerivatives()
Tractor.getModelImage()
Tractor._getSourceDerivatives()

Source.getParamDerivatives()
Tractor.getUpdateDirection()

Tractor.getChiImage()
scipy...lsqr()

Tractor.tryUpdates()
Tractor.getLogProb()

Tractor.getLogProb()
Tractor.getLogPrior()
Tractor.getLogLikelihood()

Tractor.getChiImages()
Tractor.getModelImages()

Tractor.getModelImage()
Image.getSky()
Tractor.getModelPatch()

Tractor.getModelPatchNoCache()
Source.getModelPatch()

27

Tractor Documentation, Release 1.0

28 Chapter 4. Code structure of the Tractor

CHAPTER 5

Once-asked Questions

5.1 Q: My images have some crazy WCS that your code doesn’t un-
derstand. What do I do?

My code looks like this:

from astrometry.util.util import Tan
from tractor import FitsWcs

wcs = FitsWcs(Tan('myimage.fits'))

and it’s failing like:

blah

What do I do?

5.2 A:

One option is to create a Tan object yourself and populate it with the required parameters:

t = Tan()
t.set_crpix(24, 530)
t.set_crval(234.66, 47.8765)
t.set_cd(1., 0., 0., 1.)
t.set_imagesize(1024, 1024)
wcs = FitsWcs(t)

And you’ll probably actually do that by opening your image file and parsing its crazy header cards, converting them
to TAN as understood by our code:

29

Tractor Documentation, Release 1.0

import pyfits

hdr = pyfits.open('myimage.fits')[0].header

t = Tan()
t.set_crpix(hdr.get('CRPIX1'), hdr.get('CRPIX2'))
t.set_crval(hdr.get('CRVAL1'), hdr.get('CRVAL2'))
cd1 = hdr.get('CDELT1')
cd2 = hdr.get('CDELT2')
assume your images have no rotation...
t.set_cd(cd1, 0., 0., cd2)
t.set_imagesize(1024, 1024)
wcs = FitsWcs(t)

30 Chapter 5. Once-asked Questions

CHAPTER 6

API Reference

• Ducks – code-as-documentation descriptions of the types of objects using by the Tractor

• Utilities – ParamList, MultiParams, other utility types

• Basics for standard images & catalogs – Types for standard images, magnitudes, WCSes

• Core Tractor routines – Core Tractor routines

• Galaxies – SDSS exp & deV galaxies

• SDSS images & catalogs – Specific data types for handling SDSS images and catalogs

• CFHT images & catalogs – Specific data types for handling data from the Canada-France-Hawaii Telescope

6.1 Flat list

• Brightness

• CompositeGalaxy

• Catalog

• ConstantSky

• DevGalaxy

• ExpGalaxy

• FitsWcs

• Flux

• GaussianMixturePSF

• Image

• Images

• Mag

31

Tractor Documentation, Release 1.0

• Mags

• MagsPhotoCal

• MultiParams

• NamedParams

• NCircularGaussianPSF

• NullPhotoCal

• NullWCS

• ParamList

• Params

• Patch

• PhotoCal

• PixPos

• PointSource

• PSF

• RaDecPos

• Sky

• Source

• Tractor

• WCS

6.2 Ducks

6.3 Utilities

6.4 Core Tractor routines

6.5 Galaxies

6.6 SDSS images & catalogs

6.7 CFHT images & catalogs

32 Chapter 6. API Reference

CHAPTER 7

Case Study: Extending the Tractor to do Strong Gravitational Lensing

This tutorial (really more of a case study) goes through extending the Tractor for a new kind of astronomical source.
Hi, Phil!

We want to create a new kind of Source object: a strongly gravitationally lensed quasar. The lens will have a visible
component: a DevGalaxy galaxy profile, as well as a dark component that defines its mass. The lens will produce 2
to 4 images of the quasar.

The lens model produces only approximate estimates of the brightness of the multiple quasar images, so we will need
a “fudge factor” for the magnitudes predicted by the lens model.

We want to create a class to hold our Lensed Quasar:

from tractor import MultiParams
from tractor.sdss_galaxy import DevGalaxy

class LensedQuasar(MultiParams):
@staticmethod
def getNamedParams():

return dict(light=0, mass=1, quasar=2, magfudge=3)

We chose to make it inherit from MultiParams because we want to think of it as being composed of the light
(visible component of the lens that determines its appearance), mass (the dark mass of the lens that determines its
lensing behavior), and the quasar being lensed. We also have magfudge, our fudge-factor for the quasar’s brightness
at each image.

We want our LensedQuasar to be a Source that can be manipulated by the Tractor, though. We therefore have to
implement the interface described by Source; we have to make our LensedQuasar quack like a Source duck.

To do this, we add the methods defined in Source to our LensedQuasar:

from tractor import PointSource

class LensedQuasar(MultiParams):
... as before ...

