

Welcome to The Snakemake Book’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

Index

Further tour of Snakemake

Snakemake can be used to write pipelines that are very flexible and easy to
configure. In this chapter we will learn some best practices for Snakemake
pipelines; namely using sample sheets to describe the data the pipeline uses and
to write a configuration file that let’s users modify the pipeline settings
without having to read or touch your code. On our way we will learn new
directives such as params, threads and run.

ChIP-Seq pipeline: aligning the read files

If you remember back to the previous chapter, we started with files of
alignments called bam. In this chapter we will start with fastq files to create
bam files.

Bam files contain a DNA-sequence and their position in the genome. Fastq files
only contain a DNA-sequence. So to create bam-files we need to find out where in
the genome the sequence is located.

To find out where a sequence is located we need to create an index of a genome
to be able to search for its position in reasonable time.

To do all this, we need rules to

	download our genome

	index it, to make lookups quick

	do a quality control on our fastq files

	align the sequences in fastq files against the genome index, to find out where the reads came from

Let us begin with downloading the genome.

A rule without an input directive: downloading the genome

To begin with, we need to download the genome we want to align sequences
against.

rule download_ucsc_genome:
 output: "data/download/{genome}.fa"
 shell: """curl
 http://hgdownload-test.cse.ucsc.edu/goldenPath/{wildcards.genome}/bigZips/{wildcards.genome}.fa.masked.gz
 | gunzip > {output[0]}"""

We want to use version 38 of the human genome, the most recent,
so the link we need is
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.masked.gz,
(hg38 is short for human genome 38).

Let us create a rule called download genome, that looks like this:

We use an output-folder (called data) to store the files the pipeline
creates. This is to avoid littering the code directory with the many
different files/folders our pipeline is going to create. And since we
are creating a long snakefile with many rules, we put the downloaded
genome in a subfolder called download of the data directory. This is to
keep the output of different rules apart.

The curl command in the shell directive downloads the file for us. The
pipe symbol, “|”, means that we should send the data on to the next
command, which is gunzip, which unzips it. Lastly we store the stream to
a file with the redirection operator >.

As you see, since the rule downloads the file it needs from the
internet, it has no input directive; it needs no files to run.

You can also see that we have put the link in a variable called
genome_url, outside of the rule body. Then we can refer to it in the
shell directive by wrapping the variable name in curly braces. This is a
bit easier to read and modify than if we had written the URL directly in
the shell directive like this:

shell: "curl http://hgdownload-test.cse.ucsc.edu/goldenPath/"
 "hg38/bigZips/hg38.fa.masked.gz | gunzip > {output[0]}"

Also notice that we broke up the string in genome_url into multiple
strings. This is allowed because Python automatically concatenates
string literals directly near each other:

In [1]: "hel" "lo " "world!"
Out[1]: 'hello world!'

The final touch we can add to this rule is to add a wildcard to the
genome_url string. The genomes on the UCSC server follow a consistent
naming, so by replacing the hg38 parts with {genome}, like so:

shell: "curl http://hgdownload-test.cse.ucsc.edu/goldenPath/"
 "{genome}/bigZips/{genome}.fa.masked.gz | gunzip > {output[0]}"

we have made the rule and pipeline work with any UCSC genome, like rn6
(the common rat) or mm10 (mouse).

Of course, now we need to add a wildcard called genome to the output
directive. The Snakefile download_genome2.Snakefile should look like
this:

Let us now try to run this pipeline with the target data/hg38.fa. But
first we add the flags -n and -p to our invocation:

snakemake -np -s download_genome2.Snakefile data/hg38.fa

The -n is shorthand for –dry-run which means that none of the rules are
executed, it just shows how the pipeline would run if you were to start
it.

The -p is short for –printshellcmds, which prints out the shell commands
Snakemake should run.

Put these together and Snakemake will show you the rules it would run to
create the target and even what the shell commands it would use would
look like. However, it executes absolutely no code directives, it only
figures out the DAG and shows you what rules it would run to create your
desired targets.

Let’s try it:

snakemake -s download_genome2.Snakefile data/hg38.fa -np
rule download_genome:
 output: data/hg38.fa
 wildcards: genome=hg38

curl http://hgdownload-test.cse.ucsc.edu/goldenPath/{genome}/bigZips/{genome}.fa.masked.gz | gunzip > data/hg38.fa
Job counts:
 count jobs
 1 download_genome
 1

The summary below shows you that Snakemake would only need to run one
job to download the genome, namely download_genome. The shell command
it would run, is shown above. If you look closely, you see that it still
contains the wildcard genome! This means that there is something wrong
with our code.

