

Welcome to thecut-authorship’s documentation!

Contents:

	Welcome to thecut-authorship
	Features

	Documentation

	Quickstart

	Credits

	Installation instructions

	Usage
	Creating a model

	Saving authorship information

	Integrating with django.contrib.admin

	Integrating with class-based views and ModelForms

	Integrating with Django REST Framework

	API Reference
	Models

	View mixins

	API view mixins

	ModelForm mixins

	Django admin mixins

	Utilities

	Settings

	Testing
	Running unit tests

	Available tests

	History
	1.2 (2017-05-09)

	1.1 (2016-12-21)

	1.0 (2016-08-16)

	0.11 (2016-08-16)

	0.10.1 (2015-11-19)

	0.10 (2015-10-09)

	0.9 (2015-08-25)

	0.7.1 (2014-12-11)

	0.7 (2014-11-24)

	0.5.3 (2014-07-09)

	0.5.2 (2014-06-20)

	0.5.1 (2014-03-19)

	0.5 (2013-03-15)

	Credits

Welcome to thecut-authorship

[image: https://travis-ci.org/thecut/thecut-authorship.svg]
 [https://travis-ci.org/thecut/thecut-authorship][image: https://codecov.io/github/thecut/thecut-authorship/coverage.svg]
 [https://codecov.io/github/thecut/thecut-authorship][image: Documentation Status]
 [http://thecut-authorship.readthedocs.io/en/latest/?badge=latest]A set of Django mixins to easily record authorship information for your models.

Features

	Base model allows easy recording of authorship information.

	Integration with Django’s class-based views and forms.

	Integration with Django’s admin.

Documentation

The full documentation is at https://thecut-authorship.readthedocs.org.

Quickstart

Install thecut-authorship using the installation instructions found in the project documentation.

Build a model based on thecut.authorship.models.Authorship to record authorship information on it:

from thecut.authorship.models import Authorship

class MyModel(Authorship):

 pass

This adds created_by, created_at, updated_by, and updated_at to your model.

Pass a user into calls to .save() to record which user changed the object:

example = MyModel()
example.save(user=request.user)

If you need to update model data and there’s no direct link to a website user, generate and use a site-wide ‘generic’ user.:

from thecut.authorship.models import get_website_user
example = MyModel()
example.save(user=get_website_user())

If you wish to automatically record authorship information for changes made in the Django admin, use thecut.authorship.admin.AuthorshipMixin.:

from .models import MyModel
from django.contrib import admin
from thecut.authorship.admin import AuthorshipMixin

@admin.register(MyModel)
class MyModelAdmin(AuthorshipMixin, admin.ModelAdmin):

 pass

If you wish to integrate with django.forms.ModelForm, use thecut.authorship.forms.AuthorshipMixin and thecut.authorship.views.AuthorshipMixin.

In your forms.py:

from .models import MyModel
from django import forms
from thecut.authorship.forms import AuthorshipMixin

class MyModelForm(forms.ModelForm):

 class Meta(object):
 model = MyModel

In your views.py:

from .forms import MyModelForm
from .models import MyModel
from django.views.generic import CreateView
from thecut.authorship.views import AuthorshipMixin

class MyModelCreateView(AuthorshipMixin, CreateView):

 form_class = MyModelForm

MyModelCreateView will now automatically pass request.user through to MyModelForm, which will pass it through to the model’s save() method.

Credits

See AUTHORS.rst.

Installation instructions

	Install via pip / pypi:

$ pip install thecut-authorship

	Add to your project’s INSTALLED_APPS setting:

INSTALLED_APPS = [
 # ...
 'thecut.authorship'
 # ...
]

	Sync your project’s migrations:

$ python manage.py migrate authorship

Usage

Creating a model

Subclass thecut.authorship.models.Authorship to create the necessary fields:

class MyModel(Authorship):

 pass

Saving authorship information

thecut.authorship.models.Authorship.save() will populate the authorship fields when necessary:

m = MyCoolModel()
m.save(user=request.user)

This will update the model’s thecut.authorship.models.Authorship.updated_by and thecut.authorship.models.Authorship.updated_at fields automatically, as well as thecut.authorship.models.Authorship.created_by and thecut.authorship.models.Authorship.created_at if the object is new.

If the model creation / update doesn’t directly relate to a user, use the site-wide generic authorship user. This can be retrieved with thecut.authorship.utils.get_website_user():

m = MyCoolModel()
m.save(user=get_website_user())

Tip

If you specify update_fields in your call to thecut.authorship.models.Authorship.save(), the list will automatically be updated to ensure that authorship information is saved.

