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Ravi Programming Language

Ravi is a derivative/dialect of Lua 5.3 [http://www.lua.org/] with limited optional static typing and
features LLVM [http://www.llvm.org/] and Eclipse OMR [https://github.com/dibyendumajumdar/nj]
powered JIT compilers. The name Ravi comes from the Sanskrit word for the Sun.
Interestingly a precursor to Lua was Sol [http://www.lua.org/history.html] which had support for
static types; Sol means the Sun in Portugese.

Lua is perfect as a small embeddable dynamic language so why a derivative? Ravi extends Lua with
static typing for greater performance under JIT compilation. However, the static typing is
optional and therefore Lua programs are also valid Ravi programs.

There are other attempts to add static typing to Lua - e.g. Typed Lua [https://github.com/andremm/typedlua] but
these efforts are mostly about adding static type checks in the language while leaving the VM unmodified.
The Typed Lua effort is very similar to the approach taken by Typescript in the JavaScript world.
The static typing is to aid programming in the large - the code is eventually translated to standard Lua
and executed in the unmodified Lua VM.

My motivation is somewhat different - I want to enhance the VM to support more efficient operations when types are
known. Type information can be exploited by JIT compilation technology to improve performance. At the same time,
I want to keep the language safe and therefore usable by non-expert programmers.

Of course there is also the fantastic LuaJIT [http://luajit.org] implementation. Ravi has a different goal compared to
LuaJIT. Ravi prioritizes ease of maintenance and support, language safety, and compatibility with Lua 5.3,
over maximum performance. For more detailed comparison please refer to the documentation links below.


Features


	Optional static typing - for details see the reference manual [https://the-ravi-programming-language.readthedocs.io/en/latest/ravi-reference.html].


	Type specific bytecodes to improve performance


	Compatibility with Lua 5.3 (see Compatibility section below)


	LLVM [http://www.llvm.org/] powered JIT compiler


	Eclipse OMR [https://github.com/dibyendumajumdar/nj] powered JIT compiler


	Built-in C pre-processor, parser and JIT compiler


	A distribution with batteries [https://github.com/dibyendumajumdar/ravi-distro].







Documentation


	For the Lua extensions in Ravi see the Reference Manual [https://the-ravi-programming-language.readthedocs.io/en/latest/ravi-reference.html].


	OMR JIT Build instructions [https://the-ravi-programming-language.readthedocs.io/en/latest/ravi-omr-instructions.html].


	LLVM JIT Build instructions [https://the-ravi-programming-language.readthedocs.io/en/latest/ravi-llvm-instructions.html].


	Also see Ravi Documentation [http://the-ravi-programming-language.readthedocs.org/en/latest/index.html].


	and the slides I presented at the Lua 2015 Workshop [http://www.lua.org/wshop15.html].







Lua Goodies


	An Introduction to Lua [http://the-ravi-programming-language.readthedocs.io/en/latest/lua-introduction.html] attempts to provide a quick overview of Lua for folks coming from other languages.


	Lua 5.3 Bytecode Reference [http://the-ravi-programming-language.readthedocs.io/en/latest/lua_bytecode_reference.html] is my attempt to bring up to date the Lua 5.1 Bytecode Reference [http://luaforge.net/docman/83/98/ANoFrillsIntroToLua51VMInstructions.pdf].







Compatibility with Lua

Ravi should be able to run all Lua 5.3 programs in interpreted mode, but following should be noted:


	Ravi supports optional typing and enhanced types such as arrays (described above). Programs using these features cannot be run by standard Lua. However all types in Ravi can be passed to Lua functions; operations on Ravi arrays within Lua code will be subject to restrictions as described in the section above on arrays.


	Values crossing from Lua to Ravi will be subjected to typechecks should these values be assigned to typed variables.


	Upvalues cannot subvert the static typing of local variables (issue #26) when types are annotated.


	Certain Lua limits are reduced due to changed byte code structure. These are described below.


	Ravi uses an extended bytecode which means it is not compatible with Lua 5.3 bytecode.











	Limit name

	Lua value

	Ravi value





	MAXUPVAL

	255

	125



	LUAI_MAXCCALLS

	200

	125



	MAXREGS

	255

	125



	MAXVARS

	200

	125



	MAXARGLINE

	250

	120






When JIT compilation is enabled there are following additional constraints:


	Ravi will only execute JITed code from the main Lua thread; any secondary threads (coroutines) execute in interpreter mode.


	In JITed code tailcalls are implemented as regular calls so unlike the interpreter VM which supports infinite tail recursion JIT compiled code only supports tail recursion to a depth of about 110 (issue #17)







History


	
	2015

	
	Implemented JIT compilation using LLVM


	Implemented libgccjit based alternative JIT (now discontinued)










	
	2016

	
	Implemented debugger for Ravi and Lua 5.3 for Visual Studio Code [https://github.com/dibyendumajumdar/ravi/tree/master/vscode-debugger]










	
	2017

	
	Embedded C compiler using dmrC project (C JIT compiler)


	Additional type-annotations










	
	2018

	
	Implemented Eclipse OMR JIT backend















License

MIT License for LLVM version.







          

      

      

    

  

    
      
          
            
  
Ravi Extensions to Lua 5.3
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Optional Static Typing

Ravi allows you optionally to annotate local variables and function parameters with types.

Function return types cannot be annotated because in Lua, functions are un-named values and there is no reliable way for a static analysis of a function call’s return value.

The supported type-annotations are as follows:


	integer

	denotes an integral value of 64-bits.



	number

	denotes a double (floating point) value of 8 bytes.



	integer[]

	denotes an array of integers



	number[]

	denotes an array of numbers



	table

	denotes a Lua table



	string

	denotes a string



	closure

	denotes a function



	Name [. Name]*

	Denotes a string that has a metatable registered [https://www.lua.org/pil/28.2.html] in the Lua registry. This allows userdata
types to be asserted by their registered names.








General Notes


	Assignments to type-annotated variables are checked at compile time if possible; when the assignments occur due to a function call,  runtime type-checking is performed


	If function parameters are decorated with types, Ravi performs implicit type assertion checks on those parameters upon function entry. If the assertions fail then runtime errors are raised.


	Ravi performs type-checking of up-values that reference variables that are annotated with types


	To keep with Lua’s dynamic nature Ravi uses a mix of compile type-checking and runtime type checks. However, in Lua, compilation happens at runtime anyway so effectively all checks are at runtime.







Caveats

The Lua C api allows C programmers to manipulate values on the Lua stack. This is incompatible with Ravi’s type-checking because the compiler doesn’t know about these operations; hence if you need to do such operations from C code, please ensure that values retain their types, or else just write plain Lua code.

Ravi does its best to validate operations performed via the Lua debug api; however, in general, the same caveats apply.




integer and number types


	integer and number types are automatically initialized to zero rather than nil


	Arithmetic operations on numeric types make use of type-specialized bytecodes that lead to better code-generation







integer[] and number[] array types

The array types (number[] and integer[]) are specializations of Lua table with some additional behaviour:


	Arrays must always be initialized:

local t: number[] = {} -- okay
local t2: number[]     -- error!





This restriction is placed as otherwise the JIT code would need to insert tests to validate that the variable is not nil.



	Specialised operators to get/set from array types are implemented; these makes array-element access more efficient in JIT mode as the access can be inlined


	Operations on array types can be optimised to specialized bytecode only when the array type is known at compile time. Otherwise regular table access will be used, subject to runtime checks.


	The standard table operations on arrays are checked to ensure that the array type is not subverted


	Array types are not compatible with declared table variables, i.e. the following is not allowed:

local t: table = {}
local t2: number[] = t  -- error!

local t3: number[] = {}
local t4: table = t3    -- error!





But the following is okay:

local t5: number[] = {}
local t6 = t5           -- t6 treated as table





These restrictions are applied because declared table and array types generate optimized code that makes assumptions about keys and values. The generated code would be incorrect if the types were not as expected.



	Indices >= 1 should be used when accessing array-elements. Ravi arrays (and slices) have a hidden slot at index 0 for performance reasons, but this is not visible in pairs() or ipairs(), or when initializing an array using a literal initializer; only direct access via the [] operator can see this slot.


	An array will grow automatically (unless the array was created as fixed length using table.intarray() or table.numarray()) if the user sets the element just past the array length:

local t: number[] = {} -- dynamic array
t[1] = 4.2             -- okay, array grows by 1
t[5] = 2.4             -- error! as attempt to set value







	It is an error to attempt to set an element that is beyond len+1 on dynamic arrays; for fixed length arrays attempting to set elements at positions greater than len will cause an error.


	The current used length of the array is recorded and returned by the len operation


	The array only permits the right type of value to be assigned (this is also checked at runtime to allow compatibility with Lua)


	Accessing out of bounds elements will cause an error, except for setting the len+1 element on dynamic arrays. There is a compiler option to omit bounds checking on reads.


	It is possible to pass arrays to functions and return arrays from functions. Arrays passed to functions appear as Lua tables inside those functions if the parameters are untyped - however the tables will still be subject to restrictions as above. If the parameters are typed then the arrays will be recognized at compile time:

local function f(a, b: integer[], c)
  -- Here a is dynamic type
  -- b is declared as integer[]
  -- c is also a dynamic type
  b[1] = a[1] -- Okay only if a is actually also integer[]
  b[1] = c[1] -- Will fail if c[1] cannot be converted to an integer
end

local a : integer[] = {1}
local b : integer[] = {}
local c = {1}

f(a,b,c)        -- ok as c[1] is integer
f(a,b, {'hi'})  -- error!







	Arrays returned from functions can be stored into appropriately typed local variables - there is validation that the types match:

local t: number[] = f() -- type will be checked at runtime







	Array types ignore __index, __newindex and __len metamethods.


	Array types cannot be set as metatables for other values.


	pairs() and ipairs() work on arrays as normal


	There is no way to delete an array element.


	The array data is stored in contiguous memory just like native C arrays; morever the garbage collector does not scan the array data




The following library functions allow creation of array types of defined length.


	table.intarray(num_elements, initial_value)

	creates an integer array of specified size, and initializes with initial value. The return type is integer[]. The size of the array cannot be changed dynamically, i.e. it is fixed to the initial specified size. This allows slices to be created on such arrays.



	table.numarray(num_elements, initial_value)

	creates an number array of specified size, and initializes with initial value. The return type is number[]. The size of the array cannot be changed dynamically, i.e. it is fixed to the initial specified size. This allows slices to be created on such arrays.








table type

A declared table (as shown below) has the following nuances.


	Like array types, a variable of table type must be initialized:

local t: table = {}







	Declared tables allow specialized opcodes for table gets involving integer and short literal string keys; these opcodes result in more efficient JIT code


	Array types are not compatible with declared table variables, i.e. the following is not allowed:

local t: table = {}
local t2: number[] = t -- error!







	When short string literals are used to access a table element, specialized bytecodes are generated that may be more efficiently JIT compiled:

local t: table = { name='dibyendu'}
print(t.name) -- The GETTABLE opcode is specialized in this case







	As with array types, specialized bytecodes are generated when integer keys are used







string, closure and user-defined types

These type-annotations have experimental support. They are not always statically enforced. Furthermore using these types does not affect the JIT code-generation, i.e. variables annotated using these types are still treated as dynamic types.

The scenarios where these type-annotations have an impact are:


	Function parameters containing these annotations lead to type assertions at runtime.


	The type assertion operator @ can be applied to these types - leading to runtime assertions.


	Annotating local declarations results in type assertions.


	All three types above allow nil assignment.




The main use case for these annotations is to help with type-checking of larger Ravi programs. These type checks, particularly the one for user defined types, are executed directly by the VM and hence are more efficient than performing the checks in other ways.

Examples:

-- Create a metatable
local mt = { __name='MyType'}

-- Register the metatable in Lua registry
debug.getregistry().MyType = mt

-- Create an object and assign the metatable as its type
local t = {}
setmetatable(t, mt)

-- Use the metatable name as the object's type
function x(s: MyType)
  local assert = assert
  assert(@MyType(s) == @MyType(t))
  assert(@MyType(t) == t)
end

-- Here we use the string type
function x(s1: string, s2: string)
  return @string( s1 .. s2 )
end

-- The following demonstrates an error caused by the type-checking
-- Note that this error is raised at runtime
function x()
  local s: string
  -- call a function that returns integer value
  -- and try to assign to s
  s = (function() return 1 end)()
end
x() -- will fail at runtime








Type Assertions

Ravi does not support defining new types, or structured types based on tables. This creates some practical issues when dynamic types are mixed with static types. For example:

local t = { 1,2,3 }
local i: integer = t[1] -- generates an error





The above code generates an error as the compiler does not know that the value in t[1] is an integer. However often we as programmers know the type that is expected, it would be nice to be able to tell the compiler what the expected type of t[1] is above. To enable this Ravi supports type assertion operators. A type assertion is introduced by the ‘@’ symbol, which must be followed by the type name. So we can rewrite the above example as:

local t = { 1,2,3 }
local i: integer = @integer( t[1] )





The type assertion operator is a unary operator and binds to the expression following the operator. We use the parenthesis above to ensure that the type assertion is applied to t[1] rather than t. More examples are shown below:

local a: number[] = @number[] { 1,2,3 }
local t = { @number[] { 4,5,6 }, @integer[] { 6,7,8 } }
local a1: number[] = @number[]( t[1] )
local a2: integer[] = @integer[]( t[2] )





For a real example of how type assertions can be used, please have a look at the test program gaussian2.lua [https://github.com/dibyendumajumdar/ravi/blob/master/ravi-tests/gaussian2.lua]




Array Slices

Since release 0.6 Ravi supports array slices. An array slice allows a portion of a Ravi array to be treated as if it is an array - this allows efficient access to the underlying array-elements. The following new functions are available:


	table.slice(array, start_index, num_elements)

	creates a slice from an existing fixed size array - allowing efficient access to the underlying array-elements.





Slices access the memory of the underlying array; hence a slice can only be created on fixed size arrays (constructed by table.numarray() or table.intarray()). This ensures that the array memory cannot be reallocated while a slice is referring to it. Ravi does not track the slices that refer to arrays - slices get garbage collected as normal.

Slices cannot extend the array size for the same reasons above.

The type of a slice is the same as that of the underlying array - hence slices get the same optimized JIT operations for array access.

Each slice holds an internal reference to the underlying array to ensure that the garbage collector does not reclaim the array while there are slices pointing to it.

For an example use of slices please see the matmul1_ravi.lua [https://github.com/dibyendumajumdar/ravi/blob/master/ravi-tests/matmul1_ravi.lua] benchmark program in the repository. Note that this feature is highly experimental and not very well tested.




Examples

Example of code that works - you can copy this to the command line input:

function tryme()
  local i,j = 5,6
  return i,j
end
local i:integer, j:integer = tryme(); print(i+j)





When values from a function call are assigned to a typed variable, an implicit type coercion takes place. In the above example an error would occur if the function returned values that could not converted to integers.

In the following example, the parameter j is defined as a number, hence it is an error to pass a value that cannot be converted to a number:

function tryme(j: number)
  for i=1,1000000000 do
    j = j+1
  end
  return j
end
print(tryme(0.0))





An example with arrays:

function tryme()
  local a : number[], j:number = {}
  for i=1,10 do
    a[i] = i
    j = j + a[i]
  end
  return j
end
print(tryme())





Another example using arrays. Here the function receives a parameter arr of type number[] - it would be an error to pass any other type to the function because only number[] types can be converted to number[] types:

function sum(arr: number[])
  local n: number = 0.0
  for i = 1,#arr do
    n = n + arr[i]
  end
  return n
end

print(sum(table.numarray(10, 2.0)))





The table.numarray(n, initial_value) creates a number[] of specified size and initializes the array with the given initial value.







          

      

      

    

  

    
      
          
            
  
Build Ravi with Eclipse OMR JIT
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Overview


Note

The Eclipse OMR JIT backend is work in progress. The code generation is not yet optimal.



Recently support has been added in Ravi to use the Eclipse OMR JIT backend.
A trimmed down version of the Eclipse OMR JIT [https://github.com/dibyendumajumdar/nj] is used to ensure that the resulting
binaries are smaller in size.

The main advantages / disadvantages of the OMR JIT backend over LLVM are:


	The OMR JIT backend is much smaller compared to LLVM. On my iMac it takes less than 3 minutes to compile and build the library.


	The OMR JIT engine contains an optimizing compiler, therefore the generated code is much better than say NanoJIT [https://github.com/dibyendumajumdar/nanojit],
although not as good as LLVM.




The approach taken with the OMR JIT backend is somewhat different compared with the LLVM backend.


	An intermediate C compiler is used; this is based on the dmr_C [https://github.com/dibyendumajumdar/dmr_c] project. Using a C intermediate layer makes
development of the JIT backend easier to evolve. In comparison the LLVM backed was written by hand, using the LLVM api.


	Users can view the intermediate C code for a Lua function by simply invoking ravi.dumpir(function) on any function:




Ravi 5.3.4
Copyright (C) 1994-2017 Lua.org, PUC-Rio
Portions Copyright (C) 2015-2017 Dibyendu Majumdar
Options assertions ltests omrjit
> x = function() print 'hello world' end
> ravi.dumpir(x)





Above results in (note that only the function code is shown below):

int jit_function(lua_State *L) {
  int error_code = 0;
  lua_Integer i = 0;
  lua_Integer ic = 0;
  lua_Number n = 0.0;
  lua_Number nc = 0.0;
  int result = 0;
  StkId ra = NULL;
  StkId rb = NULL;
  StkId rc = NULL;
  lua_Unsigned ukey = 0;
  lua_Integer *iptr = NULL;
  lua_Number *nptr = NULL;
  Table *t = NULL;
  CallInfo *ci = L->ci;
  LClosure *cl = clLvalue(ci->func);
  TValue *k = cl->p->k;
  StkId base = ci->u.l.base;
  ra = R(0);
  rc = K(0);
  raviV_gettable_sskey(L, cl->upvals[0]->v, rc, ra);
  base = ci->u.l.base;
  ra = R(1);
  rb = K(1);
  setobj2s(L, ra, rb);
  L->top = R(2);
  ra = R(0);
  result = luaD_precall(L, ra, 0, 1);
  if (result) {
    if (result == 1 && 0 >= 0)
      L->top = ci->top;
    }
    else {  /* Lua function */
      result = luaV_execute(L);
    if (result) L->top = ci->top;
  }
  base = ci->u.l.base;
  ra = R(0);
  if (cl->p->sizep > 0) luaF_close(L, base);
  result = (1 != 0 ? 1 - 1 : cast_int(L->top - ra));
  return luaD_poscall(L, ci, ra, result);
  Lraise_error:
  raise_error(L, error_code); /* does not return */
  return 0;
}








Build Dependencies


	CMake [https://cmake.org/] is required


	On Windows you will need Visual Studio 2017 Community edition







Build Instructions


	Ravi uses a cut-down version of the Eclipse OMR JIT engine [https://github.com/dibyendumajumdar/nj]. First build this library and install it.


	The Ravi CMake build assumes you have installed the OMR JIT library under \Software\omr on Windows and $HOME/Software/omr on Linux or Mac OSX.


	Now you can build Ravi as follows on Linux or Mac OSX:




cd build
cmake -DOMR_JIT=ON -DCMAKE_INSTALL_PREFIX=$HOME/ravi -DCMAKE_BUILD_TYPE=Release -G "Unix Makefiles" ..
make





If you did not use the default locations above to install OMR, then you will need to amend the file cmake/FindOMRJIT.cmake.




JIT API for OMR backend


	auto mode

	in this mode the compiler decides when to compile a Lua function. The current implementation is very simple -
any Lua function call is checked to see if the bytecodes contained in it can be compiled. If this is true then
the function is compiled provided either a) function has a fornum loop, or b) it is largish (greater than 150 bytecodes)
or c) it is being executed many times (> 50). Because of the simplistic behaviour performance the benefit of JIT
compilation is only available if the JIT compiled functions will be executed many times so that the cost of JIT
compilation can be amortized.



	manual mode

	in this mode user must explicitly request compilation. This is the default mode. This mode is suitable for library
developers who can pre compile the functions in library module table.





A JIT api is available with following functions:


	ravi.jit([b])

	returns enabled setting of JIT compiler; also enables/disables the JIT compiler; defaults to true



	ravi.auto([b [, min_size [, min_executions]]])

	returns setting of auto compilation and compilation thresholds; also sets the new settings if values are supplied; defaults are false, 150, 50.



	ravi.compile(func_or_table[, options])

	compiles a Lua function (or functions if a table is supplied) if possible, returns true if compilation was
successful for at least one function.
options is an optional table with compilation options - in particular,
omitArrayGetRangeCheck if set true disables range checks in array get operations to improve performance in some cases.
inlineLuaArithmeticOperators if set to true enables generation of inline code for Lua arithemtic op codes such as
OP_ADD, OP_MUL and OP_SUB.



	ravi.iscompiled(func)

	returns the JIT status of a function



	ravi.dumplua(func)

	dumps the Lua bytecode of the function



	ravi.dumpir(func)

	dumps the C intermediate code for a Lua function



	ravi.optlevel([n])

	sets optimization level (0, 1, 2); defaults to 1.



	ravi.verbosity([b])

	If set to 1 then everytime a Lua function is compiled the C intermediate code will be dumped.








Compiler Trace Output from OMR

The OMR JIT backend can generate detailed compilation traces if you define following environment variable:

export TR_Options=traceIlGen,traceFull,log=trtrace.log





Note that the generated traces can be huge!







          

      

      

    

  

    
      
          
            
  
Building Ravi with LLVM JIT backend
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Quick build without JIT

A Makefile is supplied for a simple build without the JIT on Unix platforms. Just run make and follow instructions. You may need to customize the Makefiles.

For building Ravi with JIT options please read on.




Build Dependencies


	CMake [https://cmake.org/] is required for more advanced builds


	On Windows you will need Visual Studio 2017 Community edition


	LLVM versions >= 3.5







LLVM JIT Backend

Following versions of LLVM work with Ravi.


	LLVM 3.7, 3.8, 3.9, 4.0, 5.0, 6.0


	LLVM 3.5 and 3.6 should also work but have not been recently tested




Unless otherwise noted the instructions below should work for LLVM 3.9 and later.

Since LLVM 5.0 Ravi has begun to use the new ORC JIT apis. These apis are more memory efficient
compared to the MCJIT apis because they release the Module IR as early as possible, whereas with
MCJIT the Module IR hangs around as long as the compiled code is held. Because of this significant
improvement, I recommend using LLVM 5.0 and above.


Building LLVM on Windows

I built LLVM from source. I used the following sequence from the VS2017 command window:

cd \github\llvm
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=c:\LLVM -DLLVM_TARGETS_TO_BUILD="X86" -G "Visual Studio 15 2017 Win64" ..





I then opened the generated solution in VS2017 and performed a INSTALL build from there. Above will build the 64-bit version of LLVM libraries. To build a 32-bit version omit the Win64 parameter.


Note

Note that if you perform a Release build of LLVM then you will also need to do a Release build of Ravi otherwise you will get link errors.






Building LLVM on Ubuntu

On Ubuntu I found that the official LLVM distributions don’t work with CMake. The CMake config files appear to be broken.
So I ended up downloading and building LLVM from source and that worked. The approach is similar to that described for MAC OS X below.




Building LLVM on MAC OS X

I am using Max OSX El Capitan. Pre-requisites are XCode 7.x and CMake.
Ensure cmake is on the path.
Assuming that LLVM source has been extracted to $HOME/llvm-3.7.0.src I follow these steps:

cd llvm-3.7.0.src
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=$HOME/LLVM -DLLVM_TARGETS_TO_BUILD="X86" ..
make install








Building Ravi with LLVM JIT backend enabled

I am developing Ravi using Visual Studio 2017 Community Edition on Windows 10 64bit, gcc on Unbuntu 64-bit, and clang/Xcode on MAC OS X. I was also able to successfully build a Ubuntu version on Windows 10 using the newly released Ubuntu/Linux sub-system for Windows 10.


Note

Location of cmake files prior to LLVM 3.9 was $LLVM_INSTALL_DIR/share/llvm/cmake.



Assuming that LLVM has been installed as described above, then on Windows I invoke the cmake config as follows:

cd build
cmake -DLLVM_JIT=ON -DCMAKE_INSTALL_PREFIX=c:\ravi -DLLVM_DIR=c:\LLVM\lib\cmake\llvm -G "Visual Studio 15 2017 Win64" ..





I then open the solution in VS2017 and do a build from there.

On Ubuntu I use:

cd build
cmake -DLLVM_JIT=ON -DCMAKE_INSTALL_PREFIX=$HOME/ravi -DLLVM_DIR=$HOME/LLVM/lib/cmake/llvm -DCMAKE_BUILD_TYPE=Release -G "Unix Makefiles" ..
make





Note that on a clean install of Ubuntu 15.10 I had to install following packages:


	cmake


	git


	libreadline-dev




On MAC OS X I use:

cd build
cmake -DLLVM_JIT=ON -DCMAKE_INSTALL_PREFIX=$HOME/ravi -DLLVM_DIR=$HOME/LLVM/lib/cmake/llvm -DCMAKE_BUILD_TYPE=Release -G "Xcode" ..





I open the generated project in Xcode and do a build from there. You can also use the command line build tools if you wish - generate the make files in the same way as for Linux.






Building without JIT

You can omit -DLLVM_JIT=ON and OMR_JIT=ON options to build Ravi with a null JIT implementation.




Building Static Libraries

By default the build generates a shared library for Ravi. You can choose to create a static library and statically linked executables by supplying the argument -DSTATIC_BUILD=ON to CMake.


JIT API


	auto mode

	in this mode the compiler decides when to compile a Lua function. The current implementation is very simple -
any Lua function call is checked to see if the bytecodes contained in it can be compiled. If this is true then
the function is compiled provided either a) function has a fornum loop, or b) it is largish (greater than 150 bytecodes)
or c) it is being executed many times (> 50). Because of the simplistic behaviour performance the benefit of JIT
compilation is only available if the JIT compiled functions will be executed many times so that the cost of JIT
compilation can be amortized.



	manual mode

	in this mode user must explicitly request compilation. This is the default mode. This mode is suitable for library
developers who can pre compile the functions in library module table.





A JIT api is available with following functions:


	ravi.jit([b])

	returns enabled setting of JIT compiler; also enables/disables the JIT compiler; defaults to true



	ravi.auto([b [, min_size [, min_executions]]])

	returns setting of auto compilation and compilation thresholds; also sets the new settings if values are supplied; defaults are false, 150, 50.



	ravi.compile(func_or_table[, options])

	compiles a Lua function (or functions if a table is supplied) if possible, returns true if compilation was
successful for at least one function. options is an optional table with compilation options - in particular
omitArrayGetRangeCheck - which disables range checks in array get operations to improve performance in some cases.
Note that at present if the first argument is a table of functions and has more than 100 functions then only the
first 100 will be compiled. You can invoke compile() repeatedly on the table until it returns false. Each
invocation leads to a new module being created; any functions already compiled are skipped.



	ravi.iscompiled(func)

	returns the JIT status of a function



	ravi.dumplua(func)

	dumps the Lua bytecode of the function



	ravi.dumpir(func)

	dumps the IR of the compiled function (only if function was compiled; only available in LLVM 4.0 and earlier)



	ravi.dumpasm(func)

	(deprecated) dumps the machine code using the currently set optimization level (only if function was compiled; only available in LLVM version 4.0 and earlier)



	ravi.optlevel([n])

	sets LLVM optimization level (0, 1, 2, 3); defaults to 2. These levels are handled by reusing LLVMs default pass definitions which are geared towards C/C++ programs, but appear to work well here. If level is set to 0, then an attempt is made to use fast instruction selection to further speed up compilation.



	ravi.sizelevel([n])

	sets LLVM size level (0, 1, 2); defaults to 0



	ravi.tracehook([b])

	Enables support for line hooks via the debug api. Note that enabling this option will result in inefficient JIT as a call to a C function will be inserted at beginning of every Lua bytecode boundary; use this option only when you want to use the debug api to step through code line by line



	ravi.verbosity([b])

	Controls the amount of verbose messages generated during compilation.










Performance

For performance benchmarks please visit the Ravi Performance Benchmarks [http://the-ravi-programming-language.readthedocs.org/en/latest/ravi-benchmarks.html] page.

To obtain the best possible performance, types must be annotated so that Ravi’s JIT compiler can generate efficient code.
Additionally function calls are expensive - as the JIT compiler cannot inline function calls, all function calls go via the Lua call protocol which has a large overhead. This is true for both Lua functions and C functions. For best performance avoid function calls inside loops.




Testing

I test the build by running a modified version of Lua 5.3.3 test suite. These tests are located in the lua-tests folder. Additionally I have ravi specific tests in the ravi-tests folder. There is a also a travis build that occurs upon commits - this build runs the tests as well.


Note

To thoroughly test changes, you need to invoke CMake with -DCMAKE_BUILD_TYPE=Debug option. This turns on assertions, memory checking, and also enables an internal module used by Lua tests.









          

      

      

    

  

    
      
          
            
  
Introduction to Lua


Introduction

Lua [https://www.lua.org] is a small but powerful interpreted language that is implemented as a C library. This guide is meant to help you quickly become familiar with the main features of Lua. This guide assumes you know C, C++, or Java, and perhaps a scripting language like Python - it is not a beginner’s guide. Nor is it a tutorial for Lua.




Key Features of Lua


	Lua versions matter


	Lua is dynamically typed like Python


	By default variables in Lua are global unless declared local


	There is a single complex / aggregate type called a ‘table’, which combines hash table/map and array features


	Functions in Lua are values stored in variables; in particular functions do not have names


	Globals in Lua are just values stored in a special Lua table


	Functions in Lua are closures - they can capture variables from outer scope and such variables live on even though the surrounding scope is no longer alive


	Lua functions can return multiple values


	Lua has integer (since 5.3) and floating point types that map to native C types


	A special nil value represents non-existent value


	Any value that is not false or nil is true


	The result of logical and and logical or is not true or false; these operators select one of the values


	'~=' is not equals operator and '..' is string concatenation operator


	Lua has some nice syntactic sugar for tables and functions


	A Lua script is called a chunk - and is the unit of compilation in Lua


	The Lua stack is a heap allocated structure - and you can think of Lua as a library that manipulates this stack


	Lua functions can be yielded from and resumed later on, i.e., Lua supports coroutines


	Lua is single threaded but its VM is small and encapsulated in a single data structure - hence each OS thread can be given its own
Lua VM


	Lua’s error handling is based on C setjmp/longjmp, and errors are caught via a special function call mechanism


	Lua has a meta mechanism that enables a DIY class / object system with some syntactic sugar to make it look nice


	Lua supports operator overloading via ‘meta’ methods


	You can create user defined types in C and make them available in Lua


	Lua compiles code to bytecode before execution


	Lua bytecode is not officially documented and changes from one Lua version to another; moreover the binary dump of the bytecodes is
not portable across architectures and also can change between versions


	Lua’s compiler is designed to be fast and frugal - it generates code as it parses, there is no intermediate AST construction


	Like C, Lua comes with a very small standard library - in fact Lua’s standard library is just a wrapper for C standard library
plus some basic utilities for Lua


	Lua’s standard library includes pattern matching for strings in which the patterns themselves are strings, rather like regular expressions in Python or Perl, but simpler.


	Lua provides a debug API that can be used to manipulate Lua’s internals to a degree - and can be used to implement a debugger


	Lua has an incremental garbage collector


	Lua is Open Source but has a closed development model - external contributions are not possible


	LuaJIT is a JIT compiler for Lua but features an optional high performance C interface mechanism that makes it incompatible with Lua




In the rest of this document I will expand on each of these aspects of Lua.




Lua versions matter

For all practical purposes only Lua versions 5.1, 5.2 and 5.3 matter. Note however that each of these is considered a major version and therefore is not fully backward compatible (e.g. Lua 5.3 cannot necessarily run Lua 5.1 code) although there is a large common subset.


	Lua 5.2 has a new mechanism for resolving undeclared variables compared to 5.1


	Lua 5.3 has integer number subtype and bitwise operators that did not exist in 5.1 or 5.2


	LuaJIT is 5.1 based but supports a large subset of 5.2 features with some notable exceptions such as the change mentioned above




Mostly what this document covers should be applicable to all these versions, except as otherwise noted.




Lua is dynamically typed

This means that values have types but variables do not. Example:

x = 1 -- x holds an integer
x = 5.0 -- x now holds a floating pont value
x = {} -- x now holds an empty table
x = function() end -- x now holds a function with empty body








Variables are global unless declared local

In the example above, x is global.
But saying:

local x = 1





makes x local, i.e. its scope and visibility is constrained to the enclosing block of code, and any nested blocks. Note that
local variables avoid a lookup in the ‘global’ table and hence are more efficient. Thus it is common practice to cache values in
local variables. For example, print is a global function - and following creates a local variable that caches it:

local print = print -- caches global print() function
print('hello world!') -- calls the same function as global print()





There are some exceptions to the rule:


	the iterator variables declared in a for loop are implicitly local.


	function parameters are local to the function







The ‘table’ type

Lua’s only complex / aggregate data type is a table. Tables are used for many things in Lua, even internally within Lua.
Here are some examples:

local a = {} -- creates an empty table
local b = {10,20,30} -- creates a table with three array elements at positions 1,2,3
                     -- this is short cut for:
                     -- local b = {}
                     -- b[1] = 10
                     -- b[2] = 20
                     -- b[3] = 30
local c = { name='Ravi' } -- creates a table with one hash map entry
                          -- this is short cut for:
                          -- local c = {}
                          -- c['name'] = 'Ravi'





Internally the table is a composite hash table / array structure. Consecutive values starting at integer index 1 are inserted into the array, else the values go into the hash table. Hence, in the example below:

local t = {}
t[1] = 20 -- goes into array
t[2] = 10 -- goes into array
t[100] = 1 -- goes into hash table as not consecutive
t.name = 'Ravi' -- goes into hash table
                -- t.name is syntactic sugar for t['name']





To iterate over array values you can write:

for i = 1,#t do
  print(t[i])
end





Note that above will only print 20,10.

To iterate over all values write:

for k,v in pairs(t) do
  print(k,v)
end





Unfortunately, you need to get a good understanding of when values will go into the array part of a table, because some Lua library functions work only on the array part. Example:

table.sort(t)





You will see that only values at indices 1 and 2 were sorted.
Another frequent problem is that the only way to reliably know the total number of elements in a table is to count the values.
The # operator returns the length of the consecutive array elements starting at index 1.




Functions are values stored in variables

You already saw that we can write:

local x = function()
          end





This creates a function and stores it in local variable x. This is the same as:

local function x()
end





Omitting the local keyword would create x in global scope.

Functions can be defined within functions - in fact all Lua functions are defined within a ‘chunk’ of code, which gets wrapped inside a Lua function.

Internally a function has a ‘prototype’ that holds the compiled code and other meta data regarding the function. An instance of the
function in created when the code executes. You can think of the ‘prototype’ as the ‘class’ of the function, and the function instance is akin to an object created from this class.




Globals are just values in a special table

Globals are handled in an interesting way. Whenever a name is used that is not found in any of the enclosing scopes and is not declared local, then Lua will access/create a variable in a table accessed by the name _ENV (this applies to Lua 5.2 and above - Lua 5.1 had a different mechanism). Actually _ENV is just a captured value that points to a special table in Lua by default. This table access becomes evident when you look at the bytecode generated for some Lua code:

function hello()
  print('hello world')
end





Generates following (in Lua 5.3):

function <stdin:1,3> (4 instructions at 00000151C0AA9530)
0 params, 2 slots, 1 upvalue, 0 locals, 2 constants, 0 functions
      1       [2]     GETTABUP        0 0 -1  ; _ENV "print"
      2       [2]     LOADK           1 -2    ; "hello world"
      3       [2]     CALL            0 2 1
      4       [3]     RETURN          0 1
constants (2) for 00000151C0AA9530:
      1       "print"
      2       "hello world"
locals (0) for 00000151C0AA9530:
upvalues (1) for 00000151C0AA9530:
      0       _ENV    0       0





The GETTABUP instruction looks up the name ‘print’ in the captured table variable _ENV. Lua uses the term ‘upvalue’ for captured variables.




Functions in Lua are closures

Lua functions can reference variables in outer scopes - and such references can be captured by the function so that even if the outer scope does not exist anymore the variable still lives on:

-- x() returns two anonymous functions
x = function()
  local a = 1
  return  function(b)
            a = a+b
            return a
          end,
          function(b)
            a = a+b
            return a
          end
end

-- call x
m,n = x()
m(1) -- returns 2
n(1) -- returns 3





In the example above, the local variable a in function x() is captured inside the two anonymous functions that reference it. You can see this if you dump Lua 5.3 bytecode for m:

function <stdin:1,1> (6 instructions at 00000151C0AD3AB0)
1 param, 2 slots, 1 upvalue, 1 local, 0 constants, 0 functions
      1       [1]     GETUPVAL        1 0     ; a
      2       [1]     ADD             1 1 0
      3       [1]     SETUPVAL        1 0     ; a
      4       [1]     GETUPVAL        1 0     ; a
      5       [1]     RETURN          1 2
      6       [1]     RETURN          0 1
constants (0) for 00000151C0AD3AB0:
locals (1) for 00000151C0AD3AB0:
      0       b       1       7
upvalues (1) for 00000151C0AD3AB0:
      0       a       1       0





The GETUPVAL and SETUPVAL instructions access captured variables or upvalues as they are known in Lua.