This is because Snakemake fills in the variable genome_url at the same
time as the variable output[0]. So after replacing genome_url with
http://hgdownload-test.cse.ucsc.edu/goldenPath/{genome}/bigZips/{genome}.fa.masked.gz
it does not do another round of replacing curly braces with the
variables within them.

There are several ways to solve this, but for now let us insert the url
into the shell command again (which we pointed out was suboptimal for
several reasons):

If you now try to run this pipeline, you will get the error message
“NameError: The name ’genome’ is unknown in this context.”

This is because in shell directives, wildcards have to be prefixed with
wildcards and a dot, like so: “wildcards.”. This is to avoid
name-clashes, for example if you have a variable genome and a wildcard
genome, Snakemake is able to tell them apart.

The second final version of this rule is:

and now it works!

Putting the genome_url into a string and letting it contain wildcards

We had a problem above; we wanted to put the genome_url into its own
string and we wanted it to contain wildcards.

This lead to a problem, as when genome_url was automatically put into
the string, no more curly braces replacement was performed.

We wanted three steps of replacement:

	“curl genome_url | gunzip > output[0]”

	(“curl ”http://hgdownload-test.cse.ucsc.edu/goldenPath/“
”wildcards.genome/bigZips/wildcards.genome.fa.masked.gz“ | gunzip >
output[0]”)

	(“curl ”http://hgdownload-test.cse.ucsc.edu/goldenPath/“
”hg38/bigZips/hg38.fa.masked.gz“ | gunzip > ”
“data/download/hg38.fa”)

but only got two, since the shell function fills in both {genome_url}
and {output[0]} at the same time:

	“curl genome_url | gunzip > output[0]”

	(“curl ”http://hgdownload-test.cse.ucsc.edu/goldenPath/“
”wildcards.genome/bigZips/wildcards.genome.fa.masked.gz“ | gunzip >
” “ data/download/hg38.fa”)

Since Snakemake uses Pythons formatting function under the hood, we can
play around in IPython to find the solution to our problem:

In [8]: shell_command = "curl {genome_url} > {output[0]}"

In [9]: genome_url = "www.{wildcards.genome}.com"

In [9]: output = ["outfile.fa"]

In [10]: shell_command.format(genome_url=genome_url, output=output)

Out[10]: 'curl www.{wildcards.genome}.com > outfile.fa'

We need to first insert the genome_url, then have the automatic
expansion happen. We can achieve this by first formatting the string
ourselves, then letting snakemake fill in the curly braces.

This means we have two rounds of formatting, so that first we want to
insert the genome_url string ourselves, then do the automatic
expansion. Let us try this the naive way by only giving the format
function the genome_url argument.

In [6]: shell_command.format(genome_url=genome_url)

KeyError Traceback (most recent call last)
<ipython-input-6-814a7f8b4309> in <module>()
----> 1 shell_command.format(genome_url=genome_url)

KeyError: 'output'

Here you see that it complains that it is missing the output argument to
the format function. This is because when you use the format function on
a string, Python wants to fill out all the curly braces it finds.

The way we solve this is to put the stuff we want to fill in during the
first call to format in one set of curlybraces, and wrap the rest in two
pairs of curlybraces.

In [8]: shell_command = "curl {genome_url} > {{output[0]}}"

In [9]: shell_command.format(genome_url=genome_url)
Out[9]: 'curl www.{wildcards.genome}.com > {output[0]}'

Here we see that the first call to format only fills in the genome url,
since the output is “protected” by an additional set of curlybraces. The
formatting call removes one of the pairs of curly braces so that when
the shell command will get the string it has a nice regular pair of
curly braces to fill in.

Summary of what we learnt writing the download rule

	Keep files that are created by the pipeline organized in subfolders.

	You can use wildcards in shell directives by prefixing them with
“wildcard.”

	You can use variables defined outside of a rule within a rule

	Use the -p flag to print the shell commands executed

	Use the -n flag to dry-run the pipeline

	Write double curly braces in a Python string to escape formatting

Remove chromosomes from the genome fasta

If we look in the genome file we downloaded, we see that the traditional
chromosomes are there, like chr21 but also strange stuff like
“>chr21_GL383578v2_alt” and “>chr21_KI270874v1_alt”.

name lines in fastas start with >
grep -E "^>chr21" data/download/hg38.fa
>chr21
>chr21_GL383578v2_alt
>chr21_KI270874v1_alt
>chr21_KI270873v1_alt
>chr21_GL383579v2_alt
>chr21_GL383580v2_alt
>chr21_GL383581v2_alt
>chr21_KI270872v1_alt

The chromosome names with underscores in them are fragments of DNA
no-one knows where to place exactly, so we want to remove and therefore
avoid them in all downstream analyses.

