theine2 Documentation
Release latest

Dec 06, 2019

Contents

Installing 3
Upgrading 5
Using 7
Configuration 9
4.1 base_port and Max_port oLt e 9
42 min_free_workers L L e e e e e e e e 9
43 spawn_parallelo 9
4.4 silent ... e e e 10
Speed up Theine 11
5.1 Tell Theine to use CRuby forthe client 11
Using with Foreman 13
Using with Docker 15
How it works 17

theine2 Documentation, Release latest

Theine is a Rails application pre-loader designed to work on JRuby. It is similar to Zeus, Spring and Spork. The
problem with Zeus and Spring is that they use fork which doesn’t work on JRuby.

An example:

time rails runner "puts Rails.env"
48.31s user 1.96s system 242% cpu 20.748 total # normal
time theine runner "puts Rails.env"
0.12s wuser 0.02s system 32% cpu 0.449 total # Theine

Contents 1

theine2 Documentation, Release latest

2 Contents

CHAPTER 1

Installing

You need to install screen on your system. For example on Ubuntu:
sudo apt-get install screen
Then install the gem.

gem install theine2

theine2 Documentation, Release latest

4 Chapter 1. Installing

CHAPTER 2

Upgrading

If you want to use CRuby for the client, you will probably need to re-run theine_set_ruby after upgrading.

theine2 Documentation, Release latest

6 Chapter 2. Upgrading

CHAPTER 3

Using

Start up the theine server in the root of your Rails project:

theine_server

or

theine_start for a detached process

Stopping the server (this only works if the server was started with theine_start)

theine_stop

You can also add —debug mode so that the spawned workers will be running in debug mode (debug mode is ignored if
silent is set to true):

theine_server --debug

Then run any rails command using theine (don’t use bundle exec):

#Rails
theine
theine
theine

#Rake,
theine
theine
theine

commands

runner "puts 'Hello world'"
server

console

rspec, cucumber
rake db:migrate
rspec spec
cucumber

theine2 Documentation, Release latest

8 Chapter 3. Using

CHAPTER 4

Configuration

Theine will look for a .theine file in your Rails app’s root directory and in your home directory. Both files are
loaded if they exist, the one in your Rails app will overwrite settings from your home.

Example .theine file (YAML):

base_port: 11000
max_port: 11100
min_free_workers: 2
spawn_parallel: true
silent: true

4.1 base_port and max_port

The Theine server will use the base_port TCP port. Workers use base_port + 1 to max_port TCP ports. Use this setting
if you need to run multiple Rails apps at the same time (use a different base_port for each).

4.2 min_free_workers

The minimum amount of workers that Theine should try to keep around. If you set this to 2 for example, once Theine
has loaded 2 workers, you can execute two commands immediately. When you execute a third command, you will have
to wait until Theine has spawned new workers. Theine will spawn a new worker as soon as you execute a command.

4.3 spawn_parallel

When set to true, Theine will start min_free_workers all at once. When set to false, it will start one worker first, and
when it is loaded, it will start the next worker. When false, the first worker should start just a little bit faster. If you
have a high number of min_free_workers then I recommend setting this to false.

theine2 Documentation, Release latest

4.4 silent

When set to true, Theine will start in silent mode. This mode gives no output to the shell and is perfect for using
thiene_server & for a detached process. This is especially helpful in docker environments when you cannot have
multiple shells open without tmux. recommend false for non docker workflows.

10 Chapter 4. Configuration

CHAPTER B

Speed up Theine

If you are using RVM or rbenv, you can tell theine to use Ruby 2.6 to run the client, which will make the Theine client
start much faster.

If you have any problems in this mode, please revert back to using the same Ruby for the client.

5.1 Tell Theine to use CRuby for the client

Figure out where your Ruby 2.6.5 binary is:

$ rvm ruby-2.6.5 do which ruby
/Users/mrbrdo/.rvm/rubies/ruby-2.6.5-pl14/bin/ruby

Then where you plan to use Theine, do:

$ rvm use jruby
$ theine_set_ruby /Users/mrbrdo/.rvm/rubies/ruby-2.6.5-pll4/bin/ruby

Enjoy mega fast client:

time theine runner "puts 'hello world'"
0.12s user 0.02s system 30% cpu 0.470 total

11

theine2 Documentation, Release latest

12 Chapter 5. Speed up Theine

CHAPTER O

Using with Foreman

Theine works with Foreman:

theine_server: theine_server
server: rails server

If you have problems, try adding theine to your Gemfile. If you want to use the theine client in foreman, you should
use theine_current_ruby because Foreman uses bundle exec. But there is no point in doing that, since theine needs to
spawn a process for each command anyway, so there is no benefit in comparison to just running the command (like
rails server) directly.

13

theine2 Documentation, Release latest

14 Chapter 6. Using with Foreman

CHAPTER /

Using with Docker

See docker_workflow

15

theine2 Documentation, Release latest

16 Chapter 7. Using with Docker

CHAPTER 8

How it works

Theine’s server spawns processes in the background that load your Rails application. When you run a command
through theine, it will be executed in one of these pre-loaded processes. I used to do IO redirection (similarly to
pry-remote) but it ended up being very unreliable, so now I am using screen to take care of this. After your command
is done, the process will exit. When you run a new command, it will run in another pre-loaded process.

Theine will automatically spawn additional processes as needed.

The client (theine command) does not need to run on JRuby (or the same Ruby that you use in your Rails application),
because it is only used to connect to the server, all the code is then actually executed on the server.

17

	Installing
	Upgrading
	Using
	Configuration
	base_port and max_port
	min_free_workers
	spawn_parallel
	silent

	Speed up Theine
	Tell Theine to use CRuby for the client

	Using with Foreman
	Using with Docker
	How it works