Lua functions can return multiple values

An example of this already appeared above. Here is another:

function foo()
  return 1, 'text'
end

x,y = foo()








Lua has integer and floating point numeric types

Since Lua 5.3 Lua’s number type has integer and floating point representations. This is automatically managed; however a library function is provided to tell you what Lua thinks the number type is.

x = 1  -- integer
y = 4.2 -- double

print(math.type(x)) -- says 'integer'
print(math.type(y)) -- says 'float'





On 64-bit architecture by default an integer is represented as C int64_t and floating point as double. The representation of the numeric type as native C types is one of the secrets of Lua’s performance, as the numeric types do not require ‘boxing’.

In Lua 5.3, there is a special division operator // that does integer division if the operands are both integer. Example:

x = 4
y = 3

print(x//y) -- integer division results in 0
print(x/y) -- floating division results in 1.3333333333333





Note that officially the // operator does floor division, hence if one or both of its operands is floating point then the result is also a floating point representing the floor of the division of its operands.

Having integer types has also made it natural to have support for bitwise operators in Lua 5.3.




A special nil value represents non-existent value

Lua has special value nil that represents no value, and evaluates to false in boolean expressions.




Any value that is not false or nil is true

As mentioned above nil evaluates to false.




Logical and and logical or select one of the values

When you perform a logical and or or the result is not boolean; these operators select one of the values. This is best
illustrated via examples:

false or 'hello'              -- selects 'hello'
'hello' and 'world'           -- selects 'world'
false and 'hello'             -- selects false
nil or false                  -- selects false
nil and false                 -- selects nil






	and selects the first value if it evaluates to false else the second value.


	or selects the first value if it evaluates to true else the second value.







'~=' is not equals operator and '..' is string concatenation operator

For example:

print(1 ~= 2)                 -- prints 'true'
print('hello ' .. 'world!')   -- prints 'hello world!')








Lua has some nice syntactic sugar for tables and functions

If you are calling a Lua function with a single string or table argument then the parenthesis can be omitted:

print 'hello world' -- syntactic sugar for print('hello world')
options { verbose=true, debug=true } -- syntactic sugar for options( { ... } )





Above is often used to create a DSL. For instance, see:


	Lua’s bug list [https://github.com/lua/lua/blob/master/bugs]


	Premake [https://github.com/premake/premake-core/wiki/Your-First-Script] - a tool similar to CMake




You have already seen that:

t = { surname = 'majumdar' }      -- t.surname is sugar for t['surname']
t.name = 'dibyendu'               -- syntactic sugar for t['name'] = 'dibyendu'





A useful use case for tables is as modules. Thus a standard library module like math is simply a table of functions. Here is an example:

module = { print, type }
module.print('hello')
module.print 'hello'
module.type('hello')





Finally, you can emulate an object oriented syntax using the : operator:

x:foo('hello')                   -- syntactic sugar for foo(x, 'hello')





As we shall see, this feature enables Lua to support object orientation.




A Lua script is called a chunk - and is the unit of compilation in Lua

When you present a script to Lua, it is compiled. The script can be a file or a string. Internally the content of the script is wrapped inside a Lua function. So that means that a script can have local variables, as these live in the wrapping function.

It is common practice for scripts to return a table of functions - as then the script can be treated as a module. There is a library function ‘require’ which loads a script as a module.

Suppose you have following script saved in a file sample.lua:

-- sample script
local function foo() end
local function bar() end

return { foo=foo, bar=bar }      -- i.e. ['foo'] = foo, ['bar'] = bar





Above script returns a table containing two functions.

Now another script can load this as follows:

local sample = require 'sample' -- Will call sample.lua script and save its table of functions





The library function require() does more than what is described above, of course. For instance it ensures that the module is only loaded once, and it uses various search paths to locate the script. It can even load C modules. Anyway, now the table returned from
the sample script is stored in the local variable ‘sample’ and we can write:

sample.foo()
sample.bar()








The Lua stack is a heap allocated structure

Lua’s code operates on heap allocated stacks, rather than the native machine stack. Since Lua is also a C library you can think of Lua as a library that manipulates the heap allocated stacks. In particular, Lua’s C api exposes the Lua stack, and requires you to push/pop values on the stack; this approach is unique to Lua.




Lua functions can be yielded from and resumed later

Lua allows functions to be suspended and resumed. The function suspends itself by calling a library function to yield. Sometime later
the function may be resumed by the caller or something else - when resumed, the Lua function continues from the point of suspension.

When yielding you can pass values back to the caller. Similarly when resuming the caller can pass values to the function.

This is perhaps the most advanced feature in Lua, and not one that can be easily demonstrated in a simple way. Following is the simplest example I could think of.

function test()
  local message = coroutine.yield('hello')
  print(message)
end

-- create a new Lua stack (thread)
thread = coroutine.create(test)

-- start the coroutine
status,message = coroutine.resume(thread) -- initial start

-- coroutine suspended so we have got control back
-- the coroutine yielded message to us - lets print it
print(message) -- says 'hello', the value returned by yield

-- Resume the coroutine / send it the message 'world'
status,message = coroutine.resume(thread, 'world')

-- above will print 'world'
-- status above will be true
-- but now the coroutine has ended so further calls to resume will return status as false





By the fact that ‘hello’ is printed before ‘world’ we can tell that the coroutine was suspended and then resumed.

In the Lua documentation, the return value from coroutine.create() is called a thread. However don’t confuse this with threads as in C++ or Java. You can think of a Lua thread as just another Lua stack. Basically whenever Lua executes any code - the code operates on a Lua stack. Initially there is only one stack (main thread). When you create a coroutine, a new stack is allocated, and the all functions called from the coroutine will operate on this new stack. Since the Lua stack is a heap allocated structure - suspending the coroutine is equivalent to returning back to the caller using a longjmp(). The stack is preserved, so that the function that yielded can be resumed later from wherever it suspended itself.

There is no automatic scheduling of Lua coroutines, a coroutine has to be explicitly resumed by the program.

Note also that Lua is single threaded - so you cannot execute the different Lua stacks in parallel in multiple OS threads; a particular Lua instance always runs in a single OS thread. At any point in time only one Lua stack can be active.




Lua’s error handling is based on C setjmp/longjmp

You raise an error in Lua by calling library functions error() or assert(). Lua library functions can also raise errors. When an error is raised Lua does a C longjmp to the nearest location in the call stack where the caller used a ‘protected call’. A ‘protected call’ is a function calling mechanism that does a C setjmp.

Here is how a protected call is done:

function foo(message)
  -- raise error if message is nil
  if not message then
    error('message expected')
  else
    print(message)
    return 4.2
  end
end

-- call foo('hello') in protected mode
-- this is done using the Lua library function pcall()
status,returnvalue = pcall(foo, 'hello')

-- since this call should succeed, status will be true
-- returnvalue should contain 4.2
assert(returnvalue == 4.2)

-- call foo() without arguments in protected mode
status, returnvalue = pcall(foo)
-- above will fail and status will be false
-- But returnvalue will now have the error message

assert(not status)
print(returnvalue)
-- above prints 'message expected'





The Lua error handling mechanism has following issues:


	The code that can raise errors must be encapsulated in a function as pcall() can only call functions


	The return values from pcall() depend upon whether the call terminated normally or due to an error - so caller needs to check the status of the call and only then proceed


	On raising an error the longjmp unwinds the stack - there is no mechanism for any intermediate objects to perform cleanup as is possible in C++ using destructors, or in Java, C++, Python using finally blocks, or as done by the defer statement in Go


	You can setup a finalizer on Lua user types that will eventually execute when the value is garbage collected - this is typically used to free up memory used by the value - but you have no control over when the finalizer will run, hence relying upon finalizers for cleanup is problematic







Lua is single threaded but each OS thread can be given its own Lua VM

All of Lua’s VM is encapsulated in a single data structure - the Lua State. Lua does not have global state. Thus, you can create as many Lua instances in a single process as you want. Since the VM is so small it is quite feasible to allocate a Lua VM per OS thread.




Lua has a meta mechanism that enables a DIY class / object system

Firstly simple object oriented method calls can be emulated in Lua by relying upon the : operator described earlier. Recollect that:

object:method(arg)                        -- is syntactic sugar for method(object, arg)





The next bit of syntactic sugar is shown below:

object = {}
function object:method(arg)
  print('method called with ', self, arg) -- self is automatic parameter and is really object
end





Above is syntactic sugar for following equivalent code:

object = {}
object.method = function(self, arg)
  print('method called with ', self, arg)
end





As the object is passed as the self argument, the method can access other properties and methods contained in the object, which is just a normal table.

object:method('hello')                  -- calls method(object, 'hello')





This mechanism is fine for Lua code but doesn’t work for user defined values created in C. Lua supports another more sophisticated approach that makes use of a facility in Lua called metatables. A metatable is simply an ordinary table that you can associate with any table or user defined type created in C code. The advantage of using the metatable approach is that it also works for user defined types created in C code. Here we will look at how it can be applied to Lua code.

Keeping to the same example above, this approach requires us to populate a metatable with the methods. We can think of the metatable as the class of the object.:

Class = {}                  -- our metatable
Class.__index = Class       -- This is a meta property (see description below)

-- define method function in Class
function Class:method(arg)
  print('method called with ', self, arg)
end

-- define factory for creating new objects
function Class:new()
  local object = {}
  setmetatable(object, self)
  return object
end






	Notice that we set the field __index in the Class table to point to itself. This is a special field that Lua recognizes and whenever you access a field in an object, if the field is not found in the object and if the object has a metatable with __index field set, the Lua will lookup the field you want in the metatable.


	Secondly we set Class to be the metatable for the object in the new method.




As a result of above, in the example below:

object = Class:new()
object:method('hello')





Lua notices that there is no method field in object. But object has a metatable assigned to it, and this has __index set, so Lua looks up Class.__index['method'] and finds the method.

Essentially this approach enables the concept of a shared class (e.g. Class in this example) that holds common fields. These fields can be methods or other ordinary values - and since the metatable is shared by all objects created using the Class:new() method, then we have a simple OO system!

This feature can be extended to support inheritance as well, but personally I do not find this useful, and suggest you look up Lua documentation if you want to play with inheritance. My advice is to avoid implementing complex object systems in Lua. However, the metatable approach is invaluable for user defined types created in C as these types can be used in more typesafe manner by using OO notation.







          

      

      

    

  

    
      
          
            
  
Lua 5.3 Bytecode Reference

This is my attempt to bring up to date the Lua bytecode reference. Note that this is work in progress.
Following copyrights are acknowledged:

A No-Frills Introduction to Lua 5.1 VM Instructions
  by Kein-Hong Man, esq. <khman AT users.sf.net>
  Version 0.1, 2006-03-13
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Lua Stack and Registers

Lua employs two stacks.
The Callinfo stack tracks activation frames.
There is the secondary stack L->stack that is an array of TValue objects.
The Callinfo objects index into this array. Registers are basically slots in
the L->stack array.

When a function is called - the stack is setup as follows:

stack
|            function reference
|            var arg 1
|            ...
|            var arg n
| base->     fixed arg 1
|            ...
|            fixed arg n
|            local 1
|            ...
|            local n
|            temporaries
|            ...
|  top->
|
V





So top is just past the registers needed by the function.
The number of registers is determined based on parameters, locals and temporaries.

For each Lua function, the base of the stack is set to the first fixed parameter or local.
All register addressing is done as offset from base - so R(0) is at base+0 on the stack.


[image: Drawing of Lua Stack]
The figure above shows how the stack is related to other Lua objects.






Instruction Notation


	R(A)

	Register A (specified in instruction field A)



	R(B)

	Register B (specified in instruction field B)



	R(C)

	Register C (specified in instruction field C)



	PC

	Program Counter



	Kst(n)

	Element n in the constant list



	Upvalue[n]

	Name of upvalue with index n



	Gbl[sym]

	Global variable indexed by symbol sym



	RK(B)

	Register B or a constant index



	RK(C)

	Register C or a constant index



	sBx

	Signed displacement (in field sBx) for all kinds of jumps








Instruction Summary

Lua bytecode instructions are 32-bits in size.
All instructions have an opcode in the first 6 bits.
Instructions can have the following fields:

'A' : 8 bits
'B' : 9 bits
'C' : 9 bits
'Ax' : 26 bits ('A', 'B', and 'C' together)
'Bx' : 18 bits ('B' and 'C' together)
'sBx' : signed Bx





A signed argument is represented in excess K; that is, the number
value is the unsigned value minus K. K is exactly the maximum value
for that argument (so that -max is represented by 0, and +max is
represented by 2*max), which is half the maximum for the corresponding
unsigned argument.

Note that B and C operands need to have an extra bit compared to A.
This is because B and A can reference registers or constants, and the
extra bit is used to decide which one. But A always references registers
so it doesn’t need the extra bit.







	Opcode

	Description





	MOVE

	Copy a value between registers



	LOADK

	Load a constant into a register



	LOADKX

	Load a constant into a register



	LOADBOOL

	Load a boolean into a register



	LOADNIL

	Load nil values into a range of registers



	GETUPVAL

	Read an upvalue into a register



	GETTABUP

	Read a value from table in up-value into a register



	GETTABLE

	Read a table element into a register



	SETTABUP

	Write a register value into table in up-value



	SETUPVAL

	Write a register value into an upvalue



	SETTABLE

	Write a register value into a table element



	NEWTABLE

	Create a new table



	SELF

	Prepare an object method for calling



	ADD

	Addition operator



	SUB

	Subtraction operator



	MUL

	Multiplication operator



	MOD

	Modulus (remainder) operator



	POW

	Exponentation operator



	DIV

	Division operator



	IDIV

	Integer division operator



	BAND

	Bit-wise AND operator



	BOR

	Bit-wise OR operator



	BXOR

	Bit-wise Exclusive OR operator



	SHL

	Shift bits left



	SHR

	Shift bits right



	UNM

	Unary minus



	BNOT

	Bit-wise NOT operator



	NOT

	Logical NOT operator



	LEN

	Length operator



	CONCAT

	Concatenate a range of registers



	JMP

	Unconditional jump



	EQ

	Equality test, with conditional jump



	LT

	Less than test, with conditional jump



	LE

	Less than or equal to test, with conditional jump



	TEST

	Boolean test, with conditional jump



	TESTSET

	Boolean test, with conditional jump and assignment



	CALL

	Call a closure



	TAILCALL

	Perform a tail call



	RETURN

	Return from function call



	FORLOOP

	Iterate a numeric for loop



	FORPREP

	Initialization for a numeric for loop



	TFORLOOP

	Iterate a generic for loop



	TFORCALL

	Initialization for a generic for loop



	SETLIST

	Set a range of array elements for a table



	CLOSURE

	Create a closure of a function prototype



	VARARG

	Assign vararg function arguments to registers









OP_CALL instruction


Syntax

CALL A B C    R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))








Description

Performs a function call, with register R(A) holding the reference to the function object to be called.
Parameters to the function are placed in the registers following R(A). If B is 1, the function has no
parameters. If B is 2 or more, there are (B-1) parameters. If B >= 2, then upon entry to the called
function, R(A+1) will become the base.

If B is 0, then B = ‘top’, i.e., the function parameters range from R(A+1) to the top of the stack.
This form is used when the number of parameters to pass is set by the previous VM instruction,
which has to be one of OP_CALL or OP_VARARG.

If C is 1, no return results are saved. If C is 2 or more, (C-1) return values are saved.
If C == 0, then ‘top’ is set to last_result+1, so that the next open instruction
(OP_CALL, OP_RETURN, OP_SETLIST) can use ‘top’.




Examples

Example of OP_VARARG followed by OP_CALL:

function y(...) print(...) end

1 [1] GETTABUP  0 0 -1  ; _ENV "print"
2 [1] VARARG    1 0     ; VARARG will set L->top
3 [1] CALL      0 0 1   ; B=0 so L->top set by previous instruction
4 [1] RETURN    0 1





Example of OP_CALL followed by OP_CALL:

function z1() y(x()) end

1 [1] GETTABUP  0 0 -1  ; _ENV "y"
2 [1] GETTABUP  1 0 -2  ; _ENV "x"
3 [1] CALL      1 1 0   ; C=0 so return values indicated by L->top
4 [1] CALL      0 0 1   ; B=0 so L->top set by previous instruction
5 [1] RETURN    0 1





Thus upon entry to a function base is always the location of the first fixed parameter if any or else local if any. The three possibilities are shown below.

                                     Two variable args and 1     Two variable args and no
Caller   One fixed arg               fixed arg                   fixed args
R(A)     CI->func  [ function    ]   CI->func  [ function    ]   CI->func [ function   ]
R(A+1)   CI->base  [ fixed arg 1 ]             [ var arg 1   ]            [ var arg 1  ]
R(A+2)             [ local 1     ]             [ var arg 2   ]            [ var arg 2  ]
R(A+3)                               CI->base  [ fixed arg 1 ]   CI->base [ local 1    ]
R(A+4)                                         [ local 1     ]





Results returned by the function call are placed in a range of registers starting from R(A).
If C is 1, no return results are saved. If C is 2 or more, (C-1) return values are saved.
If C is 0, then multiple return results are saved. In this case the number of values to save is
determined by one of following ways:


	A C function returns an integer value indicating number of results returned so for C function calls
this is used (see the value of n passed to
luaD_poscall() [http://www.lua.org/source/5.3/ldo.c.html#luaD_poscall]
in luaD_precall() [http://www.lua.org/source/5.3/ldo.c.html#luaD_precall])


	For Lua functions, the results are saved by the called function’s OP_RETURN instruction.







More examples

x=function() y() end





Produces:

function <stdin:1,1> (3 instructions at 000000CECB2BE040)
0 params, 2 slots, 1 upvalue, 0 locals, 1 constant, 0 functions
  1       [1]     GETTABUP        0 0 -1  ; _ENV "y"
  2       [1]     CALL            0 1 1
  3       [1]     RETURN          0 1
constants (1) for 000000CECB2BE040:
  1       "y"
locals (0) for 000000CECB2BE040:
upvalues (1) for 000000CECB2BE040:
  0       _ENV    0       0





In line [2], the call has zero parameters (field B is 1), zero results are retained (field C is 1),
while register 0 temporarily holds the reference to the function object from global y. Next we see a
function call with multiple parameters or arguments:

x=function() z(1,2,3) end





Generates:

function <stdin:1,1> (6 instructions at 000000CECB2D7BC0)
0 params, 4 slots, 1 upvalue, 0 locals, 4 constants, 0 functions
  1       [1]     GETTABUP        0 0 -1  ; _ENV "z"
  2       [1]     LOADK           1 -2    ; 1
  3       [1]     LOADK           2 -3    ; 2
  4       [1]     LOADK           3 -4    ; 3
  5       [1]     CALL            0 4 1
  6       [1]     RETURN          0 1
constants (4) for 000000CECB2D7BC0:
  1       "z"
  2       1
  3       2
  4       3
locals (0) for 000000CECB2D7BC0:
upvalues (1) for 000000CECB2D7BC0:
  0       _ENV    0       0





Lines [1] to [4] loads the function reference and the arguments in order, then line [5] makes the
call with an operand B value of 4, which means there are 3 parameters. Since the call statement is
not assigned to anything, no return results need to be retained, hence field C is 1. Here is an
example that uses multiple parameters and multiple return values:

x=function() local p,q,r,s = z(y()) end





Produces:

function <stdin:1,1> (5 instructions at 000000CECB2D6CC0)
0 params, 4 slots, 1 upvalue, 4 locals, 2 constants, 0 functions
  1       [1]     GETTABUP        0 0 -1  ; _ENV "z"
  2       [1]     GETTABUP        1 0 -2  ; _ENV "y"
  3       [1]     CALL            1 1 0
  4       [1]     CALL            0 0 5
  5       [1]     RETURN          0 1
constants (2) for 000000CECB2D6CC0:
  1       "z"
  2       "y"
locals (4) for 000000CECB2D6CC0:
  0       p       5       6
  1       q       5       6
  2       r       5       6
  3       s       5       6
upvalues (1) for 000000CECB2D6CC0:
  0       _ENV    0       0





First, the function references are retrieved (lines [1] and [2]), then function y is called
first (temporary register 1). The CALL has a field C of 0, meaning multiple return values are accepted.
These return values become the parameters to function z, and so in line [4], field B of the CALL
instruction is 0, signifying multiple parameters. After the call to function z, 4 results are
retained, so field C in line [4] is 5. Finally, here is an example with calls to standard library functions:

x=function() print(string.char(64)) end





Leads to:

function <stdin:1,1> (7 instructions at 000000CECB2D6220)
0 params, 3 slots, 1 upvalue, 0 locals, 4 constants, 0 functions
  1       [1]     GETTABUP        0 0 -1  ; _ENV "print"
  2       [1]     GETTABUP        1 0 -2  ; _ENV "string"
  3       [1]     GETTABLE        1 1 -3  ; "char"
  4       [1]     LOADK           2 -4    ; 64
  5       [1]     CALL            1 2 0
  6       [1]     CALL            0 0 1
  7       [1]     RETURN          0 1
constants (4) for 000000CECB2D6220:
  1       "print"
  2       "string"
  3       "char"
  4       64
locals (0) for 000000CECB2D6220:
upvalues (1) for 000000CECB2D6220:
  0       _ENV    0       0





When a function call is the last parameter to another function call, the former
can pass multiple return values, while the latter can accept multiple parameters.






OP_TAILCALL instruction


Syntax

TAILCALL  A B C return R(A)(R(A+1), ... ,R(A+B-1))








Description

Performs a tail call, which happens when a return statement has a single function call as the expression, e.g. return foo(bar). A tail call results in the function being interpreted within the same call frame as the caller - the stack is replaced and then a ‘goto’ executed to start at the entry point in the VM. Only Lua functions can be tailcalled. Tailcalls allow infinite recursion without growing the stack.

Like OP_CALL, register R(A) holds the reference to the function object to be called. B encodes the number of parameters in the same manner as a OP_CALL instruction.

C isn’t used by TAILCALL, since all return results are significant. In any case, Lua always generates a 0 for C, to denote multiple return results.




Examples

An OP_TAILCALL is used only for one specific return style, described above. Multiple return results are always produced by a tail call. Here is an example:

function y() return x('foo', 'bar') end





Generates:

function <stdin:1,1> (6 instructions at 000000C3C24DE4A0)
0 params, 3 slots, 1 upvalue, 0 locals, 3 constants, 0 functions
  1       [1]     GETTABUP        0 0 -1  ; _ENV "x"
  2       [1]     LOADK           1 -2    ; "foo"
  3       [1]     LOADK           2 -3    ; "bar"
  4       [1]     TAILCALL        0 3 0
  5       [1]     RETURN          0 0
  6       [1]     RETURN          0 1
constants (3) for 000000C3C24DE4A0:
  1       "x"
  2       "foo"
  3       "bar"
locals (0) for 000000C3C24DE4A0:
upvalues (1) for 000000C3C24DE4A0:
  0       _ENV    0       0





Arguments for a tail call are handled in exactly the same way as arguments for a normal call, so in line [4], the tail call has a field B value of 3, signifying 2 parameters. Field C is 0, for multiple returns; this due to the constant LUA_MULTRET in lua.h. In practice, field C is not used by the virtual machine (except as an assert) since the syntax guarantees multiple return results.
Line [5] is a OP_RETURN instruction specifying multiple return results. This is required when the function called by OP_TAILCALL is a C function. In the case of a C function, execution continues to line [5] upon return, thus the RETURN is necessary. Line [6] is redundant. When Lua functions are tailcalled, the virtual machine does not return to line [5] at all.






OP_RETURN instruction


Syntax

RETURN  A B return R(A), ... ,R(A+B-2)








Description

Returns to the calling function, with optional return values.

First OP_RETURN closes any open upvalues by calling luaF_close() [http://www.lua.org/source/5.3/lfunc.c.html#luaF_close].

If B is 1, there are no return values. If B is 2 or more, there are (B-1) return values, located in consecutive registers from R(A) onwards. If B is 0, the set of values range from R(A) to the top of the stack.

It is assumed that if the VM is returning to a Lua function then it is within the same invocation of the luaV_execute(). Else it is assumed that luaV_execute() is being invoked from a C function.

If B is 0 then the previous instruction (which must be either OP_CALL or OP_VARARG ) would have set L->top to indicate how many values to return. The number of values to be returned in this case is R(A) to L->top.

If B > 0 then the number of values to be returned is simply B-1.

OP_RETURN calls luaD_poscall() [http://www.lua.org/source/5.3/ldo.c.html#luaD_poscall] which is responsible for copying return values to the caller - the first result is placed at the current closure’s address. luaD_poscall() leaves L->top just past the last result that was copied.

If OP_RETURN is returning to a Lua function and if the number of return values expected was indeterminate - i.e. OP_CALL had operand C = 0, then L->top is left where luaD_poscall() placed it - just beyond the top of the result list. This allows the OP_CALL instruction to figure out how many results were returned. If however OP_CALL had invoked with a value of C > 0 then the expected number of results is known, and in that case, L->top is reset to  the calling function’s C->top.

If luaV_execute() was called externally then OP_RETURN leaves L->top unchanged - so it will continue to be just past the top of the results list. This is because luaV_execute() does not have a way of informing callers how many values were returned; so the caller can determine the number of results by inspecting L->top.




Examples

Example of OP_VARARG followed by OP_RETURN:

function x(...) return ... end

1 [1]  VARARG          0 0
2 [1]  RETURN          0 0





Suppose we call x(1,2,3); then, observe the setting of L->top when OP_RETURN executes:

(LOADK A=1 Bx=-2)      L->top = 4, ci->top = 4
(LOADK A=2 Bx=-3)      L->top = 4, ci->top = 4
(LOADK A=3 Bx=-4)      L->top = 4, ci->top = 4
(TAILCALL A=0 B=4 C=0) L->top = 4, ci->top = 4
(VARARG A=0 B=0)       L->top = 2, ci->top = 2  ; we are in x()
(RETURN A=0 B=0)       L->top = 3, ci->top = 2





Observe that OP_VARARG set L->top to base+3.

But if we call x(1) instead:

(LOADK A=1 Bx=-2)      L->top = 4, ci->top = 4
(LOADK A=2 Bx=-3)      L->top = 4, ci->top = 4
(LOADK A=3 Bx=-4)      L->top = 4, ci->top = 4
(TAILCALL A=0 B=4 C=0) L->top = 4, ci->top = 4
(VARARG A=0 B=0)       L->top = 2, ci->top = 2 ; we are in x()
(RETURN A=0 B=0)       L->top = 1, ci->top = 2





Notice that this time OP_VARARG set L->top to base+1.






OP_JMP instruction


Syntax

JMP A sBx   pc+=sBx; if (A) close all upvalues >= R(A - 1)








Description

Performs an unconditional jump, with sBx as a signed displacement. sBx is added to the program counter (PC), which points to the next instruction to be executed. If sBx is 0, the VM will proceed to the next instruction.

If R(A) is not 0 then all upvalues >= R(A-1) will be closed by calling luaF_close() [http://www.lua.org/source/5.3/lfunc.c.html#luaF_close].

OP_JMP is used in loops, conditional statements, and in expressions when a boolean true/false need to be generated.




Examples

For example, since a relational test instruction makes conditional jumps rather than generate a boolean result, a JMP is used in the code sequence for loading either a true or a false:

function x() local m, n; return m >= n end





Generates:

function <stdin:1,1> (7 instructions at 00000034D2ABE340)
0 params, 3 slots, 0 upvalues, 2 locals, 0 constants, 0 functions
  1       [1]     LOADNIL         0 1
  2       [1]     LE              1 1 0   ; to 4 if false    (n <= m)
  3       [1]     JMP             0 1     ; to 5
  4       [1]     LOADBOOL        2 0 1
  5       [1]     LOADBOOL        2 1 0
  6       [1]     RETURN          2 2
  7       [1]     RETURN          0 1
constants (0) for 00000034D2ABE340:
locals (2) for 00000034D2ABE340:
  0       m       2       8
  1       n       2       8
upvalues (0) for 00000034D2ABE340:





Line[2] performs the relational test. In line [3], the JMP skips over the false path (line [4]) to the true path (line [5]). The result is placed into temporary local 2, and returned to the caller by RETURN in line [6].






OP_VARARG instruction


Syntax

VARARG  A B R(A), R(A+1), ..., R(A+B-1) = vararg








Description

VARARG implements the vararg operator ... in expressions. VARARG copies B-1 parameters into a number of registers starting from R(A), padding with nils if there aren’t enough values. If B is 0, VARARG copies as many values as it can based on the number of parameters passed. If a fixed number of values is required, B is a value greater than 1. If any number of values is required, B is 0.




Examples

The use of VARARG will become clear with the help of a few examples:

local a,b,c = ...





Generates:

main <(string):0,0> (2 instructions at 00000029D9FA8310)
0+ params, 3 slots, 1 upvalue, 3 locals, 0 constants, 0 functions
      1       [1]     VARARG          0 4
      2       [1]     RETURN          0 1
constants (0) for 00000029D9FA8310:
locals (3) for 00000029D9FA8310:
      0       a       2       3
      1       b       2       3
      2       c       2       3
upvalues (1) for 00000029D9FA8310:
      0       _ENV    1       0





Note that the main or top-level chunk is a vararg function. In this example, the left hand side of the assignment statement needs three values (or objects.) So in instruction [1], the operand B of the VARARG instruction is (3+1), or 4. VARARG will copy three values into a, b and c. If there are less than three values available, nils will be used to fill up the empty places.

local a = function(...) local a,b,c = ... end





This gives:

main <(string):0,0> (2 instructions at 00000029D9FA72D0)
0+ params, 2 slots, 1 upvalue, 1 local, 0 constants, 1 function
      1       [1]     CLOSURE         0 0     ; 00000029D9FA86D0
      2       [1]     RETURN          0 1
constants (0) for 00000029D9FA72D0:
locals (1) for 00000029D9FA72D0:
      0       a       2       3
upvalues (1) for 00000029D9FA72D0:
      0       _ENV    1       0

function <(string):1,1> (2 instructions at 00000029D9FA86D0)
0+ params, 3 slots, 0 upvalues, 3 locals, 0 constants, 0 functions
      1       [1]     VARARG          0 4
      2       [1]     RETURN          0 1
constants (0) for 00000029D9FA86D0:
locals (3) for 00000029D9FA86D0:
      0       a       2       3
      1       b       2       3
      2       c       2       3
upvalues (0) for 00000029D9FA86D0:





Here is an alternate version where a function is instantiated and assigned to local a. The old-style arg is retained for compatibility purposes, but is unused in the above example.

local a; a(...)





Leads to:

main <(string):0,0> (5 instructions at 00000029D9FA6D30)
0+ params, 3 slots, 1 upvalue, 1 local, 0 constants, 0 functions
      1       [1]     LOADNIL         0 0
      2       [1]     MOVE            1 0
      3       [1]     VARARG          2 0
      4       [1]     CALL            1 0 1
      5       [1]     RETURN          0 1
constants (0) for 00000029D9FA6D30:
locals (1) for 00000029D9FA6D30:
      0       a       2       6
upvalues (1) for 00000029D9FA6D30:
      0       _ENV    1       0





When a function is called with ... as the argument, the function will accept a variable number of parameters or arguments. On instruction [3], a VARARG with a B field of 0 is used. The VARARG will copy all the parameters passed on to the main chunk to register 2 onwards, so that the CALL in the next line can utilize them as parameters of function a. The function call is set to accept a multiple number of parameters and returns zero results.

local a = {...}





Produces:

main <(string):0,0> (4 instructions at 00000029D9FA8130)
0+ params, 2 slots, 1 upvalue, 1 local, 0 constants, 0 functions
      1       [1]     NEWTABLE        0 0 0
      2       [1]     VARARG          1 0
      3       [1]     SETLIST         0 0 1   ; 1
      4       [1]     RETURN          0 1
constants (0) for 00000029D9FA8130:
locals (1) for 00000029D9FA8130:
      0       a       4       5
upvalues (1) for 00000029D9FA8130:
      0       _ENV    1       0





And:

return ...





Produces:

main <(string):0,0> (3 instructions at 00000029D9FA8270)
0+ params, 2 slots, 1 upvalue, 0 locals, 0 constants, 0 functions
      1       [1]     VARARG          0 0
      2       [1]     RETURN          0 0
      3       [1]     RETURN          0 1
constants (0) for 00000029D9FA8270:
locals (0) for 00000029D9FA8270:
upvalues (1) for 00000029D9FA8270:
      0       _ENV    1       0





Above are two other cases where VARARG needs to copy all passed parameters
over to a set of registers in order for the next operation to proceed. Both the above forms of
table creation and return accepts a variable number of values or objects.






OP_LOADBOOL instruction


Syntax

LOADBOOL A B C    R(A) := (Bool)B; if (C) pc++








Description

Loads a boolean value (true or false) into register R(A). true is usually encoded as an integer 1, false is always 0. If C is non-zero, then the next instruction is skipped (this is used when you have an assignment statement where the expression uses relational operators, e.g. M = K>5.)
You can use any non-zero value for the boolean true in field B, but since you cannot use booleans as numbers in Lua, it’s best to stick to 1 for true.

LOADBOOL is used for loading a boolean value into a register. It’s also used where a boolean result is supposed to be generated, because relational test instructions, for example, do not generate boolean results – they perform conditional jumps instead. The operand C is used to optionally skip the next instruction (by incrementing PC by 1) in order to support such code. For simple assignments of boolean values, C is always 0.




Examples

The following line of code:

f=load('local a,b = true,false')





generates:

main <(string):0,0> (3 instructions at 0000020F274C2610)
0+ params, 2 slots, 1 upvalue, 2 locals, 0 constants, 0 functions
      1       [1]     LOADBOOL        0 1 0
      2       [1]     LOADBOOL        1 0 0
      3       [1]     RETURN          0 1
constants (0) for 0000020F274C2610:
locals (2) for 0000020F274C2610:
      0       a       3       4
      1       b       3       4
upvalues (1) for 0000020F274C2610:
      0       _ENV    1       0





This example is straightforward: Line [1] assigns true to local a (register 0) while line [2] assigns false to local b (register 1). In both cases, field C is 0, so PC is not incremented and the next instruction is not skipped.

Next, look at this line:

f=load('local a = 5 > 2')





This leads to following bytecode:

main <(string):0,0> (5 instructions at 0000020F274BAE00)
0+ params, 2 slots, 1 upvalue, 1 local, 2 constants, 0 functions
      1       [1]     LT              1 -2 -1 ; 2 5
      2       [1]     JMP             0 1     ; to 4
      3       [1]     LOADBOOL        0 0 1
      4       [1]     LOADBOOL        0 1 0
      5       [1]     RETURN          0 1
constants (2) for 0000020F274BAE00:
      1       5
      2       2
locals (1) for 0000020F274BAE00:
      0       a       5       6
upvalues (1) for 0000020F274BAE00:
      0       _ENV    1       0





This is an example of an expression that gives a boolean result and is assigned to a variable. Notice that Lua does not optimize the expression into a true value; Lua does not perform compile-time constant evaluation for relational operations, but it can perform simple constant evaluation for arithmetic operations.

Since the relational operator LT  does not give a boolean result but performs a conditional jump, LOADBOOL uses its C operand to perform an unconditional jump in line [3] – this saves one instruction and makes things a little tidier. The reason for all this is that the instruction set is simply optimized for if…then blocks. Essentially, local a = 5 > 2 is executed in the following way:

local a
if 2 < 5 then
  a = true
else
  a = false
end





In the disassembly listing, when LT tests 2 < 5, it evaluates to true and doesn’t perform a conditional jump. Line [2] jumps over the false result path, and in line [4], the local a (register 0) is assigned the boolean true by the instruction LOADBOOL. If 2 and 5 were reversed, line [3] will be followed instead, setting a false, and then the true result path (line [4]) will be skipped, since LOADBOOL has its field C set to non-zero.

So the true result path goes like this (additional comments in parentheses):

1       [1]     LT              1 -2 -1 ; 2 5       (if 2 < 5)
2       [1]     JMP             0 1     ; to 4
4       [1]     LOADBOOL        0 1 0   ;           (a = true)
5       [1]     RETURN          0 1





and the false result path (which never executes in this example) goes like this:

1       [1]     LT              1 -2 -1 ; 2 5       (if 2 < 5)
3       [1]     LOADBOOL        0 0 1               (a = false)
5       [1]     RETURN          0 1





The true result path looks longer, but it isn’t, due to the way the virtual machine is implemented. This will be discussed further in the section on relational and logic instructions.






OP_EQ, OP_LT and OP_LE Instructions

Relational and logic instructions are used in conjunction with other instructions to implement control
structures or expressions. Instead of generating boolean results, these instructions conditionally perform
a jump over the next instruction; the emphasis is on implementing control blocks. Instructions are arranged
so that there are two paths to follow based on the relational test.