To do this we use the Python library pyfaidx, which makes it easy to
work with fasta files. We will now use a new directive called run to run
Python code directly in our Snakefile.

Here you see a few differences from the shell directive: input and
output are used directly, without any curly braces ({}) around them.
This is because in shell directives, you give commands that Snakemake
should execute as strings, while in the run directive, you directly
write the code Snakemake should run.

Ambiguity in the wildcards directive

If you now try to use our rule to create the genome fasta without any
contigs, like this:

snakemake -n data/download/hg38_pruned.fa

you will get an error message:

AmbiguousRuleException:
Rules prune_genome and download_genome are ambiguous for the file data/download/hg38_pruned.fa.
Expected input files:
 prune_genome: data/download/hg38.fa
 download_genome:

What this error says is that there are two rules which could potentially
create the file data/download/hg38.fa, namely prune_genome and
download_genome, and Snakemake does not know which one to use.

You can see this easily:

	rule

	input_directive

	wildcard filled in with

	

	download_genome

	data/download/{genome}.fa

	hg38_pruned

	

	prune_genome

	data/download/{genome}_pruned.fa

	hg38

	

There is an easy fix for this, namely:

ruleorder: download_genome > prune_genome

While this is a quick fix, it does have some drawbacks: TODO: which?

A more robust way of doing it would be to constrain the wildcards, using
the wildcard_constraints directive. It is done thusly:

rule download_genome:
 output: "data/download/{genome}.fa"
 wildcard_constraints:
 genome = "[^_]+"

Here we say that the genome wildcard can be a string of at least length
one that contains no underscore. Now we see that the wildcard value for
rule download_genome in table ref above is no longer a valid, so the
only viable option left is to use the rule prune_genome.

Summary of what we learnt writing the prune bad chromosomes rule

	The run directive can run Python

	The run directive is good for writing custom analyses that no
software package can do out of the box.

	In the run directive you have all of Pythons wealth of available
libraries available to use.

	If two or more rules can produce the same output files, you need to
specify a ruleorder, or preferably, constrain the wildcards.

Indexing the genome fasta

Straightforward lookup of reads in a genome would take a lot of time,
but by indexing the genome, we can do it a lot more quickly.

Since we will be using the hisat2 aligner to align reads, we need to use
hisat2 to build our index also.

The shell command we need to use to build an index is pretty simple:

explanation: hisat2-build -p <number_threads> <fasta_genome> <output_prefix>
hisat2-build -p 25 data/download/hg38_pruned.fa data/index/hg38

The command above says that we should use 25 threads, the genome fasta
to be indexed is data/download/hg38_pruned.fa, and the prefix of what
the output should be called is data/index/hg38.

Notice that hisat2 does not let us specify what the output file should
be called. That is because the index will consist of several files, like
this (here we used the prefix data/index/hg38 and have files called
data/index/hg38.1.ht2 etc.):

ls data/index/
hg38.1.ht2 hg38.2.ht2 hg38.3.ht2 hg38.4.ht2 hg38.5.ht2 hg38.6.ht2 hg38.7.ht2 hg38.8.ht2

The number of files created is not known in advance, but depends on the
size of the fasta, the resulting index and what parameters we give to
hisat2-build. Therefore we need to specify a prefix, we cannot specify
the exact names of the output files.

Of course, in the output directive, we do need to specify at least one
of the files that hisat2-build will create, since Snakemake always
checks that the rule it was asked to create indeed was created.

Anyways, this poses a problem: Snakemake checks that the output file we
have requested exists after the rule is done running. With the following
naive rule, an error will occur:

We want the output file data/index/hg38.1.ht2 to be created after
running hisat2-build, so we use it as a parameter to hisat2-build.
However, hisat2-build wants the prefix, not the final name of the output
file. This means that hisat2-build, when invoked like this:

hisat2-build -p 25 data/download/hg38_pruned.fa data/index/hg38.1.ht2

will create index files looking like this (hisat2 considers
data/index/hg38.1.ht2 the prefix, remember?):

ls data/index/
hg38.1.ht2.1.ht2 hg38.1.ht2.2.ht2 hg38.1.ht2.3.ht2 hg38.1.ht2.4.ht2 hg38.1.ht2.5.ht2 hg38.1.ht2.6.ht2 hg38.1.ht2.7.ht2 hg38.1.ht2.8.ht2

and since Snakemake is checking that the file data/index/hg38.1.ht2
exists after hisat2-build is done running, and finds that it does not,
it will exit with an error.

