

Welcome to thecut-forms’s documentation!

Contents:

	Welcome to thecut-forms
	Features

	Documentation

	Quickstart

	Credits

	Installation instructions

	Usage
	Form Mixins

	Templates

	Testing
	Running unit tests

	Available tests

	History
	0.4 (2016-07-06)

	0.3.11 (2016-02-28)

	0.3.10 (2015-12-09)

	0.3.9 (2015-02-24)

	0.3.8 (2015-01-12)

	0.3.7 (2014-12-12)

	0.3.6 (2014-12-03)

	0.3.5 (2014-12-03)

	0.3.4 (2014-09-03)

	0.3.3 (2014-06-30)

	0.3.2 (2014-04-15)

	0.3.1 (2014-03-19)

	0.3 (2014-02-03)

	0.2 (2014-01-30)

	0.1 (2013-09-10)

	Credits

Welcome to thecut-forms

[image: https://travis-ci.org/thecut/thecut-forms.svg]
 [https://travis-ci.org/thecut/thecut-forms][image: https://codecov.io/github/thecut/thecut-forms/coverage.svg]
 [https://codecov.io/github/thecut/thecut-forms][image: Documentation Status]
 [http://thecut-forms.readthedocs.io/en/latest/?badge=latest]Form rendering helpers.

Features

	Automatically add appropriate HTML5 type, required and maxlength attributes to form fields.

	Automatically add date, time, and datetime CSS classes to appropriate form fields.

	Easily add custom placeholders to form fields by editing a dict.

	Easily render forms in your templates in a well-designed standardised way that makes front-end development easier.

Documentation

The full documentation is at https://thecut-forms.readthedocs.org.

Quickstart

Install thecut-forms using the Installation instructions.

Use one of the many available django.forms.Form mixins on your django.forms.Form:

from django import forms
from thecut.forms import EmailTypeMixin, TimeClassMixin

class MyForm(EmailTypeMixin, TimeClassMixin, forms.Form):

 foo = forms.EmailField(required=True)

 bar = forms.TimeField(required=True)

Or use thecut.forms.forms.FormMixin to get them all at once:

from django import forms
from thecut.forms import FormMixin

class MyForm(FormMixin, forms.Form):

 foo = forms.CharField(required=True)

See Form Mixins for more information.

In your template, use the forms/_form.html snippet to easily render your forms:

{% include "forms/_form.html" %}

See Templates for more information.

Credits

See Credits.

Installation instructions

	Install via pip / pypi:

$ pip install thecut-forms

	Add to your project’s INSTALLED_APPS setting:

INSTALLED_APPS = [
 # ...
 'thecut.forms'
 # ...
]

	Sync your project’s migrations:

$ python manage.py migrate forms

Usage

	Form Mixins
	EmailTypeMixin

	RequiredMixin

	MaxLengthMixin

	PlaceholderMixin

	TimeClassMixin

	DateClassMixin

	DateTimeClassMixin

	FormMixin

	Templates
	Basuc usage

	Customising the form

Form Mixins

The following mixins can be applied to any Form-type object.

EmailTypeMixin

	
class thecut.forms.forms.EmailTypeMixin(*args, **kwargs)

	A mixin for a Form that sets the HTML5
email input type on any child EmailField
instances.

RequiredMixin

	
class thecut.forms.forms.RequiredMixin(*args, **kwargs)

	A mixin for a Form that sets the HTML5
required attribute on any child Field
instances that is required.

This mixin does not apply the required attribute to fields using
RadioSelect and
CheckboxSelectMultiple as
the HTML5 required attribute does not behave as (usually) expected on
these widgets.

MaxLengthMixin

	
class thecut.forms.forms.MaxLengthMixin(*args, **kwargs)

	A mixin for a Form that sets the HTML5
maxlength attribute on any child Field
instances using the Textarea widget.

A max_length must be specified on the Field.