EQ  A B C if ((RK(B) == RK(C)) ~= A) then PC++
LT  A B C if ((RK(B) <  RK(C)) ~= A) then PC++
LE  A B C if ((RK(B) <= RK(C)) ~= A) then PC++






Description

Compares RK(B) and RK(C), which may be registers or constants. If the boolean result is not A,
then skip the next instruction. Conversely, if the boolean result equals A, continue with the
next instruction.

EQ is for equality. LT is for “less than” comparison. LE is for “less than or equal to”
comparison. The boolean A field allows the full set of relational comparison operations to be
synthesized from these three instructions. The Lua code generator produces either 0 or 1 for the boolean A.

For the fall-through case, a OP_JMP instruction is always expected, in order to optimize execution in the
virtual machine. In effect, EQ, LT and LE must always be paired with a following JMP
instruction.




Examples

By comparing the result of the relational operation with A, the sense of the comparison can
be reversed. Obviously the alternative is to reverse the paths taken by the instruction, but that
will probably complicate code generation some more. The conditional jump is performed if the comparison
result is not A, whereas execution continues normally if the comparison result matches A.
Due to the way code is generated and the way the virtual machine works, a JMP instruction is
always expected to follow an EQ, LT or LE. The following JMP is optimized by
executing it in conjunction with EQ, LT or LE.

local x,y; return x ~= y





Generates:

main <(string):0,0> (7 instructions at 0000001BC48FD390)
0+ params, 3 slots, 1 upvalue, 2 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 1
      2       [1]     EQ              0 0 1
      3       [1]     JMP             0 1     ; to 5
      4       [1]     LOADBOOL        2 0 1
      5       [1]     LOADBOOL        2 1 0
      6       [1]     RETURN          2 2
      7       [1]     RETURN          0 1
constants (0) for 0000001BC48FD390:
locals (2) for 0000001BC48FD390:
      0       x       2       8
      1       y       2       8
upvalues (1) for 0000001BC48FD390:
      0       _ENV    1       0





In the above example, the equality test is performed in instruction [2]. However, since the
comparison need to be returned as a result, LOADBOOL instructions are used to set a
register with the correct boolean value. This is the usual code pattern generated if the expression
requires a boolean value to be generated and stored in a register as an intermediate value or
a final result.

It is easier to visualize the disassembled code as:

if x ~= y then
  return true
else
  return false
end





The true result path (when the comparison result matches A) goes like this:

1  [1] LOADNIL    0   1
2  [1] EQ         0   0   1    ; to 4 if true    (x ~= y)
3  [1] JMP        1            ; to 5
5  [1] LOADBOOL   2   1   0    ; true            (true path)
6  [1] RETURN     2   2





While the false result path (when the comparison result does not match A) goes like this:

1  [1] LOADNIL    0   1
2  [1] EQ         0   0   1    ; to 4 if true    (x ~= y)
4  [1] LOADBOOL   2   0   1    ; false, to 6     (false path)
6  [1] RETURN     2   2





Comments following the EQ in line [2] lets the user know when the conditional jump
is taken. The jump is taken when “the value in register 0 equals to the value in register 1”
(the comparison) is not false (the value of operand A). If the comparison is x == y,
everything will be the same except that the A operand in the EQ instruction will be 1,
thus reversing the sense of the comparison. Anyway, these are just the Lua code generator’s
conventions; there are other ways to code x ~= y in terms of Lua virtual machine instructions.

For conditional statements, there is no need to set boolean results. Lua is optimized for
coding the more common conditional statements rather than conditional expressions.

local x,y; if x ~= y then return "foo" else return "bar" end





Results in:

main <(string):0,0> (9 instructions at 0000001BC4914D50)
0+ params, 3 slots, 1 upvalue, 2 locals, 2 constants, 0 functions
      1       [1]     LOADNIL         0 1
      2       [1]     EQ              1 0 1   ; to 4 if false    (x ~= y)
      3       [1]     JMP             0 3     ; to 7
      4       [1]     LOADK           2 -1    ; "foo"            (true block)
      5       [1]     RETURN          2 2
      6       [1]     JMP             0 2     ; to 9
      7       [1]     LOADK           2 -2    ; "bar"            (false block)
      8       [1]     RETURN          2 2
      9       [1]     RETURN          0 1
constants (2) for 0000001BC4914D50:
      1       "foo"
      2       "bar"
locals (2) for 0000001BC4914D50:
      0       x       2       10
      1       y       2       10
upvalues (1) for 0000001BC4914D50:
      0       _ENV    1       0





In the above conditional statement, the same inequality operator is used in the source,
but the sense of the EQ instruction in line [2] is now reversed. Since the EQ
conditional jump can only skip the next instruction, additional JMP instructions
are needed to allow large blocks of code to be placed in both true and false paths.
In contrast, in the previous example, only a single instruction is needed to set a
boolean value. For if statements, the true block comes first followed by the false
block in code generated by the code generator. To reverse the positions of the true and
false paths, the value of operand A is changed.

The true path (when x ~= y is true) goes from [2] to [4]–[6] and on to [9]. Since
there is a RETURN in line [5], the JMP in line [6] and the RETURN in [9]
are never executed at all; they are redundant but does not adversely affect performance
in any way. The false path is from [2] to [3] to [7]–[9] onwards. So in a disassembly
listing, you should see the true and false code blocks in the same order as in the
Lua source.

The following is another example, this time with an elseif:

if 8 > 9 then return 8 elseif 5 >= 4 then return 5 else return 9 end





Generates:

main <(string):0,0> (13 instructions at 0000001BC4913770)
0+ params, 2 slots, 1 upvalue, 0 locals, 4 constants, 0 functions
      1       [1]     LT              0 -2 -1 ; 9 8
      2       [1]     JMP             0 3     ; to 6
      3       [1]     LOADK           0 -1    ; 8
      4       [1]     RETURN          0 2
      5       [1]     JMP             0 7     ; to 13
      6       [1]     LE              0 -4 -3 ; 4 5
      7       [1]     JMP             0 3     ; to 11
      8       [1]     LOADK           0 -3    ; 5
      9       [1]     RETURN          0 2
      10      [1]     JMP             0 2     ; to 13
      11      [1]     LOADK           0 -2    ; 9
      12      [1]     RETURN          0 2
      13      [1]     RETURN          0 1
constants (4) for 0000001BC4913770:
      1       8
      2       9
      3       5
      4       4
locals (0) for 0000001BC4913770:
upvalues (1) for 0000001BC4913770:
      0       _ENV    1       0





This example is a little more complex, but the blocks are structured in the same order
as the Lua source, so interpreting the disassembled code should not be too hard.






OP_TEST and OP_TESTSET instructions


Syntax

TEST        A C     if not (R(A) <=> C) then pc++
TESTSET     A B C   if (R(B) <=> C) then R(A) := R(B) else pc++








Description

These two instructions used for performing boolean tests and implementing Lua’s logic operators.

Used to implement and and or logical operators, or for testing a single register in a conditional statement.

For TESTSET, register R(B) is coerced into a boolean and compared to the boolean field C. If R(B) matches C, the next instruction is skipped, otherwise R(B) is assigned to R(A) and the VM continues with the next instruction. The and operator uses a C of 0 (false) while or uses a C value of 1 (true).

TEST is a more primitive version of TESTSET. TEST is used when the assignment operation is not needed, otherwise it is the same as TESTSET except that the operand slots are different.

For the fall-through case, a JMP is always expected, in order to optimize execution in the virtual machine. In effect, TEST and TESTSET must always be paired with a following JMP instruction.




Examples

TEST and TESTSET are used in conjunction with a following JMP instruction, while TESTSET has an addditional conditional assignment. Like EQ, LT and LE, the following JMP instruction is compulsory, as the virtual machine will execute the JMP together with TEST or TESTSET. The two instructions are used to implement short-circuit LISP-style logical operators that retains and propagates operand values instead of booleans. First, we’ll look at how and and or behaves:

f=load('local a,b,c; c = a and b')





Generates:

main <(string):0,0> (5 instructions at 0000020F274CF1A0)
0+ params, 3 slots, 1 upvalue, 3 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 2
      2       [1]     TESTSET         2 0 0   ; to 4 if true
      3       [1]     JMP             0 1     ; to 5
      4       [1]     MOVE            2 1
      5       [1]     RETURN          0 1
constants (0) for 0000020F274CF1A0:
locals (3) for 0000020F274CF1A0:
      0       a       2       6
      1       b       2       6
      2       c       2       6
upvalues (1) for 0000020F274CF1A0:
      0       _ENV    1       0





An and sequence exits on false operands (which can be false or nil) because any false operands in a string of and operations will make the whole boolean expression false. If operands evaluates to true, evaluation continues. When a string of and operations evaluates to true, the result is the last operand value.

In line [2], the first operand (the local a) is set to local c when the test is false (with a field C of 0), while the jump to [4] is made when the test is true, and then in line [4], the expression result is set to the second operand (the local b). This is equivalent to:

if a then
  c = b      -- executed by MOVE on line [4]
else
  c = a      -- executed by TESTSET on line [2]
end





The c = a portion is done by TESTSET itself, while MOVE performs c = b. Now, if the result is already set with one of the possible values, a TEST instruction is used instead:

f=load('local a,b; a = a and b')





Generates:

main <(string):0,0> (5 instructions at 0000020F274D0A70)
0+ params, 2 slots, 1 upvalue, 2 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 1
      2       [1]     TEST            0 0     ; to 4 if true
      3       [1]     JMP             0 1     ; to 5
      4       [1]     MOVE            0 1
      5       [1]     RETURN          0 1
constants (0) for 0000020F274D0A70:
locals (2) for 0000020F274D0A70:
      0       a       2       6
      1       b       2       6
upvalues (1) for 0000020F274D0A70:
      0       _ENV    1       0





The TEST instruction does not perform an assignment operation, since a = a is redundant. This makes TEST a little faster. This is equivalent to:

if a then
  a = b
end





Next, we will look at the or operator:

f=load('local a,b,c; c = a or b')





Generates:

main <(string):0,0> (5 instructions at 0000020F274D1AB0)
0+ params, 3 slots, 1 upvalue, 3 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 2
      2       [1]     TESTSET         2 0 1   ; to 4 if false
      3       [1]     JMP             0 1     ; to 5
      4       [1]     MOVE            2 1
      5       [1]     RETURN          0 1
constants (0) for 0000020F274D1AB0:
locals (3) for 0000020F274D1AB0:
      0       a       2       6
      1       b       2       6
      2       c       2       6
upvalues (1) for 0000020F274D1AB0:
      0       _ENV    1       0





An or sequence exits on true operands, because any operands evaluating to true in a string of or operations will make the whole boolean expression true. If operands evaluates to false, evaluation continues. When a string of or operations evaluates to false, all operands must have evaluated to false.

In line [2], the local a value is set to local c if it is true, while the jump is made if it is false (the field C is 1). Thus in line [4], the local b value is the result of the expression if local a evaluates to false. This is equivalent to:

if a then
  c = a      -- executed by TESTSET on line [2]
else
  c = b      -- executed by MOVE on line [4]
end





Like the case of and, TEST is used when the result already has one of the possible values, saving an assignment operation:

f=load('local a,b; a = a or b')





Generates:

main <(string):0,0> (5 instructions at 0000020F274D1010)
0+ params, 2 slots, 1 upvalue, 2 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 1
      2       [1]     TEST            0 1     ; to 4 if false
      3       [1]     JMP             0 1     ; to 5
      4       [1]     MOVE            0 1
      5       [1]     RETURN          0 1
constants (0) for 0000020F274D1010:
locals (2) for 0000020F274D1010:
      0       a       2       6
      1       b       2       6
upvalues (1) for 0000020F274D1010:
      0       _ENV    1       0





Short-circuit logical operators also means that the following Lua code does not require the use of a boolean operation:

f=load('local a,b,c; if a > b and a > c then return a end')





Leads to:

main <(string):0,0> (7 instructions at 0000020F274D1150)
0+ params, 3 slots, 1 upvalue, 3 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 2
      2       [1]     LT              0 1 0   ; to 4 if true
      3       [1]     JMP             0 3     ; to 7
      4       [1]     LT              0 2 0   ; to 6 if true
      5       [1]     JMP             0 1     ; to 7
      6       [1]     RETURN          0 2
      7       [1]     RETURN          0 1
constants (0) for 0000020F274D1150:
locals (3) for 0000020F274D1150:
      0       a       2       8
      1       b       2       8
      2       c       2       8
upvalues (1) for 0000020F274D1150:
      0       _ENV    1       0





With short-circuit evaluation, a > c is never executed if a > b is false, so the logic of the Lua statement can be readily implemented using the normal conditional structure. If both a > b and a > c are true, the path followed is [2] (the a > b test) to [4] (the a > c test) and finally to [6], returning the value of a. A TEST instruction is not required. This is equivalent to:

if a > b then
  if a > c then
    return a
  end
end





For a single variable used in the expression part of a conditional statement, TEST is used to boolean-test the variable:

f=load('if Done then return end')





Generates:

main <(string):0,0> (5 instructions at 0000020F274D13D0)
0+ params, 2 slots, 1 upvalue, 0 locals, 1 constant, 0 functions
      1       [1]     GETTABUP        0 0 -1  ; _ENV "Done"
      2       [1]     TEST            0 0     ; to 4 if true
      3       [1]     JMP             0 1     ; to 5
      4       [1]     RETURN          0 1
      5       [1]     RETURN          0 1
constants (1) for 0000020F274D13D0:
      1       "Done"
locals (0) for 0000020F274D13D0:
upvalues (1) for 0000020F274D13D0:
      0       _ENV    1       0





In line [2], the TEST instruction jumps to the true block if the value in temporary register 0 (from the global Done) is true. The JMP at line [3] jumps over the true block, which is the code inside the if block (line [4]).

If the test expression of a conditional statement consist of purely boolean operators, then a number of TEST instructions will be used in the usual short-circuit evaluation style:

f=load('if Found and Match then return end')





Generates:

main <(string):0,0> (8 instructions at 0000020F274D1C90)
0+ params, 2 slots, 1 upvalue, 0 locals, 2 constants, 0 functions
      1       [1]     GETTABUP        0 0 -1  ; _ENV "Found"
      2       [1]     TEST            0 0     ; to 4 if true
      3       [1]     JMP             0 4     ; to 8
      4       [1]     GETTABUP        0 0 -2  ; _ENV "Match"
      5       [1]     TEST            0 0     ; to 7 if true
      6       [1]     JMP             0 1     ; to 8
      7       [1]     RETURN          0 1
      8       [1]     RETURN          0 1
constants (2) for 0000020F274D1C90:
      1       "Found"
      2       "Match"
locals (0) for 0000020F274D1C90:
upvalues (1) for 0000020F274D1C90:
      0       _ENV    1       0





In the last example, the true block of the conditional statement is executed only if both Found and Match evaluate to true. The path is from [2] (test for Found) to [4] to [5] (test for Match) to [7] (the true block, which is an explicit return statement.)

If the statement has an else section, then the JMP on line [6] will jump to the false block (the else block) while an additional JMP will be added to the true block to jump over this new block of code. If or is used instead of and, the appropriate C operand will be adjusted accordingly.

Finally, here is how Lua’s ternary operator (:? in C) equivalent works:

f=load('local a,b,c; a = a and b or c')





Generates:

main <(string):0,0> (7 instructions at 0000020F274D1A10)
0+ params, 3 slots, 1 upvalue, 3 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 2
      2       [1]     TEST            0 0     ; to 4 if true
      3       [1]     JMP             0 2     ; to 6
      4       [1]     TESTSET         0 1 1   ; to 6 if false
      5       [1]     JMP             0 1     ; to 7
      6       [1]     MOVE            0 2
      7       [1]     RETURN          0 1
constants (0) for 0000020F274D1A10:
locals (3) for 0000020F274D1A10:
      0       a       2       8
      1       b       2       8
      2       c       2       8
upvalues (1) for 0000020F274D1A10:
      0       _ENV    1       0





The TEST in line [2] is for the and operator. First, local a is tested in line [2]. If it is false, then execution continues in [3], jumping to line [6]. Line [6] assigns local c to the end result because since if a is false, then a and b is false, and false or c is c.

If local a is true in line [2], the TEST instruction makes a jump to line [4], where there is a TESTSET, for the or operator. If b evaluates to true, then the end result is assigned the value of b, because b or c is b if b is not false. If b is also false, the end result will be c.

For the instructions in line [2], [4] and [6], the target (in field A) is register 0, or the local a, which is the location where the result of the boolean expression is assigned. The equivalent Lua code is:

if a then
  if b then
    a = b
  else
    a = c
  end
else
  a = c
end





The two a = c assignments are actually the same piece of code, but are repeated here to avoid using a goto and a label. Normally, if we assume b is not false and not nil, we end up with the more recognizable form:

if a then
  a = b     -- assuming b ~= false
else
  a = c
end










OP_FORPREP and OP_FORLOOP instructions


Syntax

FORPREP    A sBx   R(A)-=R(A+2); pc+=sBx
FORLOOP    A sBx   R(A)+=R(A+2);
                   if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }








Description

Lua has dedicated instructions to implement the two types of for loops, while the other two types of loops uses traditional test-and-jump.

FORPREP initializes a numeric for loop, while FORLOOP performs an iteration of a numeric for loop.

A numeric for loop requires 4 registers on the stack, and each register must be a number. R(A) holds the initial value and doubles as the internal loop variable (the internal index); R(A+1) is the limit; R(A+2) is the stepping value; R(A+3) is the actual loop variable (the external index) that is local to the for block.

FORPREP sets up a for loop. Since FORLOOP is used for initial testing of the loop condition as well as conditional testing during the loop itself, FORPREP performs a negative step and jumps unconditionally to FORLOOP so that FORLOOP is able to correctly make the initial loop test. After this initial test, FORLOOP performs a loop step as usual, restoring the initial value of the loop index so that the first iteration can start.

In FORLOOP, a jump is made back to the start of the loop body if the limit has not been reached or exceeded. The sense of the comparison depends on whether the stepping is negative or positive, hence the “<?=” operator. Jumps for both instructions are encoded as signed displacements in the sBx field. An empty loop has a FORLOOP sBx value of -1.

FORLOOP also sets R(A+3), the external loop index that is local to the loop block. This is significant if the loop index is used as an upvalue (see below.) R(A), R(A+1) and R(A+2) are not visible to the programmer.

The loop variable ends with the last value before the limit is reached (unlike C) because it is not updated unless the jump is made. However, since loop variables are local to the loop itself, you should not be able to use it unless you cook up an implementation-specific hack.




Examples

For the sake of efficiency, FORLOOP contains a lot of functionality, so when a loop iterates, only one instruction, FORLOOP, is needed. Here is a simple example:

f=load('local a = 0; for i = 1,100,5 do a = a + i end')





Generates:

main <(string):0,0> (8 instructions at 000001E9F0DF52F0)
0+ params, 5 slots, 1 upvalue, 5 locals, 4 constants, 0 functions
      1       [1]     LOADK           0 -1    ; 0
      2       [1]     LOADK           1 -2    ; 1
      3       [1]     LOADK           2 -3    ; 100
      4       [1]     LOADK           3 -4    ; 5
      5       [1]     FORPREP         1 1     ; to 7
      6       [1]     ADD             0 0 4
      7       [1]     FORLOOP         1 -2    ; to 6
      8       [1]     RETURN          0 1
constants (4) for 000001E9F0DF52F0:
      1       0
      2       1
      3       100
      4       5
locals (5) for 000001E9F0DF52F0:
      0       a       2       9
      1       (for index)     5       8
      2       (for limit)     5       8
      3       (for step)      5       8
      4       i       6       7
upvalues (1) for 000001E9F0DF52F0:
      0       _ENV    1       0





In the above example, notice that the for loop causes three additional local pseudo-variables (or internal variables) to be defined, apart from the external loop index, i. The three pseudovariables, named (for index), (for limit) and (for step) are required to completely specify the state of the loop, and are not visible to Lua source code. They are arranged in consecutive registers, with the external loop index given by R(A+3) or register 4 in the example.

The loop body is in line [6] while line [7] is the FORLOOP instruction that steps through the loop state. The sBx field of FORLOOP is negative, as it always jumps back to the beginning of the loop body.

Lines [2]–[4] initialize the three register locations where the loop state will be stored. If the loop step is not specified in the Lua source, a constant 1 is added to the constant pool and a LOADK instruction is used to initialize the pseudo-variable (for step) with the loop step.

FORPREP in lines [5] makes a negative loop step and jumps to line [7] for the initial test. In the example, at line [5], the internal loop index (at register 1) will be (1-5) or -4. When the virtual machine arrives at the FORLOOP in line [7] for the first time, one loop step is made prior to the first test, so the initial value that is actually tested against the limit is (-4+5) or 1. Since 1 < 100, an iteration will be performed. The external loop index i is then set to 1 and a jump is made to line [6], thus starting the first iteration of the loop.

The loop at line [6]–[7] repeats until the internal loop index exceeds the loop limit of 100. The conditional jump is not taken when that occurs and the loop ends. Beyond the scope of the loop body, the loop state ((for index), (for limit), (for step) and i) is not valid. This is determined by the parser and code generator. The range of PC values for which the loop state variables are valid is located in the locals list.

Here is another example:

f=load('for i = 10,1,-1 do if i == 5 then break end end')





This leads to:

main <(string):0,0> (8 instructions at 000001E9F0DEC110)
0+ params, 4 slots, 1 upvalue, 4 locals, 4 constants, 0 functions
      1       [1]     LOADK           0 -1    ; 10
      2       [1]     LOADK           1 -2    ; 1
      3       [1]     LOADK           2 -3    ; -1
      4       [1]     FORPREP         0 2     ; to 7
      5       [1]     EQ              1 3 -4  ; - 5
      6       [1]     JMP             0 1     ; to 8
      7       [1]     FORLOOP         0 -3    ; to 5
      8       [1]     RETURN          0 1
constants (4) for 000001E9F0DEC110:
      1       10
      2       1
      3       -1
      4       5
locals (4) for 000001E9F0DEC110:
      0       (for index)     4       8
      1       (for limit)     4       8
      2       (for step)      4       8
      3       i       5       7
upvalues (1) for 000001E9F0DEC110:
      0       _ENV    1       0





In the second loop example above, except for a negative loop step size, the structure of the loop is identical. The body of the loop is from line [5] to line [7]. Since no additional stacks or states are used, a break translates simply to a JMP instruction (line [6]). There is nothing to clean up after a FORLOOP ends or after a JMP to exit a loop.






OP_TFORCALL and OP_TFORLOOP instructions


Syntax

TFORCALL    A C        R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2))
TFORLOOP    A sBx      if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }








Description

Apart from a numeric for loop (implemented by FORPREP and FORLOOP), Lua has a generic for loop, implemented by TFORCALL and TFORLOOP.

The generic for loop keeps 3 items in consecutive register locations to keep track of things. R(A) is the iterator function, which is called once per loop. R(A+1) is the state, and R(A+2) is the control variable. At the start, R(A+2) has an initial value. R(A), R(A+1) and R(A+2) are internal to the loop and cannot be accessed by the programmer.

In addition to these internal loop variables, the programmer specifies one or more loop variables that are external and visible to the programmer. These loop variables reside at locations R(A+3) onwards, and their count is specified in operand C. Operand C must be at least 1. They are also local to the loop body, like the external loop index in a numerical for loop.

Each time TFORCALL executes, the iterator function referenced by R(A) is called with two arguments: the state and the control variable (R(A+1) and R(A+2)). The results are returned in the local loop variables, from R(A+3) onwards, up to R(A+2+C).

Next, the TFORLOOP instruction tests the first return value, R(A+3). If it is nil, the iterator loop is at an end, and the for loop block ends by simply moving to the next instruction.

If R(A+3) is not nil, there is another iteration, and R(A+3) is assigned as the new value of the control variable, R(A+2). Then the TFORLOOP instruction sends execution back to the beginning of the loop (the sBx operand specifies how many instructions to move to get to the start of the loop body).




Examples

This example has a loop with one additional result (v) in addition to the loop enumerator (i):

f=load('for i,v in pairs(t) do print(i,v) end')





This produces:

main <(string):0,0> (11 instructions at 0000014DB7FD2610)
0+ params, 8 slots, 1 upvalue, 5 locals, 3 constants, 0 functions
      1       [1]     GETTABUP        0 0 -1  ; _ENV "pairs"
      2       [1]     GETTABUP        1 0 -2  ; _ENV "t"
      3       [1]     CALL            0 2 4
      4       [1]     JMP             0 4     ; to 9
      5       [1]     GETTABUP        5 0 -3  ; _ENV "print"
      6       [1]     MOVE            6 3
      7       [1]     MOVE            7 4
      8       [1]     CALL            5 3 1
      9       [1]     TFORCALL        0 2
      10      [1]     TFORLOOP        2 -6    ; to 5
      11      [1]     RETURN          0 1
constants (3) for 0000014DB7FD2610:
      1       "pairs"
      2       "t"
      3       "print"
locals (5) for 0000014DB7FD2610:
      0       (for generator) 4       11
      1       (for state)     4       11
      2       (for control)   4       11
      3       i       5       9
      4       v       5       9
upvalues (1) for 0000014DB7FD2610:
      0       _ENV    1       0





The iterator function is located in register 0, and is named (for generator) for debugging purposes. The state is in register 1, and has the name (for state). The control variable, (for control), is contained in register 2. These correspond to locals R(A), R(A+1) and R(A+2) in the TFORCALL description. Results from the iterator function call is placed into register 3 and 4, which are locals i and v, respectively. On line [9], the operand C of TFORCALL is 2, corresponding to two iterator variables (i and v).

Lines [1]–[3] prepares the iterator state. Note that the call to the pairs() standard library function has 1 parameter and 3 results. After the call in line [3], register 0 is the iterator function (which by default is the Lua function next() unless __pairs meta method has been overriden), register 1 is the loop state, register 2 is the initial value of the control variable (which is nil in the default case). The iterator variables i and v are both invalid at the moment, because we have not entered the loop yet.

Line [4] is a JMP to TFORCALL on line [9]. The TFORCALL instruction calls the iterator function, generating the first set of enumeration results in locals i and v.

The TFORLOOP insruction executes and checks whether i is nil. If it is not nil, then the internal control variable (register 2) is set to the value in i and control goes back to to the start of the loop body (lines [5]–[8]).

The body of the generic for loop executes (print(i,v)) and then TFORCALL is encountered again, calling the iterator function to get the next iteration state. Finally, when the TFORLOOP finds that the first result from the iterator is nil, the loop ends, and execution continues on line [11].






OP_CLOSURE instruction


Syntax

CLOSURE A Bx    R(A) := closure(KPROTO[Bx])








Description

Creates an instance (or closure) of a function prototype. The Bx parameter
identifies the entry in the parent function’s table of closure prototypes (the field p
in the struct Proto). The indices start from 0, i.e., a parameter of Bx = 0 references the first
closure prototype in the table.

The OP_CLOSURE instruction also sets up the upvalues for the closure being defined. This
is an involved process that is worthy of detailed discussion, and will be described through examples.




Examples

Let’s start with a simple example of a Lua function:

f=load('function x() end; function y() end')





Here we are creating two Lua functions/closures within the main chunk.
The bytecodes for the chunk look this:

main <(string):0,0> (5 instructions at 0000020E8A352930)
0+ params, 2 slots, 1 upvalue, 0 locals, 2 constants, 2 functions
      1       [1]     CLOSURE         0 0     ; 0000020E8A352A70
      2       [1]     SETTABUP        0 -1 0  ; _ENV "x"
      3       [1]     CLOSURE         0 1     ; 0000020E8A3536A0
      4       [1]     SETTABUP        0 -2 0  ; _ENV "y"
      5       [1]     RETURN          0 1
constants (2) for 0000020E8A352930:
      1       "x"
      2       "y"
locals (0) for 0000020E8A352930:
upvalues (1) for 0000020E8A352930:
      0       _ENV    1       0

function <(string):1,1> (1 instruction at 0000020E8A352A70)
0 params, 2 slots, 0 upvalues, 0 locals, 0 constants, 0 functions
      1       [1]     RETURN          0 1
constants (0) for 0000020E8A352A70:
locals (0) for 0000020E8A352A70:
upvalues (0) for 0000020E8A352A70:

function <(string):1,1> (1 instruction at 0000020E8A3536A0)
0 params, 2 slots, 0 upvalues, 0 locals, 0 constants, 0 functions
      1       [1]     RETURN          0 1
constants (0) for 0000020E8A3536A0:
locals (0) for 0000020E8A3536A0:
upvalues (0) for 0000020E8A3536A0:





What we observe is that the first CLOSURE instruction has parameter
Bx set to 0, and this is the reference to the closure 0000020E8A352A70
which appears at position 0 in the table of closures within the main chunk’s
Proto structure.

Similarly the second CLOSURE instruction has parameter Bx set to 1,
and this references the closure at position 1 in the table, which is
0000020E8A3536A0.

Other things to notice is that the main chunk got an automatic upvalue
named _ENV:

upvalues (1) for 0000020E8A352930:
      0       _ENV    1       0





The first 0 is the index of the upvalue in the main chunk. The 1
following the name is a boolean indicating that the upvalue is located on the
stack, and the last 0 is identifies the register location on the stack.
So the Lua Parser has setup the upvalue reference for _ENV. However
note that there is no actual local in this case; the _ENV upvalue is
special and is setup by the Lua lua_load() [http://www.lua.org/source/5.3/lapi.c.html#lua_load]
API function.

Now let’s look at an example that creates a local up-value:

f=load('local u,v; function p() return v end')





We get following bytecodes:

main <(string):0,0> (4 instructions at 0000022149BBA3B0)
0+ params, 3 slots, 1 upvalue, 2 locals, 1 constant, 1 function
      1       [1]     LOADNIL         0 1
      2       [1]     CLOSURE         2 0     ; 0000022149BBB7B0
      3       [1]     SETTABUP        0 -1 2  ; _ENV "p"
      4       [1]     RETURN          0 1
constants (1) for 0000022149BBA3B0:
      1       "p"
locals (2) for 0000022149BBA3B0:
      0       u       2       5
      1       v       2       5
upvalues (1) for 0000022149BBA3B0:
      0       _ENV    1       0

function <(string):1,1> (3 instructions at 0000022149BBB7B0)
0 params, 2 slots, 1 upvalue, 0 locals, 0 constants, 0 functions
      1       [1]     GETUPVAL        0 0     ; v
      2       [1]     RETURN          0 2
      3       [1]     RETURN          0 1
constants (0) for 0000022149BBB7B0:
locals (0) for 0000022149BBB7B0:
upvalues (1) for 0000022149BBB7B0:
      0       v       1       1





In the function ‘p’ the upvalue list contains:

upvalues (1) for 0000022149BBB7B0:
      0       v       1       1





This says that the up-value is in the stack (first ‘1’) and is located at register ‘1’ of
the parent function. Access to this upvalue is indirectly obtained via the GETUPVAL
instruction on line 1.

Now, lets look at what happens when the upvalue is not directly within the parent
function:

f=load('local u,v; function p() u=1; local function q() return v end end')





In this example, we have 1 upvalue reference in function ‘p’, which is ‘u’. Function ‘q’ has
one upvalue reference ‘v’ but this is not a variable in ‘p’, but is in the grand-parent.
Here are the resulting bytecodes:

main <(string):0,0> (4 instructions at 0000022149BBFE40)
0+ params, 3 slots, 1 upvalue, 2 locals, 1 constant, 1 function
      1       [1]     LOADNIL         0 1
      2       [1]     CLOSURE         2 0     ; 0000022149BBFC60
      3       [1]     SETTABUP        0 -1 2  ; _ENV "p"
      4       [1]     RETURN          0 1
constants (1) for 0000022149BBFE40:
      1       "p"
locals (2) for 0000022149BBFE40:
      0       u       2       5
      1       v       2       5
upvalues (1) for 0000022149BBFE40:
      0       _ENV    1       0

function <(string):1,1> (4 instructions at 0000022149BBFC60)
0 params, 2 slots, 2 upvalues, 1 local, 1 constant, 1 function
      1       [1]     LOADK           0 -1    ; 1
      2       [1]     SETUPVAL        0 0     ; u
      3       [1]     CLOSURE         0 0     ; 0000022149BC06B0
      4       [1]     RETURN          0 1
constants (1) for 0000022149BBFC60:
      1       1
locals (1) for 0000022149BBFC60:
      0       q       4       5
upvalues (2) for 0000022149BBFC60:
      0       u       1       0
      1       v       1       1

function <(string):1,1> (3 instructions at 0000022149BC06B0)
0 params, 2 slots, 1 upvalue, 0 locals, 0 constants, 0 functions
      1       [1]     GETUPVAL        0 0     ; v
      2       [1]     RETURN          0 2
      3       [1]     RETURN          0 1
constants (0) for 0000022149BC06B0:
locals (0) for 0000022149BC06B0:
upvalues (1) for 0000022149BC06B0:
      0       v       0       1





We see that ‘p’ got the upvalue ‘u’ as expected, but it also got the
upvalue ‘v’, and both are marked as ‘instack’ of the parent function:

upvalues (2) for 0000022149BBFC60:
      0       u       1       0
      1       v       1       1





The reason for this is that any upvalue references in the inmost nested
function will also appear in the parent functions up the chain until the
function whose stack contains the variable being referenced. So although the
function ‘p’ does not directly reference ‘v’, but because its child function
‘q’ references ‘v’, ‘p’ gets the upvalue reference to ‘v’ as well.

Observe the upvalue list of ‘q’ now:

upvalues (1) for 0000022149BC06B0:
      0       v       0       1





‘q’ has one upvalue reference as expected, but this time the upvalue is
not marked ‘instack’, which means that the reference is to an upvalue and not a local in
the parent function (in this case ‘p’) and the upvalue index is ‘1’ (i.e. the
second upvalue in ‘p’).




Upvalue setup by OP_CLOSURE

When the CLOSURE instruction is executed, the up-values referenced by the
prototype are resolved. So that means the actual resolution if upvalues occurs at
runtime. This is done in the function pushclosure() [http://www.lua.org/source/5.3/lvm.c.html#pushclosure].




Caching of closures

The Lua VM maintains a cache of closures within each function prototype at runtime.
If a closure is required that has the same set of upvalues as referenced by an existing
closure then the VM reuses the existing closure rather than creating a new one. This is
illustrated in this contrived example:

f=load('local v; local function q() return function() return v end end; return q(), q()')





When the statement return q(), q() is executed it will end up returning two closures that
are really the same instance, as shown by the result of executing this code:

> f()
function: 000001E1E2F007E0      function: 000001E1E2F007E0










OP_GETUPVAL and OP_SETUPVAL instructions


Syntax

GETUPVAL  A B     R(A) := UpValue[B]
SETUPVAL  A B     UpValue[B] := R(A)








Description

GETUPVAL copies the value in upvalue number B into register R(A). Each Lua function may have its own upvalue list. This upvalue list is internal to the virtual machine; the list of upvalue name strings in a prototype is not mandatory.

SETUPVAL copies the value from register R(A) into the upvalue number B in the upvalue list for that function.




Examples

GETUPVAL and SETUPVAL instructions use internally-managed upvalue lists. The list of upvalue name strings that are found in a function prototype is for debugging purposes; it is not used by the Lua virtual machine and can be stripped by luac.
During execution, upvalues are set up by a CLOSURE, and maintained by the Lua virtual machine. In the following example, function b is declared inside the main chunk, and is shown in the disassembly as a function prototype within a function prototype. The indentation, which is not in the original output, helps to visually separate the two functions.

f=load('local a; function b() a = 1 return a end')





Leads to:

main <(string):0,0> (4 instructions at 000002853D5177F0)
0+ params, 2 slots, 1 upvalue, 1 local, 1 constant, 1 function
      1       [1]     LOADNIL         0 0
      2       [1]     CLOSURE         1 0     ; 000002853D517920
      3       [1]     SETTABUP        0 -1 1  ; _ENV "b"
      4       [1]     RETURN          0 1
constants (1) for 000002853D5177F0:
      1       "b"
locals (1) for 000002853D5177F0:
      0       a       2       5
upvalues (1) for 000002853D5177F0:
      0       _ENV    1       0

  function <(string):1,1> (5 instructions at 000002853D517920)
  0 params, 2 slots, 1 upvalue, 0 locals, 1 constant, 0 functions
        1       [1]     LOADK           0 -1    ; 1
        2       [1]     SETUPVAL        0 0     ; a
        3       [1]     GETUPVAL        0 0     ; a
        4       [1]     RETURN          0 2
        5       [1]     RETURN          0 1
  constants (1) for 000002853D517920:
        1       1
  locals (0) for 000002853D517920:
  upvalues (1) for 000002853D517920:
        0       a       1       0





In the main chunk, the local a starts as a nil. The CLOSURE instruction in line [2] then instantiates a function closure with a single upvalue, a. In line [3] the closure is assigned to global b via the SETTABUP instruction.

In function b, there is a single upvalue, a. In Pascal, a variable in an outer scope is found by traversing stack frames. However, instantiations of Lua functions are first-class values, and they may be assigned to a variable and referenced elsewhere. Moreover, a single prototype may have multiple instantiations. Managing upvalues thus becomes a little more tricky than traversing stack frames in Pascal. The Lua virtual machine solution is to provide a clean interface to access upvalues via GETUPVAL and SETUPVAL, while the management of upvalues is handled by the virtual machine itself.