Therefore, we need some way to specify

	that the output file should be called data/index/hg38.1.ht2

	that the prefix we give hisat2-build should be data/index/hg38

preferably without hardcoding the prefix in the command.

The first way to do this is to use the run directive (it is good to use
for custom code, remember?)

Notice that Snakemake makes a shell command available to run shell
scripts in run directives. This is a passable solution, but is
problematic for one reason: what if our requested genome index had been
“data/index/hg38.pruned.1.ht2”?

Then

prefix = output.split(".")[0]

would have resulted in giving prefix the value of data/index/hg38 which
creates files called

ls data/index/
hg38.1.ht2 hg38.2.ht2 hg38.3.ht2 hg38.4.ht2 hg38.5.ht2 hg38.6.ht2 hg38.7.ht2 hg38.8.ht2

but since the output file is called data/index/hg38.pruned.1.ht2,
Snakemake would not find this file and exit with an error.

This means our run solution is not too robust.

Let us try again, using a new directive, called params. Its allows you
to define certain parameters separately from the rule body. Furthermore,
for enhanced readability and clarity, the params section is also an
excellent place to name and assign parameters and variables for your
subsequent command.

You can see that we have added a params-directive here, and added a
variable prefix to it. Notice that to refer to the prefix variable in
the shell directive, we need to prefix it with params. The contents of
the prefix variable is decided by an anonymous function (refer back to X
for a refresher). We use an anonymous function here since if we had
written output[0].split()[0], the code would be run before Snakemake had
created the DAG and the output was unknown and undefined. The anonymous
functions in the params directive can take up to five parameters,
namely: wildcards, input, output, threads, and resources, in that order.
To create our prefix, we only need the contents of the output directive,
so we only take two parameters. Furthermore, we do not care about the
wildcards, so we use an underscore, to tell Snakemake to ignore it.

The way we use the output directive is the same way as in the last
example; we split on the dot character and use all the letters in front
of the first instance of the dot. This has the same drawbacks as when we
did it in the run directive, so we need to find a better way to do it.
However, this example did teach you about the params directive, and
foreshadowed one of the features that makes Snakemake so incredibly
flexible, namely that directives can use functions so their contents are
dynamically decided at runtime (If that sentence is not completely
understandable to you yet, do not fret, you will come to know what it
means by the end of the book).

The final and most robust version of our rule is also the simplest:

Here the user just writes the prefix of the index path to a variable,
and we add the extension “.1.ht2” to it in the output directive. This
allows us to use the prefix directly in the shell directive.

Note that in the final rule we also added a threads directive, and we
use it to specify the number of cores the rule would like to use. You
could just write the number of cores directly to the shell command, but
when you include it in the threads directive, it is used to constrain
the scheduling. So if you have three instances of hisat2_index to run,
to create indexes for hg38, rn6 and mm10 for example, but only using 36
cores (snakemake -j 36), at most two instances of the rule would run at
the same time; the first with 24 cores, the second with 12.

Summary of what we learnt writing the rule to index the fasta genome

	Many command line tools take a prefix of what the output should be
called, not the exact filename, which requires you to create a prefix
parameter in some way.

	The run directive has a shell command that can run shell commands for
you.

	You can use the run directive to create/tweak parameters needed for a
shell command, however it is best practice to do this outside the
rule body.

	The params directive is used to create parameters needed for shell
commands.

	Variables created in the params directive must be referred to
prefixed with “params.” in the code block

	The params-directive can even take functions to dynamically create
the correct parameters based on the wildcards (and other directives)
when Snakemake is running.

	Use the threads directive to specify how many cores the rule should
use.

Trimming the read fastq files

The reads we want to align to the genome can often not be used as is.
Many have an unacceptably low quality, and sometimes they have synthetic
molecules called adapters attached to them which need to be removed.

Adapters are short strings of synthetic DNA which makes the reading of
the actual DNA molecules easier to initiate. So if the adapter is GCTA
and the original fragment is AAAAGTC, the read in the fastq file will
look like GCTAAAAAGTC. However, we want to find out where AAAAGTC came
from in the genome, not GCTAAAAAGTC, so we need to remove the adapter
fragment.

So adapter removal is removing synthetic sequences from the reads. To do
it, we will use the command line tool atropos, a new and upgraded
version of the tool cutadapt.

This tool takes a fastq file and removes adapters. At the same time it
removes reads that are of too low quality (which is given by the fourth
line in each fastq record).