PlaceholderMixin

	
class thecut.forms.forms.PlaceholderMixin(*args, **kwargs)

	A mixin for a Form that allows you to easily set
the HTML5 placeholder widget on a child
Field.

To add a placeholder to a Field, specify it
in a placeholders dict on the Form‘s
Meta class. For example:

class MyForm(forms.Form):

 foo = forms.CharField()

 class Meta(object):
 placeholders = {
 'foo': 'Enter some text here.'
 }

TimeClassMixin

	
class thecut.forms.forms.TimeClassMixin(*args, **kwargs)

	A mixin for a Form that adds a time CSS
class on any child Field instances using the
TimeInput widget..

DateClassMixin

	
class thecut.forms.forms.DateClassMixin(*args, **kwargs)

	A mixin for a Form that adds a date CSS
class on any child Field instances using the
DateInput widget..

DateTimeClassMixin

	
class thecut.forms.forms.DateTimeClassMixin(*args, **kwargs)

	A mixin for a Form that adds a datetime CSS
class on any child Field instances using the
DateTimeInput widget..

FormMixin

In order to make it easy to use all of the above mixins, we have provided
thecut.forms.forms.FormMixin which inherits from all other mixins.

	
class thecut.forms.forms.FormMixin(*args, **kwargs)

	Bases: thecut.forms.forms.DateTimeClassMixin, thecut.forms.forms.DateClassMixin, thecut.forms.forms.EmailTypeMixin, thecut.forms.forms.MaxLengthMixin, thecut.forms.forms.PlaceholderMixin, thecut.forms.forms.RequiredMixin, thecut.forms.forms.TimeClassMixin

Form mixin.

Used to extend a standard Django Form class with
useful/common behaviour.

Templates

We provide a Django template snippet that can be included in your template files to easily render forms. Among other things, it handles rendering:

	The CSRF token (if required).

	A honeypot field (if required).

	The parent <form> element.

	Non-field errors.

	Form fields (in a way that makes front-end styling much easier).

	A submit button.

Basuc usage

In order to render a basic form in your template, just include `forms/_form.html:

{% include "forms/_form.html" %}

You do not need to define a <form> element, call {% csrf_token %}.etc - the snippet will handle this for you.

Customising the form

The form template makes use of template context variables to allow you to customise some aspects of its functionality.

	Variable
	Description
	Default
	Example

	form
	The form to render.
	form
	{% include "forms/_form.html" with form=my_form %}

	form_action
	The URL to post the form to.
	request.path
	{% url 'site:homepage' as my_url %}
{% include "form/_form.html" with form_action=my_url %}

	form_method
	The HTTP method to use.
	POST
	{% include "forms/_form.html" with form_method="GET" %}

	form_honeypot_field
	A honeypot field to include in
the form.
	
	

	{% include "forms/_form.html" with form_honeypot_field=my_field %}

	form_submit_value
	The value (label) for the
form’s submit button.
	Submit
	{% include "forms/_form.html" with form_submit_value="Send" %}

Testing

	Running unit tests
	Using your system’s Python / Django

	Using a virtualenv

	Using tox

	Test coverage

	Available tests
	TestEmailTypeMixin

	TestRequiredMixin

	TestMaxLengthMixin

	TestPlaceholderMixin

	TestTimeClassMixin

	TestDateClassMixin

	TestFormMixin

Running unit tests

Using your system’s Python / Django

You can perform basic testing against your system’s Python / Django.

	Install the test suite requirements:

$ pip install -r requirements-test.txt

	Ensure a version of Django is installed:

$ pip install Django

	Run the test runner:

$ python runtests.py

Using a virtualenv

You can use virtualenv to test without polluting your system’s Python environment.

	Install virtualenv:

$ pip install virtualenv

	Create and activate a virtualenv:

$ cd thecut-forms
$ virtualenv .
$ source bin/activate
(thecut-forms) $

	Follow ‘Using your system’s Python / Django’ above.