Line [2] in function b sets upvalue a (upvalue number 0 in the upvalue table) to a number value of 1 (held in temporary register 0.) In line [3], the value in upvalue a is retrieved and placed into register 0, where the following RETURN instruction will use it as a return value. The RETURN in line [5] is unused.






OP_NEWTABLE instruction


Syntax

NEWTABLE A B C   R(A) := {} (size = B,C)








Description

Creates a new empty table at register R(A). B and C are the encoded size information for the
array part and the hash part of the table, respectively. Appropriate values for B and C are set
in order to avoid rehashing when initially populating the table with array values or hash
key-value pairs.

Operand B and C are both encoded as a ‘floating point byte’ (so named in lobject.c)
which is eeeeexxx in binary, where x is the mantissa and e is the exponent.
The actual value is calculated as 1xxx*2^(eeeee-1) if eeeee is greater than 0
(a range of 8 to 15*2^30). If eeeee is 0, the actual value is xxx
(a range of 0 to 7.)

If an empty table is created, both sizes are zero. If a table is created with a number of
objects, the code generator counts the number of array elements and the number of hash elements.
Then, each size value is rounded up and encoded in B and C using the floating point byte format.




Examples

Creating an empty table forces both array and hash sizes to be zero:

f=load('local q = {}')





Leads to:

main <(string):0,0> (2 instructions at 0000022C1877A220)
0+ params, 2 slots, 1 upvalue, 1 local, 0 constants, 0 functions
      1       [1]     NEWTABLE        0 0 0
      2       [1]     RETURN          0 1
constants (0) for 0000022C1877A220:
locals (1) for 0000022C1877A220:
      0       q       2       3
upvalues (1) for 0000022C1877A220:
      0       _ENV    1       0





More examples are provided in the description of OP_SETLIST instruction.






OP_SETLIST instruction


Syntax

SETLIST A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B








Description

Sets the values for a range of array elements in a table referenced by R(A). Field B is the
number of elements to set. Field C encodes the block number of the table to be initialized.
The values used to initialize the table are located in registers R(A+1), R(A+2), and so on.

The block size is denoted by FPF. FPF is ‘fields per flush’, defined as LFIELDS_PER_FLUSH
in the source file lopcodes.h, with a value of 50. For example, for array locations 1 to 20,
C will be 1 and B will be 20.

If B is 0, the table is set with a variable number of array elements, from register R(A+1)
up to the top of the stack. This happens when the last element in the table constructor is
a function call or a vararg operator.

If C is 0, the next instruction is cast as an integer, and used as the C value. This happens
only when operand C is unable to encode the block number, i.e. when C > 511, equivalent to an
array index greater than 25550.




Examples

We’ll start with a simple example:

f=load('local q = {1,2,3,4,5,}')





This generates:

main <(string):0,0> (8 instructions at 0000022C18756E50)
0+ params, 6 slots, 1 upvalue, 1 local, 5 constants, 0 functions
      1       [1]     NEWTABLE        0 5 0
      2       [1]     LOADK           1 -1    ; 1
      3       [1]     LOADK           2 -2    ; 2
      4       [1]     LOADK           3 -3    ; 3
      5       [1]     LOADK           4 -4    ; 4
      6       [1]     LOADK           5 -5    ; 5
      7       [1]     SETLIST         0 5 1   ; 1
      8       [1]     RETURN          0 1
constants (5) for 0000022C18756E50:
      1       1
      2       2
      3       3
      4       4
      5       5
locals (1) for 0000022C18756E50:
      0       q       8       9
upvalues (1) for 0000022C18756E50:
      0       _ENV    1       0





A table with the reference in register 0 is created in line [1] by NEWTABLE. Since we are
creating a table with no hash elements, the array part of the table has a size of 5,
while the hash part has a size of 0.

Constants are then loaded into temporary registers 1 to 5 (lines [2] to [6]) before the SETLIST
instruction in line [7] assigns each value to consecutive table elements. The start of the
block is encoded as 1 in operand C. The starting index is calculated as (1-1)*50+1 or 1.
Since B is 5, the range of the array elements to be set becomes 1 to 5, while the objects used
to set the array elements will be R(1) through R(5).

Next is a larger table with 55 array elements. This will require two blocks to initialize.
Some lines have been removed and ellipsis (…) added to save space:

> f=load('local q = {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0, \
>> 1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0, \
>> 1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,}')





The generated code is:

main <(string):0,0> (59 instructions at 0000022C187833C0)
0+ params, 51 slots, 1 upvalue, 1 local, 10 constants, 0 functions
      1       [1]     NEWTABLE        0 30 0
      2       [1]     LOADK           1 -1    ; 1
      3       [1]     LOADK           2 -2    ; 2
      4       [1]     LOADK           3 -3    ; 3
      ...
      51      [3]     LOADK           50 -10  ; 0
      52      [3]     SETLIST         0 50 1  ; 1
      53      [3]     LOADK           1 -1    ; 1
      54      [3]     LOADK           2 -2    ; 2
      55      [3]     LOADK           3 -3    ; 3
      56      [3]     LOADK           4 -4    ; 4
      57      [3]     LOADK           5 -5    ; 5
      58      [3]     SETLIST         0 5 2   ; 2
      59      [3]     RETURN          0 1
constants (10) for 0000022C187833C0:
      1       1
      2       2
      3       3
      4       4
      5       5
      6       6
      7       7
      8       8
      9       9
      10      0
locals (1) for 0000022C187833C0:
      0       q       59      60
upvalues (1) for 0000022C187833C0:
      0       _ENV    1       0





Since FPF is 50, the array will be initialized in two blocks. The first block is
for index 1 to 50, while the second block is for index 51 to 55. Each array block to be
initialized requires one SETLIST instruction. On line [1], NEWTABLE has a field
B value of 30, or 00011110 in binary. From the description of NEWTABLE, xxx is 1102,
while eeeee is 112. Thus, the size of the array portion of the table is (1110)*2^(11-1)
or (14*2^2) or 56.

Lines [2] to [51] sets the values used to initialize the first block. On line [52],
SETLIST has a B value of 50 and a C value of 1. So the block is from 1 to 50.
Source registers are from R(1) to R(50).

Lines [53] to [57] sets the values used to initialize the second block. On line [58],
SETLIST has a B value of 5 and a C value of 2. So the block is from 51 to 55.
The start of the block is calculated as (2-1)*50+1 or 51. Source registers are
from R(1) to R(5).

Here is a table with hashed elements:

> f=load('local q = {a=1,b=2,c=3,d=4,e=5,f=6,g=7,h=8,}')





This results in:

main <(string):0,0> (10 instructions at 0000022C18783D20)
0+ params, 2 slots, 1 upvalue, 1 local, 16 constants, 0 functions
      1       [1]     NEWTABLE        0 0 8
      2       [1]     SETTABLE        0 -1 -2 ; "a" 1
      3       [1]     SETTABLE        0 -3 -4 ; "b" 2
      4       [1]     SETTABLE        0 -5 -6 ; "c" 3
      5       [1]     SETTABLE        0 -7 -8 ; "d" 4
      6       [1]     SETTABLE        0 -9 -10        ; "e" 5
      7       [1]     SETTABLE        0 -11 -12       ; "f" 6
      8       [1]     SETTABLE        0 -13 -14       ; "g" 7
      9       [1]     SETTABLE        0 -15 -16       ; "h" 8
      10      [1]     RETURN          0 1
constants (16) for 0000022C18783D20:
      1       "a"
      2       1
      3       "b"
      4       2
      5       "c"
      6       3
      7       "d"
      8       4
      9       "e"
      10      5
      11      "f"
      12      6
      13      "g"
      14      7
      15      "h"
      16      8
locals (1) for 0000022C18783D20:
      0       q       10      11
upvalues (1) for 0000022C18783D20:
      0       _ENV    1       0





In line [1], NEWTABLE is executed with an array part size of 0 and a hash part size of 8.

On lines [2] to line [9], key-value pairs are set using SETTABLE. The SETLIST instruction
is only for initializing array elements. Using SETTABLE to initialize the key-value pairs of
a table in the above example is quite efficient as it can reference the constant pool directly.

If there are both array elements and hash elements in a table constructor, both SETTABLE
and SETLIST will be used to initialize the table after the initial NEWTABLE. In addition,
if the last element of the table constructor is a function call or a vararg operator, then the
B operand of SETLIST will be 0, to allow objects from R(A+1) up to the top of the stack
to be initialized as array elements of the table.

> f=load('return {1,2,3,a=1,b=2,c=3,foo()}')





Leads to:

main <(string):0,0> (12 instructions at 0000022C18788430)
0+ params, 5 slots, 1 upvalue, 0 locals, 7 constants, 0 functions
      1       [1]     NEWTABLE        0 3 3
      2       [1]     LOADK           1 -1    ; 1
      3       [1]     LOADK           2 -2    ; 2
      4       [1]     LOADK           3 -3    ; 3
      5       [1]     SETTABLE        0 -4 -1 ; "a" 1
      6       [1]     SETTABLE        0 -5 -2 ; "b" 2
      7       [1]     SETTABLE        0 -6 -3 ; "c" 3
      8       [1]     GETTABUP        4 0 -7  ; _ENV "foo"
      9       [1]     CALL            4 1 0
      10      [1]     SETLIST         0 0 1   ; 1
      11      [1]     RETURN          0 2
      12      [1]     RETURN          0 1
constants (7) for 0000022C18788430:
      1       1
      2       2
      3       3
      4       "a"
      5       "b"
      6       "c"
      7       "foo"
locals (0) for 0000022C18788430:
upvalues (1) for 0000022C18788430:
      0       _ENV    1       0





In the above example, the table is first created in line [1] with its reference
in register 0, and it has both array and hash elements to be set. The size of the
array part is 3 while the size of the hash part is also 3.

Lines [2]–[4] loads the values for the first 3 array elements. Lines [5]–[7] set
the 3 key-value pairs for the hash part of the table. In lines [8] and [9],
the call to function foo is made, and then in line [10], the SETLIST instruction sets
the first 3 array elements (in registers 1 to 3) plus whatever additional results
returned by the foo function call (from register 4 onwards). This is accomplished by
setting operand B in SETLIST to 0. For the first block, operand C is 1 as usual.
If no results are returned by the function, the top of stack is at register 3
and only the 3 constant array elements in the table are set.

Finally:

> f=load('local a; return {a(), a(), a()}')





This gives:

main <(string):0,0> (11 instructions at 0000022C18787AD0)
0+ params, 5 slots, 1 upvalue, 1 local, 0 constants, 0 functions
      1       [1]     LOADNIL         0 0
      2       [1]     NEWTABLE        1 2 0
      3       [1]     MOVE            2 0
      4       [1]     CALL            2 1 2
      5       [1]     MOVE            3 0
      6       [1]     CALL            3 1 2
      7       [1]     MOVE            4 0
      8       [1]     CALL            4 1 0
      9       [1]     SETLIST         1 0 1   ; 1
      10      [1]     RETURN          1 2
      11      [1]     RETURN          0 1
constants (0) for 0000022C18787AD0:
locals (1) for 0000022C18787AD0:
      0       a       2       12
upvalues (1) for 0000022C18787AD0:
      0       _ENV    1       0





Note that only the last function call in a table constructor retains all results.
Other function calls in the table constructor keep only one result. This is shown in the
above example. For vararg operators in table constructors, please see the discussion for the
VARARG instruction for an example.






OP_GETTABLE and OP_SETTABLE instructions


Syntax

GETTABLE A B C   R(A) := R(B)[RK(C)]
SETTABLE A B C   R(A)[RK(B)] := RK(C)








Description

OP_GETTABLE copies the value from a table element into register R(A).
The table is referenced by register R(B), while the index to the table is given
by RK(C), which may be the value of register R(C) or a constant number.

OP_SETTABLE copies the value from register R(C) or a constant into a table element.
The table is referenced by register R(A), while the index to the table is given by
RK(B), which may be the value of register R(B) or a constant number.

All 3 operand fields are used, and some of the operands can be constants. A
constant is specified by setting the MSB of the operand to 1. If RK(C) need to
refer to constant 1, the encoded value will be (256 | 1) or 257, where 256 is the
value of bit 8 of the operand. Allowing constants to be used directly reduces
considerably the need for temporary registers.




Examples

f=load('local p = {}; p[1] = "foo"; return p["bar"]')





This compiles to:

main <(string):0,0> (5 instructions at 000001FA06FCC3F0)
0+ params, 2 slots, 1 upvalue, 1 local, 3 constants, 0 functions
      1       [1]     NEWTABLE        0 0 0
      2       [1]     SETTABLE        0 -1 -2 ; 1 "foo"
      3       [1]     GETTABLE        1 0 -3  ; "bar"
      4       [1]     RETURN          1 2
      5       [1]     RETURN          0 1
constants (3) for 000001FA06FCC3F0:
      1       1
      2       "foo"
      3       "bar"
locals (1) for 000001FA06FCC3F0:
      0       p       2       6
upvalues (1) for 000001FA06FCC3F0:
      0       _ENV    1       0





In line [1], a new empty table is created and the reference placed in local p (register 0).
Creating and populating new tables is discussed in detail elsewhere.
Table index 1 is set to ‘foo’ in line [2] by the SETTABLE instruction.

The R(A) value of 0 points to the new table that was defined in line [1].
In line [3], the value of the table element indexed by the string ‘bar’ is copied into
temporary register 1, which is then used by RETURN as a return value.






OP_SELF instruction


Syntax

SELF  A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]








Description

For object-oriented programming using tables. Retrieves a function reference
from a table element and places it in register R(A), then a reference to the table
itself is placed in the next register, R(A+1). This instruction saves some messy
manipulation when setting up a method call.

R(B) is the register holding the reference to the table with the method.
The method function itself is found using the table index RK(C), which may be
the value of register R(C) or a constant number.




Examples

A SELF instruction saves an extra instruction and speeds up the calling of
methods in object oriented programming. It is only generated for method calls
that use the colon syntax. In the following example:

f=load('foo:bar("baz")')





We can see SELF being generated:

main <(string):0,0> (5 instructions at 000001FA06FA7830)
0+ params, 3 slots, 1 upvalue, 0 locals, 3 constants, 0 functions
      1       [1]     GETTABUP        0 0 -1  ; _ENV "foo"
      2       [1]     SELF            0 0 -2  ; "bar"
      3       [1]     LOADK           2 -3    ; "baz"
      4       [1]     CALL            0 3 1
      5       [1]     RETURN          0 1
constants (3) for 000001FA06FA7830:
      1       "foo"
      2       "bar"
      3       "baz"
locals (0) for 000001FA06FA7830:
upvalues (1) for 000001FA06FA7830:
      0       _ENV    1       0





The method call is equivalent to: foo.bar(foo, "baz"), except that the global foo
is only looked up once. This is significant if metamethods have been set. The SELF in
line [2] is equivalent to a GETTABLE lookup (the table is in register 0 and the
index is constant 1) and a MOVE (copying the table reference from register 0 to
register 1.)

Without SELF, a GETTABLE will write its lookup result to register 0 (which the
code generator will normally do) and the table reference will be overwritten before a MOVE
can be done. Using SELF saves roughly one instruction and one temporary register slot.

After setting up the method call using SELF, the call is made with the usual CALL
instruction in line [4], with two parameters. The equivalent code for a method lookup is
compiled in the following manner:

f=load('foo.bar(foo, "baz")')





And generated code:

main <(string):0,0> (6 instructions at 000001FA06FA6960)
0+ params, 3 slots, 1 upvalue, 0 locals, 3 constants, 0 functions
      1       [1]     GETTABUP        0 0 -1  ; _ENV "foo"
      2       [1]     GETTABLE        0 0 -2  ; "bar"
      3       [1]     GETTABUP        1 0 -1  ; _ENV "foo"
      4       [1]     LOADK           2 -3    ; "baz"
      5       [1]     CALL            0 3 1
      6       [1]     RETURN          0 1
constants (3) for 000001FA06FA6960:
      1       "foo"
      2       "bar"
      3       "baz"
locals (0) for 000001FA06FA6960:
upvalues (1) for 000001FA06FA6960:
      0       _ENV    1       0





The alternative form of a method call is one instruction longer, and the user
must take note of any metamethods that may affect the call. The SELF in the previous example
replaces the GETTABLE on line [2] and the GETTABUP on line [3]. If foo is a local variable,
then the equivalent code is a GETTABLE and a MOVE.






OP_GETTABUP and OP_SETTABUP instructions


Syntax

GETTABUP A B C   R(A) := UpValue[B][RK(C)]
SETTABUP A B C   UpValue[A][RK(B)] := RK(C)








Description

OP_GETTABUP and OP_SETTABUP instructions are similar to the
OP_GETTABLE and OP_SETTABLE instructions except that the table
is referenced as an upvalue. These instructions are used to access global
variables, which since Lua 5.2 are accessed via the upvalue named _ENV.




Examples

f=load('a = 40; local b = a')





Results in:

main <(string):0,0> (3 instructions at 0000028D955FEBF0)
0+ params, 2 slots, 1 upvalue, 1 local, 2 constants, 0 functions
      1       [1]     SETTABUP        0 -1 -2 ; _ENV "a" 40
      2       [1]     GETTABUP        0 0 -1  ; _ENV "a"
      3       [1]     RETURN          0 1
constants (2) for 0000028D955FEBF0:
      1       "a"
      2       40
locals (1) for 0000028D955FEBF0:
      0       b       3       4
upvalues (1) for 0000028D955FEBF0:
      0       _ENV    1       0





From the example, we can see that ‘b’ is the name of the local variable
while ‘a’ is the name of the global variable.

Line [1] assigns the number 40 to global ‘a’. Line [2] assigns the value in global ‘a’
to the register 0 which is the local ‘b’.






OP_CONCAT instruction


Syntax

CONCAT A B C   R(A) := R(B).. ... ..R(C)








Description

Performs concatenation of two or more strings. In a Lua source, this is equivalent
to one or more concatenation operators (‘..’) between two or more expressions.
The source registers must be consecutive, and C must always be greater than B.
The result is placed in R(A).




Examples

CONCAT accepts a range of registers. Doing more than one string concatenation
at a time is faster and more efficient than doing them separately:

f=load('local x,y = "foo","bar"; return x..y..x..y')





Generates:

main <(string):0,0> (9 instructions at 0000028D9560B290)
0+ params, 6 slots, 1 upvalue, 2 locals, 2 constants, 0 functions
      1       [1]     LOADK           0 -1    ; "foo"
      2       [1]     LOADK           1 -2    ; "bar"
      3       [1]     MOVE            2 0
      4       [1]     MOVE            3 1
      5       [1]     MOVE            4 0
      6       [1]     MOVE            5 1
      7       [1]     CONCAT          2 2 5
      8       [1]     RETURN          2 2
      9       [1]     RETURN          0 1
constants (2) for 0000028D9560B290:
      1       "foo"
      2       "bar"
locals (2) for 0000028D9560B290:
      0       x       3       10
      1       y       3       10
upvalues (1) for 0000028D9560B290:
      0       _ENV    1       0





In this example, strings are moved into place first (lines [3] to [6]) in
the concatenation order before a single CONCAT instruction is executed
in line [7]. The result is left in temporary local 2, which is then used as
a return value by the RETURN instruction on line [8].

f=load('local a = "foo".."bar".."baz"')





Compiles to:

main <(string):0,0> (5 instructions at 0000028D9560EE40)
0+ params, 3 slots, 1 upvalue, 1 local, 3 constants, 0 functions
      1       [1]     LOADK           0 -1    ; "foo"
      2       [1]     LOADK           1 -2    ; "bar"
      3       [1]     LOADK           2 -3    ; "baz"
      4       [1]     CONCAT          0 0 2
      5       [1]     RETURN          0 1
constants (3) for 0000028D9560EE40:
      1       "foo"
      2       "bar"
      3       "baz"
locals (1) for 0000028D9560EE40:
      0       a       5       6
upvalues (1) for 0000028D9560EE40:
      0       _ENV    1       0





In the second example, three strings are concatenated together. Note that
there is no string constant folding. Lines [1] through [3] loads the three
constants in the correct order for concatenation; the CONCAT on line [4]
performs the concatenation itself and assigns the result to local ‘a’.






OP_LEN instruction


Syntax

LEN A B     R(A) := length of R(B)








Description

Returns the length of the object in R(B). For strings, the string length is
returned, while for tables, the table size (as defined in Lua) is returned.
For other objects, the metamethod is called. The result, which is a number,
is placed in R(A).




Examples

The LEN operation implements the # operator. If # operates on a constant,
then the constant is loaded in advance using LOADK. The LEN instruction
is currently not optimized away using compile time evaluation, even if it is
operating on a constant string or table:

f=load('local a,b; a = #b; a= #"foo"')





Results in:

main <(string):0,0> (5 instructions at 000001DC21778C60)
0+ params, 3 slots, 1 upvalue, 2 locals, 1 constant, 0 functions
      1       [1]     LOADNIL         0 1
      2       [1]     LEN             0 1
      3       [1]     LOADK           2 -1    ; "foo"
      4       [1]     LEN             0 2
      5       [1]     RETURN          0 1
constants (1) for 000001DC21778C60:
      1       "foo"
locals (2) for 000001DC21778C60:
      0       a       2       6
      1       b       2       6
upvalues (1) for 000001DC21778C60:
      0       _ENV    1       0





In the above example, LEN operates on local b in line [2], leaving the result in
local a. Since LEN cannot operate directly on constants, line [3] first loads the
constant “foo” into a temporary local, and only then LEN is executed.






OP_MOVE instruction


Syntax

MOVE A B     R(A) := R(B)








Description

Copies the value of register R(B) into register R(A). If R(B) holds a table,
function or userdata, then the reference to that object is copied. MOVE is often used
for moving values into place for the next operation.




Examples

The most straightforward use of MOVE is for assigning a local to another local:

f=load('local a,b = 10; b = a')





Produces:

main <(string):0,0> (4 instructions at 000001DC217566D0)
0+ params, 2 slots, 1 upvalue, 2 locals, 1 constant, 0 functions
      1       [1]     LOADK           0 -1    ; 10
      2       [1]     LOADNIL         1 0
      3       [1]     MOVE            1 0
      4       [1]     RETURN          0 1
constants (1) for 000001DC217566D0:
      1       10
locals (2) for 000001DC217566D0:
      0       a       3       5
      1       b       3       5
upvalues (1) for 000001DC217566D0:
      0       _ENV    1       0





You won’t see MOVE instructions used in arithmetic expressions
because they are not needed by arithmetic operators. All arithmetic operators are
in 2- or 3-operand style: the entire local stack frame is already visible
to operands R(A), R(B) and R(C) so there is no need for any extra
MOVE instructions.

Other places where you will see MOVE are:


	When moving parameters into place for a function call.


	When moving values into place for certain instructions where stack order is important, e.g. GETTABLE, SETTABLE and CONCAT.


	When copying return values into locals after a function call.









OP_LOADNIL instruction


Syntax

LOADNIL A B     R(A), R(A+1), ..., R(A+B) := nil








Description

Sets a range of registers from R(A) to R(B) to nil. If a single register is to
be assigned to, then R(A) = R(B). When two or more consecutive locals need to
be assigned nil values, only a single LOADNIL is needed.




Examples

LOADNIL uses the operands A and B to mean a range of register locations.
The example for MOVE earlier shows LOADNIL used to set a single register to nil.

f=load('local a,b,c,d,e = nil,nil,0')





Generates:

main <(string):0,0> (4 instructions at 000001DC21780390)
0+ params, 5 slots, 1 upvalue, 5 locals, 1 constant, 0 functions
      1       [1]     LOADNIL         0 1
      2       [1]     LOADK           2 -1    ; 0
      3       [1]     LOADNIL         3 1
      4       [1]     RETURN          0 1
constants (1) for 000001DC21780390:
      1       0
locals (5) for 000001DC21780390:
      0       a       4       5
      1       b       4       5
      2       c       4       5
      3       d       4       5
      4       e       4       5
upvalues (1) for 000001DC21780390:
      0       _ENV    1       0





Line [1] nils locals a and b.
Local c is explicitly initialized with the value 0.
Line [3] nils d and e.






OP_LOADK instruction


Syntax

LOADK A Bx    R(A) := Kst(Bx)








Description

Loads constant number Bx into register R(A). Constants are usually numbers
or strings. Each function prototype has its own constant list, or pool.




Examples

LOADK loads a constant from the constant list into a register or local.
Constants are indexed starting from 0. Some instructions, such as arithmetic
instructions, can use the constant list without needing a LOADK.
Constants are pooled in the list, duplicates are eliminated. The list can
hold nils, booleans, numbers or strings.

f=load('local a,b,c,d = 3,"foo",3,"foo"')





Leads to:

main <(string):0,0> (5 instructions at 000001DC21780B50)
0+ params, 4 slots, 1 upvalue, 4 locals, 2 constants, 0 functions
      1       [1]     LOADK           0 -1    ; 3
      2       [1]     LOADK           1 -2    ; "foo"
      3       [1]     LOADK           2 -1    ; 3
      4       [1]     LOADK           3 -2    ; "foo"
      5       [1]     RETURN          0 1
constants (2) for 000001DC21780B50:
      1       3
      2       "foo"
locals (4) for 000001DC21780B50:
      0       a       5       6
      1       b       5       6
      2       c       5       6
      3       d       5       6
upvalues (1) for 000001DC21780B50:
      0       _ENV    1       0





The constant 3 and the constant “foo” are both written twice in the source
snippet, but in the constant list, each constant has a single location.






Binary operators

Lua 5.3 implements a bunch of binary operators for arithmetic and bitwise
manipulation of variables. These insructions have a common form.


Syntax

ADD   A B C   R(A) := RK(B) + RK(C)
SUB   A B C   R(A) := RK(B) - RK(C)
MUL   A B C   R(A) := RK(B) * RK(C)
MOD   A B C   R(A) := RK(B) % RK(C)
POW   A B C   R(A) := RK(B) ^ RK(C)
DIV   A B C   R(A) := RK(B) / RK(C)
IDIV  A B C   R(A) := RK(B) // RK(C)
BAND  A B C   R(A) := RK(B) & RK(C)
BOR   A B C   R(A) := RK(B) | RK(C)
BXOR  A B C   R(A) := RK(B) ~ RK(C)
SHL   A B C   R(A) := RK(B) << RK(C)
SHR   A B C   R(A) := RK(B) >> RK(C)








Description

Binary operators (arithmetic operators and bitwise operators with two inputs.)
The result of the operation between RK(B) and RK(C) is placed into R(A).
These instructions are in the classic 3-register style.

RK(B) and RK(C) may be either registers or constants in the constant pool.







	Opcode

	Description





	ADD

	Addition operator



	SUB

	Subtraction operator



	MUL

	Multiplication operator



	MOD

	Modulus (remainder) operator



	POW

	Exponentation operator



	DIV

	Division operator



	IDIV

	Integer division operator



	BAND

	Bit-wise AND operator



	BOR

	Bit-wise OR operator



	BXOR

	Bit-wise Exclusive OR operator



	SHL

	Shift bits left



	SHR

	Shift bits right






The source operands, RK(B) and RK(C), may be constants. If a constant is out
of range of field B or field C, then the constant will be loaded into a
temporary register in advance.




Examples

f=load('local a,b = 2,4; a = a + 4 * b - a / 2 ^ b % 3')





Generates:

main <(string):0,0> (9 instructions at 000001DC21781DD0)
0+ params, 4 slots, 1 upvalue, 2 locals, 3 constants, 0 functions
      1       [1]     LOADK           0 -1    ; 2
      2       [1]     LOADK           1 -2    ; 4
      3       [1]     MUL             2 -2 1  ; 4 -      (loc2 = 4 * b)
      4       [1]     ADD             2 0 2              (loc2 = A + loc2)
      5       [1]     POW             3 -1 1  ; 2 -      (loc3 = 2 ^ b)
      6       [1]     DIV             3 0 3              (loc3 = a / loc3)
      7       [1]     MOD             3 3 -3             (loc3 = loc3 % 3)
      8       [1]     SUB             0 2 3              (a = loc2 – loc3)
      9       [1]     RETURN          0 1
constants (3) for 000001DC21781DD0:
      1       2
      2       4
      3       3
locals (2) for 000001DC21781DD0:
      0       a       3       10
      1       b       3       10
upvalues (1) for 000001DC21781DD0:
      0       _ENV    1       0





In the disassembly shown above, parts of the expression is shown as additional
comments in parentheses. Each arithmetic operator translates into a single instruction.
This also means that while the statement count = count + 1 is verbose, it translates
into a single instruction if count is a local. If count is a global, then two
extra instructions are required to read and write to the global (GETTABUP and SETTABUP),
since arithmetic operations can only be done on registers (locals) only.

The Lua parser and code generator can perform limited constant expression folding
or evaluation. Constant folding only works for binary arithmetic operators and the unary
minus operator (UNM, which will be covered next.) There is no equivalent
optimization for relational, boolean or string operators.

The optimization rule is simple: If both terms of a subexpression are numbers, the
subexpression will be evaluated at compile time. However, there are exceptions.
One, the code generator will not attempt to divide a number by 0 for DIV and MOD,
and two, if the result is evaluated as a NaN (Not a Number) then the optimization
will not be performed.

Also, constant folding is not done if one term is in the form of a string that need
to be coerced. In addition, expression terms are not rearranged, so not all optimization
opportunities can be recognized by the code generator. This is intentional; the Lua
code generator is not meant to perform heavy duty optimizations, as Lua is a lightweight
language. Here are a few examples to illustrate how it works (additional comments
in parentheses):

f=load('local a = 4 + 7 + b; a = b + 4 * 7; a = b + 4 + 7')





Generates:

main <(string):0,0> (8 instructions at 000001DC21781650)
0+ params, 2 slots, 1 upvalue, 1 local, 5 constants, 0 functions
      1       [1]     GETTABUP        0 0 -1  ; _ENV "b"
      2       [1]     ADD             0 -2 0  ; 11 -            (a = 11 + b)
      3       [1]     GETTABUP        1 0 -1  ; _ENV "b"
      4       [1]     ADD             0 1 -3  ; - 28            (a = b + 28)
      5       [1]     GETTABUP        1 0 -1  ; _ENV "b"
      6       [1]     ADD             1 1 -4  ; - 4             (loc1 = b + 4)
      7       [1]     ADD             0 1 -5  ; - 7             (a = loc1 + 7)
      8       [1]     RETURN          0 1
constants (5) for 000001DC21781650:
      1       "b"
      2       11
      3       28
      4       4
      5       7
locals (1) for 000001DC21781650:
      0       a       3       9
upvalues (1) for 000001DC21781650:
      0       _ENV    1       0





For the first assignment statement, 4+7 is evaluated, thus 11 is added to b in line [2].
Next, in line [3] and [4], b and 28 are added together and assigned to a because multiplication
has a higher precedence and 4*7 is evaluated first. Finally, on lines [5] to [7],
there are two addition operations. Since addition is left-associative, code is generated for
b+4 first, and only after that, 7 is added. So in the third example,
Lua performs no optimization. This can be fixed using parentheses to explicitly change the precedence
of a subexpression:

f=load('local a = b + (4 + 7)')





And this leads to:

main <(string):0,0> (3 instructions at 000001DC21781EC0)
0+ params, 2 slots, 1 upvalue, 1 local, 2 constants, 0 functions
      1       [1]     GETTABUP        0 0 -1  ; _ENV "b"
      2       [1]     ADD             0 0 -2  ; - 11
      3       [1]     RETURN          0 1
constants (2) for 000001DC21781EC0:
      1       "b"
      2       11
locals (1) for 000001DC21781EC0:
      0       a       3       4
upvalues (1) for 000001DC21781EC0:
      0       _ENV    1       0





Now, the 4+7 subexpression can be evaluated at compile time. If the
statement is written as:

local a = 7 + (4 + 7)





the code generator will generate a single LOADK instruction; Lua first evaluates
4+7, then 7 is added, giving a total of 18. The arithmetic expression is completely
evaluated in this case, thus no arithmetic instructions are generated.

In order to make full use of constant folding in Lua, the user just need to remember
the usual order of evaluation of an expression’s elements and apply parentheses where
necessary. The following are two expressions which will not be evaluated at compile time:

f=load('local a = 1 / 0; local b = 1 + "1"')





This produces:

main <(string):0,0> (3 instructions at 000001DC21781380)
0+ params, 2 slots, 1 upvalue, 2 locals, 3 constants, 0 functions
      1       [1]     DIV             0 -2 -1 ; 1 0
      2       [1]     ADD             1 -2 -3 ; 1 "1"
      3       [1]     RETURN          0 1
constants (3) for 000001DC21781380:
      1       0
      2       1
      3       "1"
locals (2) for 000001DC21781380:
      0       a       2       4
      1       b       3       4
upvalues (1) for 000001DC21781380:
      0       _ENV    1       0





The first is due to a divide-by-0, while the second is due to a string
constant that needs to be coerced into a number. In both cases, constant folding is
not performed, so the arithmetic instructions needed to perform the operations
at run time are generated instead.

TODO - examples of bitwise operators.






Unary operators

Lua 5.3 implements following unary operators in addition to OP_LEN.


Syntax

UNM   A B     R(A) := -R(B)
BNOT  A B     R(A) := ~R(B)
NOT   A B     R(A) := not R(B)








Description

The unary operators perform an operation on R(B) and store the result in
R(A).







	Opcode

	Description





	UNM

	Unary minus



	BNOT

	Bit-wise NOT operator



	NOT

	Logical NOT operator









Examples

f=load('local p,q = 10,false; q,p = -p,not q')





Results in:

main <(string):0,0> (6 instructions at 000001DC21781290)
0+ params, 3 slots, 1 upvalue, 2 locals, 1 constant, 0 functions
      1       [1]     LOADK           0 -1    ; 10
      2       [1]     LOADBOOL        1 0 0
      3       [1]     UNM             2 0
      4       [1]     NOT             0 1
      5       [1]     MOVE            1 2
      6       [1]     RETURN          0 1
constants (1) for 000001DC21781290:
      1       10
locals (2) for 000001DC21781290:
      0       p       3       7
      1       q       3       7
upvalues (1) for 000001DC21781290:
      0       _ENV    1       0





As UNM and NOT do not accept a constant as a source operand, making the
LOADK on line [1] and the LOADBOOL on line [2] necessary. When an unary minus
is applied to a constant number, the unary minus is optimized away. Similarly, when a
not is applied to true or false, the logical operation is optimized away.

In addition to this, constant folding is performed for unary minus, if the term is
a number. So, the expression in the following is completely evaluated at compile time:

f=load('local a = - (7 / 4)')





Results in:

main <(string):0,0> (2 instructions at 000001DC217810B0)
0+ params, 2 slots, 1 upvalue, 1 local, 1 constant, 0 functions
      1       [1]     LOADK           0 -1    ; -1.75
      2       [1]     RETURN          0 1
constants (1) for 000001DC217810B0:
      1       -1.75
locals (1) for 000001DC217810B0:
      0       a       2       3
upvalues (1) for 000001DC217810B0:
      0       _ENV    1       0





Constant folding is performed on 7/4 first. Then, since the unary minus
operator is applied to the constant 1.75, constant folding can be performed
again, and the code generated becomes a simple LOADK (on line [1]).

TODO - example of BNOT.









          

      

      

    

  

    
      
          
            
  
Lua Parsing and Code Generation Internals


Stack and Registers

Lua employs two stacks.
The Callinfo stack tracks activation frames.
There is the secondary stack L->stack that is an array of TValue objects. The Callinfo objects index into this array. Registers are basically slots in the L->stack array.

When a function is called - the stack is setup as follows:

stack
|            function reference
|  base->    parameter 1
|            ...
|            parameter n
|            local 1
|            ...
|            local n
|  top->
|
V





So top is just past the registers needed by the function.
The number of registers is determined based on locals and temporaries.

The base of the stack is set to just past the function reference - i.e. on the first parameter or register.
All register addressing is done as offset from base - so R(0) is at base+0 on the stack.


[image: Drawing of Lua Stack]
The figure shows how the stack is related to other Lua  objects.



A description of the stack and registers from Mike Pall on Lua mailing list is reproduced below.


Sliding Register Window - by Mike Pall

Note: this is a reformatted version of a post on Lua mailing list (see MP6 link below).

The Lua 5 VM employs a sliding register window on top of a stack. Frames
(named CallInfo aka ‘ci’ in the source) occupy different (overlapping)
ranges on the stack. Successive frames are positioned exactly over the
passed arguments (luaD_precall). The compiler ensures that there are no
live variables after the arguments for a call. Return values need to be
copied down (with truncate/extend) to the slot holding the function object
(luaD_poscall). This is because the compiler has no idea how many values
another function may return – only how many need to be stored.