Here we have defined some parameters outside of the rule body. This is
so the end user of the pipeline can more easily modify them. We could
have written the shell command like this:

atropos -q 20 -m 14 {params.adapters} -o {output[0]} -se {input}

But now the user of our pipeline would have to know what the flags -q
and -m flags meant, before she would dare or be interested in changing
the values. By giving putting the parameters in variables with
descriptive names outside of the rule body, we make the pipeline much
more user friendly.

Since the fastq files to be used should be specified by the end user of
the pipeline, we just leave a variable the user can use to specify them
outside of the rule body, called fastq_path. Lastly, sometimes we have
no adapters in our fastqs, then atropos does no adapter removal, it only
removes reads based on quality. Since the adapters would vary from
experiment to experiment, it does not make sense to give default values,
and hence we give an empty string as the adapter parameter.

If we give a give an adapter to atropos, we need to use the -b flag,
like so:

atropos -b <ADAPTER_SEQUENCE> ... # rest of command

but if we have no adapter we want to remove, we must avoid the -b flag,
because

atropos -b <NO_ADAPTER_SEQUENCE> ... # rest of command

gives the error:

atropos: error: argument -b/--anywhere: expected one argument

This is what we do in the params directive, if there are no adapters, we
just return an empty string, but if an adapter is given to us, for
example ACGT we return the string “-b ACGT”. You can test this in
IPython:

In [1]: adapters = ""

In [2]: "-b " + adapters if adapters else ""
Out[2]: ''

In [3]: adapters = "ACGT"

In [4]: "-b " + adapters if adapters else ""
Out[4]: '-b ACGT'

Summary of what we learnt writing the atropos rule

	It is good to make it easy for the user of the pipeline to change
parameter settings. This can be done by putting the settings in
variables with descriptive names outside of the rule, and refer to
them inside the rule.

	If the input files to a rule are parameters to the pipeline, like for
example fastq files, which would differ between each experiment, it
is best to make them a variable in the pipeline, as opposed to
hard-coding the paths in the rule.

Aligning the fastq files

Now we have both an index to align the reads against and trimmed fastqs
to align. Let’s get aligning! Here is the alignment rule:

The first thing you may notice about this rule is that the input
directive takes multiple named arguments. This is a neat feature of
Snakemake that lets you access the files in the input (and output
directives) by names, rather than an index. As you see in the shell
directive, we do not refer to data/trim/{sample}.fastq by input[0], but
rather input.reads, which is much more readable when you have mutiple
files in the input directive.

Also notice that we use the hisat2_index_prefix defined earlier. Now
it is used in four different places, but only defined once. That is how
we like it!

hisat2 has a wealth of options for how to align the reads. We cannot
create a descriptive variable for each of these parameters, so instead
we create an extra variable where the user can input the command line
flags he wants to use, together with their values. This variable is
called hisat2_flags and given some sensible default values.

Summary of what we learnt writing the align reads rule

	The files in the input and output directives can be given names. This
is more readable than referring to them by index (input.fastq as
opposed to input[2]), when there is more than one file in a
directive.

	If a command line tool takes a lot of different parameters, it is a
good idea to create a variable for the user to modify that contains
both the names of the flags and their values.

What our final pipeline looks like

TODO: add DAG.

Exercise

	If you want to create the output files “data/align/sample1.bam” and
“data/align/sample2.bam”, what input files are required? Solve this
by working your way backwards from the rule hisat2 to atropos,
filling out the wildcards as you go along.

Introduction

In this book we will learn to create a scientific pipeline using Snakemake.
The focus is on learing Snakemake; the concepts you learn will be useful for any
scientific workflow.

Snakemake is a language to help you turn a set of computer commands into
a completely reproducible workflow. This is great for

	repetitive tasks that need to be done again and again.

	scientific workflows, where exact reproducibility is key.

	distributing your pipelines so that others can analyse their data with your pipeline

If you have used the computer to analyse data, you know that even things you
think you only have to do once, and therefore write a “throwaway script”
for will have to be repeated again and again, so it is best to create a proper
system for it right away.

The normal way of getting a computer to repeat something again later is to write
a script, basically an ordered list of instructions the computer needs to
perform. This isn’t how Snakemake works. To help you understand the difference,
we will create a simple script and a simple Snakemake pipeline that both perform
the same analysis. This juxtaposition will allow us to understand some of the
profound advantages of using Snakemake.

But first let us introduce the bioinformatics problem we are to solve.

Writing a ChIP-Seq pipeline in Snakemake

Beginning with this chapter and continuing throughout this book, we will write a
pipeline to analyse ChIP-Seq data. For each chapter, we will learn new Snakemake
concepts that allow us to improve the pipeline.

Like mentioned, we will write both a Snakefile and a script that do the same
thing; namely analyze ChIP-Seq data to find so-called enriched regions - regions
that have a statistically significant amount of ChIP-Seq signal compared to
background signal.