Using tox

You can use tox to automatically test the application on a number of different
Python and Django versions.

	Install tox:

$ pip install -r requirements-test.txt

	Run tox:

(thecut-forms) $ tox --recreate

Tox assumes that a number of different Python versions are available on your
system. If you do not have all required versions of Python installed on your
system, running the tests will fail. See tox.ini for a list of Python
versions that are used during testing.

Test coverage

The included tox configuration automatically detects test code coverage with coverage:

$ coverage report

Available tests

TestEmailTypeMixin

	
class thecut.forms.tests.test_forms.TestEmailTypeMixin(methodName='runTest')

	Tests for the thecut.forms.forms.EmailTypeMixin class.

	
test_input_type_not_set_to_email_for_non_emailfield()

	Test that the HTML input attribute is not set to email on a
child django.forms.Field that is not
django.forms.EmailField.

	
test_input_type_set_to_email_for_emailfield()

	Test that the HTML input attribute is set to email on a child
django.forms.EmailField.

TestRequiredMixin

	
class thecut.forms.tests.test_forms.TestRequiredMixin(methodName='runTest')

	Tests for the thecut.forms.forms.RequiredMixin class.

	
test_required_attribute_not_set_for_optional_field()

	Test that the HTML5 required attribute is not set on a child
django.forms.Field that does not have required set to
True.

	
test_required_attribute_not_set_for_required_checkbox_widget()

	Test that the HTML5 required attribute is not set on a child
django.forms.Field that has required set to
True and uses the django.forms.CheckboxSelectMultiple
widget.

	
test_required_attribute_not_set_for_required_radio_widget()

	Test that the HTML5 required attribute is not set on a child
django.forms.Field that has required set to
True and uses the django.forms.RadioSelect widget.

	
test_required_attribute_set_for_required_field()

	Test that the HTML5 required attribute is set on a child
django.forms.Field that has required set to
True.

TestMaxLengthMixin

	
class thecut.forms.tests.test_forms.TestMaxLengthMixin(methodName='runTest')

	Tests for the thecut.forms.forms.MaxLengthMixin class.

	
test_correct_maxlength_set_for_textarea_with_max_length()

	Test if the correct HTML5 maxlength attribute is set on a
child django.forms.Field using
django.forms.Textarea`and with ``max_length` set.

	
test_no_maxlength_for_non_textarea_with_max_length()

	Test if no HTML5 maxlength attribute is set on a
child django.forms.Field not using
django.forms.Textarea but with max_length set.

	
test_no_maxlength_for_non_textarea_with_no_max_length()

	Test if no HTML5 maxlength attribute is set on a
child django.forms.Field not using
django.forms.Textarea and with no max_length set.

	
test_no_maxlength_for_textarea_with_no_max_length()

	Test if no HTML5 maxlength attribute is set on a
child django.forms.Field using
django.forms.Textarea and with no max_length set.

TestPlaceholderMixin

	
class thecut.forms.tests.test_forms.TestPlaceholderMixin(methodName='runTest')

	Tests for the thecut.forms.forms.PlaceholderMixin class.

	
test_placeholder_not_set_when_not_defiend()

	Test if the correct HTML5 placeholder attribute is not set on a
py:class:django.forms.Field when no appropriate entry is added to
the placeholders dict.

	
test_placeholder_set_when_defiend()

	Test if the correct HTML5 placeholder attribute is set on a
field when an appropriate entry is added to the placeholders
dict.

TestTimeClassMixin

	
class thecut.forms.tests.test_forms.TestTimeClassMixin(methodName='runTest')

	Tests for the thecut.forms.forms.TimeClassMixin class.

	
test_time_class_added_for_timefield()

	Test if the time CSS class is applied to a child
py:class:django.forms.Field using the
django.forms.TimeInput widget.

	
test_time_class_not_added_for_nontimefield()

	Test if the time CSS class is not applied to a child
py:class:django.forms.Field not using the
django.forms.TimeInput widget.