Example:

function f2(arg1, arg2, ..., argN)
  local local1, local2, ...
  ...
  return ret1, ret2, ..., retO
end

function f1(arg1, arg2, ..., argM)
  local local1, local2, ...
  ...
  local ret1, ret2, ..., retP = f2(arg1, arg2, ..., argN)
  ...
end





Simplified stack diagram:

stack
|
| time: >>>> call >>>>>>>>>>>>>>>>>> call ~~~~~~~~~~~~~~~~~~ return >>>>>
|
|   ciX.func-> f1      f1      f1                                 f1
|   ciX.base-> arg1    arg1    arg1                               arg1
|              arg2    arg2    arg2                               arg2
|              ...     ...     ...                                ...
|              argM    argM    argM                               argM
|   ciX.topC->         local1  local1                             local11
|                      local2  local2                             local2
|                      local3  local3                             local3
|                      ...     ...                                ...
|                              f2      ciY.func-> f2      f2      ret1
|                              arg1    ciY.base-> arg1    arg1    ret2
|                              arg2               arg2    arg2    ...
|                              ...                ...     ...     retP
|                              argN               argN    argN
|   ciX.topL-> ------  ------  ------  ciY.topC-> local1  local1
|                                                 local2  local2
|                                                 ...     ...
|                                                         ret1
|                                                         ret2
|                                                         ...
|                                                         retO
|                                      ciY.topL-> ------  ------
V





Note that there is only a single ‘top’ for each frame:

For Lua functions the top (tagged topL in the diagram) is set to the base
plus the maximum number of slots used. The compiler knows this and stores
it in the function prototype. The top pointer is used only temporarily
for handling variable length argument and return value lists.

For C functions the top (tagged topC in the diagram) is initially set to
the base plus the number of passed arguments. C functions can access their
part of the stack via Lua API calls which in turn change the stack top.
C functions return an integer that indicates the number of return values
relative to the stack top.

In reality things are a bit more complex due to overlapped locals, block
scopes, varargs, coroutines and a few other things. But this should get
you the basic idea.






Parsing and Code Generation


	The parser is in lparser.c [http://www.lua.org/source/5.3/lparser.c.html].


	The code generator is in both above and lcode.c [http://www.lua.org/source/5.3/lcode.c.html].




The parser and code generator are arguably the most complex piece in the whole of Lua. The parser is one-pass - and generates code as it parses. That is, there is no AST build phase. This is primarily for efficiency it seems. The parser uses data structures on the stack - there are no heap allocated structures. Where needed the C stack itself is used to build structures - for example, as the assignment statement is parsed, there is recursion, and a stack based structure is built that links to structures in the call stack.

The main object used by the parser is the struct expdesc:

typedef struct expdesc {
  expkind k;
  union {
    struct {  /* for indexed variables (VINDEXED) */
      short idx;  /* index (R/K) */
      lu_byte t;  /* table (register or upvalue) */
      lu_byte vt;  /* whether 't' is register (VLOCAL) or upvalue (VUPVAL) */
    } ind;
    int info;  /* for generic use */
    lua_Number nval;  /* for VKFLT */
    lua_Integer ival;    /* for VKINT */
  } u;
  int t;  /* patch list of 'exit when true' */
  int f;  /* patch list of 'exit when false' */
  int ravi_type; /* RAVI change: type of the expression if known, else LUA_TNONE */
} expdesc;





The code is somewhat hard to follow as the expdesc objects go through various states and are also reused when needed.

As the parser generates code while parsing it needs to go back and patch the generated instructions when it has more information. For example when a function call is parsed the parser assumes that only 1 value is expected to be returned - but later this is patched when more information is available. The most common example is when the register where the value will be stored (operand A) is not known - in this case the parser later on updates this operand in the instruction. I believe jump statements have similar mechanics - however I have not yet gone through the details of these instructions.


Handling of Stack during parsing

Functions have a register window on the stack.
The stack is represented in LexState->dyd.actvar (Dyndata)
structure (see llex.h). The register window of the function
starts from LexState->dyd.actvar.arr[firstlocal].

The ‘active’ local variables
of the function extend up to LexState->dyd.actvar.arr[nactvar-1]. Note that
when parsing a local declaration statement the nactvar is adjusted at the end of
the statement so that during parsing of the statement the nactvar
covers locals up to the start of the statement. This means that
local variables come into scope (become ‘active’) after the local statement ends.
However, if the local statement defines a function then the variable becomes ‘active’
before the function body is parsed.

A tricky thing to note is that while nactvar is adjusted at the end of the
statement - the ‘stack’ as represented by LexState->dyd.actvar.arr is extended to the required
size as the local variables are created by new_localvar().

When a function is the topmost function being parsed, the
registers between LexState->dyd.actvar.arr[nactvar] and LexState->dyd.actvar.arr[freereg-1]
are used by the parser for evaluating expressions - i.e. these are part of the
local registers available to the function

Note that function parameters are handled as locals.

Example of what all this mean.  Let’s say we are parsing following chunk of code:

function testfunc()
  -- at this stage 'nactvar' is 0 (no active variables)
  -- 'firstlocal' is set to current top of the variables stack
  -- LexState->dyd.actvar.n (i.e. excluding registers used for expression evaluation)
  -- LexState->dyd.actvar.n = 0 at this stage
  local function tryme()
    -- Since we are inside the local statement and 'tryme' is a local variable,
    -- the LexState->dyd.actvar.n goes to 1. As this is a function definition
    -- the local variable declaration is deemed to end here, so 'nactvar' for testfunc()
    -- is gets set to 1 (making 'tryme' an active variable).
    -- A new FuncState is created for 'tryme' function.
    -- The new tryme() FunState has 'firstlocal' set to value of LexState->dyd.actvar.n, i.e., 1
    local i,j = 5,6
    -- After 'i' is parsed, LexState->dyd.actvar.n = 2, but 'nactvar' = 0 for tryme()
    -- After 'j' is parsed, LexState->dyd.actvar.n = 3, but 'nactvar' = 0 for tryme()
    -- Only after the full statement above is parsed, 'nactvar' for tryme() is set to '2'
    -- This is done by adjustlocalvar().
    return i,j
  end
  -- Here two things happen
  -- Firstly the FuncState for tryme() is popped so that
  -- FuncState for testfunc() is now at top
  -- As part of this popping, leaveblock() calls removevars()
  -- to adjust the LexState->dyd.actvar.n down to 1 where it was
  -- at before parsing the tryme() function body.
  local i, j = tryme()
  -- After 'i' is parsed, LexState->dyd.actvar.n = 2, but 'nactvar' = 1 still
  -- After 'j' is parsed, LexState->dyd.actvar.n = 3, but 'nactvar' = 1 still
  -- At the end of the statement 'nactvar' is set to 3.
  return i+j
end
-- As before the leaveblock() calls removevars() which resets
-- LexState->dyd.actvar.n to 0 (the value before testfunc() was parsed)





A rough debug trace of the above gives:

function testfunc()
  -- open_func -> fs->firstlocal set to 0 (ls->dyd->actvar.n), and fs->nactvar reset to 0
  local function tryme()
    -- new_localvar -> registering var tryme fs->f->locvars[0] at ls->dyd->actvar.arr[0]
    -- new_localvar -> ls->dyd->actvar.n set to 1
    -- adjustlocalvars -> set fs->nactvar to 1
    -- open_func -> fs->firstlocal set to 1 (ls->dyd->actvar.n), and fs->nactvar reset to 0
    -- adjustlocalvars -> set fs->nactvar to 0 (no parameters)
    local i,j = 5,6
    -- new_localvar -> registering var i fs->f->locvars[0] at ls->dyd->actvar.arr[1]
    -- new_localvar -> ls->dyd->actvar.n set to 2
    -- new_localvar -> registering var j fs->f->locvars[1] at ls->dyd->actvar.arr[2]
    -- new_localvar -> ls->dyd->actvar.n set to 3
    -- adjustlocalvars -> set fs->nactvar to 2
    return i,j
    -- removevars -> reset fs->nactvar to 0
  end
  local i, j = tryme()
  -- new_localvar -> registering var i fs->f->locvars[1] at ls->dyd->actvar.arr[1]
  -- new_localvar -> ls->dyd->actvar.n set to 2
  -- new_localvar -> registering var j fs->f->locvars[2] at ls->dyd->actvar.arr[2]
  -- new_localvar -> ls->dyd->actvar.n set to 3
  -- adjustlocalvars -> set fs->nactvar to 3
  return i+j
  -- removevars -> reset fs->nactvar to 0
end








Notes on Parser by Sven Olsen


“discharging” expressions

“discharging” takes an expression of arbitrary type, and
converts it to one having particular properties.

the lowest-level discharge function is discharge2vars (),
which converts an expression into one of the two “result”
types; either a VNONRELOC or a VRELOCABLE.

if the variable in question is a VLOCAL, discharge2vars
will simply change the stored type to VNONRELOC.

much of lcode.c assumes that the it will be working with
discharged expressions.  in particular, it assumes that if
it encounters a VNONRELOC expression, and e->info < nactvar,
then the register referenced is a local, and therefore
shouldn’t be implicitly freed after use.




local variables

however, the relationship between nactvar and locals is
actually somewhat more complex – as each local variable
appearing in the code has a collection of data attached to
it, data that’s being accumulated and changed as the lexer
moves through the source.

fs->nlocvars stores the total number of named locals inside
the function – recall that different local variables are
allowed to overlap the same register, depending on which
are in-scope at any particular time.

the list of locals that are active at any given time is
stored in ls->dyd – a vector of stack references that grows
or shrinks as locals enter or leave scope.

managing the lifetime of local variables involves several
steps.  first, new locals are declared using new_localvar.
this sets their names and creates new  references in dyd.
soon thereafter, the parser is expected  to call
adjustlocalvar(ls,nvars), with nvars set to the number of
new locals.  adjustlocalvar increments fs->nactvar by nvars,
and marks the startpc’s of all the locals.

note that neither new_localvar or adjustlocalvar ensures
that anything is actually inside the registers being labeled
as locals.  failing to initialize said registers is an easy
way to write memory access bugs (peter’s original table
unpack patch includes one such).

after adjustlocalvar is called, luaK_exp2nextreg() will no
longer place new data inside the local’s registers – as
they’re no longer part of the temporary register stack.

when the time comes to deactivate locals, that’s done via
removevars(tolevel).  tolevel is assumed to contain nactvars
as it existed prior to entering the previous block.  thus,
the number of locals to remove should simply be
fs->nactvar-tolevel.  removevars(tolevel) will decrement
nactvars down to tolevel. it also shrinks the dyd vector,
and marks the endpc’s of all the removed locals.

except in between new_localvar and adjustlocalvar calls, i
believe that:

fs->ls->dyd->actvar.n - fs->firstlocal == fs->nactvar








temporary registers

freereg is used to manage the temporary register stack –
registers between [fs->nactvars,fs->freereg) are assumed to
belong to expressions currently being stored by the parser.

fs->freereg is incremented explicitly by calls to
luaK_reserveregs, or implicitly, inside luaK_exp2nextreg.
it’s decremented whenever a freereg(r) is called on a
register in the temporary stack (i.e., a register for which
r >= fs->nactvar).

the temporary register stack is cleared when leaveblock() is
called, by setting fs->freereg=fs->nactvar.  it’s  also
partially cleared in other places – for example,  inside
the evaluation of table constructors.

note that freereg just pops the top of the stack if r does
not appear to be a local – thus it doesn’t necessarily,
free r. one of the important sanity checks that you’ll get
by enabling lua_assert() checks that the register being
freed is also the top of the stack.

when writing parser patches, it’s your job to ensure  that
the registers that you’ve reserved are freed in an
appropriate order.

when a VINDEXED expression is discharged,  freereg() will be
called on both the table and the index register.  otherwise,
freereg is only called from freeexp() – which gets
triggered anytime an expression has been “used up”;
typically, anytime it’s been transformed into another
expression.






State Transitions

The state transitions for expdesc structure are as follows:








	expkind

	Description

	State Transitions





	VVOID

	This is used to indicate the lack of
value - e.g. function call with no
arguments, the rhs of local variable
declaration, and empty table
constructor

	None



	VRELOCABLE

	This is used to indicate that the
result from expression needs to be set
to a register. The operation that
created the expression is referenced
by the u.info parameter which
contains an offset into the code
of the function that is being compiled
So you can access this instruction by
calling
getcode(FuncState *, expdesc *)
The operations that result in a
VRELOCABLE object include
OP_CLOSURE OP_NEWTABLE
OP_GETUPVAL OP_GETTABUP
OP_GETTABLE OP_NOT and code
for binary and unary expressions that
produce values (arithmetic operations,
bitwise operations, concat, length).
The associated code instruction has
operand A unset (defaulted to 0) -
this the VRELOCABLE expression
must be later transitioned to
VNONRELOC state when the register
is set.

	In terms of transitions the
following expression kinds convert
to VRELOCABLE: VVARARG
VUPVAL (OP_GETUPVAL
VINDEXED (OP_GETTABUP or
OP_GETTABLE And following
expression states can result from
a VRELOCABLE expression:
VNONRELOC which
means that the result register in
the instruction operand A has been
set.



	VNONRELOC

	This state indicates that the output
or result register has been set. The
register is referenced in u.info
parameter. Once set the register
cannot be changed for this expression;
subsequent operations involving this
expression can refer to the register
to obtain the result value.

	As for transitions, the
VNONELOC state results from
VRELOCABLE after a register
is assigned to the operation
referenced by VRELOCABLE.
Also a VCALL expression
transitions to VNONRELOC
expression - u.info is set to
the operand A in the
call instruction. VLOCAL
VNIL VTRUE VFALSE
VK VKINT VKFLT and
VJMP expressions transition to
VNONRELOC.



	VLOCAL

	This is used when referencing local
variables. u.info is set to the
local variable’s register.

	The VLOCAL expression may
transition to VNONRELOC
although this doesn’t change the
u.info parameter.



	VCALL

	This results from a function call. The
OP_CALL instruction is referenced
by u.info parameter and may be
retrieved by calling
getcode(FuncState *, expdesc *).
The OP_CALL instruction gets
changed to OP_TAILCALL if the
function call expression is the value
of a RETURN statement.
The instructions operand C
gets updated when it is known the
number of expected results from the
function call.

	In terms of transitions, the
VCALL expression transitions
to VNONRELOC When this happens
the result register in
VNONRELOC (u.info is set
to the operand A in the
OP_CALL instruction.



	VINDEXED

	This expression represents a table
access. The u.ind.t parameter is
set to the register or upvalue? that
holds the table, the u.ind.idx is
set to the register or constant that
is the key, and u.ind.vt is either
VLOCAL or VUPVAL

	The VINDEXED expression
transitions to VRELOCABLE
When this happens the u.info
is set to the offset of the code
that contains the opcode
OP_GETTABUP if u.ind.vt
was VUPVAL or OP_GETTABLE
if u.ind.vt was VLOCAL









Examples of Parsing


example 1

We investigate the simple code chunk below:

local i,j; j = i*j+i





The compiler allocates following local registers, constants and upvalues:

constants (0) for 0000007428FED950:
locals (2) for 0000007428FED950:
      0       i       2       5
      1       j       2       5
upvalues (1) for 0000007428FED950:
      0       _ENV    1       0





Some of the parse steps are highlighted below.

Reference to variable i which is located in register 0. The p here is the pointer address of expdesc object so you can see how the same object evolves:

{p=0000007428E1F170, k=VLOCAL, register=0}





Reference to variable j located in register 1:

{p=0000007428E1F078, k=VLOCAL, register=1}





Now the MUL operator is applied so we get following. Note that the previously VLOCAL expression for i is now VNONRELOC:

{p=0000007428E1F170, k=VNONRELOC, register=0} MUL {p=0000007428E1F078, k=VLOCAL, register=1}





Next code gets generated for the MUL operator and we can see that first expression is replaced by a VRELOCABLE expression. Note also that the MUL operator is encoded in the VRELOCABLE expression as instruction 1 which is decoded below:

{p=0000007428E1F170, k=VRELOCABLE, pc=1, instruction=(MUL A=0 B=0 C=1)}





Now a reference to i is again required:

{p=0000007428E1F078, k=VLOCAL, register=0}





And the ADD operator must be applied to the result of the MUL operator and above. Notice that a temporary register 2 has been allocated to hold the result of the MUL operator, and also notice that as a result the VRELOCABLE has now changed to VNONRELOC:

{p=0000007428E1F170, k=VNONRELOC, register=2} ADD {p=0000007428E1F078, k=VLOCAL, register=0}





Next the result of the ADD expression gets encoded similarly to MUL earlier. As this is a VRELOCABLE expression it will be later on assigned a result register:

{p=0000007428E1F170, k=VRELOCABLE, pc=2, instruction=(ADD A=0 B=2 C=0)}





Eventually above gets assigned a result register and becomes VNONRELOC (not shown here) - and so the final generated code looks like below:

main <(string):0,0> (4 instructions at 0000007428FED950)
0+ params, 3 slots, 1 upvalue, 2 locals, 0 constants, 0 functions
      1       [1]     LOADNIL         0 1
      2       [1]     MUL             2 0 1
      3       [1]     ADD             1 2 0
      4       [1]     RETURN          0 1












Links


	(MP1) Lua Code Reading Order [http://www.reddit.com/comments/63hth/ask_reddit_which_oss_codebases_out_there_are_so/c02pxbpC]


	(RL1) Registers allocation and GC [http://lua-users.org/lists/lua-l/2013-02/msg00075.html]


	(MP2) LuaJIT interpreter optmisations [http://www.reddit.com/r/programming/comments/badl2/luajit_2_beta_3_is_out_support_both_x32_x64/c0lrus0]


	(MP3) Performance of Switch Based Dispatch [http://lua-users.org/lists/lua-l/2011-02/msg00742.html]


	(MP4) Challenges for static compilation of dynamic langauges [http://lua-users.org/lists/lua-l/2009-06/msg00071.html]


	(MP5) VM Internals (bytecode format) [http://lua-users.org/lists/lua-l/2008-07/msg00651.html]


	(RL2) Upvalues in closures [http://lua-users.org/lists/lua-l/2008-09/msg00076.html]


	(LHF) Lua bytecode dump format [http://lua-users.org/lists/lua-l/2006-06/msg00205.html]


	(MP6) Register VM and sliding stack window [http://lua-users.org/lists/lua-l/2005-01/msg00628.html]


	(SO1) Sven Olsen’s notes on registers [http://lua-users.org/files/wiki_insecure/power_patches/5.2/svenshacks-5.2.2.patch] from Sven Olsen’s Lua Users Wiki page [http://lua-users.org/wiki/SvenOlsen]


	(KHM) No Frills Introduction to Lua 5.1 VM Instructions [http://luaforge.net/docman/83/98/ANoFrillsIntroToLua51VMInstructions.pdf]


	(MP7) LuaJIT Roadmap 2008 [http://lua-users.org/lists/lua-l/2008-02/msg00051.html]


	(MP8) LuaJIT Roadmap 2011 [http://lua-users.org/lists/lua-l/2011-01/msg01238.html]










          

      

      

    

  

    
      
          
            
  
Ravi Parsing and ByteCode Implementation Details

This document covers the enhancements to the Lua parser and byte-code generator.
The Ravi JIT implementation is described elsewhere.


Introduction

Since the reason for introducing optional static typing is to enhance performance primarily - not all types benefit from this capability. In fact it is quite hard to extend this to generic recursive structures such as tables without encurring significant overhead. For instance - even to represent a recursive type in the parser will require dynamic memory allocation and add great overhead to the parser.

From a performance point of view the only types that seem worth specializing are:


	integer (64-bit int)


	number (double)


	array of integers


	array of numbers


	table







Implementation Strategy

I want to build on existing Lua types rather than introducing completely new types to the Lua system. I quite like the minimalist nature of Lua. However, to make the execution efficient I am adding new type specific opcodes and enhancing the Lua parser/code generator to encode these opcodes only when types are known. The new opcodes will execute more efficiently as they will not need to perform type checks. Morever, type specific instructions will lend themselves to more efficient JIT compilation.

I am adding new opcodes that cover arithmetic operations, array operations, variable assignments, etc..




Modifications to Lua Bytecode structure

An immediate issue is that the Lua bytecode structure has a 6-bit opcode which is insufficient to hold the various opcodes that I will need. Simply extending the size of this is problematic as then it reduces the space available to the operands A B and C. Furthermore the way Lua bytecodes work means that B and C operands must be 1-bit larger than A - as the extra bit is used to flag whether the operand refers to a constant or a register. (Thanks to Dirk Laurie for pointing this out).

I am amending the bit mapping in the 32-bit instruction to allow 9-bits for the byte-code, 7-bits for operand A, and 8-bits for operands B and C. This means that some of the Lua limits (maximum number of variables in a function, etc.) have to be revised to be lower than the default.




New OpCodes

The new instructions are specialised for types, and also for register/versus constant. So for example OP_RAVI_ADDFI means add number and integer. And OP_RAVI_ADDFF means add number and number. The existing Lua opcodes that these are based on define which operands are used.

Example:

local i=0; i=i+1





Above standard Lua code compiles to:

[0] LOADK A=0 Bx=-1
[1] ADD A=0 B=0 C=-2
[2] RETURN A=0 B=1





We add type info using Ravi extensions:

local i:integer=0; i=i+1





Now the code compiles to:

[0] LOADK A=0 Bx=-1
[1] ADDII A=0 B=0 C=-2
[2] RETURN A=0 B=1





Above uses type specialised opcode OP_RAVI_ADDII.




Type Information

The basic first step is to add type information to Lua.

As the parser progresses it creates a vector of LocVar for each function containing a list of local variables. I have enhanced LocVar structure in lobject.h to hold type information.

/* Following are the types we will use
** use in parsing. The rationale for types is
** performance - as of now these are the only types that
** we care about from a performance point of view - if any
** other types appear then they are all treated as ANY
**/
typedef enum {
  RAVI_TANY = -1,      /* Lua dynamic type */
  RAVI_TNUMINT,   /* integer number */
  RAVI_TNUMFLT,   /* floating point number */
  RAVI_TARRAYINT, /* array of ints */
  RAVI_TARRAYFLT,  /* array of doubles */
  RAVI_TFUNCTION,
  RAVI_TTABLE,
  RAVI_TSTRING,
  RAVI_TNIL,
  RAVI_TBOOLEAN
} ravitype_t;

/*
** Description of a local variable for function prototypes
** (used for debug information)
*/
typedef struct LocVar {
  TString *varname;
  int startpc;  /* first point where variable is active */
  int endpc;    /* first point where variable is dead */
  ravitype_t ravi_type; /* RAVI type of the variable - RAVI_TANY if unknown */
} LocVar;





The expdesc structure is used by the parser to hold nodes in the expression tree. I have enhanced the expdesc structure to hold the type of an expression.

typedef struct expdesc {
  expkind k;
  union {
    struct {  /* for indexed variables (VINDEXED) */
      short idx;  /* index (R/K) */
      lu_byte t;  /* table (register or upvalue) */
      lu_byte vt;  /* whether 't' is register (VLOCAL) or upvalue (VUPVAL) */
      ravitype_t key_type; /* key type */
    } ind;
    int info;  /* for generic use */
    lua_Number nval;  /* for VKFLT */
    lua_Integer ival;    /* for VKINT */
  } u;
  int t;  /* patch list of 'exit when true' */
  int f;  /* patch list of 'exit when false' */
  ravitype_t ravi_type; /* RAVI change: type of the expression if known, else RAVI_TANY */
} expdesc;





Note the addition of type information in two places. Firstly at the expdesc level which identifies the type of the expdesc. Secondly in the ind structure - the key_type is used to track the type of the key that will be used to index into a table.

The table structure has been enhanced to hold additional information for array usage.

typedef enum RaviArrayModifer {
  RAVI_ARRAY_SLICE = 1,
  RAVI_ARRAY_FIXEDSIZE = 2
} RaviArrayModifier;

typedef struct RaviArray {
  char *data;
  unsigned int len; /* RAVI len specialization */
  unsigned int size; /* amount of memory allocated */
  lu_byte array_type; /* RAVI specialization */
  lu_byte array_modifier; /* Flags that affect how the array is handled */
} RaviArray;

typedef struct Table {
  CommonHeader;
  lu_byte flags;  /* 1<<p means tagmethod(p) is not present */
  lu_byte lsizenode;  /* log2 of size of 'node' array */
  unsigned int sizearray;  /* size of 'array' array */
  TValue *array;  /* array part */
  Node *node;
  Node *lastfree;  /* any free position is before this position */
  struct Table *metatable;
  GCObject *gclist;
  RaviArray ravi_array;
} Table;








Parser Enhancements

The parser needs to be enhanced to generate type specific instructions at various points.


Local Variable Declarations

First enhancement needed is when local variable declarations are parsed. We need to allow the type to be defined for each variable and ensure that any assignments are type-checked. This is somewhat complex process, due to the fact that assignments can be expressions involving function calls. The last function call is treated as a variable assignment - i.e. all trailing variables are assumed to be assigned values from the function call - if not the variables are set to nil by default.

The entry point for parsing a local statement is localstat() in lparser.c. This function has been enhanced to parse the type annotations supported by Ravi. The modified function is shown below.

/* Parse
 *   name : type
 *   where type is 'integer', 'integer[]',
 *                 'number', 'number[]'
 */
static ravitype_t declare_localvar(LexState *ls) {
  /* RAVI change - add type */
  TString *name = str_checkname(ls);
  /* assume a dynamic type */
  ravitype_t tt = RAVI_TANY;
  /* if the variable name is followed by a colon then we have a type
   * specifier
   */
  if (testnext(ls, ':')) {
    TString *typename = str_checkname(ls); /* we expect a type name */
    const char *str = getaddrstr(typename);
    /* following is not very nice but easy as
     * the lexer doesn't need to be changed
     */
    if (strcmp(str, "integer") == 0)
      tt = RAVI_TNUMINT;
    else if (strcmp(str, "number") == 0)
      tt = RAVI_TNUMFLT;
    if (tt == RAVI_TNUMFLT || tt == RAVI_TNUMINT) {
      /* if we see [] then it is an array type */
      if (testnext(ls, '[')) {
        checknext(ls, ']');
        tt = (tt == RAVI_TNUMFLT) ? RAVI_TARRAYFLT : RAVI_TARRAYINT;
      }
    }
  }
  new_localvar(ls, name, tt);
  return tt;
}

/* parse a local variable declaration statement - called from statement() */
static void localstat (LexState *ls) {
  /* stat -> LOCAL NAME {',' NAME} ['=' explist] */
  int nvars = 0;
  int nexps;
  expdesc e;
  e.ravi_type = RAVI_TANY;
  /* RAVI while declaring locals we need to gather the types
   * so that we can check any assignments later on.
   * TODO we may be able to use register_typeinfo() here
   * instead.
   */
  int vars[MAXVARS] = { 0 };
  do {
    /* RAVI changes start */
    /* local name : type = value */
    vars[nvars] = declare_localvar(ls);
    /* RAVI changes end */
    nvars++;
  } while (testnext(ls, ','));
  if (testnext(ls, '='))
    nexps = localvar_explist(ls, &e, vars, nvars);
  else {
    e.k = VVOID;
    nexps = 0;
  }
  localvar_adjust_assign(ls, nvars, nexps, &e);
  adjustlocalvars(ls, nvars);
}





The do-while loop is responsible for parsing the variable names and the type annotations. As each variable name is parsed we detect if there is a type annotation, if and if present the type is recorded in the array vars.

Parameter lists may have static type annotations as well, so when parsing parameters we again need to invoke declare_localvar().

static void parlist (LexState *ls) {
  /* parlist -> [ param { ',' param } ] */
  FuncState *fs = ls->fs;
  Proto *f = fs->f;
  int nparams = 0;
  f->is_vararg = 0;
  if (ls->t.token != ')') {  /* is 'parlist' not empty? */
    do {
      switch (ls->t.token) {
        case TK_NAME: {  /* param -> NAME */
          /* RAVI change - add type */
          declare_localvar(ls);
          nparams++;
          break;
        }
        case TK_DOTS: {  /* param -> '...' */
          luaX_next(ls);
          f->is_vararg = 1;
          break;
        }
        default: luaX_syntaxerror(ls, "<name> or '...' expected");
      }
    } while (!f->is_vararg && testnext(ls, ','));
  }
  adjustlocalvars(ls, nparams);
  f->numparams = cast_byte(fs->nactvar);
  luaK_reserveregs(fs, fs->nactvar);  /* reserve register for parameters */
  for (int i = 0; i < f->numparams; i++) {
    ravitype_t tt = raviY_get_register_typeinfo(fs, i);
    DEBUG_VARS(raviY_printf(fs, "Parameter [%d] = %v\n", i + 1, getlocvar(fs, i)));
    /* do we need to convert ? */
    if (tt == RAVI_TNUMFLT || tt == RAVI_TNUMINT) {
      /* code an instruction to convert in place */
      luaK_codeABC(ls->fs, tt == RAVI_TNUMFLT ? OP_RAVI_TOFLT : OP_RAVI_TOINT, i, 0, 0);
    }
    else if (tt == RAVI_TARRAYFLT || tt == RAVI_TARRAYINT) {
      /* code an instruction to convert in place */
      luaK_codeABC(ls->fs, tt == RAVI_TARRAYFLT ? OP_RAVI_TOARRAYF : OP_RAVI_TOARRAYI, i, 0, 0);
    }
  }
}





Additionally for parameters that are decorated with static types we need to introduce new instructions to coerce the types at run time. That is what is happening in the for loop at the end.

The declare_localvar() function passes the type of the variable to new_localvar() which records this in the LocVar structure associated with the variable.

static int registerlocalvar (LexState *ls, TString *varname, int ravi_type) {
  FuncState *fs = ls->fs;
  Proto *f = fs->f;
  int oldsize = f->sizelocvars;
  luaM_growvector(ls->L, f->locvars, fs->nlocvars, f->sizelocvars,
                LocVar, SHRT_MAX, "local variables");
  while (oldsize < f->sizelocvars) {
    /* RAVI change initialize */
    f->locvars[oldsize].startpc = -1;
    f->locvars[oldsize].endpc = -1;
    f->locvars[oldsize].ravi_type = RAVI_TANY;
    f->locvars[oldsize++].varname = NULL;
  }
  f->locvars[fs->nlocvars].varname = varname;
  f->locvars[fs->nlocvars].ravi_type = ravi_type;
  luaC_objbarrier(ls->L, f, varname);
  return fs->nlocvars++;
}

/* create a new local variable in function scope, and set the
 * variable type (RAVI - added type tt) */
static void new_localvar (LexState *ls, TString *name, ravitype_t tt) {
  FuncState *fs = ls->fs;
  Dyndata *dyd = ls->dyd;
  /* register variable and get its index */
  /* RAVI change - record type info for local variable */
  int i = registerlocalvar(ls, name, tt);
  checklimit(fs, dyd->actvar.n + 1 - fs->firstlocal,
                MAXVARS, "local variables");
  luaM_growvector(ls->L, dyd->actvar.arr, dyd->actvar.n + 1,
                dyd->actvar.size, Vardesc, MAX_INT, "local variables");
  /* variable will be placed at stack position dyd->actvar.n */
  dyd->actvar.arr[dyd->actvar.n].idx = cast(short, i);
  DEBUG_VARS(raviY_printf(fs, "new_localvar -> registering %v fs->f->locvars[%d] at ls->dyd->actvar.arr[%d]\n", &fs->f->locvars[i], i, dyd->actvar.n));
  dyd->actvar.n++;
  DEBUG_VARS(raviY_printf(fs, "new_localvar -> ls->dyd->actvar.n set to %d\n", dyd->actvar.n));
}





The next bit of change is how the expressions are handled following the = symbol. The previously built vars array is passed to a modified version of explist() called localvar_explist(). This handles the parsing of expressions and then ensuring that each expression matches the type of the variable where known. The localvar_explist() function is shown next.

static int localvar_explist(LexState *ls, expdesc *v, int *vars, int nvars) {
  /* explist -> expr { ',' expr } */
  int n = 1;  /* at least one expression */
  expr(ls, v);
#if RAVI_ENABLED
  ravi_typecheck(ls, v, vars, nvars, 0);
#endif
  while (testnext(ls, ',')) {
    luaK_exp2nextreg(ls->fs, v);
    expr(ls, v);
#if RAVI_ENABLED
    ravi_typecheck(ls, v, vars, nvars, n);
#endif
    n++;
  }
  return n;
}





The main changes compared to explist() are the calls to ravi_typecheck(). Note that the array vars is passed to the ravi_typecheck() function along with the current variable index in n. The ravi_typecheck() function is reproduced below.

static void ravi_typecheck(LexState *ls, expdesc *v, int *vars, int nvars, int n)
{
  if (n < nvars && vars[n] != RAVI_TANY && v->ravi_type != vars[n]) {
    if (v->ravi_type != vars[n] &&
        (vars[n] == RAVI_TARRAYFLT || vars[n] == RAVI_TARRAYINT) &&
        v->k == VNONRELOC) {
      /* as the bytecode for generating a table is already
       * emitted by this stage we have to amend the generated byte code
       * - not sure if there is a better approach.
       * We look for the last bytecode that is OP_NEWTABLE
       * and that has the same destination
       * register as v->u.info which is our variable
       * local a:integer[] = { 1 }
       *                     ^ We are just past this and
       *                       about to assign to a
       */
      int i = ls->fs->pc - 1;
      for (; i >= 0; i--) {
        Instruction *pc = &ls->fs->f->code[i];
        OpCode op = GET_OPCODE(*pc);
        int reg;
        if (op != OP_NEWTABLE)
          continue;
        reg = GETARG_A(*pc);
        if (reg != v->u.info)
          continue;
        op = (vars[n] == RAVI_TARRAYINT) ? OP_RAVI_NEWARRAYI : OP_RAVI_NEWARRAYF;
        SET_OPCODE(*pc, op); /* modify opcode */
        DEBUG_CODEGEN(raviY_printf(ls->fs, "[%d]* %o ; modify opcode\n", i, *pc));
        break;
      }
      if (i < 0)
        luaX_syntaxerror(ls, "expecting array initializer");
    }
    /* if we are calling a function then convert return types */
    else if (v->ravi_type != vars[n] &&
            (vars[n] == RAVI_TNUMFLT || vars[n] == RAVI_TNUMINT) &&
            v->k == VCALL) {
      /* For local variable declarations that call functions e.g.
       * local i = func()
       * Lua ensures that the function returns values
       * to register assigned to variable i and above so that no
       * separate OP_MOVE instruction is necessary. So that means that
       * we need to coerce the return values in situ.
       */
      /* Obtain the instruction for OP_CALL */
      Instruction *pc = &getcode(ls->fs, v);
      lua_assert(GET_OPCODE(*pc) == OP_CALL);
      int a = GETARG_A(*pc); /* function return values
                                will be placed from register pointed
                                by A and upwards */
      int nrets = GETARG_C(*pc) - 1; /* operand C contains
                                        number of return values expected  */
      /* Note that at this stage nrets is always 1
       * - as Lua patches in the this value for the last
       * function call in a variable declaration statement
       * in adjust_assign and localvar_adjust_assign */
      /* all return values that are going to be assigned
         to typed local vars must be converted to the correct type */
      int i;
      for (i = n; i < (n+nrets); i++)
        /* do we need to convert ? */
        if ((vars[i] == RAVI_TNUMFLT || vars[i] == RAVI_TNUMINT))
          /* code an instruction to convert in place */
          luaK_codeABC(ls->fs,
                       vars[i] == RAVI_TNUMFLT ?
                                  OP_RAVI_TOFLT : OP_RAVI_TOINT,
                       a+(i-n), 0, 0);
        else if ((vars[i] == RAVI_TARRAYFLT || vars[i] == RAVI_TARRAYINT))
          /* code an instruction to convert in place */
          luaK_codeABC(ls->fs,
                       vars[i] == RAVI_TARRAYFLT ?
                                  OP_RAVI_TOARRAYF : OP_RAVI_TOARRAYI,
                       a + (i - n), 0, 0);
    }
    else if ((vars[n] == RAVI_TNUMFLT || vars[n] == RAVI_TNUMINT) &&
             v->k == VINDEXED) {
      if (vars[n] == RAVI_TNUMFLT && v->ravi_type != RAVI_TARRAYFLT ||
        vars[n] == RAVI_TNUMINT && v->ravi_type != RAVI_TARRAYINT)
        luaX_syntaxerror(ls, "Invalid local assignment");
    }
    else
      luaX_syntaxerror(ls, "Invalid local assignment");
  }
}





There are several parts to this function.

The simple case is when the type of the expression matches the variable.

Secondly if the expression is a table initializer then we need to generate specialized opcodes if the target variable is supposed to be integer[] or number[]. The specialized opcode sets up some information in the Table structure. The problem is that this requires us to modify OP_NEWTABLE instruction which has already been emitted. So we scan the generated instructions to find the last OP_NEWTABLE instruction that assigns to the register associated with the target variable.

Next bit of special handling is for function calls. If the assignment makes a function call then we perform type coercion on return values where these values are being assigned to variables with defined types. This means that if the target variable is integer or number we issue opcodes TOINT and TOFLT respectively. If the target variable is integer[] or number[] then we issue TOARRAYI and TOARRAYF respectively. These opcodes ensure that the values are of required type or can be cast to the required type.

Note that any left over variables that are not assigned values, are set to 0 if they are of integer or number type, else they are set to nil as per Lua’s default behavior. This is handled in localvar_adjust_assign() which is described later on.

Finally the last case is when the target variable is integer or number and the expression is a table / array access. In this case we check that the table is of required type.