We have a file of ChIP data and a file of background data. These are stored in a
binary format called bam. We want to use a software package called epic to find
regions with a lot of ChIP signal compared to background signal. Since epic does
not accept bam files, we first need to convert these into a text format called
bed. This is done using the command line tool bedtools. The output of the whole
analysis will be a file of enriched regions.

The script version of our pipeline

Now that we introduced the problem, we can write our script. There are two
things we want to do in our script; namely convert the bam files to bed files
and then have epic analyse the bed-files. We will use Python to write the
script. Let’s call it run_epic.py.

(This example requires that you have the files test.bam and control.bam
in a folder called data/, immediately below the folder with the
run_epic.py script.)

Since we want the script to use command line tools for us, we use the function
call in the subprocess module to execute shell commands.

run_epic.py

from subprocess import call

Instruction 1: convert ChIP to bed
call("bedtools bamtobed -i data/test.bam > data/test.bed",
 shell=True)

Instruction 2: convert Input to bed
call("bedtools bamtobed -i data/control.bam > data/control.bed",
 shell=True)

Instruction 3: Run epic on ChIP and Input bed files
call("epic -c data/control.bed -t data/test.bed > data/epic_results.csv",
 shell=True)

Since Python runs instructions in the script from top to bottom, our Python
script is an (implicitly ordered) list of instructions. You can run it with

python run_epic.py

Now we will create a Snakefile to perform the same task. For such a simple
example a Snakefile is a bit longer, but we will see that writing our pipeline
as a Snakefile gives us numerous advantages.

The Snakemake version of our pipeline

Below is the Snakefile that does the same thing as the script above. You can
call it run_epic.Snakefile and place it in the same folder as the Python script.
The three steps are written as their own rules, which is how Snakemake divides a
pipeline into discrete steps.

run_epic.Snakefile

rule convert_chip:
 input: "data/test.bam"
 output: "data/test.bed"
 shell: "bedtools bamtobed -i {input} > {output}"

rule convert_input:
 input: "data/control.bam"
 output: "data/control.bed"
 shell: "bedtools bamtobed -i {input} > {output}"

rule run_epic:
 input: "data/test.bed", "data/control.bed"
 output: "data/epic_results.csv"
 shell: "epic -t {input[0]} -c {input[1]} > {output}"

As you see each rule consists of three parts, called directives in
Snakemake lingo. These are the input, output and shell directives.

	directive

	contains

	input

	the file(s) the rule requires to run

	output

	the file(s) the rule is to produce

	shell

	how the rule produces the output from the input

The file(s) each rule requires as its input is written in the input directive.
The file each rule is supposed to produce is written in the output directive. So
the rule convert_chip needs the file data/test.bam to run and produces the file
data/test.bed, as seen in the input and output-directices, respectively. And it
calls the command bedtools bamtobed (shell directive) to produce the required
output from the input.

The final thing you may notice is that we do not need to write the input and
output explicitly in the shell directive, since Snakemake knows them from the
input and output directives. This allows you to use the shorthands
{input} and {output} in the shell-directive, which snakemake
replaces with the files in the input and output directives. In the rule run_epic
the input directive is a list of files, so we write {input[0]} and
{input[1]} to get the first and second files in the list.

If we now want to run our Snakefile we can write

snakemake -s run_epic.Snakefile data/epic_results.csv

The -s flag tells Snakemake what our Snakefile is called, while
data/epic_results.csv is the file we want our pipeline to produce.

If you have already run the script run_epic.py, you may get the pithy
reply:

Nothing to be done.

This is because you requested that Snakemake should create the file
data/epic_results.csv for you, but Snakemake is smart enough to see
that it already exists and hence do nothing. Otherwise, the Snakefile
would run.

So if Snakemake sees that a file you requested already exists, it does nothing.
This illustrates one advantage of using Snakemake, namely that Snakemake does
not just dumbly execute a list of instructions, but rather reasons about the
workflow. We will see several examples of this, but first, let us understand how
Snakemake works at a high level.

How does Snakemake execute the Snakefile

When you tell Snakemake to create the file data/epic_results.csv (called target
in Snakemake lingo), Snakemake looks for a rule that contains that target as its
output. In our example, it finds that the rule run_epic can create the requested
file. (How? The output-directive contains data/epic_results.csv). But for the
rule run_epic to create the target, it needs the files data/test.bed and
data/control.bed. (Why? Because these files are in the input-directive of
run_epic). So now Snakemake has to see whether the files data/test.bed and
data/control.bed exist, and if not, it needs to find a rule that can create
them.