TestDateClassMixin

	
class thecut.forms.tests.test_forms.TestDateClassMixin(methodName='runTest')

	Tests for the thecut.forms.forms.DateClassMixin class.

	
test_date_class_added_for_datefield()

	Test if the date CSS class is applied to a child
py:class:django.forms.Field using the
django.forms.DateInput widget.

	
test_date_class_not_added_for_nondatefield()

	Test if the date CSS class is not applied to a child
py:class:django.forms.Field not using the
django.forms.DateInput widget.

TestFormMixin

	
class thecut.forms.tests.test_forms.TestFormMixin(methodName='runTest')

	Tests for the thecut.forms.forms.EmailTypeMixin class.

History

0.4 (2016-07-06)

	Added Sphinx documentation environment.

	Added installation / usage / testing documentation.

	Moved some plain-text documentation over to reStructuredText.

	Added tox-based testing environment.

	Added unit tests for a majority of functionality.

	Added continuous integration with Travis.

	Added code coverage with codecov.

	Improved setup.py.

0.3.11 (2016-02-28)

	Improved unicode support in version.py.

	Added support for rendering honeypot field whilst using the in-built form rendering templates.

0.3.10 (2015-12-09)

	Gracefully handle situations where Meta placeholders attribute does not exist.

0.3.9 (2015-02-24)

	Created PlaceholderMixin to allow easy addition of custom placeholder text.

	Added PlaceholderMixin to FormMixin.

0.3.8 (2015-01-12)

	Added LICENSE, AUTHORS, README.

0.3.7 (2014-12-12)

	Bugfix: in form rendering template, render hidden fields.

0.3.6 (2014-12-03)

	In form rendering template, add class to field wrapper with input type.

0.3.5 (2014-12-03)

	Redesigned form rendering template to allow for easier styling.

	Updated version.py to work with Python 3.

0.3.4 (2014-09-03)

	Added DateTimeTimezoneMixin.

0.3.3 (2014-06-30)

	In form rendering templates, separate hidden fields and visible fields.

0.3.2 (2014-04-15)

	Added missing template files to MANIFEST.in.

0.3.1 (2014-03-19)

	Added form rendering templates to improve rendering of forms in templates.

	Removed distribute from application requirements.

0.3 (2014-02-03)

	Apply HTML5 maxlength attribute to Textarea widgets when a maximum length has been specified on the field.

0.2 (2014-01-30)

	Do not appy required attribute to certain widgets (forms.CheckboxSelectMultiple or forms.RadioSelect) as the HTML5 required attribute does not behave correctly on the resulting HTML fields.

0.1 (2013-09-10)

	Initial release

	Use appropriate HTML5 type fields for email, time, date, and datetime fields / widgets.

	Apply HTML5 required attribute to required fields.

Credits

	Matt Austin <matt.austin@thecut.net.au>

	Josh Crompton <josh.crompton@thecut.net.au>

	Mark Lockett <mark.lockett@thecut.net.au>

	Kye Russell <kye.russell@thecut.net.au>

	Elena Williams <elena.williams@thecut.net.au>

Index

 D
 | E
 | F
 | M
 | P
 | R
 | T

D

 	
 	DateClassMixin (class in thecut.forms.forms)

 	
 	DateTimeClassMixin (class in thecut.forms.forms)

E

 	
 	EmailTypeMixin (class in thecut.forms.forms)

F

 	
 	FormMixin (class in thecut.forms.forms)

M

 	
 	MaxLengthMixin (class in thecut.forms.forms)

P

 	
 	PlaceholderMixin (class in thecut.forms.forms)

R

 	
 	RequiredMixin (class in thecut.forms.forms)