The localvar_adjust_assign() function referred to above is shown below.

static void localvar_adjust_assign(LexState *ls, int nvars, int nexps, expdesc *e) {
  FuncState *fs = ls->fs;
  int extra = nvars - nexps;
  if (hasmultret(e->k)) {
    extra++;  /* includes call itself */
    if (extra < 0) extra = 0;
    /* following adjusts the C operand in the OP_CALL instruction */
    luaK_setreturns(fs, e, extra);  /* last exp. provides the difference */
#if RAVI_ENABLED
    /* Since we did not know how many return values to process in localvar_explist() we
    * need to add instructions for type coercions at this stage for any remaining
    * variables
    */
    ravi_coercetype(ls, e, extra);
#endif
    if (extra > 1) luaK_reserveregs(fs, extra - 1);
  }
  else {
    if (e->k != VVOID) luaK_exp2nextreg(fs, e);  /* close last expression */
    if (extra > 0) {
      int reg = fs->freereg;
      luaK_reserveregs(fs, extra);
      /* RAVI TODO for typed variables we should not set to nil? */
      luaK_nil(fs, reg, extra);
#if RAVI_ENABLED
      /* typed variables that are primitives cannot be set to nil so
       * we need to emit instructions to initialise them to default values
       */
      ravi_setzero(fs, reg, extra);
#endif
    }
  }
}





As mentioned before any variables left over in a local declaration that have not been assigned values must be set to default values appropriate for the type. In the case of trailing values returned by a function call we need to coerce the values to the required types. All this is done in the localvar_adjust_assign() function above.

Note that local declarations have a complication that until the declaration is complete the variable does not come in scope. So we have to be careful when we wish to map from a register to the local variable declaration as this mapping is only available after the variable is activated. Couple of helper routines are shown below.

/* translate from local register to local variable index
 */
static int register_to_locvar_index(FuncState *fs, int reg) {
  int idx;
  lua_assert(reg >= 0 && (fs->firstlocal + reg) < fs->ls->dyd->actvar.n);
  /* Get the LocVar associated with the register */
  idx = fs->ls->dyd->actvar.arr[fs->firstlocal + reg].idx;
  lua_assert(idx < fs->nlocvars);
  return idx;
}

/* get type of a register - if the register is not allocated
 * to an active local variable, then return RAVI_TANY else
 * return the type associated with the variable.
 * This is a RAVI function
 */
ravitype_t raviY_get_register_typeinfo(FuncState *fs, int reg) {
  int idx;
  LocVar *v;
  if (reg < 0 || reg >= fs->nactvar || (fs->firstlocal + reg) >= fs->ls->dyd->actvar.n)
    return RAVI_TANY;
  /* Get the LocVar associated with the register */
  idx = fs->ls->dyd->actvar.arr[fs->firstlocal + reg].idx;
  lua_assert(idx < fs->nlocvars);
  v = &fs->f->locvars[idx];
  /* Variable in scope so return the type if we know it */
  return v->ravi_type;
}





Note the use of register_to_localvar_index() in functions below.

/* Generate instructions for converting types
 * This is needed post a function call to handle
 * variable number of return values
 * n = number of return values to adjust
 */
static void ravi_coercetype(LexState *ls, expdesc *v, int n)
{
  if (v->k != VCALL || n <= 0) return;
  /* For local variable declarations that call functions e.g.
  * local i = func()
  * Lua ensures that the function returns values to register
  * assigned to variable and above so that no separate
  * OP_MOVE instruction is necessary. So that means that
  * we need to coerce the return values in situ.
  */
  /* Obtain the instruction for OP_CALL */
  Instruction *pc = &getcode(ls->fs, v);
  lua_assert(GET_OPCODE(*pc) == OP_CALL);
  int a = GETARG_A(*pc); /* function return values will be placed
                            from register pointed by A and upwards */
  /* all return values that are going to be assigned
   to typed local vars must be converted to the correct type */
  int i;
  for (i = a + 1; i < a + n; i++) {
    /* Since this is called when parsing local statements the
     * variable may not yet have a register assigned to it
     * so we can't use raviY_get_register_typeinfo()
     * here. Instead we need to check the variable definition - so we
     * first convert from local register to variable index.
     */
    int idx = register_to_locvar_index(ls->fs, i);
    /* get variable's type */
    ravitype_t ravi_type = ls->fs->f->locvars[idx].ravi_type;
    /* do we need to convert ? */
    if (ravi_type == RAVI_TNUMFLT || ravi_type == RAVI_TNUMINT)
      /* code an instruction to convert in place */
      luaK_codeABC(ls->fs, ravi_type == RAVI_TNUMFLT ?
                   OP_RAVI_TOFLT : OP_RAVI_TOINT, i, 0, 0);
    else if (ravi_type == RAVI_TARRAYINT || ravi_type == RAVI_TARRAYFLT)
      luaK_codeABC(ls->fs, ravi_type == RAVI_TARRAYINT ?
                   OP_RAVI_TOARRAYI : OP_RAVI_TOARRAYF, i, 0, 0);
  }
}

static void ravi_setzero(FuncState *fs, int from, int n) {
  int last = from + n - 1;  /* last register to set nil */
  int i;
  for (i = from; i <= last; i++) {
    /* Since this is called when parsing local statements
     * the variable may not yet have a register assigned to
     * it so we can't use raviY_get_register_typeinfo()
     * here. Instead we need to check the variable definition - so we
     * first convert from local register to variable index.
     */
    int idx = register_to_locvar_index(fs, i);
    /* get variable's type */
    ravitype_t ravi_type = fs->f->locvars[idx].ravi_type;
    /* do we need to convert ? */
    if (ravi_type == RAVI_TNUMFLT || ravi_type == RAVI_TNUMINT)
      /* code an instruction to convert in place */
      luaK_codeABC(fs, ravi_type == RAVI_TNUMFLT ?
         OP_RAVI_LOADFZ : OP_RAVI_LOADIZ, i, 0, 0);
  }
}








Assignments

Assignment statements have to be enhanced to perform similar type checks as for local declarations. Fortunately he assignment goes through the function luaK_storevar() in lcode.c. A modified version of this is shown below.

void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  switch (var->k) {
    case VLOCAL: {
      check_valid_store(fs, var, ex);
      freeexp(fs, ex);
      exp2reg(fs, ex, var->u.info);
      return;
    }
    case VUPVAL: {
      int e = luaK_exp2anyreg(fs, ex);
      luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
      break;
    }
    case VINDEXED: {
      OpCode op = (var->u.ind.vt == VLOCAL) ?
                     OP_SETTABLE : OP_SETTABUP;
      if (op == OP_SETTABLE) {
        /* table value set - if array access then use specialized versions */
        if (var->ravi_type == RAVI_TARRAYFLT &&
            var->u.ind.key_type == RAVI_TNUMINT)
          op = OP_RAVI_SETTABLE_AF;
        else if (var->ravi_type == RAVI_TARRAYINT &&
                 var->u.ind.key_type == RAVI_TNUMINT)
          op = OP_RAVI_SETTABLE_AI;
      }
      int e = luaK_exp2RK(fs, ex);
      luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
      break;
    }
    default: {
      lua_assert(0);  /* invalid var kind to store */
      break;
    }
  }
  freeexp(fs, ex);
}





Firstly note the call to check_valid_store() for a local variable assignment. The check_valid_store() function validates that the assignment is compatible.

Secondly if the assignment is to an indexed variable, i.e., table, then we need to generate special opcodes for arrays.




MOVE opcodes

Any MOVE instructions must be modified so that if the target is register that hosts a variable of known type then we need to generate special instructions that do a type conversion during the move. This is handled in discharge2reg() function which is reproduced below.

static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  luaK_dischargevars(fs, e);
  switch (e->k) {
    case VNIL: {
      luaK_nil(fs, reg, 1);
      break;
    }
    case VFALSE: case VTRUE: {
      luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
      break;
    }
    case VK: {
      luaK_codek(fs, reg, e->u.info);
      break;
    }
    case VKFLT: {
      luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
      break;
    }
    case VKINT: {
      luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
      break;
    }
    case VRELOCABLE: {
      Instruction *pc = &getcode(fs, e);
      SETARG_A(*pc, reg);
      DEBUG_EXPR(raviY_printf(fs, "discharge2reg (VRELOCABLE set arg A) %e\n", e));
      DEBUG_CODEGEN(raviY_printf(fs, "[%d]* %o ; set A to %d\n", e->u.info, *pc, reg));
      break;
    }
    case VNONRELOC: {
      if (reg != e->u.info) {
        /* code a MOVEI or MOVEF if the target register is a local typed variable */
        int ravi_type = raviY_get_register_typeinfo(fs, reg);
        switch (ravi_type) {
        case RAVI_TNUMINT:
          luaK_codeABC(fs, OP_RAVI_MOVEI, reg, e->u.info, 0);
          break;
        case RAVI_TNUMFLT:
          luaK_codeABC(fs, OP_RAVI_MOVEF, reg, e->u.info, 0);
          break;
        case RAVI_TARRAYINT:
          luaK_codeABC(fs, OP_RAVI_MOVEAI, reg, e->u.info, 0);
          break;
        case RAVI_TARRAYFLT:
          luaK_codeABC(fs, OP_RAVI_MOVEAF, reg, e->u.info, 0);
          break;
        default:
          luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
          break;
        }
      }
      break;
    }
    default: {
      lua_assert(e->k == VVOID || e->k == VJMP);
      return;  /* nothing to do... */
    }
  }
  e->u.info = reg;
  e->k = VNONRELOC;
}





Note the handling of VNONRELOC case.




Expression Parsing

The expression evaluation process must be modified so that type information is retained and flows through as the parser evaluates the expression. This involves ensuring that the type information is passed through as the parser modifies, reuses, creates new expdesc objects. Essentially this means keeping the ravi_type correct.

Additionally when arithmetic operations take place two things need to happen: a) specialized opcodes need to be emitted and b) the type of the resulting expression needs to be set.

static void codeexpval (FuncState *fs, OpCode op,
                      expdesc *e1, expdesc *e2, int line) {
  lua_assert(op >= OP_ADD);
  if (op <= OP_BNOT && constfolding(fs, getarithop(op), e1, e2))
    return;  /* result has been folded */
  else {
    int o1, o2;
    int isbinary = 1;
    /* move operands to registers (if needed) */
    if (op == OP_UNM || op == OP_BNOT || op == OP_LEN) {  /* unary op? */
      o2 = 0;  /* no second expression */
      o1 = luaK_exp2anyreg(fs, e1);  /* cannot operate on constants */
      isbinary = 0;
    }
    else {  /* regular case (binary operators) */
      o2 = luaK_exp2RK(fs, e2);  /* both operands are "RK" */
      o1 = luaK_exp2RK(fs, e1);
    }
    if (o1 > o2) {  /* free registers in proper order */
      freeexp(fs, e1);
      freeexp(fs, e2);
    }
    else {
      freeexp(fs, e2);
      freeexp(fs, e1);
    }
#if RAVI_ENABLED
    if (op == OP_ADD &&
      (e1->ravi_type == RAVI_TNUMFLT || e1->ravi_type == RAVI_TNUMINT) &&
      (e2->ravi_type == RAVI_TNUMFLT || e2->ravi_type == RAVI_TNUMINT))
      generate_binarithop(fs, e1, e2, o1, o2, 0);
    else if (op == OP_MUL &&
      (e1->ravi_type == RAVI_TNUMFLT || e1->ravi_type == RAVI_TNUMINT) &&
      (e2->ravi_type == RAVI_TNUMFLT || e2->ravi_type == RAVI_TNUMINT))
      generate_binarithop(fs, e1, e2, o1, o2, OP_RAVI_MULFF - OP_RAVI_ADDFF);

    /* todo optimize the SUB opcodes when constant is small */
    else if (op == OP_SUB &&
             e1->ravi_type == RAVI_TNUMFLT &&
             e2->ravi_type == RAVI_TNUMFLT) {
      e1->u.info = luaK_codeABC(fs, OP_RAVI_SUBFF, 0, o1, o2);
    }
    else if (op == OP_SUB &&
             e1->ravi_type == RAVI_TNUMFLT &&
             e2->ravi_type == RAVI_TNUMINT) {
      e1->u.info = luaK_codeABC(fs, OP_RAVI_SUBFI, 0, o1, o2);
    }
    /* code omitted here  .... */
    else {
#endif
      e1->u.info = luaK_codeABC(fs, op, 0, o1, o2);  /* generate opcode */
#if RAVI_ENABLED
    }
#endif
    e1->k = VRELOCABLE;  /* all those operations are relocable */
    if (isbinary) {
      if ((op == OP_ADD || op == OP_SUB || op == OP_MUL || op == OP_DIV)
        && e1->ravi_type == RAVI_TNUMFLT && e2->ravi_type == RAVI_TNUMFLT)
        e1->ravi_type = RAVI_TNUMFLT;
      else if ((op == OP_ADD || op == OP_SUB || op == OP_MUL || op == OP_DIV)
        && e1->ravi_type == RAVI_TNUMFLT && e2->ravi_type == RAVI_TNUMINT)
        e1->ravi_type = RAVI_TNUMFLT;
      else if ((op == OP_ADD || op == OP_SUB || op == OP_MUL || op == OP_DIV)
        && e1->ravi_type == RAVI_TNUMINT && e2->ravi_type == RAVI_TNUMFLT)
        e1->ravi_type = RAVI_TNUMFLT;
      else if ((op == OP_ADD || op == OP_SUB || op == OP_MUL)
        && e1->ravi_type == RAVI_TNUMINT && e2->ravi_type == RAVI_TNUMINT)
        e1->ravi_type = RAVI_TNUMINT;
      else if ((op == OP_DIV)
        && e1->ravi_type == RAVI_TNUMINT && e2->ravi_type == RAVI_TNUMINT)
        e1->ravi_type = RAVI_TNUMFLT;
      else
        e1->ravi_type = RAVI_TANY;
    }
    else {
      if (op == OP_LEN || op == OP_BNOT)
        e1->ravi_type = RAVI_TNUMINT;
    }
    luaK_fixline(fs, line);
  }
}





When expression reference indexed variables, i.e., tables, we need to emit specialized opcodes if the table is an array. This is done in luaK_dischargevars().

void luaK_dischargevars (FuncState *fs, expdesc *e) {
  switch (e->k) {
    case VLOCAL: {
      e->k = VNONRELOC;
      DEBUG_EXPR(raviY_printf(fs, "luaK_dischargevars (VLOCAL->VNONRELOC) %e\n", e));
      break;
    }
    case VUPVAL: {
      e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
      e->k = VRELOCABLE;
      DEBUG_EXPR(raviY_printf(fs, "luaK_dischargevars (VUPVAL->VRELOCABLE) %e\n", e));
      break;
    }
    case VINDEXED: {
      OpCode op = OP_GETTABUP;  /* assume 't' is in an upvalue */
      freereg(fs, e->u.ind.idx);
      if (e->u.ind.vt == VLOCAL) {  /* 't' is in a register? */
        freereg(fs, e->u.ind.t);
        /* table access - set specialized op codes if array types are detected */
        if (e->ravi_type == RAVI_TARRAYFLT &&
            e->u.ind.key_type == RAVI_TNUMINT)
          op = OP_RAVI_GETTABLE_AF;
        else if (e->ravi_type == RAVI_TARRAYINT &&
                 e->u.ind.key_type == RAVI_TNUMINT)
          op = OP_RAVI_GETTABLE_AI;
        else
          op = OP_GETTABLE;
        if (e->ravi_type == RAVI_TARRAYFLT || e->ravi_type == RAVI_TARRAYINT)
          /* set the type of resulting expression */
          e->ravi_type = e->ravi_type == RAVI_TARRAYFLT ?
                           RAVI_TNUMFLT : RAVI_TNUMINT;
      }
      e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
      e->k = VRELOCABLE;
      DEBUG_EXPR(raviY_printf(fs, "luaK_dischargevars (VINDEXED->VRELOCABLE) %e\n", e));
      break;
    }
    case VVARARG:
    case VCALL: {
      luaK_setoneret(fs, e);
      break;
    }
    default: break;  /* there is one value available (somewhere) */
  }
}








fornum statements

The Lua fornum statements create special variables. In order to allows the loop variable to be used in expressions within the loop body we need to set the types of these variables. This is handled in fornum() as shown below. Additional complexity is due to the fact that Ravi tries to detect when fornum loops use positive integer step and if this step is 1; specialized bytecodes are generated for these scenarios.

typedef struct Fornuminfo {
  ravitype_t type;
  int is_constant;
  int int_value;
} Fornuminfo;

/* parse the single expressions needed in numerical for loops
 * called by fornum()
 */
static int exp1 (LexState *ls, Fornuminfo *info) {
  /* Since the local variable in a fornum loop is local to the loop and does
   * not use any variable in outer scope we don't need to check its
   * type - also the loop is already optimised so no point trying to
   * optimise the iteration variable
   */
  expdesc e;
  int reg;
  e.ravi_type = RAVI_TANY;
  expr(ls, &e);
  DEBUG_EXPR(raviY_printf(ls->fs, "fornum exp -> %e\n", &e));
  info->is_constant = (e.k == VKINT);
  info->int_value = info->is_constant ? e.u.ival : 0;
  luaK_exp2nextreg(ls->fs, &e);
  lua_assert(e.k == VNONRELOC);
  reg = e.u.info;
  info->type = e.ravi_type;
  return reg;
}

/* parse a for loop body for both versions of the for loop
 * called by fornum(), forlist()
 */
static void forbody (LexState *ls, int base, int line, int nvars, int isnum, Fornuminfo *info) {
  /* forbody -> DO block */
  BlockCnt bl;
  OpCode forprep_inst = OP_FORPREP, forloop_inst = OP_FORLOOP;
  FuncState *fs = ls->fs;
  int prep, endfor;
  adjustlocalvars(ls, 3);  /* control variables */
  checknext(ls, TK_DO);
  if (isnum) {
    ls->fs->f->ravi_jit.jit_flags = 1;
    if (info && info->is_constant && info->int_value > 1) {
      forprep_inst = OP_RAVI_FORPREP_IP;
      forloop_inst = OP_RAVI_FORLOOP_IP;
    }
    else if (info && info->is_constant && info->int_value == 1) {
      forprep_inst = OP_RAVI_FORPREP_I1;
      forloop_inst = OP_RAVI_FORLOOP_I1;
    }
  }
  prep = isnum ? luaK_codeAsBx(fs, forprep_inst, base, NO_JUMP) : luaK_jump(fs);
  enterblock(fs, &bl, 0);  /* scope for declared variables */
  adjustlocalvars(ls, nvars);
  luaK_reserveregs(fs, nvars);
  block(ls);
  leaveblock(fs);  /* end of scope for declared variables */
  luaK_patchtohere(fs, prep);
  if (isnum)  /* numeric for? */
    endfor = luaK_codeAsBx(fs, forloop_inst, base, NO_JUMP);
  else {  /* generic for */
    luaK_codeABC(fs, OP_TFORCALL, base, 0, nvars);
    luaK_fixline(fs, line);
    endfor = luaK_codeAsBx(fs, OP_TFORLOOP, base + 2, NO_JUMP);
  }
  luaK_patchlist(fs, endfor, prep + 1);
  luaK_fixline(fs, line);
}

/* parse a numerical for loop, calls forbody()
 * called from forstat()
 */
static void fornum (LexState *ls, TString *varname, int line) {
  /* fornum -> NAME = exp1,exp1[,exp1] forbody */
  FuncState *fs = ls->fs;
  int base = fs->freereg;
  LocVar *vidx, *vlimit, *vstep, *vvar;
  new_localvarliteral(ls, "(for index)");
  new_localvarliteral(ls, "(for limit)");
  new_localvarliteral(ls, "(for step)");
  new_localvar(ls, varname, RAVI_TANY);
  /* The fornum sets up its own variables as above.
     These are expected to hold numeric values - but from Ravi's
     point of view we need to know if the variable is an integer or
     double. So we need to check if this can be determined from the
     fornum expressions. If we can then we will set the
     fornum variables to the type we discover.
  */
  vidx = &fs->f->locvars[fs->nlocvars - 4]; /* index variable - not yet active so get it from locvars*/
  vlimit = &fs->f->locvars[fs->nlocvars - 3]; /* index variable - not yet active so get it from locvars*/
  vstep = &fs->f->locvars[fs->nlocvars - 2]; /* index variable - not yet active so get it from locvars*/
  vvar = &fs->f->locvars[fs->nlocvars - 1]; /* index variable - not yet active so get it from locvars*/
  checknext(ls, '=');
  /* get the type of each expression */
  Fornuminfo tidx = { RAVI_TANY,0,0 }, tlimit = { RAVI_TANY,0,0 }, tstep = { RAVI_TNUMINT,0,0 };
  Fornuminfo *info = NULL;
  exp1(ls, &tidx);  /* initial value */
  checknext(ls, ',');
  exp1(ls, &tlimit);  /* limit */
  if (testnext(ls, ','))
    exp1(ls, &tstep);  /* optional step */
  else {  /* default step = 1 */
    tstep.is_constant = 1;
    tstep.int_value = 1;
    luaK_codek(fs, fs->freereg, luaK_intK(fs, 1));
    luaK_reserveregs(fs, 1);
  }
  if (tidx.type == tlimit.type && tlimit.type == tstep.type && (tidx.type == RAVI_TNUMFLT || tidx.type == RAVI_TNUMINT)) {
    if (tidx.type == RAVI_TNUMINT && tstep.is_constant)
      info = &tstep;
    /* Ok so we have an integer or double */
    vidx->ravi_type = vlimit->ravi_type = vstep->ravi_type = vvar->ravi_type = tidx.type;
    DEBUG_VARS(raviY_printf(fs, "fornum -> setting type for index %v\n", vidx));
    DEBUG_VARS(raviY_printf(fs, "fornum -> setting type for limit %v\n", vlimit));
    DEBUG_VARS(raviY_printf(fs, "fornum -> setting type for step %v\n", vstep));
    DEBUG_VARS(raviY_printf(fs, "fornum -> setting type for variable %v\n", vvar));
  }
  forbody(ls, base, line, 1, 1, info);
}










Handling of Upvalues

Upvalues can be used to update local variables that have static typing specified. So this means that upvalues need to be annotated with types as well and any operation that updates an upvalue must be type checked. To support this the Lua parser has been enhanced to record the type of an upvalue in Upvaldesc:

/*
** Description of an upvalue for function prototypes
*/
typedef struct Upvaldesc {
  TString *name;  /* upvalue name (for debug information) */
  ravitype_t type; /* RAVI type of upvalue */
  lu_byte instack;  /* whether it is in stack */
  lu_byte idx;  /* index of upvalue (in stack or in outer function's list) */
} Upvaldesc;





Whenever a new upvalue is referenced, we assign the type of the the upvalue to the expression in function singlevaraux() - relevant code is shown below:

static int singlevaraux (FuncState *fs, TString *n, expdesc *var, int base) {
  /* ... omitted code ... */
    int idx = searchupvalue(fs, n);  /* try existing upvalues */
    if (idx < 0) {  /* not found? */
      if (singlevaraux(fs->prev, n, var, 0) == VVOID) /* try upper levels */
        return VVOID;  /* not found; is a global */
      /* else was LOCAL or UPVAL */
      idx  = newupvalue(fs, n, var);  /* will be a new upvalue */
    }
    init_exp(var, VUPVAL, idx, fs->f->upvalues[idx].type); /* RAVI : set upvalue type */
    return VUPVAL;
    /* ... omitted code ... */
}





The function newupvalue() sets the type of a new upvalue:

/* create a new upvalue */
static int newupvalue (FuncState *fs, TString *name, expdesc *v) {
  Proto *f = fs->f;
  int oldsize = f->sizeupvalues;
  checklimit(fs, fs->nups + 1, MAXUPVAL, "upvalues");
  luaM_growvector(fs->ls->L, f->upvalues, fs->nups, f->sizeupvalues,
                Upvaldesc, MAXUPVAL, "upvalues");
  while (oldsize < f->sizeupvalues) f->upvalues[oldsize++].name = NULL;

  f->upvalues[fs->nups].instack = (v->k == VLOCAL);
  f->upvalues[fs->nups].idx = cast_byte(v->u.info);
  f->upvalues[fs->nups].name = name;
  f->upvalues[fs->nups].type = v->ravi_type;
  luaC_objbarrier(fs->ls->L, f, name);
  return fs->nups++;
}





When we need to generate assignments to an upvalue (OP_SETUPVAL) we need to use more specialized opcodes that do the necessary conversion at runtime. This is handled in luaK_storevar() in lcode.c:

/* Emit store for LHS expression. */
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  switch (var->k) {
    /* ... omitted code .. */
    case VUPVAL: {
      OpCode op = check_valid_setupval(fs, var, ex);
      int e = luaK_exp2anyreg(fs, ex);
      luaK_codeABC(fs, op, e, var->u.info, 0);
      break;
    }
    /* ... omitted code ... */
  }
}

static OpCode check_valid_setupval(FuncState *fs, expdesc *var, expdesc *ex) {
  OpCode op = OP_SETUPVAL;
  if (var->ravi_type != RAVI_TANY && var->ravi_type != ex->ravi_type) {
    if (var->ravi_type == RAVI_TNUMINT)
      op = OP_RAVI_SETUPVALI;
    else if (var->ravi_type == RAVI_TNUMFLT)
      op = OP_RAVI_SETUPVALF;
    else if (var->ravi_type == RAVI_TARRAYINT)
      op = OP_RAVI_SETUPVALAI;
    else if (var->ravi_type == RAVI_TARRAYFLT)
      op = OP_RAVI_SETUPVALAF;
    else
      luaX_syntaxerror(fs->ls,
                    luaO_pushfstring(fs->ls->L, "Invalid assignment of "
                                                 "upvalue: upvalue type "
                                                 "%d, expression type %d",
                                      var->ravi_type, ex->ravi_type));
  }
  return op;
}








VM Enhancements

A number of new opcodes are introduced to allow type specific operations.

Currently there are specialized versions of ADD, SUB, MUL and DIV operations. This will be extended to cover additional operators such as IDIV.
The ADD and MUL operations are implemented in a similar way. Both allow a second operand to be encoded directly in the C operand - when the value is a constant in the range [0,127].

One thing to note is that apart from division if an operation involves constants it is folded by Lua. Divisions are treated specially - an expression involving the 0 constant is not folded, even when the 0 is a numerator. Also worth noting is that DIV operator results in a float even when two integers are divided; you have to use IDIV to get an integer result - this opcode triggered in Lua 5.3 when the // operator is used.

A divide by zero when using integers causes a run time error, whereas for floating point operation the result is NaN.







          

      

      

    

  

    
      
          
            
  
LLVM Compilation hooks in Ravi

The current approach is Ravi is that a Lua function can be compiled at the function level. (Note that this is the plan - I am working on the implementation).

In terms of changes to support this - we essentially have following. First we have a bunch of C functions - think of these are the compiler API:

#ifdef __cplusplus
extern "C" {
#endif

struct lua_State;
struct Proto;

/* Initialise the JIT engine */
int raviV_initjit(struct lua_State *L);

/* Shutdown the JIT engine */
void raviV_close(struct lua_State *L);

/* Compile the given function if possible */
int raviV_compile(struct lua_State *L, struct Proto *p);

/* Free the JIT structures associated with the prototype */
void raviV_freeproto(struct lua_State *L, struct Proto *p);

#ifdef __cplusplus
}
#endif





Next the Proto struct definition has some extra fields:

typedef struct RaviJITProto {
  lu_byte jit_status; // 0=not compiled, 1=can't compile, 2=compiled, 3=freed
  void *jit_data;
  lua_CFunction jit_function;
} RaviJITProto;

/*
** Function Prototypes
*/
typedef struct Proto {
  CommonHeader;
  lu_byte numparams;  /* number of fixed parameters */
  lu_byte is_vararg;
  lu_byte maxstacksize;  /* maximum stack used by this function */
  int sizeupvalues;  /* size of 'upvalues' */
  int sizek;  /* size of 'k' */
  int sizecode;
  int sizelineinfo;
  int sizep;  /* size of 'p' */
  int sizelocvars;
  int linedefined;
  int lastlinedefined;
  TValue *k;  /* constants used by the function */
  Instruction *code;
  struct Proto **p;  /* functions defined inside the function */
  int *lineinfo;  /* map from opcodes to source lines (debug information) */
  LocVar *locvars;  /* information about local variables (debug information) */
  Upvaldesc *upvalues;  /* upvalue information */
  struct LClosure *cache;  /* last created closure with this prototype */
  TString  *source;  /* used for debug information */
  GCObject *gclist;
  /* RAVI */
  RaviJITProto ravi_jit;
} Proto;





The ravi_jit member is initialized in lfunc.c:

Proto *luaF_newproto (lua_State *L) {
  GCObject *o = luaC_newobj(L, LUA_TPROTO, sizeof(Proto));
  Proto *f = gco2p(o);
  f->k = NULL;
  /* code ommitted */
  f->ravi_jit.jit_data = NULL;
  f->ravi_jit.jit_function = NULL;
  f->ravi_jit.jit_status = 0; /* not compiled */
  return f;
}





The corresponding function to free is:

void luaF_freeproto (lua_State *L, Proto *f) {
  raviV_freeproto(L, f);
  luaM_freearray(L, f->code, f->sizecode);
  luaM_freearray(L, f->p, f->sizep);
  luaM_freearray(L, f->k, f->sizek);
  luaM_freearray(L, f->lineinfo, f->sizelineinfo);
  luaM_freearray(L, f->locvars, f->sizelocvars);
  luaM_freearray(L, f->upvalues, f->sizeupvalues);
  luaM_free(L, f);
}





When a Lua Function is called it goes through luaD_precall() in ldo.c. This has been modified to invoke the compiler / use compiled version:

/*
** returns true if function has been executed (C function)
*/
int luaD_precall (lua_State *L, StkId func, int nresults) {
  lua_CFunction f;
  CallInfo *ci;
  int n;  /* number of arguments (Lua) or returns (C) */
  ptrdiff_t funcr = savestack(L, func);
  switch (ttype(func)) {

      /* omitted */

  case LUA_TLCL: {  /* Lua function: prepare its call */
    CallInfo *prevci = L->ci; /* RAVI - for validation */
    StkId base;
    Proto *p = clLvalue(func)->p;
    n = cast_int(L->top - func) - 1;  /* number of real arguments */
    luaD_checkstack(L, p->maxstacksize);
    for (; n < p->numparams; n++)
      setnilvalue(L->top++);  /* complete missing arguments */
    if (!p->is_vararg) {
      func = restorestack(L, funcr);
      base = func + 1;
    }
    else {
      base = adjust_varargs(L, p, n);
      func = restorestack(L, funcr);  /* previous call can change stack */
    }
    ci = next_ci(L);  /* now 'enter' new function */
    ci->nresults = nresults;
    ci->func = func;
    ci->u.l.base = base;
    ci->top = base + p->maxstacksize;
    lua_assert(ci->top <= L->stack_last);
    ci->u.l.savedpc = p->code;  /* starting point */
    ci->callstatus = CIST_LUA;
    ci->jitstatus = 0;
    L->top = ci->top;
    luaC_checkGC(L);  /* stack grow uses memory */
    if (L->hookmask & LUA_MASKCALL)
      callhook(L, ci);
    if (compile) {
      if (p->ravi_jit.jit_status == 0) {
        /* not compiled */
        raviV_compile(L, p, 0);
      }
      if (p->ravi_jit.jit_status == 2) {
        /* compiled */
        lua_assert(p->ravi_jit.jit_function != NULL);
        ci->jitstatus = 1;
        /* As JITed function is like a C function
         * employ the same restrictions on recursive
         * calls as for C functions
         */
        if (++L->nCcalls >= LUAI_MAXCCALLS) {
          if (L->nCcalls == LUAI_MAXCCALLS)
            luaG_runerror(L, "C stack overflow");
          else if (L->nCcalls >= (LUAI_MAXCCALLS + (LUAI_MAXCCALLS >> 3)))
            luaD_throw(L, LUA_ERRERR);  /* error while handing stack error */
        }
        /* Disable YIELDs - so JITed functions cannot
         * yield
         */
        L->nny++;
        (*p->ravi_jit.jit_function)(L);
        L->nny--;
        L->nCcalls--;
        lua_assert(L->ci == prevci);
        /* Return a different value from 1 to
         * allow luaV_execute() to distinguish between
         * JITed function and true C function
         */
        return 2;
      }
    }
    return 0;
  }
  default: {  /* not a function */

        /* omitted */
  }
  }
}





Note that the above returns 2 if compiled Lua function is called. The behaviour in lvm.c is similar to that when a C function is called.