We will learn more about Snakemake internals later, but for now, it is
enough to understand that when Snakemake is requested to create a file,
it first checks whether the file already exists, and if not, it looks
for rules that can create it. This process is repeated until it finds a
combination of rules and files that can produce the requested target,
otherwise it ends with an error. Notice that when finding a series of
jobs to create a target, Snakemake starts at the end.

A successful fulfillment of the requirements to create a file can be
represented by a DAG. A DAG is a kind of graph. When displaying
Snakefiles, the nodes in the DAG are rules and the arrows the
dependencies, that is, which rules depend on which. In our example the
DAG is very simple and looks like this:

[image: A DAG showing the pipeline to run epic]The DAG for the pipeline to run epic

DAG stands for directed acyclic graph, which means that the arrows on the graph
have one and only one direction, and that there can be no cycles in the graph.
No cycles in the graph means that you cannot find a path to a node from itself.
Which in practical terms means that no file can depend on itself to be created.

This graph was actually created using Snakemake and the dot command
(conda install graphviz), like so:

snakemake --dag -s run_epic.Snakefile data/epic_results.csv | dot -T svg > run_epic_dag.svg

–-dag tells Snakemake to create a DAG, -s signifies which Snakefile to
use, and data/epic_results.csv is the target.

Differences between scripts and Snakefiles

Now that you have a basic understanding of how Snakemake works, lets
look more closely at how Snakemakefiles differ from scripts.

Snakemake can be told to only create a specific file

This is a handy feature we used without paying much attention to it. In
listing run_epic.Snakefile, we told Snakemake to create the target
data/epic_results.csv. Of course, we can replace that target with
another one the pipeline can create, for example data/control.bed, like
so:

snakemake -s run_epic.Snakefile -f data/control.bed

Now Snakemake creates this file instead, without creating any of the
other files the Snakemakefile could potentially produce.

(The -f flag forces recreation of the file, even if it already exists.)

You cannot tell our Python script to only create a specific file, if we only
want to (re)create a specific file, we need to run the whole script again and
produce all the files (or comment out all the irrelevant lines, a time-consuming
and error-prone process).

Snakemake can reason about what has been done and what is not done

As you see, in our simple script in listing run_epic.py
above there are three steps that are executed. There is no logic to
check whether a file already exists, and therefore, to skip that step.
Such a thing could be added to our script, but such code would be hard
to write and maintain. Furthermore, Snakemake has an option to recreate
a target, even if it exists - you can do that with the -f flag, like so:

snakemake -s run_epic.Snakefile -f data/epic_results.csv

If you were to add this feature to your script it would be yet more code
to write. Adding all these nifty features to a script would be an
error-prone process and time-consuming process.

Snakemake can even reason about what needs to be redone.

When working on a pipeline, you might already have run it once to produce the
desired targets. Then you make some changes to the code, and want to rerun it
again. Since the pipeline contains many time-consuming steps, you only want to
rerun the pipeline from the rewritten rule 1. Problem is, you may not
remember exactly which rules you changed. Luckily, Snakemake does! Let’s see
how.

	1

	If you have a pipeline in three steps and change the second rule, you
need to run both the second and third step again because…

First, if you used the python script to run epic, and haven’t used the
Snakemake file yet, you need to rerun epic using Snakemake like shown in
listing run_epic_snakefile_bash.

Now when you are done, try changing the shell directive of the rule
run_epic to

"epic --gap 1 -t {input[0]} -c {input[1]} > {output}"

and then run

$ snakemake -s run_epic.Snakefile data/epic_results.csv --list-code-changes

Snakemake will now reply:

data/epic_results.csv

Now you see that Snakemake recognizes that you have made changes to the
code in the rule run_epic, and therefore need to recreate the target
data/epic_results.csv. This can be done by chaining the commands, like
so:

snakemake -s run_epic.Snakefile -f
 $(snakemake -s run_epic.Snakefile data/epic_results.csv --list-code-changes)

This is the kind of incredibly useful feature that is very easy to
implemement in Snakemake, since there is a clear syntactic link between
the name of the output file and the code to produce it. It would be near
impossible to implemement in a script. There are other situations in
which we would need to rerun only certain rules, such as when the input
file to a rule, not the rule code, has changed, and Snakemake handles
these with ease too.