T

 	
 	test_correct_maxlength_set_for_textarea_with_max_length() (thecut.forms.tests.test_forms.TestMaxLengthMixin method)

 	test_date_class_added_for_datefield() (thecut.forms.tests.test_forms.TestDateClassMixin method)

 	test_date_class_not_added_for_nondatefield() (thecut.forms.tests.test_forms.TestDateClassMixin method)

 	test_input_type_not_set_to_email_for_non_emailfield() (thecut.forms.tests.test_forms.TestEmailTypeMixin method)

 	test_input_type_set_to_email_for_emailfield() (thecut.forms.tests.test_forms.TestEmailTypeMixin method)

 	test_no_maxlength_for_non_textarea_with_max_length() (thecut.forms.tests.test_forms.TestMaxLengthMixin method)

 	test_no_maxlength_for_non_textarea_with_no_max_length() (thecut.forms.tests.test_forms.TestMaxLengthMixin method)

 	test_no_maxlength_for_textarea_with_no_max_length() (thecut.forms.tests.test_forms.TestMaxLengthMixin method)

 	test_placeholder_not_set_when_not_defiend() (thecut.forms.tests.test_forms.TestPlaceholderMixin method)

 	test_placeholder_set_when_defiend() (thecut.forms.tests.test_forms.TestPlaceholderMixin method)

 	test_required_attribute_not_set_for_optional_field() (thecut.forms.tests.test_forms.TestRequiredMixin method)

 	test_required_attribute_not_set_for_required_checkbox_widget() (thecut.forms.tests.test_forms.TestRequiredMixin method)

 	
 	test_required_attribute_not_set_for_required_radio_widget() (thecut.forms.tests.test_forms.TestRequiredMixin method)

 	test_required_attribute_set_for_required_field() (thecut.forms.tests.test_forms.TestRequiredMixin method)

 	test_time_class_added_for_timefield() (thecut.forms.tests.test_forms.TestTimeClassMixin method)

 	test_time_class_not_added_for_nontimefield() (thecut.forms.tests.test_forms.TestTimeClassMixin method)

 	TestDateClassMixin (class in thecut.forms.tests.test_forms)

 	TestEmailTypeMixin (class in thecut.forms.tests.test_forms)

 	TestFormMixin (class in thecut.forms.tests.test_forms)

 	TestMaxLengthMixin (class in thecut.forms.tests.test_forms)

 	TestPlaceholderMixin (class in thecut.forms.tests.test_forms)

 	TestRequiredMixin (class in thecut.forms.tests.test_forms)

 	TestTimeClassMixin (class in thecut.forms.tests.test_forms)

 	TimeClassMixin (class in thecut.forms.forms)

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to thecut-forms's documentation!

 		Welcome to thecut-forms

 		Features

 		Documentation

 		Quickstart

 		Credits

 		Installation instructions

 		Usage

 		Form Mixins

 		EmailTypeMixin

 		RequiredMixin

 		MaxLengthMixin

 		PlaceholderMixin

 		TimeClassMixin

 		DateClassMixin

 		DateTimeClassMixin

 		FormMixin

 		Templates

 		Basuc usage

 		Customising the form

 		Testing

 		Running unit tests

 		Using your system's Python / Django

 		Using a virtualenv

 		Using tox

 		Test coverage

 		Available tests

 		TestEmailTypeMixin

 		TestRequiredMixin

 		TestMaxLengthMixin

 		TestPlaceholderMixin

 		TestTimeClassMixin

 		TestDateClassMixin

 		TestFormMixin

 		History

 		0.4 (2016-07-06)

 		0.3.11 (2016-02-28)

 		0.3.10 (2015-12-09)

 		0.3.9 (2015-02-24)

 		0.3.8 (2015-01-12)

 		0.3.7 (2014-12-12)

 		0.3.6 (2014-12-03)

 		0.3.5 (2014-12-03)

 		0.3.4 (2014-09-03)

 		0.3.3 (2014-06-30)

 		0.3.2 (2014-04-15)

 		0.3.1 (2014-03-19)

 		0.3 (2014-02-03)

 		0.2 (2014-01-30)

 		0.1 (2013-09-10)

 		Credits

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