(continues on next page)

33

Tractor Documentation, Release 1.0

(continued from previous page)

def getModelPatch(self, img):
We start by rendering the visible lens galaxy.
patch = self.light.getModelPatch(img)

We will use the lens model to predict the quasar's image positions.
positions,mags = self.mass.getLensedImages(self.light.position, self.quasar)
'positions' should be a list of RaDecPos objects
'mags' should be a list of Mags objects

for pos,mag,fudge in zip(positions, mags, self.magfudge):
For each image of the quasar, we will create a PointSource
ps = PointSource(pos, mag + fudge)
... and add it to the patch.
patch += ps.getModelPatch(img)

return patch

def getParamDerivatives(img):
pass

In the getModelPatch method, we have to return a Patch object: a synthetic rendering of our LensedQuasar
as it would appear in the given Image. We will do that by combining the appearance of self.light – the visible
component of the lens – with the multiple images of the quasar whose positions and brightnesses are estimated by the
lensing model, self.mass.

Now, what is the mass going to look like? It is going to have parameters that we want the Tractor to be able to
optimize, so it has to be a Params. Actually, as you might have guessed, it just has to quack like a Params. Since
our mass is just going to have a few parameters, we could inherit from ParamList:

from tractor import ParamList

class LensingMass(ParamList):

@staticmethod
def getNamedParams():

return dict(mass=0, radius=1)

def getStepSizes(self):
'''We're using units of solar masses and arcsec'''
return [1e12, 0.1]

def getLensedImages(self, mypos, quasar):
pass

The getLensedImages function is the one we’re going to call from LensedQuasar.getModelPatch() to
predict the lensed image properties.

Let’s fill in the blanks and get the code to run. To create a LensedQuasar object, we’ll have to create its components.
We will mock up the Quasar and MagFudge classes. Currently Quasar doesn’t even have any parameters, and
that’s ok:

from tractor import RaDecPos, Mags
from tractor.sdss_galaxy import GalaxyShape

class Quasar(ParamList):
pass

(continues on next page)

34 Chapter 7. Case Study: Extending the Tractor to do Strong Gravitational Lensing

Tractor Documentation, Release 1.0

(continued from previous page)

class MagFudge(ParamList):
pass

if __name__ == '__main__':
Create properties of the lensing galaxy:
pos = RaDecPos(234.5, 17.9)
bright = Mags(r=17.4, g=18.9, order=['g','r'])
GalaxyShape(re [arcsec], ab ratio, phi [deg])
shape = GalaxyShape(2., 0.5, 48.)
light = DevGalaxy(pos, bright, shape)

mass = LensingMass(1e14, 0.1)

quasar = Quasar()

Four parameters for up to four images.
fudge = MagFudge(0., 0., 0., 0.)

Create a LensedQuasar object from its components.
lq = LensedQuasar(light, mass, quasar, fudge)

print 'LensedQuasar params:'
for nm,val in zip(lq.getParamNames(), lq.getParams()):

print ' ', nm, '=', val

and this will print:

LensedQuasar params:
light.pos.ra = 234.5
light.pos.dec = 17.9
light.brightness.g = 18.9
light.brightness.r = 17.4
light.shape.re = 2.0
light.shape.ab = 0.5
light.shape.phi = 48.0
mass.mass = 1e+14
mass.radius = 0.1
magfudge.param0 = 0.0
magfudge.param1 = 0.0
magfudge.param2 = 0.0
magfudge.param3 = 0.0

35

Tractor Documentation, Release 1.0

36 Chapter 7. Case Study: Extending the Tractor to do Strong Gravitational Lensing

CHAPTER 8

Using Ceres Solver with the Tractor

8.1 Building Ceres Solver

See http://ceres-solver.org/building.html

37

http://ceres-solver.org/building.html

Tractor Documentation, Release 1.0

38 Chapter 8. Using Ceres Solver with the Tractor

CHAPTER 9

API Reference – Tractor Basics

9.1 Basics for standard images & catalogs

9.1.1 Basic Image calibrations

Sky

The “Sky” describes the “background” in your images—what the images would look like in the absence of noise or
astronomical sources.

Astrometry (World Coordinate System, WCS)

Photometry calibration (“PhotoCal”)

Point-spread function (PSF)

9.1.2 Basic Sources

39

Tractor Documentation, Release 1.0

40 Chapter 9. API Reference – Tractor Basics

CHAPTER 10

Indices

• genindex

• modindex

• search

41

	Introduction to using The Tractor
	Sources, positions, and brightnesses
	Parameters
	Thawing/Freezing Params
	Optimization / Fitting
	Multi-Image Optimization / Fitting

	Introduction to using The Tractor (Part 2)
	Galaxies

	Using the Tractor with GalSim images
	Code structure of the Tractor
	Once-asked Questions
	Q: My images have some crazy WCS that your code doesn’t understand. What do I do?
	A:

	API Reference
	Flat list
	Ducks
	Utilities
	Core Tractor routines
	Galaxies
	SDSS images & catalogs
	CFHT images & catalogs

	Case Study: Extending the Tractor to do Strong Gravitational Lensing
	Using Ceres Solver with the Tractor
	Building Ceres Solver

	API Reference – Tractor Basics
	Basics for standard images & catalogs

	Indices