          

      

      

    

  

    
      
          
            
  
Lua Types in LLVM

We need to map Lua types to equivalent type definitions in LLVM. In Ravi we do hold all the type definitions in a struct as shown below:

struct LuaLLVMTypes {

llvm::Type *C_intptr_t;
llvm::Type *C_size_t;
llvm::Type *C_ptrdiff_t;

llvm::Type *lua_NumberT;
llvm::Type *lua_IntegerT;
llvm::Type *lua_UnsignedT;
llvm::Type *lua_KContextT;

llvm::FunctionType *lua_CFunctionT;
llvm::PointerType *plua_CFunctionT;

llvm::FunctionType *lua_KFunctionT;
llvm::PointerType *plua_KFunctionT;

llvm::FunctionType *lua_HookT;
llvm::PointerType *plua_HookT;

llvm::FunctionType *lua_AllocT;
llvm::PointerType *plua_AllocT;

llvm::Type *l_memT;
llvm::Type *lu_memT;

llvm::Type *lu_byteT;
llvm::Type *L_UmaxalignT;
llvm::Type *C_pcharT;

llvm::Type *C_intT;

llvm::StructType *lua_StateT;
llvm::PointerType *plua_StateT;

llvm::StructType *global_StateT;
llvm::PointerType *pglobal_StateT;

llvm::StructType *ravi_StateT;
llvm::PointerType *pravi_StateT;

llvm::StructType *GCObjectT;
llvm::PointerType *pGCObjectT;

llvm::StructType *ValueT;
llvm::StructType *TValueT;
llvm::PointerType *pTValueT;

llvm::StructType *TStringT;
llvm::PointerType *pTStringT;
llvm::PointerType *ppTStringT;

llvm::StructType *UdataT;
llvm::StructType *TableT;
llvm::PointerType *pTableT;

llvm::StructType *UpvaldescT;
llvm::PointerType *pUpvaldescT;

llvm::Type *ravitype_tT;
llvm::StructType *LocVarT;
llvm::PointerType *pLocVarT;

llvm::Type *InstructionT;
llvm::PointerType *pInstructionT;
llvm::StructType *LClosureT;
llvm::PointerType *pLClosureT;
llvm::PointerType *ppLClosureT;
llvm::PointerType *pppLClosureT;

llvm::StructType *RaviJITProtoT;
llvm::PointerType *pRaviJITProtoT;

llvm::StructType *ProtoT;
llvm::PointerType *pProtoT;
llvm::PointerType *ppProtoT;

llvm::StructType *UpValT;
llvm::PointerType *pUpValT;

llvm::StructType *CClosureT;
llvm::PointerType *pCClosureT;

llvm::StructType *TKeyT;
llvm::PointerType *pTKeyT;

llvm::StructType *NodeT;
llvm::PointerType *pNodeT;

llvm::StructType *lua_DebugT;
llvm::PointerType *plua_DebugT;

llvm::StructType *lua_longjumpT;
llvm::PointerType *plua_longjumpT;

llvm::StructType *MbufferT;
llvm::StructType *stringtableT;

llvm::PointerType *StkIdT;

llvm::StructType *CallInfoT;
llvm::StructType *CallInfo_cT;
llvm::StructType *CallInfo_lT;
llvm::PointerType *pCallInfoT;

llvm::FunctionType *jitFunctionT;

llvm::FunctionType *luaD_poscallT;

};





The actual definition of the types above is shown below:

static_assert(std::is_floating_point<lua_Number>::value &&
                  sizeof(lua_Number) == sizeof(double),
              "lua_Number is not a double");
lua_NumberT = llvm::Type::getDoubleTy(context);

static_assert(std::is_integral<lua_Integer>::value,
              "lua_Integer is not an integer type");
lua_IntegerT = llvm::Type::getIntNTy(context, sizeof(lua_Integer) * 8);

static_assert(sizeof(lua_Integer) == sizeof(lua_Unsigned),
              "lua_Integer and lua_Unsigned are of different size");
lua_UnsignedT = lua_IntegerT;

C_intptr_t = llvm::Type::getIntNTy(context, sizeof(intptr_t) * 8);
C_size_t = llvm::Type::getIntNTy(context, sizeof(size_t) * 8);
C_ptrdiff_t = llvm::Type::getIntNTy(context, sizeof(ptrdiff_t) * 8);
C_intT = llvm::Type::getIntNTy(context, sizeof(int) * 8);

static_assert(sizeof(size_t) == sizeof(lu_mem),
              "lu_mem size is not same as size_t");
lu_memT = C_size_t;

static_assert(sizeof(ptrdiff_t) == sizeof(l_mem),
              "l_mem size is not same as ptrdiff_t");
l_memT = C_ptrdiff_t;

static_assert(sizeof(L_Umaxalign) == sizeof(double),
              "L_Umaxalign is not same size as double");
L_UmaxalignT = llvm::Type::getDoubleTy(context);

lu_byteT = llvm::Type::getInt8Ty(context);
C_pcharT = llvm::Type::getInt8PtrTy(context);

InstructionT = C_intT;
pInstructionT = llvm::PointerType::get(InstructionT, 0);

lua_StateT = llvm::StructType::create(context, "ravi.lua_State");
plua_StateT = llvm::PointerType::get(lua_StateT, 0);

lua_KContextT = C_ptrdiff_t;

std::vector<llvm::Type *> elements;
elements.push_back(plua_StateT);
lua_CFunctionT = llvm::FunctionType::get(C_intT, elements, false);
plua_CFunctionT = llvm::PointerType::get(lua_CFunctionT, 0);

jitFunctionT = lua_CFunctionT;

elements.clear();
elements.push_back(plua_StateT);
elements.push_back(C_intT);
elements.push_back(lua_KContextT);
lua_KFunctionT = llvm::FunctionType::get(C_intT, elements, false);
plua_KFunctionT = llvm::PointerType::get(lua_KFunctionT, 0);

elements.clear();
elements.push_back(llvm::Type::getInt8PtrTy(context));
elements.push_back(llvm::Type::getInt8PtrTy(context));
elements.push_back(C_size_t);
elements.push_back(C_size_t);
lua_AllocT = llvm::FunctionType::get(llvm::Type::getInt8PtrTy(context),
                                     elements, false);
plua_AllocT = llvm::PointerType::get(lua_AllocT, 0);

lua_DebugT = llvm::StructType::create(context, "ravi.lua_Debug");
plua_DebugT = llvm::PointerType::get(lua_DebugT, 0);

elements.clear();
elements.push_back(plua_StateT);
elements.push_back(plua_DebugT);
lua_HookT = llvm::FunctionType::get(llvm::Type::getInt8PtrTy(context),
                                    elements, false);
plua_HookT = llvm::PointerType::get(lua_HookT, 0);

// struct GCObject {
//   GCObject *next;
//   lu_byte tt;
//   lu_byte marked
// };
GCObjectT = llvm::StructType::create(context, "ravi.GCObject");
pGCObjectT = llvm::PointerType::get(GCObjectT, 0);
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
GCObjectT->setBody(elements);

static_assert(sizeof(Value) == sizeof(lua_Number),
              "Value type is larger than lua_Number");
// In LLVM unions should be set to the largest member
// So in the case of a Value this is the double type
// union Value {
//   GCObject *gc;    /* collectable objects */
//   void *p;         /* light userdata */
//   int b;           /* booleans */
//   lua_CFunction f; /* light C functions */
//   lua_Integer i;   /* integer numbers */
//   lua_Number n;    /* float numbers */
// };
ValueT = llvm::StructType::create(context, "ravi.Value");
elements.clear();
elements.push_back(lua_NumberT);
ValueT->setBody(elements);

// struct TValue {
//   union Value value_;
//   int tt_;
// };
TValueT = llvm::StructType::create(context, "ravi.TValue");
elements.clear();
elements.push_back(ValueT);
elements.push_back(C_intT);
TValueT->setBody(elements);
pTValueT = llvm::PointerType::get(TValueT, 0);

StkIdT = pTValueT;

///*
//** Header for string value; string bytes follow the end of this structure
//** (aligned according to 'UTString'; see next).
//*/
// typedef struct TString {
//   GCObject *next;
//   lu_byte tt;
//   lu_byte marked
//   lu_byte extra;  /* reserved words for short strings; "has hash" for longs
//   */
//   unsigned int hash;
//   size_t len;  /* number of characters in string */
//   struct TString *hnext;  /* linked list for hash table */
// } TString;

///*
//** Ensures that address after this type is always fully aligned.
//*/
// typedef union UTString {
//  L_Umaxalign dummy;  /* ensures maximum alignment for strings */
//  TString tsv;
//} UTString;
TStringT = llvm::StructType::create(context, "ravi.TString");
pTStringT = llvm::PointerType::get(TStringT, 0);
ppTStringT = llvm::PointerType::get(pTStringT, 0);
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);  /* extra */
elements.push_back(C_intT);    /* hash */
elements.push_back(C_size_t);  /* len */
elements.push_back(pTStringT); /* hnext */
TStringT->setBody(elements);

// Table
TableT = llvm::StructType::create(context, "ravi.Table");
pTableT = llvm::PointerType::get(TableT, 0);

///*
//** Header for userdata; memory area follows the end of this structure
//** (aligned according to 'UUdata'; see next).
//*/
// typedef struct Udata {
//  GCObject *next;
//  lu_byte tt;
//  lu_byte marked
//  lu_byte ttuv_;  /* user value's tag */
//  struct Table *metatable;
//  size_t len;  /* number of bytes */
//  union Value user_;  /* user value */
//} Udata;
UdataT = llvm::StructType::create(context, "ravi.Udata");
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT); /* ttuv_ */
elements.push_back(pTableT);  /* metatable */
elements.push_back(C_size_t); /* len */
elements.push_back(ValueT);   /* user_ */
UdataT->setBody(elements);

///*
//** Description of an upvalue for function prototypes
//*/
// typedef struct Upvaldesc {
//  TString *name;  /* upvalue name (for debug information) */
//  lu_byte instack;  /* whether it is in stack */
//  lu_byte idx;  /* index of upvalue (in stack or in outer function's list)
//  */
//}Upvaldesc;
UpvaldescT = llvm::StructType::create(context, "ravi.Upvaldesc");
elements.clear();
elements.push_back(pTStringT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
UpvaldescT->setBody(elements);
pUpvaldescT = llvm::PointerType::get(UpvaldescT, 0);

///*
//** Description of a local variable for function prototypes
//** (used for debug information)
//*/
// typedef struct LocVar {
//  TString *varname;
//  int startpc;  /* first point where variable is active */
//  int endpc;    /* first point where variable is dead */
//  ravitype_t ravi_type; /* RAVI type of the variable - RAVI_TANY if unknown
//  */
//} LocVar;
ravitype_tT = llvm::Type::getIntNTy(context, sizeof(ravitype_t) * 8);
LocVarT = llvm::StructType::create(context, "ravi.LocVar");
elements.clear();
elements.push_back(pTStringT);   /* varname */
elements.push_back(C_intT);      /* startpc */
elements.push_back(C_intT);      /* endpc */
elements.push_back(ravitype_tT); /* ravi_type */
LocVarT->setBody(elements);
pLocVarT = llvm::PointerType::get(LocVarT, 0);

LClosureT = llvm::StructType::create(context, "ravi.LClosure");
pLClosureT = llvm::PointerType::get(LClosureT, 0);
ppLClosureT = llvm::PointerType::get(pLClosureT, 0);
pppLClosureT = llvm::PointerType::get(ppLClosureT, 0);

RaviJITProtoT = llvm::StructType::create(context, "ravi.RaviJITProto");
pRaviJITProtoT = llvm::PointerType::get(RaviJITProtoT, 0);

///*
//** Function Prototypes
//*/
// typedef struct Proto {
//  CommonHeader;
//  lu_byte numparams;  /* number of fixed parameters */
//  lu_byte is_vararg;
//  lu_byte maxstacksize;  /* maximum stack used by this function */
//  int sizeupvalues;  /* size of 'upvalues' */
//  int sizek;  /* size of 'k' */
//  int sizecode;
//  int sizelineinfo;
//  int sizep;  /* size of 'p' */
//  int sizelocvars;
//  int linedefined;
//  int lastlinedefined;
//  TValue *k;  /* constants used by the function */
//  Instruction *code;
//  struct Proto **p;  /* functions defined inside the function */
//  int *lineinfo;  /* map from opcodes to source lines (debug information) */
//  LocVar *locvars;  /* information about local variables (debug information)
//  */
//  Upvaldesc *upvalues;  /* upvalue information */
//  struct LClosure *cache;  /* last created closure with this prototype */
//  TString  *source;  /* used for debug information */
//  GCObject *gclist;
//  /* RAVI */
//  RaviJITProto *ravi_jit;
//} Proto;

ProtoT = llvm::StructType::create(context, "ravi.Proto");
pProtoT = llvm::PointerType::get(ProtoT, 0);
ppProtoT = llvm::PointerType::get(pProtoT, 0);
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);                          /* numparams */
elements.push_back(lu_byteT);                          /* is_vararg */
elements.push_back(lu_byteT);                          /* maxstacksize */
elements.push_back(C_intT);                            /* sizeupvalues */
elements.push_back(C_intT);                            /* sizek */
elements.push_back(C_intT);                            /* sizecode */
elements.push_back(C_intT);                            /* sizelineinfo */
elements.push_back(C_intT);                            /* sizep */
elements.push_back(C_intT);                            /* sizelocvars */
elements.push_back(C_intT);                            /* linedefined */
elements.push_back(C_intT);                            /* lastlinedefined */
elements.push_back(pTValueT);                          /* k */
elements.push_back(pInstructionT);                     /* code */
elements.push_back(ppProtoT);                          /* p */
elements.push_back(llvm::PointerType::get(C_intT, 0)); /* lineinfo */
elements.push_back(pLocVarT);                          /* locvars */
elements.push_back(pUpvaldescT);                       /* upvalues */
elements.push_back(pLClosureT);                        /* cache */
elements.push_back(pTStringT);                         /* source */
elements.push_back(pGCObjectT);                        /* gclist */
elements.push_back(pRaviJITProtoT);                    /* ravi_jit */
ProtoT->setBody(elements);

///*
//** Lua Upvalues
//*/
// typedef struct UpVal UpVal;
UpValT = llvm::StructType::create(context, "ravi.UpVal");
pUpValT = llvm::PointerType::get(UpValT, 0);

///*
//** Closures
//*/

//#define ClosureHeader \
//CommonHeader; lu_byte nupvalues; GCObject *gclist

// typedef struct CClosure {
//  ClosureHeader;
//  lua_CFunction f;
//  TValue upvalue[1];  /* list of upvalues */
//} CClosure;

CClosureT = llvm::StructType::create(context, "ravi.CClosure");
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);        /* nupvalues */
elements.push_back(pGCObjectT);      /* gclist */
elements.push_back(plua_CFunctionT); /* f */
elements.push_back(llvm::ArrayType::get(TValueT, 1));
CClosureT->setBody(elements);
pCClosureT = llvm::PointerType::get(CClosureT, 0);

// typedef struct LClosure {
//  ClosureHeader;
//  struct Proto *p;
//  UpVal *upvals[1];  /* list of upvalues */
//} LClosure;
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);   /* nupvalues */
elements.push_back(pGCObjectT); /* gclist */
elements.push_back(pProtoT);    /* p */
elements.push_back(llvm::ArrayType::get(pUpValT, 1));
LClosureT->setBody(elements);

///*
//** Tables
//*/

// typedef union TKey {
//  struct {
//    TValuefields;
//    int next;  /* for chaining (offset for next node) */
//  } nk;
//  TValue tvk;
//} TKey;
TKeyT = llvm::StructType::create(context, "ravi.TKey");
elements.clear();
elements.push_back(ValueT);
elements.push_back(C_intT);
elements.push_back(C_intT); /* next */
TKeyT->setBody(elements);
pTKeyT = llvm::PointerType::get(TKeyT, 0);

// typedef struct Node {
// TValue i_val;
// TKey i_key;
//} Node;
NodeT = llvm::StructType::create(context, "ravi.Node");
elements.clear();
elements.push_back(TValueT); /* i_val */
elements.push_back(TKeyT);   /* i_key */
NodeT->setBody(elements);
pNodeT = llvm::PointerType::get(NodeT, 0);

// typedef struct Table {
//  CommonHeader;
//  lu_byte flags;  /* 1<<p means tagmethod(p) is not present */
//  lu_byte lsizenode;  /* log2 of size of 'node' array */
//  unsigned int sizearray;  /* size of 'array' array */
//  TValue *array;  /* array part */
//  Node *node;
//  Node *lastfree;  /* any free position is before this position */
//  struct Table *metatable;
//  GCObject *gclist;
//  ravitype_t ravi_array_type; /* RAVI specialization */
//  unsigned int ravi_array_len; /* RAVI len specialization */
//} Table;
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);    /* flags */
elements.push_back(lu_byteT);    /* lsizenode */
elements.push_back(C_intT);      /* sizearray */
elements.push_back(pTValueT);    /* array part */
elements.push_back(pNodeT);      /* node */
elements.push_back(pNodeT);      /* lastfree */
elements.push_back(pTableT);     /* metatable */
elements.push_back(pGCObjectT);  /* gclist */
elements.push_back(ravitype_tT); /* ravi_array_type */
elements.push_back(C_intT);      /* ravi_array_len */
TableT->setBody(elements);

// struct lua_longjmp;  /* defined in ldo.c */
lua_longjumpT = llvm::StructType::create(context, "ravi.lua_longjmp");
plua_longjumpT = llvm::PointerType::get(lua_longjumpT, 0);

// lzio.h
// typedef struct Mbuffer {
//  char *buffer;
//  size_t n;
//  size_t buffsize;
//} Mbuffer;
MbufferT = llvm::StructType::create(context, "ravi.Mbuffer");
elements.clear();
elements.push_back(llvm::Type::getInt8PtrTy(context)); /* buffer */
elements.push_back(C_size_t);                          /* n */
elements.push_back(C_size_t);                          /* buffsize */
MbufferT->setBody(elements);

// typedef struct stringtable {
//  TString **hash;
//  int nuse;  /* number of elements */
//  int size;
//} stringtable;
stringtableT = llvm::StructType::create(context, "ravi.stringtable");
elements.clear();
elements.push_back(ppTStringT); /* hash */
elements.push_back(C_intT);     /* nuse */
elements.push_back(C_intT);     /* size */
stringtableT->setBody(elements);

///*
//** Information about a call.
//** When a thread yields, 'func' is adjusted to pretend that the
//** top function has only the yielded values in its stack; in that
//** case, the actual 'func' value is saved in field 'extra'.
//** When a function calls another with a continuation, 'extra' keeps
//** the function index so that, in case of errors, the continuation
//** function can be called with the correct top.
//*/
// typedef struct CallInfo {
//  StkId func;  /* function index in the stack */
//  StkId     top;  /* top for this function */
//  struct CallInfo *previous, *next;  /* dynamic call link */
//  union {
//    struct {  /* only for Lua functions */
//      StkId base;  /* base for this function */
//      const Instruction *savedpc;
//    } l;
//    struct {  /* only for C functions */
//      lua_KFunction k;  /* continuation in case of yields */
//      ptrdiff_t old_errfunc;
//      lua_KContext ctx;  /* context info. in case of yields */
//    } c;
//  } u;
//  ptrdiff_t extra;
//  short nresults;  /* expected number of results from this function */
//  lu_byte callstatus;
//} CallInfo;

elements.clear();
elements.push_back(StkIdT);        /* base */
elements.push_back(pInstructionT); /* savedpc */
elements.push_back(
    C_ptrdiff_t); /* dummy to make this same size as the other member */
CallInfo_lT = llvm::StructType::create(elements);

elements.clear();
elements.push_back(plua_KFunctionT); /* k */
elements.push_back(C_ptrdiff_t);     /* old_errfunc */
elements.push_back(lua_KContextT);   /* ctx */
CallInfo_cT = llvm::StructType::create(elements);

CallInfoT = llvm::StructType::create(context, "ravi.CallInfo");
pCallInfoT = llvm::PointerType::get(CallInfoT, 0);
elements.clear();
elements.push_back(StkIdT);     /* func */
elements.push_back(StkIdT);     /* top */
elements.push_back(pCallInfoT); /* previous */
elements.push_back(pCallInfoT); /* next */
elements.push_back(
    CallInfo_lT); /* u.l  - as we will typically access the lua call details
                     */
elements.push_back(C_ptrdiff_t);                     /* extra */
elements.push_back(llvm::Type::getInt16Ty(context)); /* nresults */
elements.push_back(lu_byteT);                        /* callstatus */
CallInfoT->setBody(elements);

// typedef struct ravi_State ravi_State;

ravi_StateT = llvm::StructType::create(context, "ravi.ravi_State");
pravi_StateT = llvm::PointerType::get(ravi_StateT, 0);

///*
//** 'global state', shared by all threads of this state
//*/
// typedef struct global_State {
//  lua_Alloc frealloc;  /* function to reallocate memory */
//  void *ud;         /* auxiliary data to 'frealloc' */
//  lu_mem totalbytes;  /* number of bytes currently allocated - GCdebt */
//  l_mem GCdebt;  /* bytes allocated not yet compensated by the collector */
//  lu_mem GCmemtrav;  /* memory traversed by the GC */
//  lu_mem GCestimate;  /* an estimate of the non-garbage memory in use */
//  stringtable strt;  /* hash table for strings */
//  TValue l_registry;
//  unsigned int seed;  /* randomized seed for hashes */
//  lu_byte currentwhite;
//  lu_byte gcstate;  /* state of garbage collector */
//  lu_byte gckind;  /* kind of GC running */
//  lu_byte gcrunning;  /* true if GC is running */
//  GCObject *allgc;  /* list of all collectable objects */
//  GCObject **sweepgc;  /* current position of sweep in list */
//  GCObject *finobj;  /* list of collectable objects with finalizers */
//  GCObject *gray;  /* list of gray objects */
//  GCObject *grayagain;  /* list of objects to be traversed atomically */
//  GCObject *weak;  /* list of tables with weak values */
//  GCObject *ephemeron;  /* list of ephemeron tables (weak keys) */
//  GCObject *allweak;  /* list of all-weak tables */
//  GCObject *tobefnz;  /* list of userdata to be GC */
//  GCObject *fixedgc;  /* list of objects not to be collected */
//  struct lua_State *twups;  /* list of threads with open upvalues */
//  Mbuffer buff;  /* temporary buffer for string concatenation */
//  unsigned int gcfinnum;  /* number of finalizers to call in each GC step */
//  int gcpause;  /* size of pause between successive GCs */
//  int gcstepmul;  /* GC 'granularity' */
//  lua_CFunction panic;  /* to be called in unprotected errors */
//  struct lua_State *mainthread;
//  const lua_Number *version;  /* pointer to version number */
//  TString *memerrmsg;  /* memory-error message */
//  TString *tmname[TM_N];  /* array with tag-method names */
//  struct Table *mt[LUA_NUMTAGS];  /* metatables for basic types */
//  /* RAVI */
//  ravi_State *ravi_state;
//} global_State;

global_StateT = llvm::StructType::create(context, "ravi.global_State");
pglobal_StateT = llvm::PointerType::get(global_StateT, 0);

///*
//** 'per thread' state
//*/
// struct lua_State {
//  CommonHeader;
//  lu_byte status;
//  StkId top;  /* first free slot in the stack */
//  global_State *l_G;
//  CallInfo *ci;  /* call info for current function */
//  const Instruction *oldpc;  /* last pc traced */
//  StkId stack_last;  /* last free slot in the stack */
//  StkId stack;  /* stack base */
//  UpVal *openupval;  /* list of open upvalues in this stack */
//  GCObject *gclist;
//  struct lua_State *twups;  /* list of threads with open upvalues */
//  struct lua_longjmp *errorJmp;  /* current error recover point */
//  CallInfo base_ci;  /* CallInfo for first level (C calling Lua) */
//  lua_Hook hook;
//  ptrdiff_t errfunc;  /* current error handling function (stack index) */
//  int stacksize;
//  int basehookcount;
//  int hookcount;
//  unsigned short nny;  /* number of non-yieldable calls in stack */
//  unsigned short nCcalls;  /* number of nested C calls */
//  lu_byte hookmask;
//  lu_byte allowhook;
//};
elements.clear();
elements.push_back(pGCObjectT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);
elements.push_back(lu_byteT);                        /* status */
elements.push_back(StkIdT);                          /* top */
elements.push_back(pglobal_StateT);                  /* l_G */
elements.push_back(pCallInfoT);                      /* ci */
elements.push_back(pInstructionT);                   /* oldpc */
elements.push_back(StkIdT);                          /* stack_last */
elements.push_back(StkIdT);                          /* stack */
elements.push_back(pUpValT);                         /* openupval */
elements.push_back(pGCObjectT);                      /* gclist */
elements.push_back(plua_StateT);                     /* twups */
elements.push_back(plua_longjumpT);                  /* errorJmp */
elements.push_back(CallInfoT);                       /* base_ci */
elements.push_back(plua_HookT);                      /* hook */
elements.push_back(C_ptrdiff_t);                     /* errfunc */
elements.push_back(C_intT);                          /* stacksize */
elements.push_back(C_intT);                          /* basehookcount */
elements.push_back(C_intT);                          /* hookcount */
elements.push_back(llvm::Type::getInt16Ty(context)); /* nny */
elements.push_back(llvm::Type::getInt16Ty(context)); /* nCcalls */
elements.push_back(lu_byteT);                        /* hookmask */
elements.push_back(lu_byteT);                        /* allowhook */
lua_StateT->setBody(elements);

// int luaD_poscall (lua_State *L, StkId firstResult)
elements.clear();
elements.push_back(plua_StateT);
elements.push_back(StkIdT);
luaD_poscallT = llvm::FunctionType::get(C_intT, elements, false);









          

      

      

    

  

    
      
          
            
  
LLVM Type Based Alias Analysis

When a Lua opcode involves a call to a Lua function, the Lua stack may be reallocated. So then the base pointer which points to the function’s
base stack position must be refreshed.

To keep compilation simple I coded the compiler so that at the beginning of each opcode the base pointer is reloaded. My assumption was that
the LLVM optimizer will realise that the base pointer hasn’t changed and so the loads are redundant and can be removed. However to my surprise I found that this
is not the case.

The main difference between the IR I was generating and that produced by Clang was that Clang generated IR appeared to be decorated
by tbaa metadata. Example:

%base2 = getelementptr inbounds %struct.CallInfoLua* %0, i32 0, i32 4, i32 0
%1 = load %struct.TValue** %base2, align 4, !tbaa !12





Here the !tbaa !12 refers to a tbaa metadata entry.

I won’t show the Clang generated tbaa metadata here, but here is how I added similar support in Ravi. The required steps are:


	Create tbaa metadata mappings for the types in the system.


	Annotate Load and Store instructions with tbaa references.





Creating TBAA Metadata

Firstly you need an MDBuilder instance. So you need to include following headers:

#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"





We can create an MDBuilder instance like this:

llvm::MDBuilder mdbuilder(llvm::getGlobalContext());





The TBAA nodes hang off a root node. So we create that next:

llvm::MDNode *tbaa_root;
// Do what Clang does
tbaa_root = mdbuilder.createTBAARoot("Simple C / C++ TBAA");





Next we need to create some simple scalar types. We only need one type per size, so that means we don’t need
long long and double - either one will do. We create these scalar types as follows:

llvm::MDNode *tbaa_charT;
llvm::MDNode *tbaa_shortT;
llvm::MDNode *tbaa_intT;
llvm::MDNode *tbaa_longlongT;
llvm::MDNode *tbaa_pointerT;


//!4 = metadata !{metadata !"omnipotent char", metadata !5, i64 0}
tbaa_charT = mdbuilder.createTBAAScalarTypeNode("omnipotent char", tbaa_root, 0);
//!3 = metadata !{metadata !"any pointer", metadata !4, i64 0}
tbaa_pointerT = mdbuilder.createTBAAScalarTypeNode("any pointer", tbaa_charT, 0);
//!10 = metadata !{metadata !"short", metadata !4, i64 0}
tbaa_shortT = mdbuilder.createTBAAScalarTypeNode("short", tbaa_charT, 0);
//!11 = metadata !{metadata !"int", metadata !4, i64 0}
tbaa_intT = mdbuilder.createTBAAScalarTypeNode("int", tbaa_charT, 0);
//!9 = metadata !{metadata !"long long", metadata !4, i64 0}
tbaa_longlongT = mdbuilder.createTBAAScalarTypeNode("long long", tbaa_charT, 0);





The second argument to createTBAAScalarTypeNode() is the parent node. Note the hierarchy here:

+ root
|
+--+ char
   |
   +--+-- any pointer
      |
      +-- short
      |
      +-- int
      |
      +-- long long





This is how Clang has it defined.

Next we need to define aggregate (struct) types. The API we need for this is createTBAAStructTypeNode().
This method accepts a vector of std::pair<llvm::MDNode *, uint64_t> objects - each element in the vector defines
a field in the struct. The integer parameter needs to be the offset of the field within the struct. Interestingly
Clang generates offsets that indicate pointers are being treated as 32-bit quantities - even though I ran this on
a 64-bit machine. So I guess that as long as we consistently use the size then this doesn’t matter. The sizes used
by Clang are:


	char - 1 byte


	short - 2 bytes


	int - 4 bytes


	pointer - 4 bytes


	long long - 8 bytes




Another interesting thing is that padding needs to be accounted for.

So now lets look at how to map following struct:

struct CallInfoL {     /* only for Lua functions */
  struct TValue *base; /* base for this function */
  const unsigned int *savedpc;
  ptrdiff_t dummy;
};





We map this as:

llvm::MDNode *tbaa_CallInfo_lT;

//!14 = metadata !{metadata !"CallInfoL", metadata !3, i64 0, metadata !3, i64 4, metadata !9, i64 8}
std::vector<std::pair<llvm::MDNode *, uint64_t> > nodes;
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_pointerT, 0));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_pointerT, 4));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_longlongT, 8));
tbaa_CallInfo_lT = mdbuilder.createTBAAStructTypeNode("CallInfo_l", nodes);





To illustrate how a structure is referenced as a field in another lets also look at:

struct CallInfo {
  struct TValue *func;              /* function index in the stack */
  struct TValue *top;               /* top for this function */
  struct CallInfo *previous, *next; /* dynamic call link */
  struct CallInfoL l;
  ptrdiff_t extra;
  short nresults; /* expected number of results from this function */
  unsigned char callstatus;
};





We have a CallInfoL as the type of a field within the struct. Therefore:

llvm::MDNode *tbaa_CallInfoT;

//!13 = metadata !{metadata !"CallInfo",
//                 metadata !3, i64 0, metadata !3, i64 4, metadata !3, i64 8,
//                 metadata !3, i64 12, metadata !14, i64 16, metadata !9, i64 32,
//                 metadata !10, i64 40, metadata !4, i64 42}
nodes.clear();
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_pointerT, 0));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_pointerT, 4));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_pointerT, 8));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_pointerT, 12));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_CallInfo_lT, 16));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_longlongT, 32));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_shortT, 40));
nodes.push_back(std::pair<llvm::MDNode*, uint64_t>(tbaa_charT, 42));
tbaa_CallInfoT = mdbuilder.createTBAAStructTypeNode("CallInfo", nodes);








Decorating Load and Store instructions

So now we have created TBAA metadata for two struct types.
Next we need to see how we use these in Load and Store instructions. Lets assume we need to load the pointer
stored in Callinfo.top. In order to decorate the Load instruction with tbaa we need to create
a Struct Tag Node - which is like a path node. Here it is:

llvm::MDNode *tbaa_CallInfo_topT;
tbaa_CallInfo_topT = mdbuilder.createTBAAStructTagNode(tbaa_CallInfoT, tbaa_pointerT, 4);





Above is saying that the field top in struct CallInfo is a pointer at offset 4.

Armed with this we can code:

llvm::Value *callinfo_top = /* GEP instruction */
llvm::Instruction *top = Builder.CreateLoad(callinfo_top);
top->setMetadata(llvm::LLVMContext::MD_tbaa, tbaa_CallInfo_topT);








Links


	TypeBasedAliasAnalysis code [http://llvm.org/docs/doxygen/html/TypeBasedAliasAnalysis_8cpp_source.html].


	IR documentation on tbaa metadata [http://llvm.org/docs/LangRef.html#tbaa-metadata].


	Embedded metadata [http://nondot.org/sabre/LLVMNotes/EmbeddedMetadata.txt].










          

      

      

    

  

    
      
          
            
  
LLVM Bindings for Lua/Ravi

As part of the Ravi Programming Language, it is my intention to provide a Lua 5.3 compatible LLVM binding.
This will allow Lua programmers to write their own JIT compilers in Lua!

Right now this is in early development so there is no documentation. But the Lua programs here
demonstrate the features available to date.


LLVM Modules and Execution Engines

One of the complexities of LLVM is the handling of modules and execution engines in a JIT environment. In Ravi I made the simple decision that each Lua function would get its own module and EE. This allows the function to be
garbage collected as normal and release the associated module and EE. One of
the things that is possible but not yet implemented is releasing the module
and EE early; this requires implementing a custom memory manager (issue #48).

To mimic the Ravi model, the LLVM bindings provide a shortcut to setup
an LLVM module and execution engine for a Lua C function. The following example
illustrates:

-- Get the LLVM context - right now this is the
-- global context
local context = llvm.context()

-- Create a lua_CFunction instance
-- At this stage the function will get a module and
-- execution engine but no body
local mainfunc = context:lua_CFunction("demo")





Above creates an llvm::Function instance within a new module. An EE is
automatically attached. You can get hold of the module as shown below:

-- Get hold of the module
local module = mainfunc:module()





Other native functions may be created within the same module as normal. However
note that once the Lua function is compiled then no further updates to the
module are possible.

The model I recommend when using this feature is to create one exported
Lua C function in the module, with several private ‘internal’ supporting functions within the module.




Creating Modules and Execution Engines

The LLVM api for these functions are not exposed yet.




Examples

For examples that illustrate the bindings please visit the llvmbindings folder [https://github.com/dibyendumajumdar/ravi/tree/master/llvmbinding] in the repository.




Type Hierarchy

The bindings provide a number of Lua types:

+ LLVMcontext
+ LLVMfunction
  + LLVMmainfunction
+ LLVMmodule
+ LLVMtype
  + LLVMstructtype
  + LLVMpointertype
  + LLVMfunctiontype
+ LLVMvalue
  + LLVMinstruction
  + LLVMconstant
  + LLVMphinode
+ LLVMirbuilder
+ LLVMbasicblock








Available Bindings

The following table lists the Lua LLVM api functions available.






	Lua LLVM API





	
	llvm.context() -> LLVMcontext

	Returns global llvm::Context








	LLVMcontext methods



	
	lua_CFunction(name) -> LLVMmainfunction

	Creates an llvm::Function within a new llvm::Module; and associates an
llvm::ExecutionEngine with the module



	types() -> table of predefined type bindings

	Returns a table of predefined LLVM type bindings



	structtype(name) -> LLVMstructtype

	Opaque struct type; body can be added



	pointertype(type) -> LLVMpointertype

	Given a type returns a pointertype



	functiontype(return_type, {argtypes}, {options}) -> LLVMfunctiontype

	Creates a function type with specified return type, argument types. Takes the option
‘vararg’ which is false by default.



	basicblock(name) -> LLVMbasicblock

	Create a basic block



	intconstant(intgervalue) -> LLVMvalue

	Returns an integer constant value



	nullconstant(pointertype) -> LLVMvalue

	Returns a NULL constant of specified pointertype








	LLVMstructtype methods



	
	setbody({types})

	Adds members to the struct type








	LLVMmainfunction methods



	
	appendblock(LLVMbasicblock)

	Adds a basic block to the end



	compile()

	Compiles the module and returns a reference to the C Closure



	arg(position) -> LLVMvalue

	Returns the argument at position; position >= 1; returns nil if argument not available



	module() -> LLVMmodule

	Returns the module associated with the function



	extern(name[, functiontype]) -> LLVMconstant

	Returns an extern declaration; A number of Lua Api functions are predefined.








	LLVMmodule methods



	
	newfunction(name, functiontype) -> LLVMfunction

	Returns an internal linkage function within the module



	dump()

	Dumps the module








	LLVMfunction methods



	
	appendblock(LLVMbasicblock)

	Adds a basic block to the end



	arg(position) -> LLVMvalue

	Returns the argument at position; position >= 1; returns nil if argument not available



	alloca(type[, name [,arraysize]]) -> LLVMinstruction

	Creates a variable in the first block of the function








	LLVMirbuilder methods



	
	setinsertpoint(basicblock)

	Set current basicblock



	ret([value])

	Emit return instruction



	stringconstant(string) -> LLVMvalue

	Create a global string constant



	call({args}, {options}) -> LLVMinstruction

	Emit call instruction; ‘tailcall’ option is false by default



	br(basicblock) -> LLVMinstruction

	Emit a branch instruction



	condbr(value, true_block, false_block) -> LLVMinstruction

	Emit a conditional branch



	phi(type, num_values[, name]) -> LLVMphinode

	Generate a PHINode





GEP Operators


	gep(value, {offsets}) -> LLVMvalue

	getelementptr to obtain ptr to an array or struct element



	inboundsgep(value, {offsets}) -> LLVMvalue

	inbounds version of getelementptr





Memory Operators


	load(ptr) -> LLVMinstruction

	Loads the value at ptr



	store(value, ptr) -> LLVMinstruction

	Stores the value to ptr





Binary Operators of the form op(value1, value2) -> LLVMvalue


	icmpeq


	icmpne


	icmpugt


	icmpuge


	icmpult


	icmpule


	icmpsgt


	icmpsge


	icmpslt


	icmpsle


	fcmpoeq


	fcmpogt


	fcmpoge


	fcmpolt


	fcmpole


	fcmpone


	fcmpord


	fcmpun


	fcmpueq


	fcmpugt


	fcmpuge


	fcmpult


	fcmpule


	fcmpune


	nswadd


	nuwadd


	nswsub


	nuwsub


	udiv


	exactudiv


	sdiv


	exactsdiv


	urem


	srem


	and


	or


	xor


	fadd


	fsub


	fmul


	fdiv


	frem




Unary Operators of the form op(value) -> LLVMvalue


	not


	neg


	fneg




Conversion Operators of the form op(value,type) -> LLVMvalue


	trunc


	zext


	sext


	zextortrunc


	sextortrunc


	fptoui


	fptosi


	uitofp


	sitofp


	fptrunc


	fpext


	ptrtoint


	inttoptr


	bitcast


	sextorbitcast


	zextorbitcast


	truncorbitcast


	pointercast


	fpcast







	LLVMphinode methods



	
	addincoming(value, basicblock)

	Adds incoming edge

















          

      

      

    

  

    
      
          
            
  
Ravi Performance Benchmarks

Ravi’s reason for existence is to achieve greater performance than standard Lua 5.3. Hence performance benchmarks are of interest.

The programs used in the performance testing can be found at Ravi Tests [https://github.com/dibyendumajumdar/ravi/tree/master/ravi-tests] folder.











	Program

	Lua5.3.2

	Ravi Int

	Ravi(LLVM)

	LuaJIT2.1 Int

	LuaJIT2.1





	fornum_test1.lua

	8.94

	8.587

	0.309

	3.516

	0.312



	fornum_test2.lua

	9.195

	9.243

	4.446

	3.75

	0.922



	fornum_test3.lua

	52.494

	48.223

	4.748

	16.74

	7.75



	mandel1.lua(4000)

	20.324

	19.835

	8.056

	8.469

	1.594



	mandel1.ravi(4000)

	n/a

	16.192

	1.571

	n/a

	n/a



	fannkuchen.lua(11)

	46.203

	48.654

	28.422

	20.6

	4.672



	fannkuchen.ravi(11)

	n/a

	34.411

	4.634

	n/a

	n/a



	matmul1.lua(1000)

	26.672

	26.51

	16.83

	12.594

	1.078



	matmul1_ravi.lua(1000)

	n/a

	20.123

	1.137

	n/a

	n/a



	matmul1.ravi(1000)

	n/a

	25.387

	1.039

	n/a

	n/a






Following points are worth bearing in mind when looking at above benchmarks.


	For Ravi the timings above do not include the LLVM compilation time.


	The benchmarks were run on Windows 10 64-bit. LLVM version 3.9 was used.
Ravi and Lua 5.3.2 were compiled using Visual C++ 2015.


	Some of the Ravi benchmarks are based on code that uses optional static types;
additionally for the matmul benchmark a setting was used to disable
array bounds checks for array read operations.


	Above benchmarks are primarily numerical. In real life scenarios there
are other factors that affect performance. For instance, via FFI LuaJIT
is able to make efficient calls to external C functions, but Ravi does
not have a similar FFI interface. LuaJIT can also inline Lua function calls
but Ravi does not have this ability and hence function calls go via the
Lua infrastructure and are therefore expensive. Ravi’s code generation is best
when types are annotated as otherwise the dynamic type checks degrade performance
as above benchmarks show. Finally LLVM is a slow compiler relative to LuaJIT’s
JIT compiler which is extremely fast.


	Performance of Lua 5.3.2 is better than 5.3.0 or 5.3.1, thanks to the
table optimizations in this version.




In general to obtain the best performanc with Ravi, following steps are necessary.


	Annotate types as much as possible.


	Use fornum loops with integer counters.


	Avoid function calls inside loop bodies.


	Do not assume that JIT compilation is beneficial - benchmark code with and without
JIT compilation.


	Try to compile a set of functions (in a table) preferably at program startup.
This way you pay for the JIT compilation cost only once.


	Dump the generated Lua bytecode to see if specialised Ravi bytecodes are being
generated or not. If not you may be missing type annotations.


	Avoid using globals.


	Note that only functions executing in the main Lua thread are run in JIT mode.
Coroutines in particular are always interpreted.


	Also note that tail calls are expensive in JIT mode as they are treated as
normal function calls; so it is better to avoid JIT compilation of code that
relies upon tail calls.