Integrating with django.contrib.admin

You can automatically update authorship information when a model is altered in the Django admin interface by using thecut.authorship.admin.AuthorshipMixin:

class MyAdmin(AuthorshipMixin, admin.ModelAdmin):

 pass

Hint

This also applies to child inlines if they refer to subclasses of thecut.authorship.models.Authorship.

Integrating with class-based views and ModelForms

Use thecut.authorship.views.AuthorshipMixin on your django.views.generic.edit.ModelFormMixin-based views (django.views.generic.edit.CreateView, django.views.generic.edit.UpdateView.etc):

class MyModelCreateView(AuthorshipMixin, CreateView):

 form_class = MyModelForm

Then, use thecut.authorship.forms.AuthorshipMixin on your django.forms.ModelForm-based forms:

class MyModelForm(AuthorshipMixin, ModelForm):

 class Meta(object):
 model = MyModel

Together, these mixins will—upon a successful form submission—appropriately record request.user on the target object.

Warning

You must use thecut.authorship.views.AuthorshipMixin on the view and thecut.authorship.forms.AuthorshipMixin on the form for this to work.

Integrating with Django REST Framework

Use thecut.authorship.api.views.AuthorshipMixin on your CreateModelMixin / UpdateModelMixin-based API views.

API Reference

	Models

	View mixins

	API view mixins

	ModelForm mixins

	Django admin mixins

	Utilities

	Settings

Models

	
class thecut.authorship.models.Authorship(*args, **kwargs)

	Abstract model to track when an instance was created/updated and by
whom.

	
created_at = None

	datetime for when this object was first created.

	
created_by

	User who first created this object (required).

	
save(user=None, **kwargs)

	A custom Model.save() method that appropriately populates
authorship fields.

	
updated_at = None

	datetime for when this object was last saved.

	
updated_by

	User who last saved this object (required).

View mixins

	
class thecut.authorship.views.AuthorshipMixin

	Adds the request’s User instance to the form kwargs.

API view mixins

	
class thecut.authorship.api.views.AuthorshipMixin

	

ModelForm mixins

	
class thecut.authorship.forms.AuthorshipMixin(user, *args, **kwargs)

	Mixin for a ModelForm which sets
created_by and updated_by fields for the instance when saved.

Requires that a User instance be passed in to the constructor. Views
which utilise AuthorshipViewMixin
handle this already.

Django admin mixins

	
class thecut.authorship.admin.AuthorshipMixin

	Mixin for a model admin to set created/updated by on save.

Utilities

	
class thecut.authorship.utils.get_website_user

	Get a generic ‘website’ user.

Can be used to specify the required user when there is no direct link to
a real user.

Settings

	
thecut.authorship.settings.AUTH_USER_MODEL = 'auth.User'

	The user model that thecut.authorship.utils.get_website_user()
will query against. Defaults to settings.AUTH_USER_MODEL.

	
thecut.authorship.settings.WEBSITE_USER = {u'username': u'website'}

	A dictionary that thecut.authorship.utils.get_website_user() will
pass to get_or_create() in order to return the generic website user.

Testing

	Running unit tests
	Using your system’s Python / Django

	Using a virtualenv

	Using tox

	Test coverage

	Available tests
	Forms

	Models

	Utils

Running unit tests

Using your system’s Python / Django

You can perform basic testing against your system’s Python / Django.

	Install the test suite requirements:

$ pip install -r requirements-test.txt

	Ensure a version of Django is installed:

$ pip install Django

	Run the test runner:

$ python runtests.py

Using a virtualenv

You can use virtualenv to test without polluting your system’s Python environment.

	Install virtualenv:

$ pip install virtualenv

	Create and activate a virtualenv:

$ cd thecut-authorship
$ virtualenv .
$ source bin/activate
(thecut-authorship) $

	Follow ‘Using your system’s Python / Django’ above.

Using tox

You can use tox to automatically test the application on a number of different
Python and Django versions.

	Install tox:

$ pip install -r requirements-test.txt

	Run tox:

(thecut-authorship) $ tox --recreate

Tox assumes that a number of different Python versions are available on your
system. If you do not have all required versions of Python installed on your
system, running the tests will fail. See tox.ini for a list of Python
versions that are used during testing.