Snakemake can list information about all the files the pipeline can create

Since Snakemake has a list of all the files it can create, it can show
them to you, together with the status of those files, such as creation
date, which rule creates it and other useful info. We will learn more
about what all these columns mean in the coming chapters.

	output_file

	date

	rule

	version

	log-file(s)

	status

	plan

	data/epic_results.csv

	Tue May 2 11:21:07 2017

	run_epic

	
	

	
	ok

	no update

	data/test.bed

	Tue May 2 11:20:39 2017

	convert_chip

	
	

	
	ok

	no update

	data/control.bed

	Tue May 2 11:20:45 2017

	convert_input

	
	

	
	ok

	no update

Snakemake can run jobs in parallel without changing the code

Since Snakemake creates a DAG of jobs, it knows what jobs depend on other jobs.
When it knows two jobs are independent, it knows it can run them at the same
time. This means that your Snakemake pipelines can run in parallel for free! If
you have tried creating parallel code in a regular programming language, you
might have become frustrated with the complexity, so this is a welcome feature.

In our pipeline, there are two jobs that can run independently, namely
convert_chip and convert_input. (You can see this in
the figure The DAG for the pipeline to run epic.)

To run these jobs in parallel, we need to tell Snakemake that it may use
more than one core. This is done with the -j parameter.

$ snakemake -s run_epic.Snakefile -j 2 -f data/*.bed

Now you should see Snakemake running these two rules in parallel.

Snakemake accepts wildcards in the input and output directives

The last feature we will introduce in this whirlwind tour is wildcards.
It is a killer feature of Snakemake, and Snakemake was the first to
introduce it. It exists to make pipelines more general, so the same
analyses can be performed on many datasets, without changing the code.

If you are an experienced programmer, you might have noticed that the rules
convert_chip and convert_input in run_epic.Snakefile do the same thing:
convert a bam file to a bed file. It is bad to have a duplication of code like
this. We should change the rule to be more general, so it would work on both
files. This is what wildcards are for.

rule bam_to_bed:
 input: "data/{sample}.bam"
 output: "data/{sample}.bed"
 shell: "bedtools bamtobed -i {input} > {output}"

The above rule replaces both convert_chip and convert_input. The prefix of the
filenames (test and control) are replaced with {sample} - a wildcard. The
wildcard {sample} in the string means that it can match any file with the
pattern data/{sample}.bed, such as data/control.bed or data/hello/world.bed. In
the first example the wildcard would have the value “control”, while in the
second, the wildcard would have the value “hello/world”.

Now when Snakemake sees that it needs to create the files data/control.bed and
data/test.bed it does not find any rules that matches these filenames
completely. It does however find that the rule bam_to_bed has an output
directive containing data/{sample}.bed. This matches the requested files
data/control.bed and data/test.bed. So now the wildcards are control and test.
This means that the wildcards in the input directive are replaced with this
information, and become data/test.bam and data/control.bam.

Just like Snakemake works its way backwards from target files to the
rules needed to produce them, Snakemake works its way backwards from
output directives to input directives. First it matches files based on
the output directive. Then, when the wildcards are decided, it fills in
the wildcards in the input directive.

Summary

In this whirlwind tour, we have given you a basic understanding of how
Snakemake works, and how a Snakemake file differs from a regular script.

	The basic building blocks of Snakemake workflows are rules. These
produce the files you want.

	Rules consist of input and output files, together with the code that
should produce the output files.

	The implicit links between the files required and created by rules
are used by Snakemake to find out the order in which to run rules.

	Snakemake accepts wildcards in the input and output directives, and
these make pipelines general.

Warmup Exercises

	For the following Snakefile, list 1) the order in which Snakemake
would find the correct rules to run, and 2) the order in which the
rules are run. Assume the file woo exist, but none of the other do.

	Copy the code in the exercise above into a Snakefile. Then create the
file woo and run Snakemake, like so:

touch woo; Snakemake

Were you correct about which files were created in which order?

	Why do you think you can’t have a cycle in a graph representing a
Snakemake workflow? What would a cycle mean in terms of rules and
their relationships?

	Here you have a super simple pipeline that just writes the words
Hello World to file:

Try changing the name of the file in the input directive of the all
rule to . What happens when you now try to run the pipeline?

	(Change the workflow file back to the working version before doing
this exercise.) Now change the name of the file in the output
directive of the rule hello_world to . What happens now when you try
to run the pipeline?

	Why are the error messages so similar in exercises 1 and 2? And what
does the subtle difference in the error messages mean?

Bioinformatics Exercises

	Let us say you change the run_epic pipeline to have an output
directive with a wildcard:

This has the advantage of allowing you to run epic on ChIP and
background files from many different experiments. Problem is, the
pipeline above does not work. How would you change the rest of the
input and output directives in the file to work with the output
directive for run_epic above?

 nav.xhtml

 Table of Contents

 		
 Welcome to The Snakemake Book’s documentation!

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