          

      

      

    

  

    
      
          
            
  
Ravi JIT Compilation Status


Introduction

Ravi uses LLVM for JIT compilation.




Benefits of using LLVM


	LLVM has a well documented intermediate representation called LLVM IR.


	The LLVM IRBuilder implements type checks so that when LLVM code is being generated, basic type errors are caught by the builder.


	LLVM provides a verifier to check that the generated IR is valid. This allows the IR to be validated prior to machine code generation.


	All of the LLVM optimization passes can be used.


	The Clang compiler supports generating LLVM IR so that if you want to know what the LLVM IR should look like for a particular piece of code, you can write a small C snippet and have Clang generate the IR for you.


	There is great momentum behind LLVM.


	The LLVM license is not based on GPL, so it is not viral.


	LLVM is much better documented than other products that aim to cover similar ground.


	LLVM’s API is well designed and has a layered architecture.







Drawbacks of LLVM


	LLVM is huge in size. Lua on its own is tiny - but when linked to LLVM the resulting binary is a monster.


	There is a cost to compiling in LLVM so the benefit of compilation accrues only when a Lua function will be used again and again.


	LLVM cannot be linked as a shared library on Windows and a shared library configuration is not recommended on other platforms as well.


	LLVM’s API keeps changing so that with every release of LLVM one has to revise the way it is used.







The Architecture of Ravi’s JIT Compilation


	The unit of compilation is a Lua function


	Each Lua function is compiled to a Module/Function in LLVM parlance


	The compiled code is attached to the Lua function prototype


	The compiled code is garbage collected as normal by Lua


	The Lua runtime coordinates function calls - so anytime a Lua function is called it goes via the Lua infrastructure.


	The decision to call a JIT compiled version is made in the Lua Infrastructure (specifically in luaD_precall() function in ldo.c)


	The JIT compiler translates Lua/Ravi bytecode to LLVM IR - i.e. it does not translate Lua source code.


	There is no inlining of Lua functions.


	Generally the JIT compiler implements the same instructions as in lvm.c - however for some bytecodes the code calls a C function rather than generating inline IR. These opcodes are OP_LOADNIL, OP_NEWTABLE, OP_RAVI_NEWARRAYINT, OP_RAVI_NEWARRAYFLT, OP_SETLIST, OP_CONCAT, OP_CLOSURE, OP_VARARG, OP_RAVI_SHL_II, OP_RAVI_SHR_II.


	Ravi represents Lua values as done by Lua 5.3 - i.e. in a 16 byte structure.


	Ravi compiler generates type specifc opcodes which result in simpler and higher performance LLVM IR.







Limitations of JIT compilation


	Coroutines are not supported - JITed functions cannot yield


	The Debug API relies upon a field called savedpc which tracks the current instruction being executed by Lua interpreter. As this is not updated by the JIT code the Debug API can only provide a subset of normal functionality. The Debug API is not yet fully tested.


	The Lua VM supports infinite tail recursion. The JIT compiler treats OP_TAILCALL as normal OP_CALL so that recursion is limited to about 110 levels.


	The Lua C API has not yet been tested against the Ravi extensions - especially static typing and array types. Do not use the C API for now - as you could break the type system of Ravi.


	Bit-wise operators are JIT compiled only when the variables are known to be integers (specialized byte codes are used).







JIT Status of Lua/Ravi Bytecodes

The JIT compilation status of the Lua and Ravi bytecodes are given below.

This information was last updated on 25th July 2015. As new bytecodes are being added to the JIT compiler on a regular basis
the status information below may be slightly out of date.

Note that if a Lua functions contains a bytecode that cannot be be JITed then the function cannot be JITed.








	name

	JITed?

	description





	OP_MOVE

	YES

	R(A) := R(B)



	OP_LOADK

	YES

	R(A) := Kst(Bx)



	OP_LOADKX

	YES

	R(A) := Kst(extra arg)



	OP_LOADBOOL

	YES

	R(A) := (Bool)B; if (C) pc++



	OP_LOADNIL

	YES (1)

	R(A), R(A+1), …, R(A+B) := nil



	OP_GETUPVAL

	YES

	R(A) := UpValue[B]



	OP_GETTABUP

	YES

	R(A) := UpValue[B][RK(C)]



	OP_GETTABLE

	YES

	R(A) := R(B)[RK(C)]



	OP_SETTABUP

	YES

	UpValue[A][RK(B)] := RK(C)



	OP_SETUPVAL

	YES

	UpValue[B] := R(A)



	OP_SETTABLE

	YES

	R(A)[RK(B)] := RK(C)



	OP_NEWTABLE

	YES (1)

	R(A) := {} (size = B,C)



	OP_SELF

	YES (1)

	R(A+1) := R(B); R(A) := R(B)[RK(C)]



	OP_ADD

	YES

	R(A) := RK(B) + RK(C)



	OP_SUB

	YES

	R(A) := RK(B) - RK(C)



	OP_MUL

	YES

	R(A) := RK(B) * RK(C)



	OP_MOD

	YES

	R(A) := RK(B) % RK(C)



	OP_POW

	YES

	R(A) := RK(B) ^ RK(C)



	OP_DIV

	YES

	R(A) := RK(B) / RK(C)



	OP_IDIV

	YES

	R(A) := RK(B) // RK(C)



	OP_BAND

	YES (1)

	R(A) := RK(B) & RK(C)



	OP_BOR

	YES (1)

	R(A) := RK(B) | RK(C)



	OP_BXOR

	YES (1)

	R(A) := RK(B) ~ RK(C)



	OP_SHL

	YES (1)

	R(A) := RK(B) << RK(C)



	OP_SHR

	YES (1)

	R(A) := RK(B) >> RK(C)



	OP_UNM

	YES

	R(A) := -R(B)



	OP_BNOT

	YES (1)

	R(A) := ~R(B)



	OP_NOT

	YES

	R(A) := not R(B)



	OP_LEN

	YES (1)

	R(A) := length of R(B)



	OP_CONCAT

	YES (1)

	R(A) := R(B).. … ..R(C)



	OP_JMP

	YES

	c+=sBx; if (A) close all upvalues >= R(A - 1)



	OP_EQ

	YES (1)

	if ((RK(B) == RK(C)) ~= A) then pc++



	OP_LT

	YES (1)

	if ((RK(B) <  RK(C)) ~= A) then pc++



	OP_LE

	YES (1)

	if ((RK(B) <= RK(C)) ~= A) then pc++



	OP_TEST

	YES

	if not (R(A) <=> C) then pc++



	OP_TESTSET

	YES

	if (R(B) <=> C) then R(A) := R(B) else pc++



	OP_CALL

	YES

	R(A), .. ,R(A+C-2) := R(A)(R(A+1), .. ,R(A+B-1))



	OP_TAILCALL

	YES (2)

	return R(A)(R(A+1), … ,R(A+B-1))
Compiled as OP_CALL so no tail call optimization



	OP_RETURN

	YES

	return R(A), … ,R(A+B-2) (see note)



	OP_FORLOOP

	YES

	R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }



	OP_FORPREP

	YES

	R(A)-=R(A+2); pc+=sBx



	OP_TFORCALL

	YES

	R(A+3), … ,R(A+2+C) := R(A)(R(A+1), R(A+2));



	OP_TFORLOOP

	YES

	if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }



	OP_SETLIST

	YES (1)

	R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B



	OP_CLOSURE

	YES (1)

	R(A) := closure(KPROTO[Bx])



	OP_VARARG

	YES (1)

	R(A), R(A+1), …, R(A+B-2) = vararg



	OP_EXTRAARG

	N/A

	extra (larger) argument for previous opcode



	OP_RAVI_NEWARRAYI

	YES

	R(A) := array of int



	OP_RAVI_NEWARRAYF

	YES

	R(A) := array of float



	OP_RAVI_LOADIZ

	YES

	R(A) := tointeger(0)



	OP_RAVI_LOADFZ

	YES

	R(A) := tonumber(0)



	OP_RAVI_ADDFF

	YES

	R(A) := RK(B) + RK(C)



	OP_RAVI_ADDFI

	YES

	R(A) := RK(B) + RK(C)



	OP_RAVI_ADDII

	YES

	R(A) := RK(B) + RK(C)



	OP_RAVI_SUBFF

	YES

	R(A) := RK(B) - RK(C)



	OP_RAVI_SUBFI

	YES

	R(A) := RK(B) - RK(C)



	OP_RAVI_SUBIF

	YES

	R(A) := RK(B) - RK(C)



	OP_RAVI_SUBII

	YES

	R(A) := RK(B) - RK(C)



	OP_RAVI_MULFF

	YES

	R(A) := RK(B) * RK(C)



	OP_RAVI_MULFI

	YES

	R(A) := RK(B) * RK(C)



	OP_RAVI_MULII

	YES

	R(A) := RK(B) * RK(C)



	OP_RAVI_DIVFF

	YES

	R(A) := RK(B) / RK(C)



	OP_RAVI_DIVFI

	YES

	R(A) := RK(B) / RK(C)



	OP_RAVI_DIVIF

	YES

	R(A) := RK(B) / RK(C)



	OP_RAVI_DIVII

	YES

	R(A) := RK(B) / RK(C)



	OP_RAVI_TOINT

	YES

	R(A) := toint(R(A))



	OP_RAVI_TOFLT

	YES

	R(A) := tofloat(R(A))



	OP_RAVI_TOARRAYI

	YES

	R(A) := to_arrayi(R(A))



	OP_RAVI_TOARRAYF

	YES

	R(A) := to_arrayf(R(A))



	OP_RAVI_MOVEI

	YES

	R(A) := R(B), check R(B) is integer



	OP_RAVI_MOVEF

	YES

	R(A) := R(B), check R(B) is number



	OP_RAVI_MOVEAI

	YES

	R(A) := R(B), check R(B) is array of integer



	OP_RAVI_MOVEAF

	YES

	R(A) := R(B), check R(B) is array of numbers



	OP_RAVI_GETTABLE_AI

	YES

	R(A) := R(B)[RK(C)] where R(B) is array of
integers and RK(C) is integer



	OP_RAVI_GETTABLE_AF

	YES

	R(A) := R(B)[RK(C)] where R(B) is array of
numbers and RK(C) is integer



	OP_RAVI_SETTABLE_AI

	YES

	R(A)[RK(B)] := RK(C) where RK(B) is an integer
R(A) is array of integers, and RK(C) is an int



	OP_RAVI_SETTABLE_AF

	YES

	R(A)[RK(B)] := RK(C) where RK(B) is an integer
R(A) is array of numbers, and RK(C) is a number



	OP_RAVI_FORLOOP_IP

	YES

	R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }
Specialization for integer step > 1



	OP_RAVI_FORPREP_IP

	YES

	R(A)-=R(A+2); pc+=sBx
Specialization for integer step > 1



	OP_RAVI_FORLOOP_I1

	YES

	R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }
Specialization for integer step == 1



	OP_RAVI_FORPREP_I1

	YES

	R(A)-=R(A+2); pc+=sBx
Specialization for integer step == 1



	OP_RAVI_SETUPVALI

	YES (1)

	UpValue[B] := tointeger(R(A))



	OP_RAVI_SETUPVALF

	YES (1)

	UpValue[B] := tonumber(R(A))



	OP_RAVI_SETUPVALAI

	YES (1)

	UpValue[B] := toarrayint(R(A))



	OP_RAVI_SETUPVALAF

	YES (1)

	UpValue[B] := toarrayflt(R(A))



	OP_RAVI_SETTABLE_AII

	YES

	R(A)[RK(B)] := RK(C) where RK(B) is an integer
R(A) is array of integers, and RK(C) is an int
No conversion as input is known to be int



	OP_RAVI_SETTABLE_AFF

	YES

	R(A)[RK(B)] := RK(C) where RK(B) is an integer
R(A) is array of numbers, and RK(C) is a number
No conversion as input is known to be float



	OP_RAVI_BAND_II

	YES

	R(A) := RK(B) & RK(C), operands are int



	OP_RAVI_BOR_II

	YES

	R(A) := RK(B) | RK(C), operands are int



	OP_RAVI_BXOR_II

	YES

	R(A) := RK(B) ~ RK(C), operands are int



	OP_RAVI_SHL_II

	YES (5)

	R(A) := RK(B) << RK(C), operands are int



	OP_RAVI_SHR_II

	YES (5)

	R(A) := RK(B) >> RK(C), operands are int



	OP_RAVI_BNOT_I

	YES

	R(A) := ~R(B), int operand



	OP_RAVI_EQ_II

	YES

	if ((RK(B) == RK(C)) ~= A) then pc++



	OP_RAVI_EQ_FF

	YES

	if ((RK(B) == RK(C)) ~= A) then pc++



	OP_RAVI_LT_II

	YES

	if ((RK(B) <  RK(C)) ~= A) then pc++



	OP_RAVI_LT_FF

	YES

	if ((RK(B) <  RK(C)) ~= A) then pc++



	OP_RAVI_LE_II

	YES

	if ((RK(B) <= RK(C)) ~= A) then pc++



	OP_RAVI_LE_FF

	YES

	if ((RK(B) <= RK(C)) ~= A) then pc++



	OP_RAVI_GETTABLE_I

	YES

	R(A) := R(B)[RK(C)], integer key



	OP_RAVI_GETTABLE_S

	YES

	R(A) := R(B)[RK(C)], string key



	OP_RAVI_GETTABLE_SK

	YES

	R(A) := R(B)[RK(C)], string key



	OP_RAVI_SETTABLE_I

	YES (4)

	R(A)[RK(B)] := RK(C), integer key



	OP_RAVI_SETTABLE_S

	YES (3)

	R(A)[RK(B)] := RK(C), string key



	OP_RAVI_SETTABLE_SK

	YES

	R(A)[RK(B)] := RK(C), string key



	OP_RAVI_TOTAB

	YES

	R(A) := to_table(R(A))



	OP_RAVI_MOVETAB

	YES

	R(A) := R(B), check R(B) is a table



	OP_RAVI_SETUPVALT

	YES (1)

	UpValue[B] := to_table(R(A))



	OP_RAVI_SELF_SK

	YES

	R(A+1) := R(B); R(A) := R(B)[RK(C)]



	OP_RAVI_SELF_S

	YES

	R(A+1) := R(B); R(A) := R(B)[RK(C)]



	OP_RAVI_GETTABUP_SK

	YES

	R(A) := UpValue[B][RK(C)]







	These bytecoes are handled via function calls rather than inline code generation


	Tail calls are the same as ordinary calls.


	The _SK variant is generated


	Generates generic SETTABLE


	Inline code is generated only when operand is a constant integer







Ravi’s LLVM JIT compiler source

The LLVM JIT implementation is in following sources:


	ravillvm.h - includes LLVM headers and defines the generic JIT State and Function interfaces


	ravijit.h - defines the JIT API


	ravi_llvmcodegen.h - defines the types used by the code generator


	ravijit.cpp - Non implementation specific JIT API functions


	ravi_llvmjit.cpp - basic LLVM infrastructure and Ravi API definition


	ravi_llvmtypes.cpp - contains LLVM type definitions for Lua objects


	ravi_llvmcodegen.cpp - LLVM JIT compiler - main driver for compiling Lua bytecodes into LLVM IR


	ravi_llvmload.cpp - implements OP_LOADK and OP_MOVE, and related operations, also OP_LOADBOOL


	ravi_llvmcomp.cpp - implements OP_EQ, OP_LT, OP_LE, OP_TEST and OP_TESTSET.


	ravi_llvmreturn.cpp - implements OP_RETURN


	ravi_llvmforprep.cpp - implements OP_FORPREP


	ravi_llvmforloop.cpp - implements OP_FORLOOP


	ravi_llvmtforcall.cpp - implements OP_TFORCALL and OP_TFORLOOP


	ravi_llvmarith1.cpp - implements various type specialized arithmetic operations - these are Ravi extensions


	ravi_llvmarith2.cpp - implements Lua opcodes such as OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_POW, OP_IDIV, OP_MOD, OP_UNM


	ravi_llvmcall.cpp - implements OP_CALL, OP_JMP


	ravi_llvmtable.cpp - implements OP_GETTABLE, OP_SETTABLE and various other table operations, OP_SELF, and also upvalue operations


	ravi_llvmrest.cpp - OP_CLOSURE, OP_VARARG, OP_CONCAT
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LLVM Notes

The notes below apply to LLVM 3.5.1 unless noted otherwise. All reflect my understanding - so if anything here is incorrect please log an issue and I will correct.


Structs and Unions

LLVM does not support defining union types so we need to basically use a struct of appropriate size and cast it as we need. The main thing to be careful about is to ensure that the struct is of the same size as the union.

An example is:

///*
//** Information about a call.
//** When a thread yields, 'func' is adjusted to pretend that the
//** top function has only the yielded values in its stack; in that
//** case, the actual 'func' value is saved in field 'extra'.
//** When a function calls another with a continuation, 'extra' keeps
//** the function index so that, in case of errors, the continuation
//** function can be called with the correct top.
//*/
// typedef struct CallInfo {
//  StkId func;  /* function index in the stack */
//  StkId     top;  /* top for this function */
//  struct CallInfo *previous, *next;  /* dynamic call link */
//  union {
//    struct {  /* only for Lua functions */
//      StkId base;  /* base for this function */
//      const Instruction *savedpc;
//    } l;
//    struct {  /* only for C functions */
//      lua_KFunction k;  /* continuation in case of yields */
//      ptrdiff_t old_errfunc;
//      lua_KContext ctx;  /* context info. in case of yields */
//    } c;
//  } u;
//  ptrdiff_t extra;
//  short nresults;  /* expected number of results from this function */
//  lu_byte callstatus;
//} CallInfo;





Above the union u has two members of unequal size. To handle this I created the following two sub-types of equal size - note the extra dummy field in the first type:

elements.clear();
elements.push_back(StkIdT);        /* base */
elements.push_back(pInstructionT); /* savedpc */
elements.push_back(
    C_ptrdiff_t); /* dummy to make this same size as the other member */
CallInfo_lT = llvm::StructType::create(elements);

elements.clear();
elements.push_back(plua_KFunctionT); /* k */
elements.push_back(C_ptrdiff_t);     /* old_errfunc */
elements.push_back(lua_KContextT);   /* ctx */
CallInfo_cT = llvm::StructType::create(elements);





Then as I intend to use the u.l field more often, I used the following definition for CallInfo:

CallInfoT = llvm::StructType::create(context, "ravi.CallInfo");
pCallInfoT = llvm::PointerType::get(CallInfoT, 0);
elements.clear();
elements.push_back(StkIdT);     /* func */
elements.push_back(StkIdT);     /* top */
elements.push_back(pCallInfoT); /* previous */
elements.push_back(pCallInfoT); /* next */
elements.push_back(
    CallInfo_lT); /* u.l  - as we will typically access the lua call details
                     */
elements.push_back(C_ptrdiff_t);                     /* extra */
elements.push_back(llvm::Type::getInt16Ty(context)); /* nresults */
elements.push_back(lu_byteT);                        /* callstatus */
CallInfoT->setBody(elements);








JIT Compilation Error on Windows

Note: The latest LLVM version from LLVM source repository appears to support COEFF format. So below
applies to version 3.6.x and 3.5.x.

On Windows when we attempt to JIT compile we get an error saying incompatible object format
Reading posts on mailing lists I found that the issue is that COEFF
format is not supported and therefore we need to set -elf as the object
format:

#include "llvm/Support/Host.h"

/* some code */

#ifdef _WIN32
  auto triple = llvm::sys::getProcessTriple();
  module->setTargetTriple(triple + "-elf");
#endif








Memory Management

It appears that most things in LLVM are owned by the parent object and when the parent object is deleted the children go too. So in my code the main objects I delete are the ExecutionEngine and Module. Once a module is associated with an engine then only the engine needs to be explicitly deleted is my understanding.

It doesn’t help that the tutorial available does not attempt to delete objects / release memory!




MCJIT Engines, Modules and Functions

Functions live inside Modules but once a Module is finalized (compiled) then no further functions can be added to it. Although an MCJIT instance (engine) can support multiples modules, the recommendation is to ensure each module is assigned its own engine. The rationale for this is not explained.




Struct Assign

My understanding is that to perform assignment of a struct value, one must call the intrinsic memcpy function. Example of code that does this:

llvm::Value *src;
llvm::Value *dest;

// First get the declaration for the inttrinsic memcpy
llvm::SmallVector<llvm::Type *, 3> vec;
vec.push_back(def->types->C_pcharT);  /* i8 */
vec.push_back(def->types->C_pcharT);  /* i8 */
vec.push_back(def->types->C_intT);
llvm::Function *f = llvm::Intrinsic::getDeclaration(
    def->raviF->module(), llvm::Intrinsic::memcpy, vec);
lua_assert(f);

// Cast src and dest to i8*
llvm::Value *dest_ptr =
    def->builder->CreateBitCast(dest, def->types->C_pcharT);
llvm::Value *src_ptr = def->builder->CreateBitCast(src, def->types->C_pcharT);

// Create call to intrinsic memcpy
values_.clear();
values_.push_back(dest_ptr);
values_.push_back(src_ptr);
values_.push_back(llvm::ConstantInt::get(def->types->C_intT, sizeof(TValue)));
values_.push_back(
    llvm::ConstantInt::get(def->types->C_intT, sizeof(L_Umaxalign)));
values_.push_back(def->types->kFalse);
def->builder->CreateCall(f, values_);





Note that the call to memcpy supply an alignment.




Accessing extern functions from JIT compiled code

If the JITed function needs to access extern functions that are statically linked and not exported as dynamic symbols (e.g. in Visual C++) then we need some extra steps.
From reading posts on the subject it appears that the way to do this is to add a global mapping in the ExecutionEngine by calling the
addGlobalMapping() method. However this doesn’t work with MCJIT due to a bug! So we need to use a workaround. Apparently there are two
solutions:


	Create a custom memory manager that resolves the extern functions.


	Add the symbol to the global symbols by calling llvm::sys::DynamicLibrary::AddSymbol().




I am using the latter approach for now.




GEP instruction

The GEP instruction cannot compute addresses of fields in a pointer member - as the pointer needs to be ‘loaded’ first. This is explained in the GEP FAQ [http://llvm.org/docs/GetElementPtr.html#id6].




Hooking up Optimization Passes

The LLVM documentation does not provide guidance on how the optimization passes should be hooked up. There are descriptions of what the passes do, but if you are new to LLVM and trying to work out which passes to use and in what order, then there is not much help available. The Kaleidoscope Sample [http://www.llvm.org/docs/tutorial/LangImpl4.html] shows a small example of how optimization passes may be hooked up.

Fortunately it seems that there is a PassManagerBuilder [http://llvm.org/docs/doxygen/html/classllvm_1_1PassManagerBuilder.html] component that allows easy setup of the standard passes for a C like language. Unfortunately there isn’t much guidance on how to use this either. The best source of information I found was an example toy compiler by David Chisnall [http://cs.swan.ac.uk/~csdavec/FOSDEM12/compiler.cc.html].




Links


	Mapping High Level Constructs to LLVM IR [http://llvm.lyngvig.org/Articles/Mapping-High-Level-Constructs-to-LLVM-IR]


	IRBuilder Sample [https://github.com/eliben/llvm-clang-samples/blob/master/src_llvm/experimental/build_llvm_ir.cpp]


	Using MCJIT with Kaleidoscope [http://blog.llvm.org/2013/07/using-mcjit-with-kaleidoscope-tutorial.html]


	Object format issue on Windows [http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-December/068407.html]


	ExecutionEngine::addGlobalMapping() bug in MCJIT [http://llvm.org/bugs/show_bug.cgi?id=20656]


	LLVM Notes [http://nondot.org/sabre/LLVMNotes/]


	Implementing Domain-Specific Languages with LLVM [http://cs.swan.ac.uk/~csdavec/FOSDEM12/DSLsWithLLVM.pdf].










          

      

      

    

  

    
      
          
            
  
New Parser and Code Generator

This is to capture design / implementation details for the new parser and code generator.
Changes are in ast branch.


What is Where?

Quick reminders:


	lapi.c has new function ravi_load()


	lauxlib.c has new functions raviL_loadbufferx() and raviL_dumpast()


	ldo.c has new functions ravi_f_parser() and raviD_protectedparser()


	Implementation of raviY_parser() is in ravi_ast.c


	There is a new Lua api raviload() that calls ravi_load() - this can be used to start developing/testing the new parser.


	There is a also a test driver test_ast.c.




The new parser does nothing yet - it simply ends up calling the standard Lua parser. The idea is that we will have a passthrough
that is only used to test/build the new module without actually interfering with the existing flow.







          

      

      

    

  

    
      
          
            
  
Ravi LLVM JIT Infrastructure

Ravi is using the LLVM MCJIT infrastrucure for JIT compilation. This poses some challenges as we have to worry about how modules
are related to MCJIT engines. It seems from the official samples and from feedback on mailing lists that due to limitations in MCJIT
it is advisable to ensure that each module has its own MCJIT engine. Furthermore it appears that once a module is compiled to machine code
i.e. JITed then no further changes can be made to the module, so it is not possible to keep adding functions to the same
module.

The Kaleidoscope MCJIT samples try to optimise the module to function mapping by ensuring that a module is reused for each new
function until a function is compiled. Once any function in the module is compiled, then a new module is allocated. Each module of course
gets its own MCJIT instance.

For Ravi, I want to have an abstraction layer that hides all this detail and allows us to change the implementation strategy without
having to modify the rest of the system. In order to allow that I have created the following two interfaces.


RaviJITState interface

This is where the LLVM state is held for any Lua instance. An instance of this will be stored in the Lua State.
The interface looks like this:

class RAVI_API RaviJITState {
public:
  RaviJITState();
  ~RaviJITState();

  // Create a function of specified type and linkage
  RaviJITFunction *createFunction(llvm::FunctionType *type,
                                llvm::GlobalValue::LinkageTypes linkage,
                                const std::string &name);


  // Get the LLVM Context
  llvm::LLVMContext &context();
};








RaviJITFunction interface

This interface is for each JITed function. It looks like this:

class RAVI_API RaviJITFunction {

public:
  // Destroy the function releasing any resources used
  // by the function - this can be called from Lua's
  // garbage collector when a function is finalized
  ~RaviJITFunction();

  // Compile the function if not already compiled and
  // return pointer to function
  void *compile();

  // Add declaration for an extern function that is not
  // loaded dynamically - i.e., is part of the the executable
  // and therefore not visible at runtime by name
  llvm::Constant *addExternFunction(llvm::FunctionType *type, void *address,
                                  const std::string &name);

  // Get the function name
  const std::string &name() const;

  // Get the LLVM Function object
  llvm::Function *function() const;

  // Get the Module that owns this function
  llvm::Module *module() const;

  // Get the MCJIT instance that owns this function
  llvm::ExecutionEngine *engine() const;
};








Example Usage

What above does is abstracts away all the implementation details. Here is a test program that uses the above two interfaces:

// This mirrors the Lua GCObject structure in lobject.h
typedef struct RaviGCObject {
  struct RaviGCObject *next;
  unsigned char b1;
  unsigned char b2;
} RaviGCObject;

// Our prototype for the JITted function
typedef int (*myfunc_t)(RaviGCObject *);

extern "C" int mytest(RaviGCObject *obj) {
  printf("value = %d\n", obj->b1);
  return obj->b1;
}

// This version of the test calls mytest() rather than
// printf() as in test1(). Also we use RaviJITState and related
// infrastructure
int test2() {

  RaviJITState jitState;

  llvm::LLVMContext &context = jitState.context();
  llvm::IRBuilder<> builder(context);

  // create a GCObject structure as defined in lobject.h
  llvm::StructType *structType =
    llvm::StructType::create(context, "RaviGCObject");
  llvm::PointerType *pstructType =
    llvm::PointerType::get(structType, 0); // pointer to RaviGCObject
  std::vector<llvm::Type *> elements;
  elements.push_back(pstructType);
  elements.push_back(llvm::Type::getInt8Ty(context));
  elements.push_back(llvm::Type::getInt8Ty(context));
  structType->setBody(elements);
  structType->dump();

  // Create declaration for mytest
  // int mytest(RaviGCObject *obj)
  std::vector<llvm::Type *> args;
  args.push_back(pstructType);
  llvm::FunctionType *mytestFuncType =
    llvm::FunctionType::get(builder.getInt32Ty(), args, false);

  // Create the testfunc()
  args.clear();
  args.push_back(pstructType);
  llvm::FunctionType *funcType =
    llvm::FunctionType::get(builder.getInt32Ty(), args, false);
  RaviJITFunction *func = jitState.createFunction(
    funcType, llvm::Function::ExternalLinkage, "testfunc");

  llvm::Function *mainFunc = func->function();
  llvm::BasicBlock *entry =
    llvm::BasicBlock::Create(context, "entrypoint", mainFunc);
  builder.SetInsertPoint(entry);

  // Get the first argument which is RaviGCObject *
  auto argiter = mainFunc->arg_begin();
  llvm::Value *arg1 = argiter++;
  arg1->setName("obj");

  // Add an extern int mytest(RaviGCObject *obj) and link this
  // to mytest()
  llvm::Constant *mytestFunc =
    func->addExternFunction(mytestFuncType, &mytest, "mytest");

  // Call the mytest() function
  std::vector<llvm::Value *> values;
  values.push_back(arg1);
  llvm::Value *tmp2 = builder.CreateCall(mytestFunc, values, "i");

  // return i
  builder.CreateRet(tmp2);
  func->dump();

  // Now lets compile our function into machine code
  myfunc_t funcptr = (myfunc_t)func->compile();
  if (funcptr == nullptr) {
    llvm::errs() << "Failed to obtain compiled function\n";
    return 1;
  }

  // Run the function and test results.
  RaviGCObject obj = {NULL, 42, 65};
  int ans = funcptr(&obj);
  printf("The answer is %d\n", ans);
  return ans == 42 ? 0 : 1;
}











          

      

      

    

  

    
      
          
            
  
LLVM First Steps

Note that the discussion below is for LLVM 3.5.1.

Although there appears to be a lot of documentation in the LLVM site surprisingly some basic information is hard to find.
The main source of guidance for creating a JIT is in the example toy language
Kaleidoscope [https://github.com/llvm-mirror/llvm/blob/master/examples/Kaleidoscope/MCJIT/complete/toy.cpp]. But here too
there are several versions - so you have to pick the right version that is compatible with the LLVM version you
are using.

A Lua JITed function will execute in the context of Lua. So it needs to be able to access the lua_State and its various
structures. So I wanted a sample that demonstrates passing a pointer to a structure and accessing it within the JITed
function.

The initial test program I created is meant to be a “hello world” type test but covering the functionility described above.
The test I want to run is:

// Creating a function that takes pointer to struct as argument
// The function gets value from one of the fields in the struct
// And returns it
// The equivalent C program is:
//
// extern int printf(const char *, ...);
//
// struct GCObject {
//   struct GCObject *next;
//   unsigned char a;
//   unsigned char b;
// };
//
// int testfunc(struct GCObject *obj) {
//   printf("value = %d\n", obj->a);
//   return obj->a;
// }





You can view the test program at test_llvm.cpp [https://github.com/dibyendumajumdar/ravi/blob/master/tests/test_llvm.cpp].
It is also reproduced below.

I used the new MCJIT engine in my test. It seems that this engine compiles modules rather than individual
functions - and once compiled a module cannot be modified. So in the Lua context we need to create a new module
everytime we JIT compile a function - or alternatively we JIT compile a whole Lua source file including all its
functions into a single module.

I found the blog post Using MCJIT with Kaleidoscope [http://blog.llvm.org/2013/07/using-mcjit-with-kaleidoscope-tutorial.html] useful in understanding some
finer points about using MCJIT.

The Lua GCObject structure in lobject.h we need is:

typedef struct RaviGCObject {
  struct RaviGCObject *next;
  unsigned char b1;
  unsigned char b2;
} RaviGCObject;





Our prototype for the JITted function:

typedef int (*myfunc_t)(RaviGCObject *);





Get global context - not sure what the impact is of sharing:

llvm::LLVMContext &context = llvm::getGlobalContext();





Module is the translation unit:

std::unique_ptr<llvm::Module> theModule =
  std::unique_ptr<llvm::Module>(new llvm::Module("ravi", context));
llvm::Module *module = theModule.get();
llvm::IRBuilder<> builder(context);





On Windows we get error saying incompatible object format
Reading posts on mailining lists I found that the issue is that COEFF
format is not supported and therefore we need to set -elf as the object
format:

#ifdef _WIN32
  auto triple = llvm::sys::getProcessTriple();
  module->setTargetTriple(triple + "-elf");
#endif





create a GCObject structure as defined in lobject.h:

llvm::StructType *structType =
    llvm::StructType::create(context, "RaviGCObject");
llvm::PointerType *pstructType =
  llvm::PointerType::get(structType, 0); // pointer to RaviGCObject
std::vector<llvm::Type *> elements;
elements.push_back(pstructType);
elements.push_back(llvm::Type::getInt8Ty(context));
elements.push_back(llvm::Type::getInt8Ty(context));
structType->setBody(elements);
structType->dump();





Create printf declaration:

std::vector<llvm::Type *> args;
args.push_back(llvm::Type::getInt8PtrTy(context));
// accepts a char*, is vararg, and returns int
llvm::FunctionType *printfType =
    llvm::FunctionType::get(builder.getInt32Ty(), args, true);
llvm::Constant *printfFunc =
    module->getOrInsertFunction("printf", printfType);





Create the testfunc():

args.clear();
args.push_back(pstructType);
llvm::FunctionType *funcType =
  llvm::FunctionType::get(builder.getInt32Ty(), args, false);
llvm::Function *mainFunc = llvm::Function::Create(
  funcType, llvm::Function::ExternalLinkage, "testfunc", module);
llvm::BasicBlock *entry =
  llvm::BasicBlock::Create(context, "entrypoint", mainFunc);
builder.SetInsertPoint(entry);





The printf format string:

llvm::Value *formatStr = builder.CreateGlobalStringPtr("value = %d\n");





Get the first argument which is RaviGCObject *:

auto argiter = mainFunc->arg_begin();
llvm::Value *arg1 = argiter++;
arg1->setName("obj");





Now we need a GEP for the second field in RaviGCObject:

std::vector<llvm::Value *> values;
llvm::APInt zero(32, 0);
llvm::APInt one(32, 1);
// This is the array offset into RaviGCObject*
values.push_back(
   llvm::Constant::getIntegerValue(llvm::Type::getInt32Ty(context), zero));
// This is the field offset
values.push_back(
  llvm::Constant::getIntegerValue(llvm::Type::getInt32Ty(context), one));





Create the GEP value:

llvm::Value *arg1_a = builder.CreateGEP(arg1, values, "ptr");





Now retrieve the data from the pointer address:

llvm::Value *tmp1 = builder.CreateLoad(arg1_a, "a");





As the retrieved value is a byte - convert to int i:

llvm::Value *tmp2 =
  builder.CreateZExt(tmp1, llvm::Type::getInt32Ty(context), "i");





Call the printf function:

values.clear();
values.push_back(formatStr);
values.push_back(tmp2);
builder.CreateCall(printfFunc, values);





return i:

builder.CreateRet(tmp2);
module->dump();





Lets create the MCJIT engine:

std::string errStr;
auto engine = llvm::EngineBuilder(module)
                .setErrorStr(&errStr)
                .setEngineKind(llvm::EngineKind::JIT)
                .setUseMCJIT(true)
                .create();
if (!engine) {
  llvm::errs() << "Failed to construct MCJIT ExecutionEngine: " << errStr
             << "\n";
  return 1;
}





Now lets compile our function into machine code:

std::string funcname = "testfunc";
myfunc_t funcptr = (myfunc_t)engine->getFunctionAddress(funcname);
if (funcptr == nullptr) {
  llvm::errs() << "Failed to obtain compiled function\n";
  return 1;
}





Run the function and test results:

RaviGCObject obj = {NULL, 42, 65};
int ans = funcptr(&obj);
printf("The answer is %d\n", ans);
return ans == 42 ? 0 : 1;






Accessing extern functions from JIT compiled code

The JITed function needs to access extern Lua functions. We need a way to map these to make these visible to the JITed code. Simply declaring
the functions extern only appears to work if the functios are available as exported symbols in dynamic libraries, e.g. the call to
printf above.

From reading posts on the subject it appears that the way to do this is to add a global mapping in the ExecutionEngine by calling the
addGlobalMapping() method. However this doesn’t work with MCJIT due to a bug! So we need to use a workaround. Apparently there are two
solutions:


	Create a custom memory manager that resolves the extern functions.


	Add the symbol to the global symbols by calling llvm::sys::DynamicLibrary::AddSymbol().




I am using the latter approach for now.




Memory Management in LLVM

Curiously LLVM docs do not say much about how memory should be managed. I am still trying to figure this out, but in general it seems that there is
hierarchy of ownership. Example: ExecutionEngine owns the Module. By deleting the parent the ‘owned’ objects are automatically
deleted.




Links


	Object format issue on Windows [http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-December/068407.html]


	ExecutionEngine::addGlobalMapping() bug in MCJIT [http://llvm.org/bugs/show_bug.cgi?id=20656]


	LLVM Notes [http://nondot.org/sabre/LLVMNotes/]
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