Test coverage

The included tox configuration automatically detects test code coverage with coverage:

$ coverage report

Available tests

Forms

	
class thecut.authorship.tests.test_forms.TestAuthorshipMixin(methodName='runTest')

	
	
test_requires_an_extra_argument_on_creating_an_instance()

	Ensure that
thecut.authorship.forms.AuthorshipMixin-based forms cannot
be instantiated without passing in a user.

	
test_sets_user_attribute()

	Ensure that
thecut.authorship.forms.AuthorshipMixin-based forms
properly set thecut.authorship.forms.AuthorshipMixin.user
when one is passed on instantiation.

	
class thecut.authorship.tests.test_forms.TestAuthorshipMixinSave(methodName='runTest')

	
	
test_calls_super_class_save_method(*args, **keywargs)

	Ensure that
thecut.authorship.forms.AuthorshipMixin.save() calls the
superclass’s save method..

	
test_does_not_set_created_by_if_instance_is_saved(*args, **keywargs)

	Ensure that
thecut.authorship.forms.AuthorshipMixin-based forms do
not set
thecut.authorship.models.AuthorshipMixin.created_by if the
target object has already been saved.

	
test_sets_created_by_if_instance_is_not_saved(*args, **keywargs)

	Ensure that
thecut.authorship.forms.AuthorshipMixin-based forms
appropriately set
thecut.authorship.models.AuthorshipMixin.created_by when
a user is provided and the target object has not been saved before.

	
test_sets_updated_by_to_given_user(*args, **keywargs)

	Ensure that
thecut.authorship.forms.AuthorshipMixin-based forms
appropriately set
thecut.authorship.models.AuthorshipMixin.updated_by when
a user is provided.

Models

	
class thecut.authorship.tests.test_models.TestAuthorshipModel(methodName='runTest')

	
	
test_does_not_change_created_by_when_model_instance_is_saved()

	Ensure that
thecut.authorship.models.Authorship.created_by is
not updated for existing models.

	
test_sets_created_by_when_model_instance_is_first_saved()

	Check if created_by is correctly set on first save.

	
test_sets_updated_at_if_update_fields_is_specified()

	Ensure that
thecut.authorship.models.Authorship.updated_at is
updated, even when update_fields is specified.

	
test_sets_updated_by_if_update_fields_is_specified()

	Ensure that
thecut.authorship.models.Authorship.updated_by is
updated, even when update_fields is specified.

	
test_sets_updated_by_when_model_instance_is_saved()

	Ensure that
thecut.authorship.models.Authorship.updated_by is
updated on save.

Utils

	
class thecut.authorship.tests.test_utils.TestGetWebsiteUser(methodName='runTest')

	Tests for get_website_user().

	
test_get_website_user_returns_same_user()

	Test if the same user is returned over multiple calls.

	
test_get_website_user_returns_user()

	Test if something is returned.

History

1.2 (2017-05-09)

	Added support for Django 1.11 and Python 3.6.

	Drop support for Django 1.9.

1.1 (2016-12-21)

	Added support for Django REST Framework.

1.0 (2016-08-16)

	Removed deprecated APIs.

	Removed compatibility code for unsupported versions of Django.

	Improved test coverage.

	Removed code paths in Authorship.save() that could not logically be reached.

0.11 (2016-08-16)

	Rewrote documentation.

	Redesigned testing environment.

0.10.1 (2015-11-19)

	Fixed bug when saving on Django 1.4

	Started using unittest from Python standard library. Removes Python < 2.7 support.

	Updated tox configuration to test against newer versions of Django / Python.

	Fixed bug that stopped authorship information being updated when update_fields is defined but empty.

0.10 (2015-10-09)

	Test against Django 1.8

	Fixed bug where models were incorrectly detected as ‘not new’ (for the purpose of setting created_at and created_by) when a pk is manually specified.

0.9 (2015-08-25)

	Set ``on_delete=models.PROTECT` on authorship fields that relate to users.

0.7.1 (2014-12-11)

	Ensure that created_at and created_by are updated regardless of the contents of update_fields.

	Added Django admin mixin to save authorship information when using inlines.

0.7 (2014-11-24)

	Updated documentation.

	Removed Makefile.

	Altered testing environment to support Django 1.7

	Added Django 1.7 AppConfig.

0.5.3 (2014-07-09)

	Added unit tests for model and form mixin.

	Improved Python 3 compatibility.

	Updated test environment to test against newer versions of Django.

	Ensure that updated_at and updated_by are updated regardless of the contents of update_fields.

0.5.2 (2014-06-20)

	Added AuthorshipFactory for testing.

0.5.1 (2014-03-19)

	Removed distribute from the install_requires list.

0.5 (2013-03-15)

	First release.

Credits

	Josh Crompton <josh.crompton@thecut.net.au>

	Elena Williams <elena.williams@thecut.net.au>

	Matt Austin <matt.austin@thecut.net.au>

	Kye Russell <kye.russell@thecut.net.au>

	Mark Lockett <mark.lockett@thecut.net.au>

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 thecut	

 	
 	
 thecut.authorship.settings	

Index

 A
 | C
 | G
 | S
 | T
 | U
 | W

A

 	
 	AUTH_USER_MODEL (in module thecut.authorship.settings)

 	Authorship (class in thecut.authorship.models)

 	AuthorshipMixin (class in thecut.authorship.admin)

 	(class in thecut.authorship.api.views)

 	(class in thecut.authorship.forms)

 	(class in thecut.authorship.views)

C

 	
 	created_at (thecut.authorship.models.Authorship attribute)

 	
 	created_by (thecut.authorship.models.Authorship attribute)

G

 	
 	get_website_user (class in thecut.authorship.utils)

S

 	
 	save() (thecut.authorship.models.Authorship method)

T

 	
 	test_calls_super_class_save_method() (thecut.authorship.tests.test_forms.TestAuthorshipMixinSave method)

 	test_does_not_change_created_by_when_model_instance_is_saved() (thecut.authorship.tests.test_models.TestAuthorshipModel method)

 	test_does_not_set_created_by_if_instance_is_saved() (thecut.authorship.tests.test_forms.TestAuthorshipMixinSave method)

 	test_get_website_user_returns_same_user() (thecut.authorship.tests.test_utils.TestGetWebsiteUser method)

 	test_get_website_user_returns_user() (thecut.authorship.tests.test_utils.TestGetWebsiteUser method)

 	test_requires_an_extra_argument_on_creating_an_instance() (thecut.authorship.tests.test_forms.TestAuthorshipMixin method)

 	test_sets_created_by_if_instance_is_not_saved() (thecut.authorship.tests.test_forms.TestAuthorshipMixinSave method)

 	test_sets_created_by_when_model_instance_is_first_saved() (thecut.authorship.tests.test_models.TestAuthorshipModel method)

 	test_sets_updated_at_if_update_fields_is_specified() (thecut.authorship.tests.test_models.TestAuthorshipModel method)

 	
 	test_sets_updated_by_if_update_fields_is_specified() (thecut.authorship.tests.test_models.TestAuthorshipModel method)

 	test_sets_updated_by_to_given_user() (thecut.authorship.tests.test_forms.TestAuthorshipMixinSave method)

 	test_sets_updated_by_when_model_instance_is_saved() (thecut.authorship.tests.test_models.TestAuthorshipModel method)

 	test_sets_user_attribute() (thecut.authorship.tests.test_forms.TestAuthorshipMixin method)

 	TestAuthorshipMixin (class in thecut.authorship.tests.test_forms)

 	TestAuthorshipMixinSave (class in thecut.authorship.tests.test_forms)

 	TestAuthorshipModel (class in thecut.authorship.tests.test_models)

 	TestGetWebsiteUser (class in thecut.authorship.tests.test_utils)

 	thecut.authorship.settings (module)

U

 	
 	updated_at (thecut.authorship.models.Authorship attribute)

 	
 	updated_by (thecut.authorship.models.Authorship attribute)

W

 	
 	WEBSITE_USER (in module thecut.authorship.settings)

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to thecut-authorship's documentation!

 		Welcome to thecut-authorship

 		Features

 		Documentation

 		Quickstart

 		Credits

 		Installation instructions

 		Usage

 		Creating a model

 		Saving authorship information

 		Integrating with django.contrib.admin

 		Integrating with class-based views and ModelForms

 		Integrating with Django REST Framework

 		API Reference

 		Models

 		View mixins

 		API view mixins

 		ModelForm mixins

 		Django admin mixins

 		Utilities

 		Settings

 		Testing

 		Running unit tests

 		Using your system's Python / Django

 		Using a virtualenv

 		Using tox

 		Test coverage

 		Available tests

 		Forms

 		Models

 		Utils

 		History

 		1.2 (2017-05-09)

 		1.1 (2016-12-21)

 		1.0 (2016-08-16)

 		0.11 (2016-08-16)

 		0.10.1 (2015-11-19)

 		0.10 (2015-10-09)

 		0.9 (2015-08-25)

 		0.7.1 (2014-12-11)

 		0.7 (2014-11-24)

 		0.5.3 (2014-07-09)

 		0.5.2 (2014-06-20)

 		0.5.1 (2014-03-19)

 		0.5 (2013-03-15)

 		Credits

